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u n cti o n al d at a a n al y si s

i g h - di m e n si o n al f u n cti o n al p r e di ct o r s

u b g r o u p a n al y si s

a b s t r a c t

S u b g r o u p a n al y si s f o r s c al a r d at a h a s b e e n w ell st u di e d i n t h e lit e r at u r e. H o w e v e r,

l e s s h a s b e e n d o n e o n f u n cti o n al d at a, e s p e ci all y o n hi g h - di m e n si o n al f u n cti o n al r e -

g r e s si o n. I n t hi s st u d y, w e d e v el o p a hi g h - di m e n si o n al f u n cti o n al r e g r e s si o n m o d el f o r

si m ult a n e o u s e sti m ati o n a n d s u b g r o u p i d e ntifi c ati o n f o r a h et e r o g e n e o u s p o p ul ati o n.

U n d e r mil d c o n diti o n s, w e e st a bli s h t h e e sti m ati o n a n d s el e cti o n c o n si st e n c y of t h e

p r o p o s e d e sti m at o r s. T h e p r o p o s e d a n al y si s all o w s t h e n u m b e r of f u n cti o n al p r e di ct o r s

a n d n u m b e r of s u b g r o u p s t o i n c r e a s e a s t h e s a m pl e si z e i n c r e a s e s. Si m ul ati o n st u di e s

d e m o n st r at e s ati sf a ct o r y p e rf o r m a n c e of t h e p r o p o s e d m et h o d, a n d it i s al s o ill u st r at e d

t h r o u g h a r e al a p pli c ati o n.

© 2 0 2 2 El s e vi e r I n c. All ri g ht s r e s e r v e d.

. I n t r o d u c ti o n

F u n cti o n al li n e a r r e g r e s si o n i s a p o p ul a r t e c h ni q u e w h e n p r e di ct o r s a r e f u n cti o n s a n d r e s p o n s e s a r e s c al a r s. It h a s b e e n

h o r o u g hl y st u di e d a n d e xt e n si v el y a p pli e d. A n o n - e x h a u sti v e li st of r e c e nt w o r k s i n cl u d e [ 1 ,4 ,1 4 ,2 3 ,3 4 ,3 5 ].

M ulti pl e f u n cti o n al d at a a ri s e s f r o m a c oll e cti o n of si m ult a n e o u s r e c o r di n g s of s e v e r al ti m e c o u r s e s f o r m a n y s u bj e ct s

r u nit s. T h e r e i s a d e m a n d f o r f u n cti o n al v a ri a bl e s el e cti o n i n a p pli c ati o n s. Z h u et al. [ 3 9 ] p r o p o s e d a B a y e si a n a p p r o a c h

o r s el e cti n g a n d e sti m ati n g i m p o rt a nt f u n cti o n al p r e di ct o r s i n a cl a s sifi c ati o n s etti n g. Li a n [ 1 5 ] c o n d u ct e d r e g r e s si o n

i m ult a n e o u s e sti m ati o n a n d v a ri a bl e s el e cti o n b y u si n g t h e g r o u p s m o ot hl y cli p p e d a b s ol ut e d e vi ati o n p e n alt y. F a n

t al. [ 5 ] p r o p o s e d a n a d diti v e t e c h ni q u e f o r effi ci e ntl y p e rf o r mi n g hi g h - di m e n si o n al f u n cti o n al r e g r e s si o n. K o n g et al. [ 1 2 ]

r o p o s e d p a rti all y f u n cti o n al li n e a r m o d el s t o c h a r a ct e ri z e t h e r el ati o n s hi p b et w e e n a s c al a r r e s p o n s e a n d b ot h f u n cti o n al

n d s c al a r c o v a ri at e s. T h e m et h o d s m e nti o n e d a b o v e r el y o n a h o m o g e n eit y a s s u m pti o n.

O u r m oti v ati n g e x a m pl e i s a t hi n -fil m t r a n si st o r li q ui d c r y st al di s pl a y ( T F T - L C D) d at a s et. T h e m a n uf a ct u ri n g p r o c e s s

f T F T - L C D i s c o m p ri s e d of h u n d r e d s of w o r ki n g p r o c e d u r e s. It i s c h all e n gi n g t o c o n d u ct st ati sti c al a n al y si s b a s e d o n t h at

a r g e a m o u nt of r a w d at a t o g et u s ef ul i nf o r m ati o n f o r s u p p o rti n g o p e r ati o n al d e ci si o n s [8 ,2 5 ]. W h at w e a r e i nt e r e st e d

n i s w hi c h p r e di ct o r s m a y aff e ct t h e t hi c k n e s s of t h e p r o d u ct. Fi g. 1 s h o w s t h e hi st o g r a m of t hi c k n e s s aft e r a dj u sti n g

o r t h e f u n cti o n al c o v a ri at e s’ eff e ct s wit h o ut s u b g r o u p a n al y si s. It i s e a s y t o s e e t h at t h e d at a c o m e s f r o m a mi xt u r e of

o p ul ati o n s, a n d s o m e u n o b s e r v e d l at e nt f a ct o r s m a y c a u s e h et e r o g e n eit y. It i s n ot s uit a bl e t o fit a st a n d a r d r e g r e s si o n

o d el wit h a c o m m o n i nt e r c e pt. T hi s h a s m oti v at e d u s t o d e v el o p a n e w st ati sti c al m et h o d f o r si m ult a n e o u s e sti m ati o n

n d s u b g r o u p i d e ntifi c ati o n f o r a h et e r o g e n e o u s p o p ul ati o n.

∗ C o r r e s p o n di n g a ut h o r.

E - m ail a d d r e s s: x m uf k n @ x m u. e d u. c n ( K. F a n g).
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i g. 1. D at a a n al y si s of T F T - L C D d at a s et: d e n sit y pl ot of t h e r e s p o n s e v a ri a bl e aft e r a dj u sti n g f o r t h e c o v a ri at e s’ eff e ct s b y u si n g t h e g m c p m et h o d.

h e d at a s et i s c oll e ct e d f r o m 1 4 9 s u bj e ct s wit h 5 6 f u n cti o n al v a ri a bl e s a n d a s c al a r r e s p o n s e.

S u b g r o u p a n al y si s f o r s c al a r d at a h a s b e e n w ell st u di e d i n t h e lit e r at u r e. Fi nit e mi xt u r e m o d eli n g i s o n e of t h e p o p ul a r

et h o d s f o r a n al y zi n g d at a f r o m a h et e r o g e n e o u s p o p ul ati o n [ 2 4 ,3 1 ]. A p a rt f r o m t h e a p p r o a c h e s m e nti o n e d a b o v e, M a

n d H u a n g [ 2 0 ] a n d Z h a n g et al. [3 6 ] a s s u m e d t h at t h e s u b g r o u p st r u ct u r e i s d efi n e d b y g r o u p - s p e cifi c i nt e r c e pt s. M a

t al. [ 2 1 ] c o n si d e r e d a h et e r o g e n e o u s r e g r e s si o n m o d el wit h s u bj e ct - d e p e n d e nt c o effi ci e nt s. Li u a n d Li n [ 1 7 ] p r o p o s e d

h et e r o g e n e o u s a d diti v e p a rti all y li n e a r m o d el, w hi c h c o nt ai n s b ot h h o m o g e n e o u s li n e a r c o m p o n e nt s a n d s u bj e ct -

e p e n d e nt a d diti v e c o m p o n e nt s. W a n g et al. [ 3 0 ] c o n si d e r e d a s p ati al a ut o m ati c s u b g r o u p a n al y si s p r o bl e m f o r d at a wit h

e p e at e d m e a s u r e m e nt s. Y a n et al. [ 3 2 ] d e v el o p e d a c e n s o r e d li n e a r r e g r e s si o n m o d el wit h h et e r o g e n e o u s t r e at m e nt

ff e ct s. L u et al. [ 1 8 ] p r o p o s e d a w ei g ht e d p e n ali z e d m e di a n r e g r e s si o n a p p r o a c h f o r l o n git u di n al d at a wit h d r o p o ut s.

u et al. [ 9 ] c o n si d e r e d s u b g r o u p a n al y si s u n d e r a h et e r o g e n e o u s C o x m o d el. Li u et al. [ 1 6 ] p r o p o s e d a f u s e d eff e ct s

o d el f o r d at a wit h r e p e at e d m e a s u r e m e nt s. S o m e ot h e r r e s e a r c h e r s [ 1 9 ,2 8 ,3 8 ] p r o p o s e d m et h o d s t o cl u st e r s u bj e ct s

nt o s u b g r o u p s b a s e d o n l o n git u di n al t r aj e ct o ri e s. Alt h o u g h t h e lit e r at u r e o n s u b g r o u p a n al y si s of s c al a r a n d l o n git u di n al

at a i s e xt e n si v e, littl e h a s b e e n d o n e o n f u n cti o n al d at a, e s p e ci all y u n d e r hi g h - di m e n si o n al f u n cti o n al r e g r e s si o n.

I n t hi s p a p e r, w e c o n si d e r s u b g r o u p a n al y si s f o r hi g h - di m e n si o n al f u n cti o n al r e g r e s si o n. T hi s st u d y m a y a d v a n c e f r o m

h e e xi sti n g o n e s al o n g wit h t h e f oll o wi n g a s p e ct s. Fi r st, t h e p r o p o s e d m et h o d c a n a ut o m ati c all y s e p a r at e o b s e r v ati o n s

nt o s u b g r o u p s. A r el at e d m o d el h a s b e e n c o n si d e r e d i n W a n g et al. [2 9 ], w hi c h p r o p o s e d a f u n cti o n al p a rti all y li n e a r

e g r e s si o n m o d el a n d i d e ntifi e d l at e nt s u b g r o u p s of s u bj e ct s b y a n al g o rit h m s h a ri n g s o m e si mil a r s pi rit wit h K - m e a n s

l u st e ri n g. O u r w o r k u s e s t h e f u si o n p e n alt y a p p r o a c h f o r e sti m ati o n a n d a ut o m ati c all y s e p a r ati n g o b s e r v ati o n s i nt o

u b g r o u p s. B e si d e s, w e c a n a c c o m m o d at e hi g h - di m e n si o n al p r e di ct o r s.

S e c o n d, t h e p r o p o s e d m et h o d c a n p e rf o r m v a ri a bl e s el e cti o n a n d i d e ntif y r el e v a nt p r e di ct o r s al o n g wit h e sti m ati n g

i g h - di m e n si o n al f u n cti o n al m o d el s. U n d e r mil d c o n diti o n s, w e e st a bli s h t h e o r a cl e p r o p e rt y of t h e p r o p o s e d e sti m at o r

f t h e mi ni m al s a m pl e si z e of s u b g r o u p s ati sfi e s |g 0
mi n | ≫ (K + q n s n + q 2

n ) 1 / 2 n 1 / 2 , w h e r e K i s t h e n u m b e r of s u b g r o u p s, q n

i s t h e n u m b e r of i m p o rt a nt p r e di ct o r s, s n i s t h e c o m m o n t r u n c ati o n p a r a m et e r, a n d n i s t h e s a m pl e si z e. T h e n u m b e r of

f u n cti o n al p r e di ct o r s p n , q n , a n d s n a r e all all o w e d t o g o t o i nfi nit y. E xt e n di n g t h e o r eti c al r e s ult s t o di v e r gi n g f u n cti o n al

r e di ct o r s i s n ot t ri vi al. It i s diff e r e nt f r o m K o n g et al. [ 1 2 ], w hi c h a s s u m e d t h at t h e n u m b e r of f u n cti o n al p r e di ct o r s i s

i x e d. B e si d e s, t h e e xi sti n g st u d y di d n ot c o n si d e r h et e r o g e n eit y.

T hi r d, w e s h o w t h at t h e t r u e s u b g r o u p st r u ct u r e of s a m pl e s c a n b e r e c o v e r e d wit h a hi g h p r o b a bilit y. T h e n u m b e r

f s u b g r o u p s i s all o w e d t o i n c r e a s e a s t h e s a m pl e si z e i n c r e a s e s. T h e n u m b e r of s u b g r o u p s K , t h e n u m b e r of i m p o rt a nt

r e di ct o r s q n , t h e c o m m o n t r u n c ati o n p a r a m et e r s n , a n d t h e s a m pl e si z e n s ati sf y K (K + q n s n + q 2
n ) 1 / 2 = o (n 1 / 2 ).

T h e l at e r s e cti o n s a r e o r g a ni z e d a s f oll o w s. T h e m o d el s etti n g a n d m et h o d ol o g y a r e d e s c ri b e d i n S e cti o n 2 , al o n g

wit h t h e p r o p o s e d c o m p ut ati o n al al g o rit h m. I n S e cti o n 3 , w e st at e t e c h ni c al a s s u m pti o n s a n d e st a bli s h t h e a s y m pt oti c

p r o p e rti e s of t h e p r o p o s e d e sti m at o r. S e cti o n 4 p r e s e nt s si m ul ati o n st u di e s u n d e r v a ri o u s s c e n a ri o s t o a s s e s s p e rf o r m a n c e

of t h e p r o p o s e d m et h o d. W e a p pl y t h e p r o p o s e d m et h o d t o t h e T F T - L C D d at a s et i n S e cti o n 5 . S e cti o n 6 c o n cl u d e s wit h
di s c u s si o n s. A d diti o n al t e c h ni c al r e s ult s a r e gi v e n i n A p p e n di x .
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. S u b g r o u p a n al y si s f o r hi g h - di m e n si o n al f u n c ti o n al r e g r e s si o n

. 1. M o d el

S u p p o s e t h at t h e d at a c o n si st s of {x i1 (t ), . . . , x i pn (t ), y i}, i ∈ { 1 , . . . , n }. y i i s a s c al a r c o nti n u o u s r e s p o n s e, {x i1 (t ), . . .,

i pn (t )} a r e p n f u n cti o n al p r e di ct o r s, a n d x ij(t ) i s a r e al - v al u e d, c o nti n u o u s, s q u a r e -i nt e g r a bl e, r a n d o m c u r v e o n t h e c o m p a ct

nt e r v al T j. p n i s all o w e d t o g o t o i nfi nit y. Wit h o ut l o s s of g e n e r alit y, w e a s s u m e t h at f u n cti o n al p r e di ct o r s a r e c e nt r e d

n d T j = T = [ 0 , 1 ] f o r j ∈ { 1 , . . . , p n }.
I n t hi s p a p e r, w e a r e c o n c e r n e d wit h t h e f oll o wi n g f u n cti o n al li n e a r m o d el wit h m ulti pl e f u n cti o n al o b s e r v ati o n s:

y i = µ i +

p n∑

j= 1

∫

T

x ij(t )b j(t )dt + ϵ i, i ∈ { 1 , . . . , n }, ( 1)

h e r e µ i’ s a r e u n k n o w n s u bj e ct - s p e cifi c i nt e r c e pt s, b j(t )’ s a r e s q u a r e -i nt e g r a bl e f u n cti o n al c o effi ci e nt s, a n d ϵ i’ s a r e

a n d o m s c al a r e r r o r s i n d e p e n d e nt of t h e p r e di ct o r s. W e a s s u m e t h at t h e fi r st q n f u n cti o n al p r e di ct o r s a r e i m p o rt a nt w hil e

h e r e st a r e n ot, i. e., b j(t ) ̸ =0 f o r j ∈ { 1 , . . . , q n } a n d b j(t ) = 0 f o r j ∈ { q n + 1 , . . . , p n }.
A s s u m e {y 1 , . . . , y n } a r e f r o m K s u b g r o u p s. H e r e h et e r o g e n eit y i s m o d el e d t h r o u g h µ i’ s. I n ot h e r w o r d s, if µ i = µ j, t h e

it h o b s e r v ati o n a n d t h e jt h o b s e r v ati o n a r e f r o m t h e s a m e s u b g r o u p. L et G = { g 1 , . . . , g K } b e t h e p a rtiti o n of {1 , . . . , n }.
T h e n w e h a v e µ i = α k f o r all i ∈ g k , w h e r e α k i s t h e c o m m o n v al u e f o r µ i’ s f r o m s u b g r o u p g k . W e al s o all o w t h e n u m b e r

of s u b g r o u p s K t o g o t o i nfi nit y.

2. 2. E sti m ati o n

B e c a u s e f u n cti o n al d at a i s i nt ri n si c all y i nfi nit e - di m e n si o n al, di m e n si o n r e d u cti o n i s c riti c al f o r m o d eli n g a n d a n al y si s.

F u n cti o n al p ri n ci p al c o m p o n e nt a n al y si s ( F P C A) i s a n i m p o rt a nt di m e n si o n r e d u cti o n t o ol, a n d f a cilit at e s t h e c o n v e r si o n

of i n h e r e ntl y i nfi nit e - di m e n si o n al f u n cti o n al d at a t o a fi nit e - di m e n si o n al v e ct o r of r a n d o m s c o r e s.

L et K j(s , t ) = C o v {x j(s ), x j(t )}. B y M e r c e r’ s t h e o r e m, w e h a v e t h e s p e ct r al e x p a n si o n:

K j(s , t ) =

∞∑

k = 1

v j kφ j k(s )φ j k(t ),

h e r e v j1 > v j2 > · · · > 0 a r e t h e ei g e n v al u e s of t h e li n e a r o p e r at o r a s s o ci at e d wit h K j(s , t ) wit h c o r r e s p o n di n g

ei g e nf u n cti o n s {φ j k}. T h e n t h e K a r h u n e n – L oè v e e x p a n si o n of t h e r a n d o m f u n cti o n x ij(t ) i n t e r m s of t h e o rt h o n o r m al b a si s

{φ j k} i s x ij(t ) =
∑ ∞

k = 1 ξ ij kφ j k(t ), w h e r e ξ ij k’ s a r e p ri n ci p al c o m p o n e nt s c o r e s s ati sf yi n g E
(
ξ ij k

)
= 0 , E

(
ξ 2

ij k

)
= v j k. M a ki n g u s e

of t h e e x p a n si o n b j(t ) =
∑ ∞

k = 1 β j kφ j k(t ), w e c a n r e w rit e E q. ( 1) a s:

y i = µ i +

p n∑

j= 1

∞∑

k = 1

β j kξ ij k + ϵ i, i ∈ { 1 , . . . , n }.

I n p r a cti c e w e d o n ot o b s e r v e t h e e nti r e t r aj e ct o ri e s x ij’ s b ut h a v e o nl y i nt e r mitt e nt n oi s y m e a s u r e m e nt s. W h e n

t h e r e p e at e d o b s e r v ati o n s a r e s uffi ci e ntl y d e n s e f o r e a c h s u bj e ct, t h e e sti m at e s
{
x̂ ij : i ∈ { 1 , . . . , n }; j ∈ { 1 , . . . , d }

}
c a n

b e u s e d t o c o n st r u ct t h e c o v a ri a n c e a n d ei g e n v al u e s/ b a si s. T h e n, t h e e m pi ri c al c o u nt e r p a rt of K j(s , t ) i s K̂ j(s , t ) =∑ ∞
k = 1 v̂ j k φ̂ j k(s ) φ̂ j k(t ), w h e r e K̂ j(s , t ) = 1 / n

∑ n

i= 1 x̂ ij(s ) x̂ ij(t ). T h e n, w e h a v e ξ̂ ij k =
∫

T
x̂ ij(t ) φ̂ j k(t )dt .

L et s j b e t h e t r u n c ati o n p a r a m et e r f o r t h e jt h f u n cti o n, w hi c h i s all o w e d t o v a r y wit h t h e s a m pl e si z e. D e n ot e

β j = (β j1 , . . . , βj sj )
⊤ , β = (β ⊤

1 , . . . , β ⊤
p n

)⊤ a n d µ = (µ 1 , . . . , µn )⊤ . T o f u rt h e r s el e ct f u n cti o n al p r e di ct o r s a n d i d e ntif y

s u b g r o u p s si m ult a n e o u sl y, w e mi ni mi z e t h e f oll o wi n g o bj e cti v e f u n cti o n:

Q λ 1 , λ2 (µ , β ) =
1

2

n∑

i= 1

⎛

⎝ y i − µ i −

p n∑

j= 1

s j∑

k = 1

ξ̂ ij kβ j k

⎞

⎠

2

+
∑

1 ≤ i< j≤ n

P
(
|µ i − µ j|, λ1

)
+ n

p n∑

j= 1

P
(
∥ β j∥ 2 , c jλ 2

)
. ( 2)

T h e fi r st t e r m i n ( 2) i s t h e t r u n c at e d f o r m of t h e st a n d a r d s q u a r e d l o s s. T h e s e c o n d t e r m i s t h e s u m of c o n c a v e p e n alt y

u n cti o n s a p pli e d t o t h e p ai r wi s e diff e r e n c e s of t h e i nt e r c e pt s, w hi c h i s u s e d t o di vi d e t h e o b s e r v ati o n s i nt o s u b g r o u p s.

1 ≥ 0 i s t h e p e n alt y p a r a m et e r. If µ i − µ j i s s h r u n k t o z e r o, t h e n s u bj e ct s i a n d j a r e f r o m t h e s a m e s u b g r o u p.

T h e l a st t e r m i s u s e d t o i d e ntif y t h e r el e v a nt p r e di ct o r s. A p e n alt y t h at c a n p r o d u c e u n bi a s e d e sti m ati o n i s m o r e

p p e ali n g. W e u s e M C P i n t hi s p a p e r, w h e r e P (θ , λ ) = λ
∫ |θ |

0
{1 − x / (λ a λ )} + d x , z + st a n d s f o r t h e p o siti v e p a rt of z , λ ≥ 0

i s t h e p e n alt y p a r a m et e r, a λ i s a n a d diti o n al t u ni n g p a r a m et e r. W e fi x a λ = 3 a s s u g g e st e d i n t h e lit e r at u r e [ 1 7 ,2 0 ,3 3 ,3 7 ].

I n ( 2), ∥ · ∥ 2 i s t h e E u cli d e a n n o r m, λ 2 ≥ 0 i s t h e p e n alt y p a r a m et e r, a n d c j =
√

s j’ s a r e u s e d t o a dj u st f o r g r o u p si z e s of
ˆ ˆ

∑ s j ˆ ˆ
p a r a m et e r s. Wit h t h e e sti m at o r s β j’ s, w e c a n g et b j(t ) = k = 1 β j kφ j k(t ).

3
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. 3. C o m p ut ati o n al al g o rit h m

T o i m pl e m e nt t h e p r o p o s e d m et h o d, w e d e v el o p a n alt e r n ati n g di r e cti o n m et h o d of m ulti pli e r s ( A D M M) al g o rit h m.

y i nt r o d u ci n g a n e w s et of p a r a m et e r s η ij = µ i − µ j a n d η =
{
η ij, i < j

} ⊤
, t h e mi ni mi z ati o n of ( 2) i s e q ui v al e nt t o t h e

o n st r ai n e d o pti mi z ati o n p r o bl e m:

U λ 1 , λ2 (µ , β , η ) =
1

2

n∑

i= 1

⎛

⎝ y i − µ i −

p n∑

j= 1

s j∑

k = 1

ξ̂ ij kβ j k

⎞

⎠

2

+
∑

1 ≤ i< j≤ n

P
(
|η ij|, λ1

)
+ n

p n∑

j= 1

P
(
∥ β j∥ 2 , c jλ 2

)
,

u bj e ct t o

µ i − µ j − η ij = 0 , 1 ≤ i < j ≤ n .

h e n t h e a u g m e nt e d L a g r a n gi a n i s

L ρ (µ , β , η , ϖ ) = U λ 1 , λ2 (µ , β , η ) +
∑

1 ≤ i< j≤ n

ϖ ij

(
µ i − µ j − η ij

)
+

ρ

2

∑

1 ≤ i< j≤ n

(
µ i − µ j − η ij

) 2
, ( 3)

h e r e t h e d u al p a r a m et e r s ϖ =
{
ϖ ij, i < j

} ⊤
a r e t h e L a g r a n gi a n m ulti pli e r s, a n d ρ i s a p e n alt y p a r a m et e r.

T h e A D M M al g o rit h m mi ni mi z e s t h e a u g m e nt e d L a g r a n gi a n b y u p d ati n g o n e bl o c k of p a r a m et e r s at a ti m e, w hi c h

o n si st s of µ , β - mi ni mi z ati o n, η - mi ni mi z ati o n, a n d a d u al p a r a m et e r u p d ati n g r o uti n e a s f oll o w s.

Gi v e n ( µ (l) , β (l) , η (l) , ϖ (l) ) f r o m t h e lt h st e p, t h e u p d at e of β (l+ 1) i s:

β (l+ 1) = a r g mi n

β ∈ R

∑ p n
j= 1

s j

1

2

n∑

i= 1

⎛

⎝ y i − µ (l)

i −

p n∑

j= 1

s j∑

k = 1

ξ̂ ij kβ j k

⎞

⎠

2

+ n

p n∑

j= 1

P
(
∥ β j∥ 2 , c jλ 2

)
. ( 4)

hi s i s a st a n d a r d g r o u p M C P p r o bl e m. F o r m o r e d et ail s, w e r ef e r t o H u a n g et al. [ 1 0 ]. F o r µ (l+ 1) ,

µ (l+ 1) = a r g mi n
µ ∈ R n

L ρ

(
µ , β , η , ϖ |β (l+ 1) , η (l) , ϖ (l)

)
.

h e n w e h a v e

µ (l+ 1) =
(
ρ ∆ ⊤ ∆ + I n

) − 1
{

y − ξ̂ β (l+ 1) + ρ ∆ ⊤ (η (l) − ρ − 1 ϖ (l) )

}
, ( 5)

h e r e ∆ =
{
(e i − e j), i < j

} ⊤
, ξ̂ i =

(
ξ̂ i1 1 , . . . , ξ̂ i pn s n

) ⊤

, ξ̂ =
(
ξ̂ 1 , . . . , ξ̂ n

) ⊤

, a n d e i i s a n n × 1 v e ct o r t h at h a s it s it h

o m p o n e nt e q u al t o 1 a n d all of it s ot h e r c o m p o n e nt s e q u al t o 0.

Gi v e n ( µ (l+ 1) , β (l+ 1) , η (l) , ϖ (l) ), t h e u p d at e of η i s:

η (l+ 1)

ij = a r g mi n
η ij∈ R

{
ρ

2

(
δ (l+ 1)

ij − η ij

) 2

+ P
(
|η ij|, λ1

)
}

it h δ (l+ 1)

ij = µ (l+ 1)

i − µ (l+ 1)

j + ρ − 1 ϖ (l)

ij . T h e n w e h a v e

η (l+ 1)

ij =

⎧
⎨

⎩

S T

(
δ

(l+ 1)
ij

, λ1 / ρ
)

1 − 1 / (γ ρ )
if |δ (l+ 1)

ij | ≤ γ λ 1

δ (l+ 1)

ij if |δ (l+ 1)

ij | > γ λ 1

, ( 6)

w h e r e S T( t , λ) = si g n( t ) (|t | − λ ) + i s t h e s oft t h r e s h ol di n g o p e r at o r.

Gi v e n ( µ (l+ 1) , β (l+ 1) , η (l+ 1) , ϖ (l) ), t h e u p d at e s of d u al p a r a m et e r s a r e:

ϖ (l+ 1)

ij = ϖ (l)

ij + ρ
(
µ (l+ 1)

i − µ (l+ 1)

j − η (l+ 1)

ij

)
, 1 ≤ i < j ≤ p . ( 7)

B a s e d o n t h e a b o v e r e s ult s, t h e al g o rit h m c o n si st s of t h e f oll o wi n g st e p s:

St e p 1: S et t h e i niti al e sti m at e β ( 0) b e t h e s ol uti o n of a g r o u p L a s s o p r o bl e m. L et µ ( 0)

i = y i −
∑ p n

j= 1

∑ s j

k = 1 ξ̂ ij kβ
( 0)

j k ,

η ( 0)

ij = µ ( 0)

i − µ ( 0)

j , a n d ϖ ( 0) = 0 .

St e p 2: At it e r ati o n l + 1, c o m p ut e ( µ (l+ 1) , β (l+ 1) , η (l+ 1) , ϖ (l+ 1) ) b y ( 4)– ( 7).

St e p 3: If t h e st o p pi n g r ul e i s m et, t e r mi n at e t h e al g o rit h m. T h e n,

( µ̂ , β̂ , η̂ , ˆϖ ) = (µ (l+ 1) , β (l+ 1) , η (l+ 1) , ϖ (l+ 1) ).

Ot h e r wi s e, g o t o St e p 2.
4
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e m a r k 1. F oll o wi n g M a a n d H u a n g [ 2 0 ], w e st o p t h e al g o rit h m w h e n

 ∆ µ (l+ 1) − η (l+ 1)




2
< ε f o r a s m all ε . B a s e d o n

ˆ , w e c a n g et t h e s u b g r o u p st r u ct u r e s. S p e cifi c all y, w e p ut y i a n d y j i n t h e s a m e s u b g r o u p if η̂ ij = 0. T h e fi n al i nt e r c e pt s
f t h e s u b g r o u p s a r e c al c ul at e d a s t h e m e a n of i nt e r c e pt s a m o n g e a c h s u b g r o u p. T h e c o m p ut e r c o d e i s p u bli cl y a v ail a bl e
t htt p s:// git h u b. c o m/ r ui q w y/f s u b g r o u p .

. T h e o r e ti c al p r o p e r ti e s

I n t hi s s e cti o n, w e p r o vi d e t h e t e c h ni c al a s s u m pti o n s a n d e st a bli s h t h e a s y m pt oti c p r o p e rti e s of t h e p r o p o s e d e sti m at o r.
e will e st a bli s h t h at t h e t r u e s u b g r o u p st r u ct u r e of t h e s a m pl e s a n d s p a r sit y c a n b e r e c o v e r e d. T h e r e a r e t w o t y p e s of

p p r o xi m ati o n s i n v ol v e d i n t h e o bj e cti v e f u n cti o n ( 2): t h e e sti m at o r ξ̂ ij k of t h e u n k n o w n c o v a ri at e ξ ij k a n d t h e t r u n c ati o n
f r e g r e s si o n c o effi ci e nt s. D u e t o t h e diff e r e n c e s b et w e e n f u n cti o n al a n d s c al a r p r e di ct o r s, e xt e n di n g t h e o r eti c al r e s ult s
o m ulti pl e f u n cti o n al r e g r e s si o n wit h a di v e r gi n g t r u n c ati o n i s n ot t ri vi al, e s p e ci all y w h e n t h e n u m b e r of f u n cti o n al
r e di ct o r s i s p e r mitt e d t o di v e r g e wit h t h e s a m pl e si z e. A d diti o n all y, w e e st a bli s h t h e a s y m pt oti c p r o p e rti e s of t h e
r o p o s e d e sti m at o r u n d e r h et e r o g e n eit y, w hi c h i s m o r e c h all e n gi n g t h a n u n d e r h o m o g e n eit y.

D e n ot e t h e mi ni m u m a n d m a xi m u m ei g e n v al u e s of a s y m m et ri c m at ri x A b y λ mi n (A ) a n d λ m a x (A ). L et (µ 0 , β 0 ) b e t h e
r u e r e g r e s si o n p a r a m et e r s. S u p p o s e t h at µ 0 h a s K di sti n ct el e m e nt s α 0

k , 1 ≤ k ≤ K . D efi n e α 0 = (α 0
1 , . . . , α 0

K ), a n d
0 = { g 0

1 , . . . , g 0
K } wit h g 0

k = { i : µ 0
i = α 0

k }. Z = { z i k} i s a n × K m at ri x wit h z i k = 1 if i ∈ g k a n d 0 ot h e r wi s e. T h e n w e

a v e µ 0 = Z α 0 . D e n ot e t h e c a r di n alit y of g 0
k b y |g 0

k |, a n d d efi n e |g 0
mi n | = mi n 1 ≤ k ≤ K |g 0

k |, |g 0
m a x | = m a x 1 ≤ k ≤ K |g 0

k |. R e c all t h at
e a s s u m e t h e fi r st q n f u n cti o n al p r e di ct o r s a r e i m p o rt a nt w hil e t h e r e st a r e n ot. D e n ot e A = { 1 , . . . , q n } a s t h e i n d e x s et
f t h e i m p o rt a nt v a ri a bl e s, a n d A c = { q n + 1 , . . . , p n }. I n f a ct, f o r diff e r e nt p r e di ct o r s, w e m a y c h o o s e diff e r e nt t r u n c ati o n
oi nt s t o a p p r o xi m at e t h e i nfi nit e s u m s. I n t hi s s e cti o n, t o si m plif y n ot ati o n, w e u s e a c o m m o n t r u n c ati o n p a r a m et e r s n ,
hi c h i s a f u n cti o n of s a m pl e si z e n . T o f a cilit at e t e c h ni c al p r o of s, w e a s s u m e t h e f oll o wi n g r e g ul a rit y c o n diti o n s.

( C 1) F o r j ∈ { 1 , . . . , p n }, f o r a n y C 0 > 0, t h e r e e xi st s ϱ > 0 s u c h t h at

s u p
t ∈ T

[
E

{
|x j(t )|

C 0
} ]

< ∞ , s u p
s ,t ∈ T

(
E

[ {
|s − t |− ϱ |x j(s ) − x j(t )|

} C 0

] )
< ∞ ,

x j(·) i s t wi c e c o nti n u o u sl y diff e r e nti a bl e o n T wit h p r o b a bilit y o n e, a n d
∫

T
E

{
x ′′

j (t )
} 4

dt < ∞ , w h e r e x ′′
j (·) d e n ot e s

t h e s e c o n d d e ri v ati v e of x j(·). F o r e a c h i nt e g e r r ≥ 1, v − r
j k E

(
ξ 2 r

j k

)
i s b o u n d e d u nif o r ml y i n k a n d j.

( C 2) T h e r e e xi st p o siti v e c o n st a nt s C 1 a n d a > 1 s u c h t h at C − 1
1 k − a ≤ v j k ≤ C 1 k − a a n d v j k − v j,k + 1 ⩾ C 1 k − a − 1 , w h e r e {v j k}

a r e t h e ei g e n v al u e s of t h e c o v a ri a n c e f u n cti o n f o r j ∈ { 1 , . . . , p n } a n d k ≥ 1.

( C 3) |β 0
j k| ⩽ C 2 k − b f o r k ≥ 1, b > 2, j ∈ { 1 , . . . , p n }.

( C 4) T h e n oi s e v e ct o r ϵ = (ϵ 1 , . . . , ϵn )⊤ h a s s u b - G a u s si a n t ail s s u c h t h at P r
(
|a ⊤ ϵ | > ∥ a ∥ 2 x

)
≤ 2 e x p

(
− C 3 x 2

)
f o r a n y

v e ct o r a ∈ R n a n d x > 0, w h e r e 0 < C 3 < ∞ .

( C 5) T h e s m o ot hi n g p a r a m et e r s s n a n d q n s ati sf y |g 0
mi n |

− 1
s
a / 2 + 1
n

(
q n s n n 1 / 2 + K |g 0

m a x |
1 / 2

)
→ 0, s 2 a + 2

n / n → 0, s 2 b − 1
n / n → ∞ .

( C 6) T h e t u ni n g p a r a m et e r s λ 1 a n d λ 2 s ati sf y: (i) λ 1 = o ( 1), mi n 1 ≤ k < ℓ ≤ K

⏐
⏐α 0

k − α 0
ℓ

⏐
⏐ / λ 1 → ∞ ,

(
K + q n s n + q 2

n

)
n |g 0

mi n |
− 2

=

o
(
λ 2

1

)
; (ii) λ 2 = o ( 1), mi n j∈ A ∥ β 0

j ∥ 2 / λ 2 → ∞ , m a x

{
n s a

n

(
K + q n s n + q 2

n

)
|g 0

mi n |
− 2

, s 3
n n − 1 , s n l o g(p n s n )n − 1

}
= o

(
λ 2

2

)
.

( C 7) D efi n e U =

(
Z ⊤ Z / n 0

0  E

(
Ñ i Ñ

⊤

i

)
)

, w h e r e Ñ i =
(
ξ i1 1 v

− 1 / 2

1 1 , . . . , ξi qn s n v
− 1 / 2
q n s n

) ⊤

i s a (q n s n ) × 1 v e ct o r. F o r s o m e

c o n st a nt 0 < C 4 ≤ 1 a n d s o m e p o siti v e c o n st a nt C 5 , C 4 |g
0
mi n |/ n ≤ λ mi n (U ) ≤ C 5 .

e m a r k 2. C o n diti o n ( C 1) i s a c o m m o n c o n diti o n i n f u n cti o n al d at a a n al y si s. W e i m p o s e c o n diti o n s ( C 2) -( C 3) o n t h e d e c a y
at e s of t h e ei g e n v al u e s {v j k} a n d r e g r e s si o n c o effi ci e nt s {β 0

j k}, w hi c h a r e si mil a r t o t h o s e a d o pt e d b y [6 ,1 2 ,1 3 ,1 5 ,2 2 ]. T h e
e c o n d p a rt of c o n diti o n ( C 2) r e q ui r e s t h at t h e s p a ci n g s b et w e e n t h e ei g e n v al u e s a r e n ot t o o s m all. C o n diti o n ( C 3) i s
e e d e d o nl y t o c o nt r ol t h e t ail b e h a vi o r f o r l a r g e k . C o n diti o n ( C 4) a s s u m e s t h at t h e n oi s e v e ct o r h a s s u b - G a u s si a n t ail s.
o n diti o n s ( C 5) -( C 7) a r e r e q ui r e d f o r t h e c o n si st e n c y of t h e e sti m at o r s a n d m o d el s el e cti o n. A m ai n c o nt ri b uti o n i s t o
ll o w t h e n u m b e r of f u n cti o n al p r e di ct o r s t o i n c r e a s e a s t h e s a m pl e si z e i n c r e a s e s. T hi s di sti n g ui s h e s o u r m et h o d f r o m
h o s e wit h a fi x e d n u m b e r of f u n cti o n al p r e di ct o r s ( e. g., K o n g et al. [ 1 2 ]). T h e n u m b e r of s u b g r o u p s i s al s o all o w e d t o

n c r e a s e a s t h e s a m pl e si z e i n c r e a s e s. I n t h e lit e r at u r e, it i s c o m m o nl y a s s u m e d t h at t h e s m all e st ei g e n v al u e of E

(
Ñ i Ñ

⊤

i

)

s b o u n d e d b y s o m e c o n st a nt C . I n o u r m o d el s et u p, Z ⊤ Z = di a g
(
|g 0

1 |, . . . , |g 0
K |

)
. B y a s s u mi n g λ mi n

{
E

(
Ñ i Ñ

⊤

i

) }
= C , w e

a v e λ mi n (U ) = mi n
(
|g 0

mi n |/ n , C
)
. H e n c e w e a s s u m e λ mi n (U ) ≥ C 4 |g

0
mi n |/ n f o r s o m e c o n st a nt 0 < C 4 ≤ 1.

T o f a cilit at e t h e o r eti c al a n al y si s, w e r e p a r a m et e ri z e b y w riti n g β̃ j k = v
1 / 2

j k β j k, s o t h at t h e f u n cti o n al p ri n ci p al c o m p o n e nt
c o r e s s e r vi n g a s p r e di ct o r v a ri a bl e s a r e o n a c o m m o n s c al e of v a ri a bilit y. T hi s r e p a r a m et e ri z ati o n i s u s e d o nl y f o r t e c h ni c al
e ri v ati o n s a n d d o e s n ot a p p e a r i n t h e e sti m ati o n p r o c e d u r e. L et

Q n (µ , β̃ ) = L n (µ , β̃ ) +
∑

P
(
|µ i − µ j|, λ1

)
+ n

p n∑
P

(
∥ β j∥ 2 , λ2

)
,

1 ≤ i< j≤ n j= 1
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w

T

e

R

=

T

t

t

r

t

R

h

i

4

g

(

b

t

j

t

w

l

p

(

a

h e r e

L n (µ , β̃ ) =
1

2

n∑

i= 1

⎧
⎨

⎩
y i −

p n∑

j= 1

s n∑

k = 1

(
ξ̂ ij kv

− 1 / 2

j k

)
β̃ j k − µ i

⎫
⎬

⎭

2

.

h e o r e m 1. U n d e r c o n diti o n s ( C 1) -( C 7) a n d ( C A 1) –( C A 2) i n t h e A p p e n di x, if K ≥ 2 , |g 0
mi n | ≫

(
K + q n s n + q 2

n

) 1 / 2
n 1 / 2 , t h e r e

xi st s a l o c al mi ni mi z e r

(
µ̂ ⊤ , β̌

⊤
) ⊤

of o bj e cti v e f u n cti o n Q n (µ , β̃ ) s ati sf yi n g

(i) P r

(
µ̂ i = ˆµ j, ∀ i, j ∈ g 0

k , 1 ≤ k ≤ K̂

)
→ 1 , i. e., P r

(
ˆG = G 0

)
→ 1 ,

(ii) P r

{
b̂ q n + 1 (t ) = · · · = b̂ p n (t ) = 0

}
→ 1 ,

(iii)






(
µ̂ ⊤ , β̌

⊤
) ⊤

−
(
µ 0 ⊤ , β̃

0 ⊤
) ⊤






2

= O p

{ (
K + q n s n + q 2

n

) 1 / 2
n 1 / 2 |g 0

mi n |
− 1

}
.

e m a r k 3. Si n c e |g 0
mi n | ≤ n / K , b y c o n diti o n |g 0

mi n | ≫
(
K + q n s n + q 2

n

) 1 / 2
n 1 / 2 , K , q n a n d s n s ati sf y K

(
K + q n s n + q 2

n

) 1 / 2

o
(
n 1 / 2

)
.

T h e o r e m 1 s h o w s t h at t h e t r u e s u b g r o u p st r u ct u r e of t h e s a m pl e s a n d s p a r sit y c a n b e r e c o v e r e d wit h a hi g h p r o b a bilit y.

h e e sti m ati o n c o n si st e n c y r e s ult i s e x p r e s s e d i n t e r m s of β̃ , n ot t h e o ri gi n al p a r a m et e r β . B y T h e o r e m 1 , w e c a n c o n cl u d e

h at



 b̂ j(t ) − b j(t )





2

= O p

{
s a
n

(
K + q n s n + q 2

n

)
n |g 0

mi n |
− 2

}
. S p e cifi c all y, if t h e n u m b e r of f u n cti o n al p r e di ct o r s p n i s fi x e d a n d

h e n u m b e r of s u b g r o u p s i s o n e ( a h o m o g e n e o u s d at a), w e c a n g et



 b̂ j(t ) − b j(t )





2

= O p

(
s a + 1
n / n

)
. K o n g et al. [1 2 ] g et t h e

e s ult O p

{
s a
n (q n + s n ) / n

}
u n d e r t h e h o m o g e n eit y a s s u m pti o n, w h e r e q n i s t h e n u m b e r of si g nifi c a nt s c al a r c o v a ri at e s. If

h e r e i s n o s c al a r c o v a ri at e i n t h e m o d el, it r e d u c e s t o O p

(
s a + 1
n / n

)
, t h e s a m e a s o u r r e s ult.

e m a r k 4. W h e n t h e t r u e m o d el i s h o m o g e n e o u s gi v e n a s E q. ( 1) wit h µ 1 = · · · = µ n = µ = α a n d K = 1, t h e

o m o g e n eit y a n d s p a r sit y c a n b e r e c o v e r e d wit h a hi g h p r o b a bilit y. T h e t e c h ni c al a s s u m pti o n s a n d t h e o r e m a r e gi v e n

n A p p e n di x .

. Si m ul a ti o n a n al y si s

I n t hi s s e cti o n, w e c o m p a r e p e rf o r m a n c e of s g m c p (t h e p r o p o s e d e sti m at o r) wit h t h r e e alt e r n ati v e s: g m c p ( st a n d a r d

r o u p M C P wit h p e n alt y f o r f u n cti o n al c o effi ci e nt s, w hi c h a s s u m e s h o m o g e n eit y a n d h a s n o p e n alt y f o r i nt e r c e pt s), O r a cl e

u n d e r w hi c h t h e s u b g r o u p st r u ct u r e a n d i n d e x of si g nifi c a nt p r e di ct o r s a r e k n o w n) a n d Cl u st e r ( w hi c h cl u st e r s s a m pl e s

a s e d o n t h e r e si d u al s o bt ai n e d f r o m K - m e a n s fi r st, w h e r e t h e n u m b e r of cl u st e r s i s al s o c h o s e n b y BI C, a n d t h e n r efit s

h e m o d el). W e c o n si d e r t h e f oll o wi n g f u n cti o n li n e a r m o d el:

y i = µ i +

p n∑

j= 1

∫ 1

0

x ij(t )b j(t )dt + ϵ i, i ∈ { 1 , . . . , n }.

T h e f u n cti o n al d at a i s g e n e r at e d f r o m t h e p r o c e s s x ij(t ) =
∑ 3

k = 1 ξ ij kφ k (t ), w h e r e ξ ij k ∼ N ( 0, k − 2 ), φ 1 (t ) = 1, φ 2 (t ) =√
2 c o s( π t ), a n d φ 3 (t ) =

√
2 c o s( 2 π t ). F o r b j(t ), i n t e r m s of e x p a n si o n b a s e d o n {φ k }

3
k = 1 , w e t a k e β j = ( 1, 1 .1 , 1 .2) ⊤ f o r

= 1 , . . . , q n , a n d β j = ( 0, 0 , 0) ⊤ ot h e r wi s e. W e s et ϵ i ∼ N ( 0, 0 .1) a n d n = 1 0 0.

T o p r o vi d e a g o o d a p p r o xi m ati o n t o t h e i nfi nit e s u m, w e u s e s j c o m p o n e nt s, w hi c h e x pl ai n 9 5 % v a ri ati o n i n x ij(t ). F o r

u ni n g p a r a m et e r s s el e cti o n, w e u s e a m o difi e d B a y e si a n i nf o r m ati o n c rit e ri o n ( BI C) [ 2 ] d efi n e d a s:

BI C( λ 1 , λ2 ) = l o g

⎧
⎪⎨

⎪⎩

n∑

i= 1

⎛

⎝ y i − ˆµ i −

p n∑

j= 1

s j∑

k = 1

ξ̂ ij k β̂ j k

⎞

⎠

2
/

n

⎫
⎪⎬

⎪⎭
+ C n

l o g n

n

(
K̂ + q #

)
,

h e r e C n = c l o g
{
l o g

(
n +

∑ p n

j= 1 s j

) }
, a n d q # i s t h e n u m b e r of n o n - z e r o p a r a m et e r s. W e s et c = 5.

W e c o m p r e h e n si v el y c o n si d e r t h e f oll o wi n g c a s e s. I n t h e fi r st c a s e, w e g e n e r at e d at a f r o m a h o m o g e n eit y m o d el a n d

et µ i = 0 f o r all i ∈ { 1 , . . . , n }. I n t h e s e c o n d c a s e, w e g e n e r at e µ i f r o m t w o diff e r e nt v al u e s α a n d − α wit h e q u al

r o b a biliti e s. W e c o n si d e r m ulti pl e v al u e s of α . A s f o r t h e l a st c a s e, t h e d at a f o r m s t h r e e s u b g r o u p s.

P e rf o r m a n c e of t h e e sti m at e s i s m e a s u r e d b y t h e f oll o wi n g m et ri c s. ( 1) M e a n s q u a r e d e r r o r s of µ i: M S E =

 µ̂ − µ


 2

2
/ n

) 1 / 2

. ( 2) I nt e g r at e d s q u a r e d e r r o r of c o effi ci e nt f u n cti o n s: I S E =

{
∑ p n

j= 1



 b̂ j(t ) − b j(t )





2
} 1 / 2

. ( 3) S e n siti vit y

n d s p e cifi cit y a r e u s e d t o e v al u at e f e at u r e s el e cti o n. S e n siti vit y: t h e p r o p o rti o n of t r u e p o siti v e s b ei n g c o r r e ctl y i d e ntifi e d.
6
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i g. 2. M S E u n d e r C a s e 1 f o r O r a cl e, g m c p, Cl u st e r, a n d s g m c p wit h µ i = 0 f o r all i ∈ { 1 , . . . , n }, p n = 1 0 0, q n = 2 , 4 a n d 6. T h e d at a i s g e n e r at e d

r o m a h o m o g e n e o u s m o d el a n d t h e t r u e n u m b e r of s u b g r o u p i s 1. T h e b o x pl ot s a r e b a s e d o n 1 0 0 M o nt e C a rl o r e pli c at e s.

p e cifi cit y: t h e p r o p o rti o n of t r u e n e g ati v e s b ei n g c o r r e ctl y i d e ntifi e d. ( 4) T h e n u m b e r of i d e ntifi e d s u b g r o u p s K . ( 5) T h e

a n d i n d e x of i d e ntifi e d s u b g r o u p s, RI, w hi c h i s d efi n e d a s

RI =
T P + T N

T P + F P + F N + T N
.

e r e, T P (t r u e p o siti v e), T N (t r u e n e g ati v e), F N (f al s e n e g ati v e) a n d F P (f al s e p o siti v e) a r e t h e n u m b e r of p ai r s of s u bj e ct s

n diff e r e nt s u b g r o u p s t h at a r e a s si g n e d t o diff e r e nt s u b g r o u p s, t h e n u m b e r of p ai r s f r o m t h e s a m e s u b g r o u p t h at a r e

s si g n e d t o t h e s a m e s u b g r o u p, t h e n u m b e r of p ai r s f r o m t h e s a m e s u b g r o u p t h at a r e a s si g n e d t o diff e r e nt s u b g r o u p s,

n d t h e n u m b e r of p ai r s f r o m diff e r e nt s u b g r o u p s t h at a r e a s si g n e d t o t h e s a m e s u b g r o u p, r e s p e cti v el y. A hi g h e r v al u e of

I i n di c at e s a b ett e r a g r e e m e nt b et w e e n t h e i d e ntifi e d s u b g r o u p s a n d t h e t r u e s u b g r o u p all o c ati o n. B el o w a r e t h e d et ail e d

etti n g s of t h r e e c a s e s:

a s e 1: µ i = 0 f o r all i ∈ { 1 , . . . , n }, p n = 1 0 0, q n = 2 , 4 a n d 6, m e a ni n g t h at t h e d at a i s g e n e r at e d f r o m a h o m o g e n e o u s

o d el a n d t h e t r u e n u m b e r of s u b g r o u p i s 1;

a s e 2: P r( µ i = α ) = P r( µ i = − α ) = 1 / 2, α = 0 .3 , 0 .5 a n d 0. 7, p n = 1 0 , 5 0 a n d 1 0 0, q n = 2, m e a ni n g t h at t h e t r u e

u m b e r of s u b g r o u p s i s 2;

a s e 3: P r( µ i = 1) = P r( µ i = 0) = P r( µ i = − 1) = 1 / 3, p n = 1 0 , 5 0 a n d 1 0 0, q n = 1 a n d 2, m e a ni n g t h at t h e t r u e n u m b e r

f s u b g r o u p s i s 3.

T h e si m ul ati o n r e s ult s a r e s u m m a ri z e d i n T a bl e s 1 – 2 a n d Fi g s. 2 – 3 b a s e d o n 1 0 0 r e pli c at e s f o r e a c h s c e n a ri o. F o r all

a s e s, s p e cifi cit y i s 1. 0 0 0( 0. 0 0 0), a n d w e o mit it i n t h e t a bl e. F r o m Fi g s. 2 – 3 , w e s e e t h at t h e p e rf o r m a n c e s of g m c p, s g m c p

n d O r a cl e a r e si mil a r w h e n t h e d at a i s g e n e r at e d f r o m a h o m o g e n e o u s m o d el. T h e m e a n v al u e s of K̂ o bt ai n e d u si n g s g m c p

r e 1 ( q n = 2), 1 ( q n = 4), a n d 1. 0 2 0 ( q n = 6), r e s p e cti v el y. T h e m e a n v al u e s of RI o bt ai n e d u si n g s g m c p a r e 1 ( q n = 2),

( q n = 4), a n d 0. 9 9 5 ( q n = 6), r e s p e cti v el y. W e c o n cl u d e t h at s g m c p c a n r e c o v e r t h e h o m o g e n e o u s m o d el. Cl u st e r f ail s

o i d e ntif y t h e h o m o g e n e o u s m o d el. T h e m e a n v al u e s of K̂ o bt ai n e d u si n g Cl u st e r a r e 4. 7 8 0 ( q n = 2), 5. 1 3 0 ( q n = 4), a n d

. 8 6 0 ( q n = 6), r e s p e cti v el y. T h e m e a n v al u e of RI o bt ai n e d u si n g Cl u st e r a r e 0. 2 5 1 ( q n = 2), 0. 2 3 1 ( q n = 4), a n d 0. 2 4 4

q n = 6), r e s p e cti v el y. F r o m T a bl e 1 , w e c a n s e e t h at f o r a l a r g e v al u e of α , it i s e a si e r t o i d e ntif y t h e t w o s u b g r o u p s wit h

g m c p. T h e p r o p o s e d m et h o d l e a d s t o a m o r e a c c u r at e s u b g r o u p st r u ct u r e t h a n Cl u st e r i n t e r m s of RI a n d K . B ot h m et h o d s

et w o r s e w h e n p n i n c r e a s e s. W h e n t h e v al u e of α i s l a r g e, g m c p a n d Cl u st e r f ail t o s el e ct p o siti v e f u n cti o n al p r e di ct o r s.

r o m T a bl e 2 , w e c a n s e e t h at t h e p r o p o s e d m et h o d p e rf o r m s b ett e r t h a n g m c p a n d Cl u st e r, a n d b ot h m et h o d s g et w o r s e

h e n p n o r q n i n c r e a s e s. T o d e m o n st r at e p e rf o r m a n c e of t h e p r o p o s e d m et h o d i n t e r m s of s u b g r o u p i d e ntifi c ati o n, t h e

e s ult s of a d diti o n al si m ul ati o n c o m p a ri n g C a s e s 2 – 3 a r e p r o vi d e d i n T a bl e s 3 – 4 . F r o m T a bl e 3 , w e c a n s e e t h at a s t h e

e p a r ati o n p a r a m et e r α i n c r e a s e s, t h e m e a n of e sti m at e d n u m b e r of s u b g r o u p s b e c o m e s cl o s e r t o t h e t r u e v al u e, a n d RI

e c o m e s cl o s e r t o 1. F r o m T a bl e 4 , w e c a n s e e t h at a s t h e s a m pl e si z e n i n c r e a s e s, t h e m e a n of e sti m at e d n u m b e r of

u b g r o u p s b e c o m e s cl o s e r t o t h e t r u e v al u e, a n d RI b e c o m e s cl o s e r t o 1. W e c o n cl u d e t h at s u b g r o u p i d e ntifi c ati o n of t h e

r o p o s e d m et h o d c a n b e i m p r o v e d wit h t h e s e p a r ati o n p a r a m et e r α o r s a m pl e si z e n i n c r e a si n g.
7
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i g. 3. I S E u n d e r C a s e 1 f o r O r a cl e, g m c p, Cl u st e r, a n d s g m c p wit h µ i = 0 f o r all i ∈ { 1 , . . . , n }, p n = 1 0 0, q n = 2 , 4 a n d 6. T h e d at a i s g e n e r at e d

r o m a h o m o g e n e o u s m o d el a n d t h e t r u e n u m b e r of s u b g r o u p i s 1. T h e b o x pl ot s a r e b a s e d o n 1 0 0 M o nt e C a rl o r e pli c at e s.

a bl e 1

i m ul ati o n r e s ult s u n d e r C a s e 2 wit h P r( µ i = α ) = P r( µ i = − α ) = 1 / 2, α = 0 .3 , 0 .5 a n d 0. 7, p n = 1 0 , 5 0 a n d 1 0 0, q n = 2 b a s e d o n 1 0 0 M o nt e C a rl o

e pli c at e s. T h e t r u e n u m b e r of s u b g r o u p s i s 2.

α p n m et h o d K ( m e a n) K ( m e di a n)   RI M S E I S E S e n siti vit y

0. 3  1 0   O r a cl e  – – – 0. 1 3 6( 0. 1 0 9)  0. 0 8 2( 0. 0 1 1)  –

g m c p  – – – 0. 3 4 1( 0. 0 5 6)  0. 1 8 3( 0. 0 5 3)  1( 0)

Cl u st e r  4. 5 3 0( 1. 3 8 9)  4( 1. 4 8 3)  0. 7 5 4( 0. 0 9 8)  0. 1 7 9( 0. 0 9 0)  0. 1 4 2( 0. 0 4 7)  1( 0)

s g m c p  2. 9 3 0( 1. 5 5 9)  2( 0) 0. 9 0 1( 0. 1 0 0)  0. 1 8 1( 0. 0 9 8)  0. 1 3 0( 0. 0 6 8)  1( 0)

5 0   O r a cl e  – – – 0. 1 3 9( 0. 0 1 1)  0. 0 8 2( 0. 0 1 1)  –

g m c p  – – – 0. 3 4 2( 0. 0 5 7)  0. 1 8 3( 0. 0 5 3)  1( 0)

Cl u st e r  4. 0 7 0( 1. 3 5 0)  4( 1. 4 8 3)  0. 7 8 2( 0. 1 1 1)  0. 1 7 8( 0. 0 9 3)  0. 1 3 6( 0. 0 4 6)  1( 0)

s g m c p  3. 0 8 0( 1. 4 8 2)  2. 5( 0. 7 4 1)  0. 8 5 4( 0. 1 2 0)  0. 2 0 4( 0. 1 0 0)  0. 1 6 3( 0. 0 8 9)  1( 0)

1 0 0   O r a cl e  – – – 0. 1 3 6( 0. 1 0 9)  0. 0 8 2( 0. 0 1 1)  –

g m c p  – – – 0. 3 4 1( 0. 0 5 6)  0. 1 8 3( 0. 0 5 3)  1( 0)

Cl u st e r  3. 7 5 0( 1. 3 2 1)  4( 1. 4 8 3)  0. 8 0 6( 0. 1 1 8)  0. 1 7 3( 0. 0 9 3)  0. 1 3 0( 0. 0 4 6)  1( 0)

s g m c p  3. 1 2 0( 1. 4 5 8)  2. 5( 0. 7 4 1)  0. 8 4 0( 0. 1 1 7)  0. 2 0 9( 0. 0 9 8)  0. 1 7 2( 0. 0 8 7)  1( 0)

0. 5  1 0   O r a cl e  – – – 0. 1 3 6( 0. 1 0 9)  0. 0 8 2( 0. 0 1 1)  –

g m c p  – – – 0. 5 2 6( 0. 0 3 9)  0. 2 8 2( 0. 0 8 9)  1( 0)

Cl u st e r  2. 7 3 0( 1. 3 2 5)  2( 0) 0. 9 2 8( 0. 1 1 7)  0. 1 5 7( 0. 1 0 2)  0. 1 1 1( 0. 0 5 7)  1( 0)

s g m c p  2. 2 7 0( 0. 6 4 9)  2( 0) 0. 9 6 6( 0. 0 7 3)  0. 1 7 2( 0. 1 1 7)  0. 1 1 8( 0. 0 8 0)  1( 0)

5 0   O r a cl e  – – – 0. 1 3 6( 0. 1 0 9)  0. 0 8 2( 0. 0 1 1)  –

g m c p  – – – 0. 5 2 6( 0. 0 3 9)  0. 4 7 8( 0. 6 7 0)  0. 9 2 0( 0. 2 7 3)

Cl u st e r  2. 7 1 0( 1. 2 3 3)  2( 0) 0. 9 0 7( 0. 1 5 6)  0. 2 5 8( 0. 3 7 7)  0. 3 1 6( 0. 7 1 4)  0. 9 2 0( 0. 2 7 3)

s g m c p  2. 5 9 0( 1. 0 0 6)  2( 0) 0. 9 3 0( 0. 0 9 2)  0. 2 0 7( 0. 1 2 4)  0. 1 6 9( 0. 1 3 6)  1( 0)

1 0 0   O r a cl e  – – – 0. 1 3 6( 0. 1 0 9)  0. 0 8 2( 0. 0 1 1)  –

g m c p  – – – 0. 5 2 6( 0. 0 3 9)  1. 1 8 8( 1. 1 8 2)  0. 6 3 0( 0. 4 8 5)

Cl u st e r  3. 2 7 0( 1. 5 8 8)  2( 0) 0. 7 9 9( 0. 2 3 2)  0. 6 6 3( 0. 6 8 6)  1. 0 6 8( 1. 2 7 3)  0. 6 3 0( 0. 4 8 5)

s g m c p  2. 6 2 0( 0. 9 5 1)  2( 0) 0. 9 1 3( 0. 0 9 7)  0. 2 2 0( 0. 1 2 6)  0. 1 9 3( 0. 1 4 4)  1( 0)

0. 7  1 0   O r a cl e  – – – 0. 1 3 6( 0. 1 0 9)  0. 0 8 2( 0. 0 1 1)  –

g m c p  – – – 0. 7 1 7( 0. 0 3 0)  2. 5 1 4( 0. 6 5 9)  0. 0 9 0( 0. 2 8 8)

Cl u st e r  5. 0 5 0( 1. 3 6 6)  5( 1. 4 8 3)  0. 5 6 2( 0. 1 3 6)  1. 5 1 4( 0. 4 4 4)  2. 4 8 4( 0. 7 5 3)  0. 0 9 0( 0. 2 8 8)

s g m c p  2. 0 9 0( 0. 4 9 4)  2( 0) 0. 9 8 6( 0. 0 5 2)  0. 1 5 8( 0. 1 2 0)  0. 1 1 0( 0. 1 0 7)  1( 0)

5 0   O r a cl e  – – – 0. 1 4 3( 0. 1 1 5)  0. 0 8 3( 0. 0 1 1)  –

g m c p  – – – 0. 7 1 9( 0. 0 3 3)  2. 7 2 0( 0. 0 0 0)  0( 0)

Cl u st e r  5. 0 4 0( 0. 9 5 3)  5( 1. 4 8 3)  0. 5 2 1( 0. 0 1 3)  1. 6 5 7( 0. 1 1 8)  2. 7 2 0( 0. 0 0 0)  0( 0)

s g m c p  2. 7 0 0( 1. 4 7 4)  2( 0) 0. 9 4 4( 0. 1 0 0)  0. 2 0 2( 0. 1 4 0)  0. 1 7 6( 0. 1 7 9)  1( 0)

1 0 0   O r a cl e  – – – 0. 1 3 9( 0. 1 1 0)  0. 0 8 2( 0. 0 1 1)  –

g m c p  – – – 0. 7 1 7( 0. 0 3 0)  2. 7 2 0( 0. 0 0 0)  0( 0)

Cl u st e r  4. 8 0 0( 0. 9 1 0)  5( 1. 4 8 3)  0. 5 2 1( 0. 0 1 3)  1. 6 5 2( 0. 1 2 1)  2. 7 2 0( 0. 0 0 0)  0( 0)

s g m c p  2. 7 9 0( 1. 3 2 8)  2( 0) 0. 9 2 8( 0. 1 0 8)  0. 2 2 9( 0. 1 4 6)  0. 2 1 7( 0. 2 1 2)  1( 0)
8
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a bl e 2

i m ul ati o n r e s ult s u n d e r C a s e 3 wit h P r( µ i = 1) = P r( µ i = 0) = P r( µ i = − 1) = 1 / 3, p n = 1 0 , 5 0 a n d 1 0 0, q n = 1 a n d 2 b a s e d o n 1 0 0 M o nt e C a rl o

e pli c at e s. T h e t r u e n u m b e r of s u b g r o u p s i s 3.

q n p n m et h o d K ( m e a n) K ( m e di a n)   RI M S E I S E S e n siti vit y

1  1 0   O r a cl e  – – – 0. 1 1 0( 0. 0 7 6)  0. 0 5 7( 0. 0 1 0)  –

g m c p  – – – 0. 8 2 3( 0. 0 3 0)  0. 8 4 2( 0. 7 5 6)  0. 6 8 0( 0. 4 6 9)

Cl u st e r  4. 1 0 0( 1. 4 0 3)  3( 0) 0. 8 5 9( 0. 1 6 5)  0. 4 6 8( 0. 4 6 0)  0. 7 0 0( 0. 8 5 2)  0. 6 8 0( 0. 4 6 9)

s g m c p  3. 6 4 0( 1. 1 2 4)  3( 0) 0. 9 4 2( 0. 0 7 5)  0. 2 0 6( 0. 1 1 7)  0. 1 7 6( 0. 1 7 0)  1( 0)

5 0   O r a cl e  – – – 0. 1 1 0( 0. 0 7 6)  0. 0 5 7( 0. 0 1 0)  –

g m c p  – – – 0. 8 2 3( 0. 0 3 0)  1. 1 0 4( 0. 7 9 9)  0. 5 2 0( 0. 5 0 2)

Cl u st e r  4. 2 2 0( 1. 3 5 3)  4( 1. 4 8 3)  0. 8 0 5( 0. 1 7 5)  0. 6 3 4( 0. 4 9 5)  0. 9 8 7( 0. 9 0 8)  0. 5 2 0( 0. 5 0 2)

s g m c p  3. 7 1 0( 1. 2 6 6)  3( 0) 0. 9 0 6( 0. 0 9 4)  0. 2 5 5( 0. 1 4 3)  0. 2 3 2( 0. 1 9 4)  1( 0)

1 0 0   O r a cl e  – – – 0. 1 1 0( 0. 0 7 6)  0. 0 5 7( 0. 0 1 0)  –

g m c p  – – – 0. 8 2 3( 0. 0 3 0)  1. 2 3 1( 0. 7 9 1)  0. 4 4 0( 0. 4 9 9)

Cl u st e r  4. 1 5 0( 1. 2 4 2)  4( 1. 4 8 3)  0. 7 7 5( 0. 1 7 6)  0. 7 1 7( 0. 4 8 9)  1. 1 3 3( 0. 9 0 0)  0. 4 4 0( 0. 4 9 9)

s g m c p  3. 7 3 0( 1. 2 2 1)  3( 0) 0. 8 8 6( 0. 1 1 0)  0. 2 7 9( 0. 1 5 4)  0. 2 6 7( 0. 2 0 6)  1( 0)

2  1 0   O r a cl e  – – – 0. 1 3 7( 0. 1 0 8)  0. 0 8 2( 0. 0 1 2)  –

g m c p  – – – 0. 8 3 1( 0. 0 3 5)  2. 6 9 8( 0. 2 1 7)  0. 0 1 0( 0. 1 0 0)

Cl u st e r  5. 3 5 0( 1. 0 0 9)  5( 1. 4 8 3)  0. 6 1 6( 0. 0 3 8)  1. 6 4 6( 0. 1 9 0)  2. 6 9 5( 0. 2 4 8)  0. 0 1 0( 0. 1 0 0)

s g m c p  3. 8 3 0( 1. 4 8 4)  3( 0. 7 4 1)  0. 8 6 7( 0. 0 9 8)  0. 3 2 7( 0. 1 3 6)  0. 3 5 9( 0. 2 3 1)  1( 0)

5 0   O r a cl e  – – – 0. 2 1 8( 0. 1 0 4)  0. 4 1 2( 0. 1 9 0)  –

g m c p  – – – 0. 8 3 1( 0. 0 3 5)  2. 6 9 8( 0. 2 1 7)  0. 0 1 0( 0. 1 0 0)

Cl u st e r  5. 0 7 0( 1. 0 1 8)  5( 1. 4 8 3)  0. 6 1 3( 0. 0 3 9)  1. 6 4 0( 0. 1 9 0)  2. 6 9 5( 0. 2 4 8)  0. 0 1 0( 0. 1 0 0)

s g m c p  3. 7 5 0( 1. 3 9 5)  3( 1. 4 8 3)  0. 7 9 8( 0. 1 1 7)  0. 4 1 0( 0. 1 4 9)  0. 4 6 8( 0. 2 4 3)  1( 0)

1 0 0   O r a cl e  – – – 0. 2 1 8( 0. 1 0 4)  0. 4 1 2( 0. 1 9 0)  –

g m c p  – – – 0. 8 3 1( 0. 0 3 5)  2. 6 9 8( 0. 2 1 7)  0. 0 1 0( 0. 1 0 0)

Cl u st e r  4. 7 9 0( 1. 0 4 7)  5( 1. 4 8 3)  0. 6 1 0( 0. 0 4 0)  1. 6 3 4( 0. 1 8 9)  2. 6 9 5( 0. 2 4 8)  0. 0 1 0( 0. 1 0 0)

s g m c p  4. 0 1 0( 1. 5 6 0)  4( 1. 4 8 3)  0. 7 8 0( 0. 1 2 7)  0. 4 2 7( 0. 1 5 7)  0. 4 8 6( 0. 2 4 4)  1( 0)

a bl e 3

d diti o n al si m ul ati o n r e s ult s f o r t h e p r o p o s e d m et h o d u n d e r t w o s u b g r o u p s a n d t h r e e s u b g r o u p s wit h p n = 1 0 b a s e d o n 1 0 0 M o nt e C a rl o r e pli c at e s.

s t h e s e p a r ati o n p a r a m et e r α i n c r e a s e s, t h e m e a n of e sti m at e d n u m b e r of s u b g r o u p s b e c o m e s cl o s e r t o t h e t r u e v al u e, a n d RI b e c o m e s cl o s e r t o 1.

S etti n g α K ( m e a n) K ( m e di a n) RI

T w o s u b g r o u p s wit h 0. 3 2. 9 3 0( 1. 5 5 9) 2( 0) 0. 9 0 1( 0. 1 0 0)

P r( µ i = α ) = P r( µ i = − α ) = 1 / 2 0. 5 2. 2 7 0( 0. 6 4 9) 2( 0) 0. 9 6 6( 0. 0 7 3)

0. 7 2. 0 9 0( 0. 4 9 4) 2( 0) 0. 9 8 6( 0. 0 5 2)

1 2. 0 4 0( 0. 4 0 0) 2( 0) 0. 9 9 2( 0. 0 4 0)

1. 5 2. 0 4 0( 0. 4 0 0) 2( 0) 0. 9 9 2( 0. 0 3 9)

T h r e e s u b g r o u p s wit h q n = 1 1 3. 6 4 0( 1. 1 2 4) 3( 0) 0. 9 4 2( 0. 0 7 5)

a n d P r( µ i = α ) = P r( µ i = 0) = P r( µ i = − α ) = 1 / 3 1. 5 3. 4 6 0( 1. 1 7 6) 3( 0) 0. 9 6 0( 0. 0 7 3)

3 3. 2 1 0( 0. 7 0 1) 3( 0) 0. 9 7 1( 0. 0 6 8)

a bl e 4

d diti o n al si m ul ati o n r e s ult s f o r t h e p r o p o s e d m et h o d u n d e r C a s e s 2 – 3 wit h p n = 1 0 b a s e d o n 1 0 0 M o nt e C a rl o r e pli c at e s. A s t h e s a m pl e si z e n

n c r e a s e s, t h e m e a n of e sti m at e d n u m b e r of s u b g r o u p s b e c o m e s cl o s e r t o t h e t r u e v al u e, a n d RI b e c o m e s cl o s e r t o 1.

S etti n g n K ( m e a n) K ( m e di a n) RI

C a s e 2 wit h α = 0 .5 1 0 0 2. 2 7 0( 0. 6 4 9) 2( 0) 0. 9 6 6( 0. 0 7 3)

2 0 0 2. 2 1 0( 0. 7 4 2) 2( 0) 0. 9 9 0( 0. 0 4 5)

3 0 0 2. 1 6 0( 0. 6 7 7) 2( 0) 0. 9 9 4( 0. 0 2 8)

C a s e 3 wit h q n = 1 1 0 0 3. 6 4 0( 1. 1 2 4) 3( 0) 0. 9 4 2( 0. 0 7 5)

2 0 0 3. 2 6 0( 0. 6 1 3) 3( 0) 0. 9 8 6( 0. 0 2 6)

3 0 0 3. 1 4 0( 0. 4 9 3) 3( 0) 0. 9 9 4( 0. 0 1 3)

. A p pli c a ti o n

T h e T F T - L C D s e xt e n d o v e r v a ri o u s a p pli c ati o n s s u c h a s offi c e - a ut o m ati o n, el e ct ri c h o m e a p pli a n c e s, t r a n s p o rt ati o n s,
n d m o r e [ 2 7 ]. I n t hi s s e cti o n, w e a p pl y t h e p r o p o s e d m et h o d t o t h e T F T - L C D d at a s et. Si n c e T F T - L C D s h a v e e x c ell e nt
e at u r e s s u c h a s a l o w p r ofil e, li g ht w ei g ht, l o w o p e r ati n g - v olt a g e, l o w p o w e r - c o n s u m pti o n, f ull c ol o r c a p a biliti e s, l a r g e
r e a, a n d hi g h e r r e s ol uti o n, t h e y n o w pl a y a l e a di n g r ol e i n v a ri o u s fl at - p a n el el e ct r o ni c di s pl a y d e vi c e s [ 2 7 ]. Si n c e t h e
e c h n ol o gi c al e n vi r o n m e nt h a s b e c o m e i n c r e a si n gl y c o m p etiti v e d u e t o gl o b ali z ati o n’ s r a pi d s p e e d, f a st a n d a c c u r at e
sti m ati o n i s e s s e nti al t o a s u c c e s sf ul d eli v e r y of d e vi c e s i n a ti m el y m a n n e r [ 3 ]. D at a a n al y si s c a n h el p t h e s e mi c o n d u ct o r
n d u st r y m a k e b ett e r u s e of p r o d u ct i nf o r m ati o n a n d i m p r o v e p r o d u ct q u alit y.

A s m e nti o n e d e a rli e r, t h e m a n uf a ct u ri n g p r o c e s s of T F T - L C D i s c o m p ri s e d of h u n d r e d s of w o r ki n g p r o c e d u r e s. It c a n
e r o u g hl y di vi d e d i nt o t h e f oll o wi n g f o u r p r o c e s s e d: t hi n -fil m t r a n si st o r ( T F T), c ol o r filt e r ( C F), c ell, a n d m o d ul e. T F T
9
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i g. 4. D e n sit y pl ot of t hi c k n e s s aft e r a dj u sti n g f o r t h e c o v a ri at e s’ eff e ct s i n e a c h of t h e t w o i d e ntifi e d s u b g r o u p s b y u si n g t h e s g m c p m et h o d. T h e

i st ri b uti o n i s m o r e h o m o g e n e o u s wit hi n e a c h s u b g r o u p i n Fi g. 1 . T h e d at a s et i s c oll e ct e d f r o m 1 4 9 s u bj e ct s wit h 5 6 f u n cti o n al v a ri a bl e s a n d a

c al a r r e s p o n s e.

n d C F a r e f a b ri c ati o n p r o c e s s e s. T h e c ell p r o c e s s i s t o a s s e m bl e T F T a n d C F i nt o L C D p a n el s. T h e m o d ul e p r o c e s s t h e n

s s e m bl e s L C D p a n el s wit h ot h e r n e c e s s a r y p a rt s t o c o m pl et e fi n al T F T - L C D p r o d u ct s [ 2 6 ].

T h e d at a w e a n al y z e i s c oll e ct e d i n t h e T F T p r o c e s s. I n t hi s p r o c e s s, ci r c uit i s c o n n e ct e d t o gl a s s s u b st r at e t o f o r m

T F T b o a r d. Gl a s s s u b st r at e i s c o at e d wit h a n o r g a ni c fil m, a n d w h at w e a r e c o n c e r n e d a b o ut i s it s t hi c k n e s s. T hi s

at a s et i s c oll e ct e d f r o m 1 4 9 s u bj e ct s. 5 6 v a ri a bl e s a r e c oll e ct e d, s u c h a s t e m p e r at u r e, g a s, li q ui d fl o w, a n d p o w e r wit h

a n uf a ct u ri n g ti m e. T h e v al u e s of t h e s e v a ri a bl e s a r e r e c o r d e d o v e r ti m e, a n d s o t h e s e v a ri a bl e s c a n b e r e g a r d e d a s

u n cti o n al. Wit h o ut l o s s of g e n e r alit y, w e t r a n sf o r m t h e d at a f o r p r o p ri et a r y i nf o r m ati o n p r ot e cti o n. T o eli mi n at e t h e

ff e ct of t h e l a r g e n u m e ri c al diff e r e n c e b et w e e n t h o s e v a ri a bl e s, w e fi r st c o n d u ct gl o b al r e s c ali n g. F oll o wi n g H a p p a n d

r e v e n [ 7 ], w e u s e t h e r e s c al e d el e m e nt s w
1 / 2

j x j(t ) t o b uil d m o d el s wit h w j =
[ ∫

T
V̂ a r

{
x j(tj)

}
dt j

] − 1
.

T h e hi st o g r a m of t hi c k n e s s aft e r a dj u sti n g f o r t h e eff e ct s of t h e c o v a ri at e s b y u si n g t h e g m c p m et h o d i s s h o w n i n

i g. 1 . It still s h o w s m ulti pl e m o d e s a m o n g t h e s a m pl e s. T h e r ef o r e, i n a d diti o n t o i d e ntif yi n g t h e aff e ct e d p r o c e s s e s, w e

l s o n e e d t o g r o u p t h e s a m pl e s.

Wit h t h e p r o p o s e d m et h o d, t h e s a m pl e s a r e di vi d e d i nt o t w o s u b g r o u p s. T h e s u b g r o u p si z e s a r e 9 7 a n d 5 2, r e s p e cti v el y.

h e e sti m at e d v al u e s of t h e i nt e r c e pt s a r e 8. 4 7 1 a n d 8. 5 8 7, r e s p e cti v el y. T h o u g h t h e diff e r e n c e m a y s e e m s m all, it i s

o m p a r a bl e t o
∑ 5 6

j= 1

∫
T

x ij(t )b j(t )dt , t h e st a n d a r d d e vi ati o n of w hi c h i s 0. 1 3 2. W e p r e s e nt t h e hi st o g r a m aft e r a dj u sti n g

o r t h e eff e ct s of t h e c o v a ri at e s i n Fi g. 4 . W e s e e t h at t h e di st ri b uti o n i s m o r e h o m o g e n e o u s wit hi n e a c h s u b g r o u p i n

i g. 1 . Wit h t h e alt e r n ati v e s, Cl u st e r di vi d e s t h e s a m pl e s i nt o f o u r s u b g r o u p s. A s f o r v a ri a bl e s el e cti o n, g m c p s el e ct s

w o p r e di ct o r s: S 4 _ A C T _ C A LI F E 0 1 _ L a n d S 4 _ A C T _ D C 0 1 V O L; Cl u st e r s el e ct s o n e p r e di ct o r: S 4 _ A C T _ C A LI F E 0 1 _ L; a n d s g m c p

el e ct s f o u r p r e di ct o r s: S 4 _ A C T _ D C 0 1 P W R, S 4 _ A C T _ D C 0 1 V O L, S 4 _ A C T _ T M P O S a n d S T _ A C T _ C A LI F E 0 1 _ L. F oll o wi n g Z h a n g

t al. [ 3 6 ], w e fit l o gi sti c r e g r e s si o n of t h e s u b g r o u p s ( 1 f o r s u b g r o u p 1 a n d 0 f o r s u b g r o u p 2) a g ai n st t h e f o u r v a ri a bl e s

el e ct e d b y s g m c p, a n d r e p o rt t h e c o effi ci e nt e sti m ati o n i n Fi g. 5 . W e s e e t h at S 4 _ A C T _ D C 0 1 P W R a n d S 4 _ A C T _ D C 0 1 V O L

a y aff e ct s u b g r o u pi n g. F o r a n e w s u bj e ct, w e c a n p r e di ct t h e r e s p o n s e a c c o r di n g t o t hi s l o gi sti c r e g r e s si o n.

. C o n cl u si o n s

T hi s p a p e r h a s i nt r o d u c e d t h e m et h o d ol o g y a n d a n eff e cti v e e sti m ati o n al g o rit h m f o r s u b g r o u p a n al y si s f o r hi g h -

i m e n si o n al f u n cti o n al r e g r e s si o n. T h e p r o p o s e d m et h o d c a n a ut o m ati c all y di vi d e o b s e r v ati o n s i nt o s u b g r o u p s a n d

i m ult a n e o u sl y p e rf o r m v a ri a bl e s el e cti o n t o i d e ntif y r el e v a nt p r e di ct o r s. T h e o bj e cti v e f u n cti o n i n cl u d e s t h r e e p a rt s.
1 0
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C A 1) F o r j ∈ { 1 , . . . , p n },
{
tijl, l ∈ { 1 , . . . , m ij}

}
a r e d et e r mi ni sti c a n d o r d e r e d i n c r e a si n gl y f o r i ∈ { 1 , . . . , n }. T h e r e

e xi st d e n siti e s g ij u nif o r ml y s m o ot h o v e r i, s ati sf yi n g
∫

T
g ij(t )dt = 1 a n d 0 < c 1 < i nfi

{
i nft ∈ T g ij(t )

}
<

s u p i

{
s u p t ∈ T g ij(t )

}
< c 2 < ∞ t h at g e n e r at e t ijl a c c o r di n g t o t ijl = G − 1

ij

{
l/ (m ij + 1)

}
, w h e r e G − 1

ij i s t h e i n v e r s e

of G ij(t ) =
∫ t

− ∞
g ij(s )d s . F o r e a c h j ∈ { 1 , . . . , d }, t h e r e e xi st s a c o m m o n s e q u e n c e of b a n d wi dt h h j s u c h t h at

0 < c 1 < i nfi h ij/ h j < s u p i h ij/ h j < c 2 < ∞ , w h e r e h ij i s t h e b a n d wi dt h f o r t h e s m o ot h e d t r aj e ct o ri e s x̂ ij. T h e

k e r n el d e n sit y f u n cti o n i s s m o ot h a n d c o m p a ctl y s u p p o rt e d.

C A 2) L et T = [ a 0 , b 0 ], tij0 = a 0 , tij,m ij+ 1 = b 0 , ∆ ij = s u p
{
tij,l+ 1 − tij,l, l ∈ { 0 , . . . , m ij}

}
a n d m j = m j(n ) = i nfi∈{ 1 ,...,n } m ij. F o r

j ∈ { 1 , . . . , p n }, s u pi ∆ ij = O
(
m − 1

j

)
, h j ∼ m

− 1 / 5

j , m jn
− 5 / 4 → ∞ , w h e r e w e d e n ot e 0 < li m a n / b n < ∞ b y a n ∼ b n .

p p e n di x B. A u xili a r y l e m m a s a n d P r o of of T h e o r e m 1

e m m a 1. D efi n e t h e f oll o wi n g n ot ati o n s, f o r k , k 1 , k 2 ∈ { 1 , . . . , s n } a n d j , j1 , j2 ∈ { 1 , . . . , p n },

θ ( 1)

j k =

n∑

i= 1

(
ξ̂ ij k − ξ ij k

) 2

v − 1
j k , θ

j1 j2 ( 2)

k 1 k 2
=

n∑

i= 1

(
ξ̂ ij1 k 1

ξ̂ ij2 k 2
− ξ ij1 k 1

ξ ij2 k 2

) (
v j1 k 1

v j2 k 2

) − 1 / 2
,

θ
j1 j2 ( 3)

k 1 k 2
=

n∑

i= 1

{
ξ ij1 k 1

ξ ij2 k 2
− E

(
ξ j1 k 1

ξ j2 k 2

) } (
v j1 k 1

v j2 k 2

) − 1 / 2
, θ

j1 j2 ( 4)

k 1 k 2
= θ

j1 j2 ( 2)

k 1 k 2
+ θ

j1 j2 ( 3)

k 1 k 2
.

n d e r c o n diti o n s ( C 1), ( C 2), ( C 5) a n d ( C A 1) -( C A 2), w e h a v e

θ ( 1)

j k = O p

(
k a + 2

)
, θ

j1 j2 ( 2)

k 1 k 2
= O p

(
k

a / 2 + 1

1 n 1 / 2 + k
a / 2 + 1

2 n 1 / 2
)

,

θ
j1 j2 ( 3)

k 1 k 2
= O p

(
n 1 / 2

)
, θ

j1 j2 ( 4)

k 1 k 2
= O p

(
k

a / 2 + 1

1 n 1 / 2 + k
a / 2 + 1

2 n 1 / 2
)

,

h e r e t h e O p (·) a n d o p (·) t e r m s a r e u nif o r m f o r k, k 1 , k 2 ∈ { 1 , . . . , s n } a n d j , j1 , j2 ∈ { 1 , . . . , p n }.

L e m m a 1 q u a ntifi e s t h e a s y m pt oti c o r d e r s of s e v e r al i m p o rt a nt t y p e s of e x p r e s si o n s t h at will b e e n c o u nt e r e d i n t h e

r o of s of o u r l e m m a s a n d m ai n t h e o r e m s. T h e a s y m pt oti c p r o p e rti e s of ξ̂ ij k a r e w ell st u di e d b y K o n g et al. [ 1 2 ], a n d w e

mit t h e d et ail e d p r o of h e r e.

R e c all t h at w e r e p a r a m et e ri z e b y w riti n g β̃ j k = v
1 / 2

j k β j k, β̂ d e n ot e s t h e e sti m at e of β , a n d β̌ d e n ot e s t h e e sti m at e of β̃ .

efi n e ˜W 1 a s t h e n × (K + q n s n ) m at ri x wit h t h e it h r o w
(

z i1 , . . . , z i K , ξi1 1 v
− 1 / 2

1 1 , . . . , ξi1 s n v
− 1 / 2

1 s n
, . . . , ξi qn 1 v

− 1 / 2

q n 1 , . . . , ξi qn s n v
− 1 / 2
q n s n

)
.

o r e o v e r, d efi n e ˇW 1 a s t h e n × (K + q n s n ) m at ri x wit h t h e it h r o w
(

z i1 , . . . , z i K , ξ̂ i1 1 v
− 1 / 2

1 1 , . . . , ξ̂ i1 s n v
− 1 / 2

1 s n
, . . . , ξ̂ i qn 1 v

− 1 / 2

q n 1 , . . . , ξ̂ i qn s n v
− 1 / 2
q n s n

)
.

T h e n e xt l e m m a c h a r a ct e ri z e s t h e ei g e n v al u e s of ˇW 1 . T h e e s s e nti al diff e r e n c e b et w e e n L e m m a 3 i n K o n g et al. [1 2 ]

n d t h e f oll o wi n g l e m m a i s t h at w e all o w t h e n u m b e r of f u n cti o n al p r e di ct o r s q n t o g r o w wit h t h e s a m pl e si z e n , w hil e

o n g et al. [ 1 2 ] a s s u m e d it fi x e d.

e m m a 2. U n d e r c o n diti o n s ( C 1), ( C 2), ( C 5), ( C 7) a n d ( C A 1) -( C A 2),
⏐
⏐
⏐λ mi n

(
ˇW

⊤

1
ˇW 1 / |g 0

mi n |
)

− λ mi n

(
U n / |g 0

mi n |
) ⏐⏐
⏐ = o p ( 1),

⏐
⏐
⏐λ m a x

(
ˇW

⊤

1
ˇW 1 / n

)
− λ m a x (U )

⏐
⏐
⏐ = o p ( 1).

r o of. L et ∥ A ∥ 1 d e n ot e t h e L 1 n o r m of m at ri x A . W e h a v e:

|λ mi n

(
ˇW

⊤

1
ˇW 1 / |g 0

mi n |
)

− λ mi n

(
U n / |g 0

mi n |
) ⏐⏐
⏐ ≤



 ˇW

⊤

1
ˇW 1 / |g 0

mi n | − U n / |g 0
mi n |





1

≤| g 0
mi n |

− 1
O p

⎡

⎣ q n

s n∑

k 1 = 1

⏐
⏐
⏐θ

j1 j2 ( 4)

k 1 s n

⏐
⏐
⏐ +

K∑

l= 1

n∑

i= 1

{ (
ξ̂ ij sn − ξ ij sn

)
v

− 1 / 2

j sn
z il

}
+

K∑

l= 1

n∑

i= 1

ξ ij kv
− 1 / 2

j k z il

+

q n∑

j= 1

s n∑

k = 1

n∑

i= 1

{ (
ξ̂ ij k − ξ ij k

)
v

− 1 / 2

j k z il

}
+

q n∑

j= 1

s n∑

k = 1

n∑

i= 1

ξ ij kv
− 1 / 2

j k z il

⎤

⎦ .

( B. 1)
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T

B

W

L

P

w

R e c all t h at z il = 1 if i ∈ g l a n d 0 ot h e r wi s e. T h e n w e h a v e

⏐
⏐
⏐
⏐
⏐

n∑

i= 1

{ (
ξ̂ ij k − ξ ij k

)
v

− 1 / 2

j k z il

}
⏐
⏐
⏐
⏐
⏐

≤
⏐
⏐g 0

l

⏐
⏐1 / 2

{
n∑

i= 1

(
ξ̂ ij k − ξ ij k

) 2

v − 1
j k

} 1 / 2

= O p

(
|g 0

l |
1 / 2

k a / 2 + 1
)

. ( B. 2)

Si n c e E

[ ∑
i∈ g 0

l

{
ξ ij k − E

(
ξ ij k

) }
v

− 1 / 2

j k

] 2

≤ | g 0
l |E

{
ξ ij k − E

(
ξ ij k

) } 2
v − 1

j k = | g 0
l |, w e h a v e

∑

i∈ g 0
l

{
ξ ij k − E

(
ξ ij k

) }
v

− 1 / 2

j k = O p

(
|g 0

l |
1 / 2

)
.

h u s

⏐
⏐
⏐
⏐
⏐

n∑

i= 1

ξ ij kv
− 1 / 2

j k z il

⏐
⏐
⏐
⏐
⏐

=

⏐
⏐
⏐
⏐
⏐

n∑

i= 1

{
ξ ij kz il − E

(
ξ ij kz il

) }
v

− 1 / 2

j k

⏐
⏐
⏐
⏐
⏐

=

⏐
⏐
⏐
⏐
⏐
⏐
⏐

∑

i∈ g 0
l

{
ξ ij k − E

(
ξ ij k

) }
v

− 1 / 2

j k

⏐
⏐
⏐
⏐
⏐
⏐
⏐

= O p

(
|g 0

l |
1 / 2

)
. ( B. 3)

y L e m m a 1 , ( B. 1)– ( B. 3) a n d c o n diti o n ( C 5), w e h a v e:
⏐
⏐
⏐λ mi n

(
ˇW

⊤

1
ˇW 1 / |g 0

mi n |
)

− λ mi n

(
U n / |g 0

mi n |
) ⏐
⏐
⏐

≤| g 0
mi n |

− 1
O p

⎡

⎣ q n

s n∑

k 1 = 1

⏐
⏐
⏐θ

j1 j2 ( 4)

k 1 s n

⏐
⏐
⏐ +

K∑

l= 1

n∑

i= 1

{ (
ξ̂ ij sn − ξ ij sn

)
v

− 1 / 2

j sn
z il

}
+

K∑

l= 1

n∑

i= 1

ξ ij kv
− 1 / 2

j k z il

+

q n∑

j= 1

s n∑

k = 1

n∑

i= 1

{ (
ξ̂ ij k − ξ ij k

)
v

− 1 / 2

j k z il

}
+

q n∑

j= 1

s n∑

k = 1

n∑

i= 1

ξ ij kv
− 1 / 2

j k z il

⎤

⎦

=| g 0
mi n |

− 1
O p

⎧
⎨

⎩
q n

s n∑

k 1 = 1

(
k

a / 2 + 1

1 n 1 / 2 + s a / 2 + 1
n n 1 / 2

)
+

K∑

l= 1

|g 0
l |

1 / 2
s a / 2 + 1
n +

K∑

l= 1

|g 0
l | + q n |g

0
m a x |

1 / 2
s n∑

k = 1

k a / 2 + 1

+ q n s n |g
0
m a x |

1 / 2

⎫
⎬

⎭

=| g 0
mi n |

− 1
O p

(
q n s a / 2 + 2

n n 1 / 2 + K s a / 2 + 1
n |g 0

m a x |
1 / 2

+ K |g 0
m a x |

1 / 2
+ q n |g

0
m a x |

1 / 2
s n

a / 2 + 2 + q n s n |g
0
m a x |

1 / 2
)

= O p

{
|g 0

mi n |
− 1

s a / 2 + 1
n

(
q n s n n 1 / 2 + K |g 0

m a x |
1 / 2

) }
= o p ( 1).

Si mil a rl y, w e c a n g et

⏐
⏐
⏐λ m a x

(
ˇW

⊤

1
ˇW 1 / n

)
− λ m a x (U )

⏐
⏐
⏐ = o p ( 1). T hi s c o m pl et e s t h e p r o of. □

D efi n e η̃ 0
1 =

(
α 0 , β̃

0

1 , . . . , β̃
0

q n

)
. L e m m a 3 c o n c e r n s t h e a s y m pt oti c o r d e r of Γ 1 = P ˇW 1

(
y − ˇW 1 η̃

0
1

)
, w h e r e P ˇW 1

=

ˇ
1

(
ˇW

⊤

1
ˇW 1

) − 1
ˇW

⊤

1 .

e m m a 3. U n d e r c o n diti o n s ( C 1), ( C 2), ( C 3), ( C 5) a n d ( C A 1) -( C A 2), ∥ Γ 1 ∥
2
2 = O p

(
K + q n s n + q 2

n

)
.

r o of. N ot e t h at

∥ Γ 1 ∥
2
2 =



 P ˇW 1

(y − ˇW 1 η̃
0
1 )





2

2
=



 P ˇW 1

{
ϵ + κ +

(
˜W 1 − ˇW 1

)
η̃ 0

1

} 



2

2

≤ O

{ 

 P ˇW 1

ϵ




2

2
+



 P ˇW 1

κ




2

2
+



 P ˇW 1

(
˜W 1 − ˇW 1

)
η̃ 0

1





2

2

}

,
( B. 4)

h e r e κ = (κ 1 , . . . , κn )⊤ a n d κ i =
∑ q n

j= 1

∑ ∞
k = s n + 1 ξ ij kβ

0
j k.

Si n c e



 P ˇW 1

ϵ




2

2
= ϵ ⊤ P ˇW 1

ϵ ,

E

(
ϵ ⊤ P ϵ

)
= E

{
E

(
ϵ ⊤ P ϵ | ˇW

) }
= E

[
t r

{
P E

(
ϵ ⊤ ϵ

) } ]
= σ 2 t r

(
P

)
= σ 2 (q s + K ) = O (q s + K ) ,
ˇW 1

ˇW 1
1 ˇW 1

ˇW 1
n n n n

1 3
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a
 n d V a r

(
ϵ ⊤ P ˇW 1

ϵ
)

= E

{
V a r

(
ϵ ⊤ P ˇW 1

ϵ | ˇW 1

) }
+ V a r

{
E

(
ϵ ⊤ P ˇW 1

ϵ | ˇW 1

) }
= O p (q n s n + K ), w e g et



 P ˇW 1

ϵ




2

2
= O p (q n s n + K ). ( B. 5)

A s V a r
( ∑ ∞

k = s n + 1 ξ ij kβ
0
j k

)
=

∑ ∞
k = s n + 1 v j k

(
β 0

j k

) 2
= O

( ∑ ∞
k = s n + 1 k − 1 k − 2 b

)
= O

(
s − 2 b
n

)
, w e h a v e V a r (κ i) = O

(
q n s − 2 b

n

)
,

E
(
κ 2

i

)
= O

(
q n s − 2 b

n

)
. T h u s, ∥ κ ∥ 2

2 = O p

(
n q n s − 2 b

n

)
. T h e n, w e h a v e:



 P ˇW 1

κ




2

2
≤ ∥ κ ∥ 2

2 = O p

(
n q n s − 2 b

n

)
. ( B. 6)

F o r P ˇW 1

(
˜W 1 − ˇW 1

)
η̃ 0

1 , w e h a v e:



 P ˇW 1

(
˜W 1 − ˇW 1

)
η̃ 0

1





2

2
≤




(

˜W 1 − ˇW 1

)
η̃ 0

1





2

2
= O

⎡

⎢
⎣

n∑

i= 1

⎧
⎨

⎩

q n∑

j= 1

s n∑

k = 1

(
ξ̂ ij k − ξ ij k

)
β 0

j k

⎫
⎬

⎭

2
⎤

⎥
⎦

≤ O

⎡

⎣ 2 q n

n∑

i= 1

q n∑

j= 1

{
s n∑

k = 1

(
ξ̃ ij k − ξ ij k

)
β 0

j k

} 2

+ 2 q n

n∑

i= 1

q n∑

j= 1

{
s n∑

k = 1

(
ξ̂ ij k − ξ̃ ij k

)
β 0

j k

} 2
⎤

⎦

≤ O

⎧
⎨

⎩
q n

q n∑

j= 1

n∑

i= 1


 x ij


 2

O p

(
s n∑

k = 1

k − b k n − 1 / 2

) 2
⎫
⎬

⎭
+ O p

⎡

⎣ q n

q n∑

j= 1

n∑

i= 1

⎧
⎨

⎩


 x̂ ij − x ij


 2

(
s n∑

k = 1

k − b

) 2
⎫
⎬

⎭

⎤

⎦ = O p

(
q 2

n

)
.

( B. 7)

B y c o n diti o n s ( C 4) a n d ( B. 4)– ( B. 7), w e h a v e:

∥ Γ 1 ∥
2
2 ≤ O p

(
q n s n + K + n q n s − 2 b

n + q 2
n

)
= O p

(
K + q n s n + q 2

n

)
.

T hi s c o m pl et e s t h e p r o of. □

P r o of of T h e o r e m 1 . W h e n t h e t r u e s u b g r o u p m e m b e r s hi p s of s a m pl e s a r e k n o w n, t h at i s, G 0 = { g 0
1 , . . . , g 0

K } a n d Z a r e

k n o w n, t h e o r a cl e e sti m at o r s f o r µ a n d β̃ a r e:

(
µ̂ o , β̌

o
)

= a r g mi n
µ ∈ M G , β̃ ∈ R p n s n

L n (µ , β̃ ) + n

p n∑

j= 1

P
(
∥ β j∥ 2 , λ2

)
,

w h e r e

L n (µ , β̃ ) =
1

2

n∑

i= 1

⎧
⎨

⎩
y i −

p n∑

j= 1

s n∑

k = 1

(
ξ̂ ij kv

− 1 / 2

j k

)
β̃ j k − µ i

⎫
⎬

⎭

2

,

a n d M G i s t h e s u b s p a c e of R n d efi n e d a s

M G =
{
µ ∈ R n : µ i = µ j, f o r a n y i, j ∈ g 0

k , 1 ≤ k ≤ K
}

.

C o r r e s p o n di n gl y, t h e o r a cl e e sti m at o r s f o r t h e c o m m o n i nt e r c e pt s α a n d β̃ a r e

(
α̂ o , β̌

o
)

= a r g mi n
α ∈ R K , β̃ ∈ R p n s n

L n (Z α , β̃ ) + n

p n∑

j= 1

P
(
∥ β j∥ 2 , λ2

)
,

wit h µ̂ o = Z α̂ o
. F o r t h e si m pli cit y of n ot ati o n, w e d e n ot e η̃ =

(
α ⊤ , β̃

⊤
) ⊤

a n d Q o
n ( η̃ ) = L n (Z α , β̃ ) + n

∑ p n

j= 1 P
(
∥ β j∥ 2 , λ2

)
.

T h e p r o of i n cl u d e s t w o st e p s. I n St e p 1, w e e st a bli s h p r o p e rti e s of t h e o r a cl e e sti m at o r s η̌ o =
(
α̂ o ⊤ , β̌

o ⊤
) ⊤

. T h e

o r a cl e e sti m at o r s a r e t h e o r eti c al c o n st r u cti o n s u s ef ul f o r st ati n g p r o p e rti e s of t h e p r o p o s e d e sti m at o r s. I n St e p 2, w e

s h o w t h at ζ̌ =
(
µ̂ o ⊤ , β̌

o ⊤
) ⊤

wit h µ̂ o = Z α̂ o
i s a l o c al mi ni mi z e r of t h e p r o p o s e d p e n ali z e d o bj e cti v e f u n cti o n Q n (µ , β̃ )
wit h p r o b a bilit y a p p r o a c hi n g o n e.

1 4
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W

a

t

L

B

w

w

β

P

u

St e p 1. W e fi r st c o n st r ai n L n (Z α , β̃ ) o n t h e s u b s p a c e w h e r e t h e t r u e z e r o p a r a m et e r s a r e s et a s 0, t h at i s

{

η̃ =
(
α ⊤ , β̃

⊤
) ⊤

∈ R K + p n s n : β̃ A c = 0

}
. D efi n e η̃ 1 =

(
α ⊤ , β̃

⊤

A

) ⊤

a n d

L̄ n ( η̃ 1 ) =
1

2

n∑

i= 1

⎛

⎝ y i −

q n∑

j= 1

s n∑

k = 1

ξ̂ ij kv
− 1 / 2

j k β̃ j k − z ⊤
i α

⎞

⎠

2

.

e n o w s h o w t h at t h e r e e xi st s a l o c al mi ni mi z e r η̌ o o
1 of L̄ n ( η̃ 1 ) s u c h t h at



 η̌ o o

1 − η̃ 0
1





2
= O p (α n ), w h e r e η̃ 0

1 =
(
α 0 ⊤ , β̃

0 ⊤

A

) ⊤

n d α n =
(
K + q n s n + q 2

n

) 1 / 2
n 1 / 2 |g 0

mi n |
− 1

. If w e c a n p r o v e t h at f o r a n y ε > 0, t h e r e e xi st s a l a r g e c o n st a nt C 6 s u c h t h at

P r

{

i nf
∥ u ∥ 2 = C 6

L̄ n ( η̃ 0
1 + α n u ) > L̄ n ( η̃ 0

1 )

}

> 1 − ϵ, ( B. 8)

h e n L̄ n ( η̃ 1 ) h a s a l o c al mi ni mi z e r η̌ o o
1 t h at s ati sfi e s



 η̌ o o

1 − η̃ 0
1





2
= O p (α n ).

W e h a v e

L̄ n ( η̃ 0
1 + α n u ) − L̄ n ( η̃ 0

1 ) =
1

2



 Y − ˇW

⊤

1

(
η̃ 0

1 + α n u

) 



2

2
−

1

2



 Y − ˇW

⊤

1 η̃ 0
1





2

2

=
1

2
α 2

n u ⊤
(

ˇW
⊤

1
ˇW 1

)
u − Γ ⊤

1
ˇW 1 α n u ⩾

1

2
α 2

n u ⊤
(

ˇW
⊤

1
ˇW 1

)
u − ∥ Γ 1 ∥ 2 λ 1 / 2

m a x

(
ˇW

T

1
ˇW 1

)
α n ∥ u ∥ 2 .

( B. 9)

et r n =
(
K + q n s n + q 2

n

) 1 / 2
. A c c o r di n g t o L e m m a 2 , w e h a v e

1

2
α 2

n u ⊤
(

ˇW
⊤

1
ˇW 1

)
u ⩾

1

2
λ mi n

(
ˇW

⊤

1
ˇW 1

)
α 2

n ∥ u ∥ 2
2 ⩾ C 4 |g

0
mi n |α 2

n ∥ u ∥ 2
2 = C 4 n |g 0

mi n |
− 1

r 2
n ∥ u ∥ 2

2 . ( B. 1 0)

e si d e s, w e h a v e
⏐
⏐
⏐− ∥ Γ 1 ∥ 2 λ 1 / 2

m a x

(
ˇW

⊤

1
ˇW 1

)
α n ∥ u ∥ 2

⏐
⏐
⏐ ≤ C 7 r n n 1 / 2 α n ∥ u ∥ 2 = C 7 n |g 0

mi n |
− 1

r 2
n ∥ u ∥ 2 , ( B. 1 1)

h e r e C 7 i s a p o siti v e c o n st a nt. All o wi n g C 6 = ∥ u ∥ 2 t o b e l a r g e e n o u g h, ( B. 1 1) i s d o mi n at e d b y ( B. 1 0), w hi c h i s p o siti v e.

T hi s p r o v e s ( B. 8).

D e n ot e η̌ o o =
(
η̌ o o ⊤

1 , β̌
o o ⊤

A c

) ⊤

∈ R K + p n s n wit h β̌
o o

A c = 0. N e xt, w e s h o w t h at η̌ o o
i s a l o c al mi ni mi z e r of Q o

n ( η̃ ) o v e r t h e

w h ol e s p a c e R K + p n s n . B y t h e K a r u s h – K u h n – T u c k e r c o n diti o n s, it s uffi c e s t o s h o w t h at η̌ o o
s ati sfi e s t h e f oll o wi n g c o n diti o n s:

S ∗
l

(
η̌ o o

)
= 0 , l ∈ { 1 , . . . , K }, ( B. 1 2)

S j

(
η̌ o o

)
+ n P ′

(
∥ β̂

o o

j ∥ 2 , λ2

) β̂
o o

j

∥ β̂
o o

j ∥ 2

= 0 , j ∈ A , ( B. 1 3)


 S j( η̌

o o
)



2
≤ λ 2 n , j ∈ A c , ( B. 1 4)

h e r e

S ∗
l ( η̃ ) = ∂

⎧
⎪⎨

⎪⎩

1

2

n∑

i= 1

⎛

⎝ y i −

K∑

l= 1

z ilα l −

p n∑

j= 1

s n∑

k = 1

ξ̂ ij kβ j k

⎞

⎠

2
⎫
⎪⎬

⎪⎭

/
∂ α l,

S j( η̃ ) = ∂

⎧
⎪⎨

⎪⎩

1

2

n∑

i= 1

⎛

⎝ y i −

K∑

l= 1

z ilα l −

p n∑

j= 1

s n∑

k = 1

ξ̂ ij kβ j k

⎞

⎠

2
⎫
⎪⎬

⎪⎭

/
∂ β j,

ˆ i s t h e e sti m at e of β , β̌ i s t h e e sti m at e of β̃ , a n d β̃ j k = v
1 / 2

j k β j k.

O b vi o u sl y, w e h a v e S ∗
l

(
η̌ o o

)
= 0 f o r l ∈ { 1 , . . . , K }, a n d ( B. 1 2) h ol d s. If mi n j∈ A ∥ β̂

o o

j ∥ 2 ≥ a λ λ 2 , w e h a v e

′
(
∥ β̂

o o

j ∥ 2 , λ2

)
= 0, a n d c e rt ai nl y ( B. 1 3) h ol d s. N ot e t h at ∥ β̂

o o

j ∥ 2 ≥ ∥ β 0
j ∥ 2 − ∥ β̂

o o

j − β 0
j ∥ 2 . W e h a v e mi nj∈ A ∥ β 0

j ∥ 2 / λ 2 → ∞

n d e r c o n diti o n ( C 6). Si n c e ∥ β̌
o o

j − β̃
0

j ∥ 2 = O p (α n ) a n d β̃ 0
j k = v

1 / 2

j k β 0
j k, w e h a v e ∥ β̂

o o

j − β 0
j ∥ 2 = O p

(
s
a / 2
n α n

)
= o p (λ 2 ). T h u s

mi n ∥ β̂
o o

∥ / λ → ∞ i n p r o b a bilit y. T h e n w e g et P r

(
∥ β̂

o o
∥ ≥ a λ f o r j ∈ { 1 , . . . , q }

)
→ 1. T h e n ( B. 1 3) f oll o w s.
j∈ A j 2 2 j 2 λ 2 n

1 5
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∑

m

w

N o w w e p r o v e ( B. 1 4). It s uffi c e s t o s h o w t h at

P r

{

m a x
j∈ A c


 S j( η̌

o o
)



2
> λ 2 n

}

→ 0 .

D e n ot e t h e k t h el e m e nt of S j( η̌
o o

) a s S j k( η̌
o o

). W e h a v e

S j k( η̌
o o

) = −

n∑

i= 1

ξ̂ ij k

⎛

⎝ y i −

K∑

l= 1

z ilα̂ l −

p n∑

j= 1

s n∑

k = 1

ξ̂ ij kv
− 1 / 2

j k β̌ o o
j k

⎞

⎠ = −

n∑

i= 1

(
ξ ij k + ξ̂ ij k − ξ ij k

)

×

⎛

⎝ y i −

K∑

l= 1

z ilα̂ l −

p n∑

j= 1

s n∑

k = 1

ξ̂ ij kv
− 1 / 2

j k β̌ o o
j k

⎞

⎠

= −

n∑

i= 1

(
ξ ij k + ξ̂ ij k − ξ ij k

)
{

κ i + ϵ i +

K∑

l= 1

z il

(
α 0

l − ˆα l

)

+

p n∑

j= 1

s n∑

k = 1

ξ ij kv
− 1 / 2

j k

(
β̃ 0

j k − β̌ o o
j k

)
+

p n∑

j= 1

s n∑

k = 1

(
ξ ij k − ξ̂ ij k

)
v

− 1 / 2

j k β̌ o o
j k

⎫
⎬

⎭
.

L et ξ ·j k b e t h e n × 1 v e ct o r wit h t h e it h el e m e nt ξ ij k, ξ̂ ·j k b e t h e n × 1 v e ct o r wit h t h e it h el e m e nt ξ̂ ij k, a n d Γ 2 =

κ +
(

˜W 1 − ˇW 1

) ⊤

η̃ 0
1 + ˇW 1

(
η̃ 0

1 − η̌ o o
1

)
. T h e n w e h a v e

S j k( η̌
o o

) = −
(
ξ ·j k + ξ̂ ·j k − ξ ·j k

) ⊤

(Γ 2 + ϵ ) = − ξ ⊤
·j kΓ 2 − ξ ⊤

·j kϵ −
(
ξ̂ ·j k − ξ ·j k

) ⊤

Γ 2 −
(
ξ̂ ·j k − ξ ·j k

) ⊤

ϵ .

H e n c e, it f oll o w s t h at

P r

{

m a x
j∈ A c


 S j( η̌

o o
)



2
> λ 2 n

}

≤ P r

{

m a x
j∈ A c

m a x
k ∈{ 1 ,...,s n }

⏐
⏐S j k( η̌

o o
)
⏐
⏐ > λ 2 n s − 1 / 2

n

}

≤ P r

(

m a x
j∈ A c

m a x
k ∈{ 1 ,...,s n }

∥ ξ ·j k∥ 2 ∥ Γ 2 ∥ 2 > λ 2 n s − 1 / 2
n / 4

)

+ P r

(

m a x
j∈ A c

m a x
k ∈{ 1 ,...,s n }

|ξ ⊤
·j kϵ | > λ 2 n s − 1 / 2

n / 4

)

+ P r

(

m a x
j∈ A c

m a x
k ∈{ 1 ,...,s n }

∥ ξ̂ ·j k − ξ ·j k∥ 2 ∥ Γ 2 ∥ 2 > λ 2 n s − 1 / 2
n / 4

)

+ P r

(

m a x
j∈ A c

m a x
k ∈{ 1 ,...,s n }

∥ ξ̂ ·j k − ξ ·j k∥ 2 ∥ ϵ ∥ 2 > λ 2 n s − 1 / 2
n / 4

)

: = P 1 + P 2 + P 3 + P 4 .

( B. 1 5)

F r o m t h e p r o of of L e m m a 3 , w e h a v e ∥ Γ 2 ∥
2
2 = O p

(
r 2
n

)
= o p

(
n s − 1

n λ 2
2 / 1 6

)
u n d e r c o n diti o n ( C 6). A s

∑ n

i= 1 ξ 2
ij k =

n

i= 1

( ∫
x ijφ j k

) 2
≤

∑ n

i= 1

(
∥ x ij∥

2 ∥ φ j k∥
2
)

= O p (n ), w e h a v e m a x j∈ A c m a x k ∈{ 1 ,...,s n }

∑ n

i= 1 ξ 2
ij k = O p (n ). T h e n w e h a v e

a x j∈ A c m a x k ∈{ 1 ,...,s n } ∥ ξ ·j k∥ 2 ∥ Γ 2 ∥ 2 = o p

(
λ 2 n s

− 1 / 2
n / 4

)
. T h u s

P 1 = o ( 1). ( B. 1 6)

If w e c o m bi n e c o n diti o n s ( C 1), ( C 2) a n d ( C 4), w e c a n g et

P r

( ⏐
⏐
⏐
⏐
⏐

n∑

i= 1

ξ ij kϵ i

⏐
⏐
⏐
⏐
⏐

> λ 2 n s − 1 / 2
n / 4

)

= P r

( ⏐
⏐
⏐
⏐
⏐

n∑

i= 1

ξ ij kv
− 1 / 2

j k v
1 / 2

j k ϵ i

⏐
⏐
⏐
⏐
⏐

> λ 2 n s − 1 / 2
n / 4

)

≤ P r

(

C 8

⏐
⏐
⏐
⏐
⏐

n∑

i= 1

v
1 / 2

j k ϵ i

⏐
⏐
⏐
⏐
⏐

> λ 2 n s − 1 / 2
n / 4

)

≤ P r

(

C 9 k − a / 2

⏐
⏐
⏐
⏐
⏐

n∑

i= 1

ϵ i

⏐
⏐
⏐
⏐
⏐

> λ 2 n s − 1 / 2
n / 4

)

≤ 2 e x p

(

−
C 3 λ

2
2 n k a

1 6 C 2
9 s n

)

,

h e r e C 8 a n d C 9 a r e p o siti v e c o n st a nt s. T h e n,

P 2 = P r

(

m a x
j∈ A c

m a x
k ∈{ 1 ,...,s n }

⏐
⏐ξ ⊤

·j kϵ
⏐
⏐ > λ 2 n s − 1 / 2

n / 4

)

≤ 2 p n s n e x p

(

−
C 3 λ

2
2 n

1 6 C 2
9 s n

)

= 2 e x p

[

l o g (p n s n )

{

1 −
C 3 λ

2
2 n

2

} ]

→ 0

( B. 1 7)
1 6 C 9 s n l o g (p n s n )
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u

T

m

I

f

w

f

a

t

(

O

w

n d e r c o n diti o n ( C 6). M o r e o v e r, w e h a v e

m a x
j∈ A c

m a x
k ∈{ 1 ,...,s n }

n∑

i= 1

(
ξ̂ ij k − ξ ij k

) 2

= O p

(
s 2
n

)
.

h u s m a x j∈ A c m a x k ∈{ 1 ,...,s n } ∥ ξ̂ ·j k − ξ ·j k∥ 2 ∥ Γ 2 ∥ 2 = o p

(
λ 2 n s

− 1 / 2
n / 4

)
. T h e n

P 3 = o ( 1). ( B. 1 8)

N oti n g t h at ∥ ϵ ∥ 2 =
( ∑ n

i= 1 ϵ 2
i

) 1 / 2
= O p

(
n 1 / 2

)
a n d m a x j∈ A c m a x k ∈{ 1 ,...,s n } ∥ ξ̂ ·j k − ξ ·j k∥ 2 = O p (s n ), w e h a v e m a x j∈ A c

a x k ∈{ 1 ,...,s n } ∥ ξ̂ ·j k − ξ ·j k∥ 2 ∥ ϵ ∥ 2 = O p

(
s n n 1 / 2

)
= o p

(
λ 2 n s − 1 / 2 / 4

)
b y c o n diti o n ( C 6). T h e n

P 4 = P r

(

m a x
j∈ A c

m a x
k ∈{ 1 ,...,s n }

∥ ξ̂ ·j k − ξ ·j k∥ 2 ∥ ϵ ∥ 2 > λ 2 n s − 1 / 2
n / 4

)

→ 0 . ( B. 1 9)

B y ( B. 1 5)– ( B. 1 9), ( B. 1 4) f oll o w s. H e n c e η̌ o o ⊤ = ( η̌ o o ⊤
1 , 0 ⊤ )⊤ i s a l o c al mi ni mi z e r of Q o

n ( η̃ ) o v e r t h e w h ol e s p a c e R K + p n s n .

t i s e a s y t o d e d u c e t h at P r

{
b̂ o o

q n + 1 (t ) = · · · = b̂ o o
p n

(t ) = 0

}
→ 1, w h e r e b̂ o o

j (t ) =
∑ s n

k = 1 β̂ o o
j k φ̂ j k(t ) i s t h e c o r r e s p o n di n g

u n cti o n al c o effi ci e nt.

St e p 2. R e c all t h at t h e o r a cl e e sti m at o r s i s d e n ot e d b y η̌ o =
(
α̂ o ⊤ , β̌

o ⊤
) ⊤

, a n d

Q n (µ , β̃ ) = L n (µ , β̃ ) +
∑

1 ≤ i< j≤ n

P
(
|µ i − µ j|, λ1

)
+ n

p n∑

j= 1

P
(
∥ β j∥ 2 , λ2

)
,

h e r e

L n (µ , β̃ ) =
1

2

n∑

i= 1

⎧
⎨

⎩
y i −

p n∑

j= 1

s n∑

k = 1

(
ξ̂ ij kv

− 1 / 2

j k

)
β̃ j k − µ i

⎫
⎬

⎭

2

=
1

2

n∑

i= 1

⎛

⎝ y i −

p n∑

j= 1

s n∑

k = 1

ξ̂ ij kβ j k − µ i

⎞

⎠

2

.

N o w w e s h o w t h at ζ̌ =
(
µ̂ o ⊤ , β̌

o ⊤
) ⊤

wit h µ̂ o = Z α̂ o
i s a l o c al mi ni mi z e r of t h e p r o p o s e d p e n ali z e d o bj e cti v e

u n cti o n Q n (µ , β̃ ) wit h p r o b a bilit y a p p r o a c hi n g o n e. D e n ot e T ∗
i (ζ ) = ∂

{

1 / 2
∑ n

i= 1

(
y i −

∑ p n

j= 1

∑ s n

k = 1 ξ̂ ij kβ j k − µ i

) 2
} /

∂ µ i

n d T j(ζ ) = ∂

{

1 / 2
∑ n

i= 1

(
y i −

∑ p n

j= 1

∑ s n

k = 1 ξ̂ ij kβ j k − µ i

) 2
} /

∂ β j. I n s pi r e d b y t h e p r o of of T h e o r e m 1 i n J e o n et al. [1 1 ],

h e g o al i s t o s h o w t h at ζ̌ s ati sfi e s t h e f oll o wi n g c o n diti o n s wit h p r o b a bilit y t e n di n g t o o n e, p r o vi d e d t h at c o n diti o n s

C 1) -( C 7) a n d ( C A 1) -( C A 2) h ol d. T h at i s

mi n
j∈ A

∥ β̂
o

j ∥ 2 > a λ λ 2 , m a x
j∈ A c


 T j( ζ̌ )




2
≤ λ 2 n ,

∑

i∈ g 0
k

T ∗
i ( ζ̌ ) = 0 , 1 ≤ k ≤ K , ( B. 2 0)

mi n
i∈ g 0

k
,j∈ g 0

l
,1 ≤ k < l≤ K

⏐
⏐û 0

i − û 0
j

⏐
⏐ > a λ λ 1 , ( B. 2 1)

m a x
i∈ g 0

k
,1 ≤ k ≤ K

⏐
⏐T ∗

i ( ζ̌ )
⏐
⏐ /

(
|g 0

k | − 1
)

≤ λ 1 . ( B. 2 2)

O b vi o u sl y, ( B. 2 0) h ol d s b y t h e d efi niti o n of ζ̌ . N e xt, w e p r o v e ( B. 2 1). U n d e r c o n diti o n ( C 6), w e h a v e



 α̂ 0 − α 0





2
=

p (α n ) = o p (λ 1 ). A s

mi n
i∈ g 0

k
,j∈ g 0

l
,1 ≤ k < l≤ K

⏐
⏐û 0

i − û 0
j

⏐
⏐ / λ 1 ≥ mi n

1 ≤ k < l≤ K

⏐
⏐α 0

k − α 0
l

⏐
⏐ / λ 1 − 2



 α̂ 0 − α 0





2
/ λ 1 ,

e h a v e P r

(
mi n i∈ g 0

k
,j∈ g 0

l
,1 ≤ k < l≤ K

⏐
⏐û 0

i − û 0
j

⏐
⏐ ≤ a λ λ 1

)
→ 0 a s n → ∞ .

N o w w e p r o v e ( B. 2 2). It s uffi c e s t o s h o w t h at

P r

{

m a x
i∈ g 0 ,1 ≤ k ≤ K

⏐
⏐T ∗

i ( ζ̌ )
⏐
⏐ >

(
|g 0

k | − 1
)
λ 1

}

→ 0 . ( B. 2 3)
k
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F

F

u

T

u

A

b

(

T

f

c

P

e

w

o r k ∈ { 1 , . . . , K }, w e h a v e T ∗
i (ζ ) = −

(
Γ i

2 + ϵ i

)
, w h e r e Γ i

2 i s t h e it h c o m p o n e nt of Γ 2 . H e n c e, it f oll o w s t h at

P r

{

m a x
i∈ g 0

k
,1 ≤ k ≤ K

⏐
⏐T ∗

i ( ζ̌ )
⏐
⏐ >

(
|g 0

k | − 1
)
λ 1

}

≤ P r

{

m a x
i∈ g 0

k
,1 ≤ k ≤ K

⏐
⏐Γ i

2

⏐
⏐ >

(
|g 0

mi n | − 1
)
λ 1 / 2

}

+ P r

{

m a x
i∈ g 0

k
,1 ≤ k ≤ K

|ϵ i| >
(
|g 0

mi n | − 1
)
λ 1 / 2

}

.

r o m t h e p r e vi o u s d e ri v ati o n s, w e h a v e ∥ Γ 2 ∥
2
2 = O p

(
r 2
n

)
. T h e n w e h a v e

P r

{

m a x
i∈ g 0

k
,1 ≤ k ≤ K

⏐
⏐Γ i

2

⏐
⏐ >

(
|g 0

mi n | − 1
)
λ 1 / 2

}

≤ P r
{
∥ Γ 2 ∥ 2 >

(
|g 0

mi n | − 1
)
λ 1 / 2

}
→ 0 ( B. 2 4)

n d e r c o n diti o n ( C 6). B e si d e s, w e h a v e

P r
{
|ϵ i| >

(
|g 0

mi n | − 1
)
λ 1 / 2

}
≤ 2 e x p

{
− C 3 λ

2
1

(
|g 0

mi n | − 1
) 2

/ 4

}
.

h e n

P r

{

m a x
i∈ g 0

k
,1 ≤ k ≤ K

|ϵ i| >
(
|g 0

mi n | − 1
)
λ 1 / 2

}

≤ 2 n e x p

{
− C 3 λ

2
1

(
|g 0

mi n | − 1
) 2

/ 4

}

= 2 e x p

[
l o g n

{
1 − C 3 λ

2
1

(
|g 0

mi n | − 1
) 2

/ (4 l o g n )
} ]

→ 0

( B. 2 5)

n d e r c o n diti o n ( C 6). B y ( B. 2 4) a n d ( B. 2 5), ( B. 2 3) h ol d s.
T hi s c o m pl et e s t h e p r o of. □

p p e n di x C. T e c h ni c al a s s u m p ti o n s a n d t h e o r e m f o r a h o m o g e n ei t y m o d el

W h e n t h e t r u e m o d el i s h o m o g e n e o u s gi v e n a s E q. ( 1) wit h µ 1 = · · · = µ n = µ = α a n d K = 1, w e al s o r e p a r a m et e ri z e

y w riti n g β̃ j k = v
1 / 2

j k β j k a n d i nt r o d u c e t h e f oll o wi n g c o n diti o n s.

( C 8) T h e s m o ot hi n g p a r a m et e r s s n a n d q n s ati sf y q 2
n s a + 4

n / n → 0, s 2 a + 2
n / n → 0, s 2 b − 1

n / n → ∞ .

( C 9) T u ni n g p a r a m et e r s λ 1 a n d λ 2 s ati sf y: (i) λ 1 = o ( 1),
(
q n s n + q 2

n

)
n − 1 = o

(
λ 2

1

)
; (ii) λ 2 = o ( 1), mi n j∈ A ∥ β 0

j ∥ 2 / λ 2 → ∞ ,

m a x
{
s a
n

(
q n s n + q 2

n

)
n − 1 , s 3

n n − 1 , s n l o g (p n s n ) n − 1
}

= o
(
λ 2

2

)
.

C 1 0) D efi n e U ∗ =

(
1  0

0  E( Ñ i Ñ
⊤

i )

)

, w h e r e Ñ i =
(
ξ i1 1 v

− 1 / 2

1 1 , . . . , ξi qn s n v
− 1 / 2
q n s n

) ⊤

i s (q n s n ) × 1. 0 < C ∗
4 ≤ λ mi n (U ∗ ) ≤

λ m a x (U ∗ ) ≤ C ∗
5 < ∞ .

h e o r e m 2. U n d e r c o n diti o n s ( C 1) -( C 4), ( C 8) -( C 1 0) a n d ( C A 1) –( C A 2), t h e r e e xi st s a l o c al mi ni mi z e r

(
µ̂ ⊤ , β̌

⊤
) ⊤

of o bj e cti v e

u n cti o n Qn (µ , β̃ ) s ati sf yi n g

(i) P r
(
µ̂ i = ˆµ j, ∀ i, j

)
→ 1 , i. e., P r

(
K̂ = 1

)
→ 1 ,

(ii) P r

{
b̂ q n + 1 (t ) = · · · = b̂ p n (t ) = 0

}
→ 1 ,

(iii)






(
µ̂ ⊤ , β̌

⊤
) ⊤

−
(
µ 0 ⊤ , β̃

0 ⊤
) ⊤






2

= O p

{ (
q n s n + q 2

n

) 1 / 2
n − 1 / 2

}
.

T h e o r e m 2 s h o w s t h at h o m o g e n eit y a n d s p a r sit y c a n b e r e c o v e r e d wit h a hi g h p r o b a bilit y. Si mil a r t o T h e o r e m 1 , w e

a n c o n cl u d e t h at



 b̂ j(t ) − b j(t )





2

= O p

{
s a
n

(
q n s n + q 2

n

)
n − 1

}
. N e xt, w e gi v e a b ri ef s k et c h of t h e p r o of of T h e o r e m 2 .

r o of of T h e o r e m 2 . W h e n t h e t r u e s u b g r o u p m e m b e r s hi p s of s a m pl e s a r e k n o w n, t h at i s, Z = 1 n i s k n o w n, t h e o r a cl e

sti m at o r s f o r µ a n d β̃ a r e:

(
µ̂ o , β̌

o
)

= a r g mi n
µ ∈ M , β̃ ∈ R p n s n

L n (µ , β̃ ) + n

p n∑

j= 1

P
(
∥ β j∥ 2 , λ2

)
,

h e r e

L n (µ , β̃ ) =
1

2

n∑
⎧
⎨

⎩
y i −

p n∑ s n∑ (
ξ̂ ij kv

− 1 / 2

j k

)
β̃ j k − µ i

⎫
⎬

⎭

2

,

i= 1 j= 1 k = 1
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a

i

(

T

R

n d M i s t h e s u b s p a c e of R n d efi n e d a s

M =
{
µ ∈ R n : µ 1 = · · · = µ n

}
.

C o r r e s p o n di n gl y, t h e o r a cl e e sti m at o r s f o r t h e c o m m o n i nt e r c e pt s α a n d β̃ a r e

(
α̂ o , β̌

o
)

= a r g mi n
α ∈ R , β̃ ∈ R p n s n

L n (1 n α, β̃ ) + n

p n∑

j= 1

P
(
∥ β j∥ 2 , λ2

)
,

wit h µ̂ o = 1 n α̂
o . D e n ot e η̃ =

(
α, β̃

⊤
) ⊤

a n d Q o
n ( η̃ ) = L n (1 n α, β̃ ) + n

∑ p n

j= 1 P
(
∥ β j∥ 2 , λ2

)
.

T h e p r o of i n cl u d e s t w o st e p s. I n St e p 1, w e e st a bli s h p r o p e rti e s of t h e o r a cl e e sti m at o r s η̌ o =
(
α̂ o , β̌

o ⊤
) ⊤

. T h e p r o of

f oll o w s t h e s a m e a r g u m e nt s a s t h e p r o of of T h e o r e m 1 b y l etti n g Z = 1 n a n d |g 0
mi n | = n . T h u s w e o mit it. I n St e p 2, w e

s h o w t h at ζ̌ =
(
µ̂ o ⊤ , β̌

o ⊤
) ⊤

wit h µ̂ o = 1 n α̂
o i s a l o c al mi ni mi z e r of t h e p r o p o s e d p e n ali z e d o bj e cti v e f u n cti o n Q n (µ , β̃ )

wit h p r o b a bilit y a p p r o a c hi n g o n e. It f oll o w s si mil a r p r o c e d u r e s a s t h e p r o of of T h e o r e m 1 wit h d et ail s b el o w. T h e g o al

s t o s h o w t h at ζ̌ s ati sfi e s t h e f oll o wi n g a d diti o n al c o n diti o n s wit h p r o b a bilit y t e n di n g t o 1, u n d e r c o n diti o n s ( C 1) -( C 4),

C 8) -( C 1 0) a n d ( C A 1) -( C A 2). W e n ot e t h at:

mi n
j∈ A

∥ β̂
o

j ∥ 2 > a λ λ 2 , m a x
j∈ A c


 T j( ζ̌ )




2
≤ λ 2 n ,

n∑

i= 1

T ∗
i ( ζ̌ ) = 0 , m a x

i

⏐
⏐T ∗

i ( ζ̌ )
⏐
⏐ / (n − 1) ≤ λ 1 .

h e p r o of f oll o w s t h e s a m e a r g u m e nt s a s t h e p r o of of T h e o r e m 1 . W e o mit d et ail s h e r e. □
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