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Abstract—1In this work we develop a fully decentralized,
federated, and fast solution to the recently studied Low Rank
Compressive Sensing (LRCS) problem: recover an n x g low-
rank matrix X* = [xj,x5,...,x7] from column-wise linear pro-
jections, y; := Ayx7, k=1,2,...,q, when each y; is an m-length
vector with m < n. A simple federated sketching solution is to
left multiply the k-th vectorized image by a random matrix
A, and to store only y,. When m < n, this requires much
lesser storage than storing the full image, and is much faster to
implement than traditional image compression. Suppose there
are L nodes (say L smartphones), and each stores a set of (¢/L)
sketches of its images. We develop a decentralized projected
gradient descent (GD) based approach to jointly reconstruct
the images of all the phones/users from their respective stored
sketches. The algorithm is such that the phones/users never
share their raw data (their subset of y;s) but only summaries of
this data with the other phones at each algorithm iteration. Also,
the reconstructed images of user g are obtained only locally and
other users cannot reconstruct them. Only the column span of
the matrix X* is reconstructed globally. By ‘“‘decentralized” we
mean that there is no central node to which all nodes are
connected and the only way to aggregate the summaries from
the various nodes is by use of an iterative consensus algorithm
that provides an estimate of the aggregate at each node, for
strongly connected network. We validated the effectiveness of
our algorithm via extensive simulation experiments.

I. INTRODUCTION

Due to the growing need for reliable high-speed computing
and the increasing focus on security and privacy, it is often
preferred to store and process data in a distributed manner,
and to recover the whole data in a federated way [1], [2].
Federated learning is an approach where devices collaborate
to learn a global model from data stored on distributed
devices, under the constraint that device-generated data are
stored and processed locally, with only intermediate updates
being shared between the devices [3], [4]. In the traditional
federated setting, so-called as centralized federated learning,
the devices periodically communicate their local intermedi-
ate updates with a central server. The central server then
aggregates the information received from all the devices and
communicates it with all devices. The key limitation of a
centralized federated setting is that (i) the central server
orchestrates the whole process and hence is a single point of
failure and (ii) the central server may become a bottle neck
in certain applications as the number of nodes increases.
In applications such as federated sketching of data/images
from smart phones or IoT devices, a decentralized setting
is more practical [5]. This motivates a fully decentralized
and federated framework to learn from distributed data.
By “decentralized” we mean that there is no central node
to which all nodes are connected and thus the only way
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to aggregate the summaries from the various nodes is via
information exchange between the nodes.

In this paper, we develop a fully decentralized solution to
the recently studied Low Rank Compressive Sensing (LRCS)
problem [6]: how to reconstruct a low rank (LR) matrix
from linear projection measurements of its columns in a
decentralized and federated setting. Specifically, an n X g
(low rank) rank-r matrix, X* = [X},X3,...,X;], needs to be
recovered from distributed column-wise linear measurements
Y1,¥2,---,¥g Where yi := Agx; for k € {1,2,...,¢}, and
each yy is an m-length vector with m < n. The measurement
signals, yi,y2,...,¥q, are distributed across p nodes and
the nodes collaborate to recover X* by periodically sharing
their local information with the neighboring nodes via a
communication network. Moreover, the information sharing
is federated such that the nodes share the parameters of their
local model, rather than the raw signal itself. An important
application where this problem occurs and a decentralized
solution is needed is for the federated sketching: efficiently
compressing the vast amounts of distributed images/videos
generated by smartphones and various other devices while
respecting the users’ privacy [2], [7], [8], [9]. Images from
different devices, once grouped by category, are pretty sim-
ilar and hence the matrix formed by the vectorized images
of a certain category is well-modeled as being low rank.

A. Related Work: The centralized LRCS problem has been
studied in three recent works. The first is an Alternating
Minimization solution that solves the harder magnitude-
only generalization of LRCS (LR Phase Retrieval) [10],
[11], [12]. The second (parallel work) studies a convex
relaxation called mixed norm min [1]. The third [6] is a
gradient descent (GD) based provable solution to LRCS,
that we called GDmin. The convex solution is very slow,
has very bad experimental performance, and has a worse
sample complexity than GDmin for highly accurate recovery
settings [6]. The AltMin solution [10], [11], [12] is also
much slower than GDmin. Also, since it is designed for a
harder problem, its sample complexity guarantee for LRCS
is sub-optimal compared to that of GDmin, and consequently
it has worse recovery performance with fewer samples [6].
While [6] considered federated, it is the centralized setting
where a central node aggregates information from all nodes.
The centralized setting is also what was considered in [1]
although the paper title contains the word “decentralized”.
We should mention here that LRCS is significantly dif-
ferent from the other more commonly studied LR recovery
problems: LR matrix sensing (LRMS) [13], LR matrix com-
pletion (LRMC) [13], [14], multivariate regression (MVR)
[8], or robust PCA [15]. MVR is the LRCS problem with
A=A, forke{1,2,...,q}, but this simple change makes it



a very different problem: with this change, the measurements
of the different columns are no longer mutually independent,
conditioned on X*. This, in turn, implies that the required
sample complexity per column, m, can never be less than the
signal length n. This point is explained in detail in [6].

Distributed iterative algorithms for consensus and averag-
ing problems are well studied in the literature [16], [17],
[18]. The general decentralized learning problem, and in
particular, decentralized convex optimization, has also been
studied extensively. Recently, decentralized GD algorithms
with provable guarantees have been developed as well,
starting with the seminal works of Nedi¢ et al. [19]. There
is also some work on using projected GD for decentralized
learning [20], [21], [22]. However, all existing approaches
with guarantees assume convex cost functions and convex
constraints (or no constraints). [20] considers the uncon-
strained optimization problem, and uses projection onto an
appropriately defined subspace to impose the consensus
constraint at each algorithm iteration. The works of [21],
[22] study projected GD approaches to solve a decentralized
convex optimization with convex constraint sets. Both use
projection onto convex sets to impose the constraint at each
GD iteration. However, these approaches are not suitable for
the decentralized LRCS problem as our cost functions are
not convex and the constraint set (set of low rank matrices
with orthonormal columns) is not a convex set.

B. Our Contribution and Paper Organization: In this work,
we develop a fast Gradient Descent (GD) algorithm for
solving the decentralized federated LRCS problem. The
centralized federated setting considered in earlier work [6]
meant that the algorithm for dealing with the distributed
nodes was pretty straightforward and not too different from
the centralized setting. For example, there was no change
to the analysis and almost no extra steps needed in the
algorithm itself when compared with a fully centralized
setting. However, without any central server to aggregate
the summary statistics, the algorithm design becomes much
more difficult. In this work, we borrow ideas from the
scalar consensus literature [16] to develop (i) a decentralized
spectral initialization approach; and (ii) develop a decen-
tralized approach to aggregate the gradients. Our proposed
algorithm, DeF-GD, integrates a consensus-based approach
with projected GD. We present numerical validation of our
approach through extensive experiments on simulated data.

The rest of the paper is organized as follows. Section II
introduces the problem formulation and discusses the nota-
tions used in the paper. Section III presents the proposed
algorithm, DeF-GD. Section IV gives the numerical valida-
tion results of the proposed algorithm. Section V, presents
the concluding remarks and future work.

II. PROBLEM FORMULATION AND NOTATIONS

A. Problem Formulation: DLRCS Problem: We first spec-
ify the LRCS problem below and then explain the decentral-
ized setting. The goal is to recover a set of ¢ n—dimensional
vectors/signals, X}, X3, ...,X; such that the n x ¢ matrix X* :=

q
X}, X3,...,X;] has rank r < min(n,g), from column-wise

linear measurements of the form
Vi i =Ar x5, k=1,2,....q. (1)

Here the matrices A; € R,,«,, are known, R denotes the set
of real numbers, and y; is an m-length vector. We refer to
X* as a Low Rank (LR) matrix as r < min(n,q).

In this work, we assume a decentralized federated set-
ting. The ¢ signals yy,y2,...,y, are not sensed/measured
centrally at one node. Instead, there is a set of L distributed
nodes/sensors and each node can observe ¢/L linear projec-
tion measurements. For simplicity we assume here that ¢/L is
an integer. Thus, for example, node 1 observes yi,...,¥ (/L)
node 2 observes Y(g/r)41,---;Y2q/L, and so on.

Moreover, there is no central node to aggregate the sum-
maries computed by the individual nodes. The individual
nodes exchange information about the parameters of their
measurement signals, rather than the raw signal itself, with
their neighboring nodes via a communication network. The
communication network is specified by a directed graph
G = (V,E), where V, |V| = L, denotes the set of nodes and E
denotes the set of directed edges. The neighbor set of the g"
node (sensor) is given by N, = {j: (g,j) € E}. We denote
the local measurement available to node g by ), where
Ve C{y1,¥2,--,¥q} such that UL_, Y, = {y1,¥2,...,¥4} and
Y,NY;=0forg,je{l1,2,...,L} and g # j. The goal is to
recover the matrix X* from the measurements of p sensors in
a fully decentralized and federated manner, specifically when
m << n. We refer to this problem as the Decentralized Low
Rank Compressive Sensing (DLRCS) problem.

We note that, the measurements are not global, since each
measurement, Yy, is a function of a particular column of
X*, i.e., X}, rather the full matrix X*. The measurements are
global for each column but not across the different columns.
We thus need the following incoherence assumption to enable
correct interpolation across the different columns [11]. This
was introduced in [14] for LR Matrix Completion (LRMC)
which is another LR problem with non-global measurements,
but its model is symmetric across rows and columns.

Let us denote the reduced (rank ) Singular Value Decom-
position (SVD) of the rank-r matrix X* as X* °X° U* £* V* .
Here U* € R*™ and V* € R?*" are rank-r orthonormal
matrices. Let Omax, Omin denote the maximum and minimum
singular values of X*, respectively. Thus K = Gmax/Omin 1S
the condition number of X* (since X* is rank deficient,

its condition number is infinite). We define B := V' and

B:=2V'. Thus X* *¥° U* ©* B* = U* B*. In our approach,

we will recover columns of B*, denoted as f);, individually.

Assumption 1 (Right singular vectors’ incoherence). We
assume that maxy |bf|| < p+\/r/q. Treating the condition
number K of L* as a constant, up to constants, this is
equivalent to requiring that max ||x;||> < g Y1_, ||x;||*/q for
a constant [1 that can depend on K.

B. Notation: We denote the Frobenius norm as ||-||z, the
induced ¢, norm as ||-||, and the (conjugate) transpose of a
matrix Z as Z'. We use e to denote the k™ canonical basis
vector and h € [d] for h € {1,2,...,d} for some integer d. We



define the Subspace Distance (SD) measure between two ma-
trices Uy and Uj as SD(U;,U,) := ||(17U1UI)U2| > Where
I is the identity matrix. Note that, for two r-dimensional
subspaces, SD(-,-) is the ¢, norm of the sines of the r
principal angles between span(U;) and span(U;) and is a
measure of distance between the two subspaces.

III. PROPOSED ALGORITHM: DEF-GD

In this section, we present the proposed fully decentralized
federated algorithm for solving the DLRCS problem. We
would like to find a matrix X = [X,X5,...,X,] that minimizes
F(X) := X7, |lye — Aexc||* subject to the constraint that
its rank is r or less, in a fully decentralized and federated
manner. The pseudocode for the proposed algorithm is given
in Algorithm III1.3. Algorithm IIL.3 integrates a projected GD
algorithm with a consensus algorithm. The projected GD
serves the matrix recovery part and the consensus algorithm
serves the decentralized aggregation in a federated manner.
We first present the details for projected GD and then present
the details of consensus-based projected GD.

A. Main idea of the centralized projected GD algorithm
[6]: To recover matrix X, we write X = UB where U is
nxr and B is r x g and do alternating projected GD on
U and B. We use projected GD for updating U (one GD
step followed by projecting onto the space of orthonormal
matrices); the projection step is needed to ensure the norm
of U does not keep increasing over iterations). For each
new estimate of U, we solve for B by minimizing over
it keeping U fixed. Because of the specific asymmetric
nature of our measurement model, the min problem for
columns of B is decoupled. Thus the minimization over B
only involves solving g r-dimensional Least Squares (LS)
problems, in addition to also first computing the g matrices,
AU, for use in the LS step. Thus the time needed is only
O(gmr? 4 gmnr) = O(mgnr). This is order-wise equal to the
time needed to compute gradient with respect to U, and thus,
the per-iteration cost of GDmin is only O(mgnr).

Notice that, for m < n, our problem is convex but not
strongly convex. As a result GD starting from any arbitrary
initialization may converge to ¢ minimum but the minimum
is not unique. Consequently, it is not guaranteed to converge
to the true matrix that we want to recover. To address this
issue, a class of approaches known as spectral initialization
have been used frequently in the literature. The idea is to
define a matrix that is close to a matrix whose top r left
or right singular vectors span the column span of the true
X* which is equivalent to a matrix that is close to the
top r eigenvectors of X*X*". In our setting this involves
computing the matrix U®) given in Algorithm IIT.2.

B. Decentralized and Federated Projected GD (DeF-GD):

We note that the measurements of the nodes are distributed as
Viyoo s Ve, where Vo C {1, ¥g ) Uss Ve = {¥1,--, ¥4}
and YV, NY; =0 for j# g. In a decentralized federated
setting, the nodes only share the parameters or estimates
of the local updates, rather than the raw signal or the
local measurements itself, with other nodes. Additionally,

Algorithm III.1 Pseudocode for distributed average consen-
sus: AVGCONSENSUS (Dy,D»,...,D;,W,C)

Input: Matrices Dy,...,D;, where D, € R**¥ for g €
{1,...,L}, Weight matrix W € RE*L, iteration number C

1: Initialize Dgo) «—D,, for g € [L]

2: for t=0to C do

3 DY D+ Y w, (1)5.” - Dﬁ,”), for g € [L]
N,

JEN

4: end for

each node shares the parameters or estimate of the local
update with the neighboring nodes only. As a result, a direct
implementation of projected GD is not feasible. To propose
a decentralized, federated version of the projected GD, we
integrate projected GD with a consensus algorithm.

In each iteration of the algorithm, the nodes run a local
projected GD utilizing its local data. The parameters of the
GD is then communicated with the neighboring nodes. Each
node aggregates its own local GD parameter with the neigh-
bors’ GD parameters and performs a distributed consensus
until all nodes converge to the same GD parameter. Once
consensus is achieved, all nodes update their local estimate
using the converged GD parameter in order to minimize the
estimation error. The projected GD iteration continues until
all nodes converge to a global estimate with an acceptable
error tolerance. The convergence of the consensus algorithm
is guaranteed when G is strongly connected and the weight
matrix is doubly stochastic and symmetric [16], [18].

Proposition 1 ([18]). Let G be a strongly connected graph
and suppose that each node of G performs a distributed
linear protocol zg(t +1) = z¢(t) + ¥ jen;, Wej(2j(t) — z¢(1))-
Then if the graph G is connected and W is doubly stochastic
and symmetric, then limy_,.z4(t) = fZéL,:lzg(O) (average

consensus), where L is the number ofljwdes.

We consider a strongly connected! and symmetric? net-
work G, and a doubly stochastic and symmetric weight
matrix W. The consensus algorithm converges to the av-
erage value by Proposition 1. Below, we explain the details
of our DeF-GD algorithm (Algorithm II1.3), including the
initialization chosen for the projected GD. We note that the
initialization step for Algorithm III.3 also need to be done
in a federated setting. As the measurements are distributed
across the nodes and since the communication is federated,
we will need a federated algorithm for initialization so that
all nodes are initialized to a common value. We explain this
below and the pseudocode of the initialization algorithm is
presented in Algorithm III.2.

1) Federated Initialization (Algorithm II1.2): For feder-
ated initialization, we use two steps, (i) federated computa-
tion of the threshold of the indicator function and (ii) fed-
erated Power Method (PM). To compute the threshold for
the indicator function, each node, g € {1,...,L}, computes

I'A directed graph G is said to be strongly connected if for each ordered
pair of vertices (v;,v;) there exists an elementary path from v; to v; [23].

2G is said to be symmetric if node g communicates with node j, then
node j also communicates with node g, for any arbitrary pair of nodes g, j.



Algorithm III.2 Pseudocode for federated initialization
,Land k=1,2,...,L

Input: Vg, Ay, where g =1,2,...
Output: U, n
m
1: Initialize 555()) ~ ) nyk, (Ug,o))g «— (UO),, for
kelgliy ey i=1
gelL]

2: return 6 < Lx AvgConsensus (51(()),...
3: for /=0 to B do

0 1
(O « )3 2 (Zallekﬂ{y <95/( mq)})
ke[q]:ykeyg =l

():fnzlaik)’ik]l{ylzkgga/(mq)}) (Ug(z >)£ 1, for g € [L]

}gl, )

U@R@

,6L(°),W,C)

5: return U() «— AvgConsensus ({(

6: Obtain U by QR, i.e., compute 0o ) B
7. Set (UY), < UO forall g=1,2,...,L
8: end for

9: return U and 1 < 1/Amax (R

largest eigenvalue

9)), Amax(-) denotes the

m
Z Zyizk using the measurement available to

kelql:yrel, i=1
node g. Each node then communicates this value with its
neighboring nodes and performs a distributed average con-
sensus (step 2 of Algorithm II1.2). We present the subroutine
code for distributed average consensus in Algorithm III.1.

AVGCONSENSUS takes as input u X v matrices
Dy,D,,...,Dy corresponding to L nodes, a doubly stochastic
and symmetric weight matrix W € REXE| and the maximum
number of iterations C. In each iteration, nodes update their
values by taking weighted sum of its own and its neighbors’
values (step 3 of Algorithm III.1). Convergence of the
AVGCONSENSUS algorithm is guaranteed by Proposition 1.
In our algorithm we use consensus for scalar values (i.e.,
u =v = 1) and matrices. In the case of scalar, each node has
a scalar value associated with it and the nodes communicate
with neighbors to reach consensus to the average value (e.g.,
step 2 in Algorithm IIL.3). In the matrix case, each node is
associated with a matrix and the nodes communicate with
neighbors to reach consensus to the element-wise weighted
average (e.g., step 5 in Algorithm II1.3), which is a direct
extension of the scalar case. The number of iterations are
chosen such that the values of the nodes are within an
acceptable tolerance. We obtain the threshold value of the
indicator function using AVGCONSENSUS. Once consensus
of the threshold value is achieved, a federated PM algorithm
is executed using the converged threshold.

As explained in [6], we plan to initialize Uy as the top r
left singular vectors of X, where

1 qg m
k=1i=1

2
é:l Z Zyik =
kelqlyredyi=1
(51(0>,...,3L(0),W,C). This is equivalent to initializing Up
as the top r eigenvectors of XOX(—)r . In order to compute

5;0) =

where 6 = Lx AvgConsensus

the eigenvalues of XX/ in a federated and decentralized
manner, we perform a federated PM [6] followed by an
average consensus. In the federated PM, all nodes first
jointly does a random initialization (Ugo))o := (U), for all
g€ {l,2,...,L}, where (U©)y is a random matrix. Then,
during each PM iteration, { =1,2,...,B, node g computes

4 T

- a,ky,k]l{y <95/ (ma)} > (Za,kylk]l{y <o8ingy)) (UE)e-
ke[q]: Yk€ye =1 =1

and communicates this information with its neighboring
nodes. Each node now aggregates its own and the neighbors’
information using the AVGCONSENSUS as in step 5 of
Algorithm III.2. The nodes perform a distributed consensus
until all nodes converge to the same (ﬁgo))c. Finally all nodes
compute a QR factorization to obtain U© and proceeds
to the next iteration of the federated PM. The outputs of
Algorithm III.2 are Up and 1 which serves as the initializa-
tion of the gradient descent and the step size for gradient
descent, respectively, for the decentralized, federated LRCS
algorithm, DeF-GD, presented in Algorithm III.3.

2) Decentralized Projected GD (Algorithm II1.3): Using
the federated initialization, we propose a decentralized pro-
jected gradient descent algorithm to reconstruct the signal
matrix X*. Each node update its local estimation via a
negative-gradient step, by combining the local gradient com-
puted by the node using the data available to the node, and
the average of its neighbors’ gradient estimates.

Let X* = U*B*. We define the notations f(U,B) :=

m

qg m
Z Z v —ajUby)” and i (U,B) := Y (v — a; Uby)”.
k=1i=1 i=1

We initialize the U matrix corresponding to the nodes,

denoted as Uy, as U computed in Algorithm III.2. Then
in each iteration of the DeF-GD algorithm (Algorithm II1.3),
we update the gradient of node g, Yy, ey, Vu, fi(-,), de-
noted as ¥y, by one step of GD on U,, combined with a
weighted average of the neighbors’ information, i.e., ¥; =
Yhyey; Vu, fi(:,-) for j € N, (steps 9 and 11). Once the
local gradient updates of all nodes reach consensus to a com-
mon W (step:13), the U matrix is updated as UF = U—nW¥,
where 1 is the gradient step computed in Algorithm II1.2.
We then perform QR factorization to get a matrix with
orthonormal columns. For each new U, we update B by
minimizing f(U,B) over B. For a fixed U, we note that, the
minimization of f(U,B) over B involves solving ¢ decoupled
r-dimensional least squares problem.

C. Discussion: We note that the decentralized GD approach
proposed in [19] (and follow up works) for standard GD
is not applicable for DLRCS. In DLRCS, we use GD to
update estimates of the column span of the true matrix
X*=U"B*, i.e., span of columns of U*. The n x r matrix U*
is unique only up to right multiplication by an r X r rotation
matrix since U*B* = U*QQ~'B*, where Q is a rotation
matrix. Consequently, in Algorithm III.3, we use projected
GD to update the subspace estimates U; run one step of GD
with respect to the cost function followed by projecting the
output onto the set of matrices with orthonormal columns
via QR decomposition. The approach of [19] designed for



Algorithm III.3 Pseudo-code for proposed DeF-GD
Input: )V, Ay, where g=1,2,...,Land k=1,2,...,g
Parameters: GD step size 1, number of iterations 7', error
tolerance y
Output: U

1: Execute Algorithm II1.2 and obtain U©®)

2: Initialize t =1, Ug)) «—UO), forall ge{1,2,...,L}
3: while r < T and Err > y do

4 U« Uut-b

5 for g=1to L do

6: Let U, < UY Y

7

8

for y, € ), do
Set (bk), — (AkUg)Tyk and (Xk); — Ug(bk),
m

9: Compute  Vy, fi(Ug,(bi)) = Y (ya —
i=1
a; Uy (be))a(by),
10: end for
1: Yo Y Vi fi(Ug, (b))
kelglyr €y
12: end for

13: return ¥ < AvgConsensus (‘Pl,‘Pg, . ,‘PL,W,C>
14: Set Ut «U—n¥

15: Obtain UT by QR, i.e., compute U™ = UTR™

16:  Set UY «— Ut and Err + SD(U®,Ul—D)

17: end while

standard GD cannot be used for updating U because it
involves averaging the partial estimates Uy, g € {1,2,...,L},
obtained locally at the different nodes. However, since U,’s
are subspace basis matrices, their numerical average will not

provide a valid “subspace mean” 3.

IV. SIMULATIONS

In this section, we present the numerical validation of the
proposed algorithm. We note that all the experiments were
done using MATLAB. The communication network G and
the dataset A;’s and y;’s were generated randomly.

We simulate the network as an Erdés Rényi graph with L
vertices and with probability of an edge between any pair of
nodes being p. This means that there is an edge between any
two nodes (vertices) i and j with probability p independent of
all other node pairs. For such a graph, if p > (14 {)logL/L,
then, for large values of L, with high probability (w.h.p.), the
graph is strongly connected) holds. The probability that this
holds goes to one as L — 0. Also, if L < (1+ §)logL/L,
then, for large values of L, w.h.p., the graph is not strongly
connected. Since the guarantees are not deterministic, for a
particular simulated graph, we used the conncomp function
in MATLAB to verify that the graph is strongly connected.

We generated the data for our experiment as follows. We
note that, X* = U*B* , where U* is an n x r orthonormal
matrix. We generate the entries of U* by orthonormalizing
an i.i.d standard Gaussian matrix. Similarly, the entries of
B* € R"™4 are generated from a different i.i.d Gaussian

3To compute the subspace mean of Ug’s w.rt. the subspace distance
SD(.,.), one would need to solve ming ¥, SD*(U,,U). This cannot be done
in closed form and will require an expensive iterative algorithm.

distribution. The matrices Ays were i.i.d. standard Gaussian.
We performed two experiments on the generated dataset.
(1) Variation of the estimation error, denoted as SD(U*,U()),
where U* is the actual matrix and U is the estimate
returned by our algorithm at iteration ¢, with respect to
the time taken for execution for different values of q.

(2) Variation of the estimation error, HX* — X HF /11X g

where X* is the actual data matrix and X is the estimate of
X* corresponding to the output of the algorithm at iteration
t, with respect to the time taken for execution for different
values of edge probability in the network G.

Experiment 1: For this experiment, we generated the com-
munication network G such that there exists a link between
two nodes with probability 0.25. Thus the communication
network is an Erd6s Rényi graph with edge probability
0.25. We plot the matrix estimation error (at the end of
the iteration) SD(U*, U") and the execution time-taken
(until the end of that iteration) on the y-axis and x-axis,
respectively. The parameters chosen for this experiment are:
n=100, r =4, m =40, and L = 20. We provide results of the
DeF-GD algorithm for three different values of the consensus
iteration; (i) C =1, (ii) C = 3, and (iii) C = 10, when g =400
and g = 200. We ran the DeF-GD algorithm for these cases
and also implemented the GDmin algorithm in [6] for the
centralized case where there is a central server that performs
the aggregation of the gradients of all the nodes.

The experimental results are presented in Figure 1. Fig-
ures la and 1b correspond to g =400 and g = 200, re-
spectively. From the experiments, we notice that, for a
certain range of C, the rate of decay of error increases as C
increases (for C =1, 3). However, for C = 10 the results are as
good as centralized. On the other hand, consensus iterations
introduces additional computational overhead resulting in
the increase of the execution time. We thus infer that, the
structure of the network and the partition of the data across
the nodes, play a crucial role in deciding the number of
iterations required for achieving consensus and consequently
the amount of computations required to recover the data.

Experiment 2: For this experiment, we varied the edge
probability of the communication network G and analyze the
estimation error. The parameters chosen for this experiment
are: n =100, r =4, g =400, m =40, L = 20, and C = 200.
We plot the matrix estimation error (at the end of the
iteration) ‘ X* —XO | /|IX*||> and the execution time-taken

(until the end of that iteration) on the y-axis and x-axis,
respectively. We provide results of the DeF-GD algorithm for
four different values of the edge probability; (i) 0.1, (ii) 0.2,
(iii) 0.25, and (iv) 0.5. We note that, for edge probability
0.1, the network G was not connected and this explains
the reason for no decay in the error. On the other hand,
for edge probability values 0.2,0.25, and 0.5, the resulting
network was connected. We compared the performance of
the DeF-GD algorithm with the GDmin algorithm given in
[6], where there is a central server. The experimental results
are presented in Figure lc. From the results, as expected,
our decentralized algorithm gives lower error and faster
convergence when the network is a well connected graph.
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Fig. 1: Error versus execution time plot with time in seconds. We compare performance our fully decentralized algorithm (DeF-GD) by varying the
number of iterations of AvgConsensus as C = 1,3, 10. We also compare DeF-GD with the GDmin algorithm in [6], which is the memory efficient existing
approach with guarantees when there is a central server. In Figure (1a), n =100, r =4, ¢ = 400, m = 40, and L =20 and in Figure (1b), n =100, r =4,
q =200, m =40, and L =20. In Figure Ic, we compare performance our fully decentralized algorithm (DeF-GD) by varying the probability of edge in the
communication network G as 0.1,0.2,0.25, and 0.5. We also compare DeF-GD with the GDmin algorithm in [6], which is the memory efficient approach
with guarantees when there is a central server. The parameters used are: n = 100, r =4, ¢ =400, m =40, L =20, and C = 3.

From Figure 1c we infer that the decay rate of error increases
as the probability of an edge in the network increases. As
a result, the convergence rate of the DeF-GD algorithm
improves, and the gap between the centralized approach and
the decentralized approach decreases as the connectivity of
the network increases.

V. CONCLUSION

In this paper we studied the Low Rank Compressive
Sensing (LRCS) problem in a fully decentralized setting,
where the measurement signals are distributed across a set
of nodes that are allowed to exchange their information only
with a pre-specified set of neighboring nodes. We referred
to this problem as the Decentralized Low Rank Phase
Retrieval (DLRCS) problem. We considered the federated
setting of the DLRCS problem where the nodes only share
the parameters of their local estimate rather than the raw
signal itself. For solving the DLRCS problem, we proposed
a fully decentralized, federated algorithm, referred to as
DeF-GD. Our algorithm incorporated a projected gradient
descent to serve the matrix recovery part and an average
consensus algorithm for achieving the collaboration of nodes.
We validated the effectiveness of our algorithm on randomly
generated synthetic data and compared with the existing
memory efficient approach in [6], which addresses the case
when there is a central server in the system. We plan to
investigate convergence guarantees of the proposed DeF-GD
algorithm as part of our future work.
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