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1. Introduction

Functional linear regression is a popular technique when predictors are functions and responses are scalars. It has been
thoroughly studied and extensively applied. A non-exhaustive list of recent works include [1,4,14,23,34,35].

Multiple functional data arises from a collection of simultaneous recordings of several time courses for many subjects
or units. There is a demand for functional variable selection in applications. Zhu et al. [39] proposed a Bayesian approach
for selecting and estimating important functional predictors in a classification setting. Lian [15] conducted regression
simultaneous estimation and variable selection by using the group smoothly clipped absolute deviation penalty. Fan
et al. [5] proposed an additive technique for efficiently performing high-dimensional functional regression. Kong et al. [12]
proposed partially functional linear models to characterize the relationship between a scalar response and both functional
and scalar covariates. The methods mentioned above rely on a homogeneity assumption.

Our motivating example is a thin-film transistor liquid crystal display (TFT-LCD) dataset. The manufacturing process
of TFT-LCD is comprised of hundreds of working procedures. It is challenging to conduct statistical analysis based on that
large amount of raw data to get useful information for supporting operational decisions [8,25]. What we are interested
in is which predictors may affect the thickness of the product. Fig. 1 shows the histogram of thickness after adjusting
for the functional covariates’ effects without subgroup analysis. It is easy to see that the data comes from a mixture of
populations, and some unobserved latent factors may cause heterogeneity. It is not suitable to fit a standard regression
model with a common intercept. This has motivated us to develop a new statistical method for simultaneous estimation
and subgroup identification for a heterogeneous population.
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Fig. 1. Data analysis of TFT-LCD dataset: density plot of the response variable after adjusting for the covariates’ effects by using the gmcp method.
The dataset is collected from 149 subjects with 56 functional variables and a scalar response.

Subgroup analysis for scalar data has been well studied in the literature, Finite mixture modeling is one of the popular
methods for analyzing data from a heterogeneous population [24,31]. Apart from the approaches mentioned above, Ma
and Huang [20] and Zhang et al. [36] assumed that the subgroup structure is defined by group-specific intercepts. Ma
et al. [21] considered a heterogeneous regression model with subject-dependent coefficients. Liu and Lin [17] proposed
a heterogeneous additive partially linear model, which contains both homogeneous linear components and subject-
dependent additive components. Wang et al. [30] considered a spatial automatic subgroup analysis problem for data with
repeated measurements. Yan et al. [32] developed a censored linear regression model with heterogeneous treatment
effects. Lu et al. [18] proposed a weighted penalized median regression approach for longitudinal data with dropouts.
Hu et al. [9] considered subgroup analysis under a heterogeneous Cox model. Liu et al. [16] proposed a fused effects
model for data with repeated measurements. Some other researchers [19,28,38] proposed methods to cluster subjects
into subgroups based on longitudinal trajectories. Although the literature on subgroup analysis of scalar and longitudinal
data is extensive, little has been done on functional data, especially under high-dimensional functional regression.

In this paper, we consider subgroup analysis for high-dimensional functional regression. This study may advance from
the existing ones along with the following aspects. First, the proposed method can automatically separate observations
into subgroups. A related model has been considered in Wang et al. [29], which proposed a functional partially linear
regression model and identified latent subgroups of subjects by an algorithm sharing some similar spirit with K-means
clustering, Our work uses the fusion penalty approach for estimation and automatically separating observations into
subgroups. Besides, we can accommodate high-dimensional predictors.

Second, the proposed method can perform variable selection and identify relevant predictors along with estimating
high-dimensional functional models. Under mild conditions, we establish the oracle property of the proposed estimator
if the minimal sample size of subgroup satisfies [g2. | > (K + gaSa + g2)/?n'/2, where K is the number of subgroups, g,
is the number of important predictors, s, is the common truncation parameter, and n is the sample size. The number of
functional predictors pn, gn, and s, are all allowed to go to infinity. Extending theoretical results to diverging functional
predictors is not trivial. It is different from Kong et al. [12], which assumed that the number of functional predictors is
fixed. Besides, the existing study did not consider heterogeneity.

Third, we show that the true subgroup structure of samples can be recovered with a high probability. The number
of subgroups is allowed to increase as the sample size increases. The number of subgroups K, the number of important
predictors g, the common truncation parameter s,, and the sample size n satisfy K(K + gnsn + ¢2)/* = o(n'/?).

The later sections are organized as follows. The model setting and methodology are described in Section 2, along
with the proposed computational algorithm. In Section 3, we state technical assumptions and establish the asymptotic
properties of the proposed estimator, Section 4 presents simulation studies under various scenarios to assess performance
of the proposed method. We apply the proposed method to the TFT-LCD dataset in Section 5. Section 6 concludes with
discussions, Additional technical results are given in Appendix.
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2. Subgroup analysis for high-dimensional functional regression
2.1. Model

Suppose that the data consists of {x;;(t), ..., Xy, (), yi}, i €{1,...,n}.y; is a scalar continuous response, {x;(t), ...,
Xijp, (t)} are p, functional predictors, and x;(t) is a real-valued, continuous, square-integrable, random curve on the compact
interval Tj. p, is allowed to go to infinity. Without loss of generality, we assume that functional predictors are centred
and T;j =T = [0, 1] forj € {1, ..., pa}.

In this paper, we are concerned with the following functional linear model with multiple functional observations:

Pn
v+ Y [xlObod +a i€, (1)
=1

where p;’s are unknown subject-specific intercepts, bj(t)'s are square-integrable functional coefficients, and s are
random scalar errors independent of the predictors. We assume that the first g, functional predictors are important while
the rest are not, ie., bj(t) #0forje {1,...,q,} and b(t) =0forje {g, + 1,..., pa}.

Assume {y1, ..., yn} are from K subgroups. Here heterogeneity is modeled through p;’s. In other words, if p; = p;, the
ith observation and the jth observation are from the same subgroup. Let G = {g, ..., g} be the partition of {1, ..., n}.
Then we have p; = o for all i € g, where o is the common value for u;’s from subgroup gi. We also allow the number
of subgroups K to go to infinity.

2.2. Estimation

Because functional data is intrinsically infinite-dimensional, dimension reduction is critical for modeling and analysis.
Functional principal component analysis (FPCA) is an important dimension reduction tool, and facilitates the conversion
of inherently infinite-dimensional functional data to a finite-dimensional vector of random scores.

Let Kj(s, t) = Cov{x(s), x;(t)}. By Mercer’s theorem, we have the spectral expansion:

Ki(s,t) = Z Uik Pik(S)Pir (L),
=1

where vj; > v > --- > 0 are the eigenvalues of the linear operator associated with Kj(s, t) with corresponding
eigenfunctions {¢y}. Then the Karhunen-Loéve expansion of the random function x;(t) in terms of the orthonormal basis
{oix} is xi(t) = Zfi] &Eipi(t), where &g's are principal component scores satisfying E (&,-jk) =0,E ( Uzk) = vj. Making use
of the expansion bj(t) = Y i, Bjxdjk(t). we can rewrite Eq. (1) as:

Pn 00

yi=wi+ )Y Bk +e, iefl,....n).

j=1 k=1

In practice we do not observe the entire trajectories x;’s but have only intermittent noisy measurements. When
the repeated observations are sufficiently dense for each subject, the estimates [i:,-j ief{l,...,nlje1,..., d}} can
be used to construct the covariance and eigenvalues/basis. Then, the empirical counterpart of Kj(s,t) is Rj(s, t) =
> ees Ddjr(s)d(t). where Ki(s, t) = 1/n 31, X;i(s)X;i(t). Then, we have &g = [, X;i(t)pu(t)dr.

Let s; be the truncation parameter for the jth function, which is allowed to vary with the sample size. Denote
B; = (Bj,---» ,Sj-sj)T, B=(B],..., ﬁ;)T and g = (i1,..., u,)". To further select functional predictors and identify
subgroups simultaneously, we minimize the following objective function:

2
1 n P S . Pn
Qa1 B) = EZ Vi—wi— Y Y ExbBi| + D P(lwi—pil,2) +n ) P(11Bjll2 G2) - (2)
i1 j=1 k=1 1<i<j<n =1

The first term in (2) is the truncated form of the standard squared loss. The second term is the sum of concave penalty
functions applied to the pairwise differences of the intercepts, which is used to divide the observations into subgroups.
A1 = 0 is the penalty parameter. If y; — p; is shrunk to zero, then subjects i and j are from the same subgroup.

The last term is used to identify the relevant predictors. A penalty that can produce unbiased estimation is more
appealing. We use MCP in this paper, where P(8, 1) = A f0'9' {1 —x/(ra, )}, dx, z, stands for the positive partofz, » > 0
is the penalty parameter, g, is an additional tuning parameter, We fix a; = 3 as suggested in the literature [17,20,33,37].
In (2), || - ||2 is the Euclidean norm, 4, > 0 is the penalty parameter, and ¢; = ,/5;'s are used to adjust for group sizes of
parameters. With the estimators ﬁj's, we can get Bj(t) = Z;’:l ,E'J’jkq?)jk[t).
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2.3. Computational algorithm

To implement the proposed method, we develop an alternating directiTon method of multipliers (ADMM) algorithm.,
By introducing a new set of parameters n;; = p; — pj and 5 = {q;j, i 4}'] , the minimization of (2) is equivalent to the
constrained optimization problem:

n P

Uh,kz{.u,ﬁ,n):%Z yi—uf—EZsE;jkﬁjk + Y P(Inl, xl)+nZP(uﬁJn2,qxz)

i=1 Jj=1 k=1 1=i<j=<n j=1
subject to
wi—pi—nj=0, 1<i<j<n.

Then the augmented Lagrangian is

Lo(pt, B, @) = Up oy (i, B+ Y i (i — mj)+ 3 (wi—ni—m), (3)

1=i<j=<n ]<I-\:J<H

where the dual parameters w = {wfj-, i< j}T are the Lagrangian multipliers, and p is a penalty parameter.
The ADMM algorithm minimizes the augmented Lagrangian by updating one block of parameters at a time, which
consists of ,u B- mmnmnzatlon p-minimization, and a dual parameter updating routine as follows.

Given (u®, B0, 4@, w0) from the Ith step, the update of g+ is:
1 1 o 2 4
B = argmin % | yi— ) =7 b | +n Y P (1Bl G2) - (4)
8 0 3PE =1 k=1 =1

This is a standard group MCP problem. For more details, we refer to Huang et al. [10]. For p(+1),

p*Y = argminL, (. B, 9, @ |, 40, w1) .
peRM
Then we have

-1 2 _
W = (pATA+1) " [y — 880+ pAT(0 - o7 w) (5)

- - - T . - AT
where A = [(e; —¢)), i{j]T & = (’gm, .. :;-‘,-pnsn) & = (E,, ..-,E") ,and e; is an n x 1 vector that has its ith
component equal to 1 and all of its other components equal to 0.
Given (pH1), gV 30 M), the update of g is:

2
ngﬂ —argm|n| (5{i+1} mj.) +P(|q;j|,l1)]

]'}uE]R
with 8 () = B _ ,uj(m) + p‘1wﬂ[-”. Then we have
sT(of+".2/0) (1+1)
g+1) — ) e if |5 | = }’11, (6)
D if 5571 > yAs
where ST(t, A) = sign(t) (|]t] — JL)+ is the soft thresholding operator.
Given (g, g1y m0), the updates of dual parameters are:
I+1 I I+1 I+1 1
ol = o +p (W — " —afV), 1<i<jsp. (7)
Based on the above results, the algorithm consists of the following steps: .
Step 1: Set the initial estimate B be the solution of a group Lasso problem. Let ,u{n) = Y¥i— f; Y s Eﬁkﬁj{n)-

7?5;0] =u® - ,uJ{-"}. and w® = 0.

Step 2: At iteration [ + 1, compute (u®, g 0+ g+1) by (4)-(7).
Step 3: If the stopping rule is met, terminate the algorithm. Then,

(i, B, 7, @) = (0, g1, 400, o),
Otherwise, go to Step 2.
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Remark 1. Following Ma and Huang [20], we stop the algorithm when || Ap®") — y™1||_ < & for a small &. Based on
7}, we can get the subgroup structures. Specifically, we put y; and y; in the same subgroup if #j; = 0. The final intercepts
of the subgroups are calculated as the mean of intercepts among each subgroup. The computer code is publicly available
at htips://github.com/ruiqwy/fsubgroup.

3. Theoretical properties

In this section, we provide the technical assumptions and establish the asymptotic properties of the proposed estimator.
We will establish that the true subgroup structure of the samples and sparsity can be recovered. There are two types of
approximations involved in the objective function (2): the estimator & of the unknown covariate & and the truncation
of regression coefficients. Due to the differences between functional and scalar predictors, extending theoretical results
to multiple functional regression with a diverging truncation is not trivial, especially when the number of functional
predictors is permitted to diverge with the sample size. Additionally, we establish the asymptotic properties of the
proposed estimator under heterogeneity, which is more challenging than under homogeneity.

Denote the minimum and maximum eigenvalues of a symmetric matrix A by Amin(A) and Amax(A). Let (x°, 8°) be the
true regression parameters. Suppose that p° has K distinct elements «f, 1 < k < K. Define «® = (a},...,f). and
G*=1{g? ....glt withg) = {i: u) = &}. Z = {zy} is a n x K matrix with zz = 1if i € g, and 0 otherwise. Then we
have u° = Za®. Denote the cardinality of g¢ by |g?|, and define [g2.,| = min;<x<x |2 |. 18%.x| = Max;<<x |7 . Recall that
we assume the first g, functional predictors are important while the rest are not. Denote A = {1, ..., g,} as the index set
of the important variables, and A° = {g, + 1, ..., py}. In fact, for different predictors, we may choose different truncation
points to approximate the infinite sums. In this section, to simplify notation, we use a common truncation parameter sy,
which is a function of sample size n. To facilitate technical proofs, we assume the following regularity conditions.

(C1) Forj e {1,...,py}. for any Gy > 0, there exists ¢ > 0 such that
sup [E {Ixi(£)|®}] < 0o, sup (E [{|s— t]72x,(s) —xj(t)|}c‘):|) < 00,
tel s,teT

xj(-) is twice continuously differentiable on T with probability one, and [, E {x}’(t)}4 dt < oo, where x{(-) denotes
the second derivative of x;(-). For each integer r > 1, vj;"E ( Ji") is bounded uniformly in k and j.
(C2) There exist positive constants C; and a > 1 such that C;‘k—" < v < Gk and v — vjrs1 = G k%1, where {vix}

are the eigenvalues of the covariance function forj € {1,...,py} and k = 1.
(C3) 1Bpl < Gk fork>1,b>2,j€{1,...,pa}
(C4) The noise vector € = (&1, ..., ;)" has sub-Gaussian tails such that Pr(jJa"¢| > |a]l;x) < 2exp (—Csx?) for any

vectora € R" and x > 0, where 0 < (3 < 0Q.

(C5) The smoothing parameters s, and g satisfy |g2, | 's&/>*" (qnsni'll”2 + Klg,?'mlm) — 0,52%2/n — 0,52~ /n — o0.
(C6) The tuning parameters A; and A, satisfy: (i) A1 = 0(1), min <<k | — 2| /A1 — 00, (K + GuSn + ¢2) i'1|gr'iﬂn|_2 =
. i 2 5 _ _

0 (A2); (ii) A2 = o(1), minjes [|B}ll2/A2 — 00, max {nSﬁ (K + quSn + G2) 1805l > 520" Sy log(pasy)n ™' | = 0 (33).
TZ/n 0
-~ ~T
0 E (N,-N,.

Z
(C7) Define U = (
constant 0 < C4 < 1 and some positive constant Cs, C4|gr[|’ﬂn|jn < Amin(U) < Gs.

e —1/2 -1/2 T
) , Where N; = ({-‘,-"v" s+ > Eignsy Vgnsn ) is a (qySp) x 1 vector. For some

Remark 2. Condition (C1) is a common condition in functional data analysis. We impose conditions (C2)-(C3) on the decay
rates of the eigenvalues {v;} and regression coefficients {85}, which are similar to those adopted by [6,12,13,15,22]. The
second part of condition (C2) requires that the spacings between the eigenvalues are not too small. Condition (C3) is
needed only to control the tail behavior for large k. Condition (C4) assumes that the noise vector has sub-Gaussian tails.
Conditions (C5)-(C7) are required for the consistency of the estimators and model selection. A main contribution is o
allow the number of functional predictors to increase as the sample size increases. This distinguishes our method from
those with a fixed number of functional predictors (e.g.. Kong et al. [ 12]). The number of subgroups is also allowed to

~ ~T
increase as the sample size increases. In the literature, it is commonly assumed that the smallest eigenvalue of E | NiN;
~ T
is bounded by some constant C. In our model setup, Z'Z = diag (|g$|, ey |g}(’|). By assuming Amin {E (N,-N,- ) } =C,we
have Apmin(U) = min (|g|§'mn|jn, C). Hence we assume Amin(U) > C4|g2; |/n for some constant 0 < C; < 1.
To facilitate theoretical analysis, we reparameterize by writing ,éj-k = u}f 2 Bik. so that the functional principal component

scores serving as predictor variables are on a common scale of variability. This reparameterization is used only for technical
derivations and does not appear in the estimation procedure, Let

Pn
Qe B) =L, B)+ ) P(Imi—mil.21) +n ) P (IBjl2. 22)

1=<i<j<n Jj=1
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where

La(p, B) Z Yi— ZZ(gUkUJk )Ejk_;uﬂi

Jj=1 k=1

2

Theorem 1. Under conditions (C1)-((7) and (CA1)-(CA2) in the Appendix, if K > 2, [g2.,] > (K + QnSn + qﬁ)”znv{ there
exists a local minimizer (ﬁT, ,éT)T of objective function Qu(p, B) satisfying

() Pr(fu =y, vi,jegd 1<k gk) > 1ie, Pr(G =0 > 1,

(ii) Pr {bg,+1(¢) = - -- = by, (t) = 0} — 1,

- T ~ T
Gii) | (7 8") - (no. B"")
Remark 3. Since |g2;,| < n/K, by condition |g3;,| > (K + gasa + q7) V2n12 K, g, and s, satisfy K (K + Gnsn + q7) 12
—0 (HUZ)

Theorem 1 shows that the true subgroup structure of the samples and sparsity can be recovered with a high probability.
The estimation consnstency result is expressed in terms of 8, not the original parameter . By Theorem 1, we can conclude

= Up {(K + QHSH + qﬁ) 1J'lzlgmm| }
2

that Hbj{t) — H =0 {s" (K + QnSn +q") n|gl. |~ } Specifically, if the number of functional predictors p;, is fixed and

the number of subgroups is one (a homogeneous data), we can get

bj(e) — H = 0, (s2*1/n). Kong et al. [12] get the
result O [s“ (Gn + Sn) ,’n} under the homogeneity assumption, where g, is the number of significant scalar covariates. If
there is no scalar covariate in the model, it reduces to 0, (s"“ ,’n) the same as our result.

Remark 4. When the true model is homogeneous given as Eq. (1) with g; = --- = puy = p = @ and K = 1, the
homogeneity and sparsity can be recovered with a high probability. The technical assumptions and theorem are given
in Appendix.

4. Simulation analysis

In this section, we compare performance of sgmcp (the proposed estimator) with three alternatives: gmcp (standard
group MCP with penalty for functional coefficients, which assumes homogeneity and has no penalty for intercepts), Oracle
(under which the subgroup structure and index of significant predictors are known) and Cluster (which clusters samples
based on the residuals obtained from K-means first, where the number of clusters is also chosen by BIC, and then refits
the model). We consider the following function linear model:

Pn 1
yi=m+ ) [ xObed+e, el
=170

The functional data is generated from the process x;(t) = Z:=1 &ijedi(t), where &g ~ N(0,k™2), ¢1(t) = 1, ¢o(t) =
V2 cos(rt), and ¢s(t) = +/2 cos(2nt). For bj(t). in terms of expansion based on {¢};_,, we take Bi=(1,11, 1.2)" for
Jj=1,...,qn and g; =(0,0, 0)" otherwise, We set ¢ ~ N(0, 0.1) and n = 100.

To provide a good approximation to the infinite sum, we use s; components, which explain 95% variation in x;(t). For
tuning parameters selection, we use a modified Bayesian information criterion (BIC) [2] defined as:

2
n

P 5
BIC(A1, 22) =log { )~ | yi— /i — ) D EixB /ﬂ +Cﬂlgn (K+q#),

i=1 j=1 k=1

where G, = clog {log (n+ " 5;)}. and ¢* is the number of non-zero parameters. We set ¢ = 5.

We comprehensively consider the following cases. In the first case, we generate data from a homogeneity model and
let u; = Oforalli € {1,...,n}. In the second case, we generate y; from two different values « and —« with equal
probabilities. We consider multiple values of «. As for the last case, the data forms three subgroups.

Performance of the estimates is measured by the following metrics. (1) Mean squared errors of p;: MSE =

1/2

(||,u ,u.||2 ,’n) (2) Integrated squared error of coefficient functions: ISE = IZJ , Hb{t} - J{t]" ] . (3) Sensitivity

and specificity are used to evaluate feature selection. Sensitivity: the proportion of true positives being correctly identified.
6



X Zhang Q. Zhang, 5. Ma et al. Journal of Multivariate Analysis 192 (2022) 105100

q.=2 q.=4 q.=6
-r
o
a s 7 = i
L]
- - B - H
I B
] ) I 1
‘3 - 1 ] H 1 -
] =)
- i 1 . ] o -
= _ ' ' F '
- - 1 = wud 1 ) I 1
i ' ' ' ] ' F i
) ] 1 ] : : I :
' ' ' ' - '
& i o
: i i i = i i ! : o
o | [ i i i ] ! - !
) ] 1 ]
= i i i i ] ] - 1
8 A 8 I B 8
' ' ' '
= 1 I 1 i = g 1 z W J
' ' ' ' -
1 ] 1 ]
o L) ] ]
o
o ] o
g i T o --— ==
(=] = wr 1 1 1
- ] - ] 1 ]
= o
] ] [ ! 1 H i
' ' '
1 i i !
1 I I 1 1 ' i
1 ] ] ] ) 1
Qd e e — oJ 4 - 24 4+ = —
= = =]
T T T T T T T T T T T T
Oracle gmcp Cluster sgmcp Oracle gmcp Cluster sgmecp Oracle gmcp Cluster sgmcp

Fig. 2. MSE under Case 1 for Oracle, gmcp, Cluster, and sgmcp with w; =0 for all i e {1,...,n}, p, = 100, g, = 2, 4 and 6. The data is generated
from a homogeneous model and the true number of subgroup is 1. The boxplots are based on 100 Monte Carlo replicates.

Specificity: the proportion of true negatives being correctly identified. (4) The number of identified subgroups K. (5) The
rand index of identified subgroups, RI, which is defined as

_ TP+ TN
T TP+FP+FN+TN’

Here, TP (true positive), TN (true negative), FN (false negative) and FP (false positive) are the number of pairs of subjects
in different subgroups that are assigned to different subgroups, the number of pairs from the same subgroup that are
assigned to the same subgroup, the number of pairs from the same subgroup that are assigned to different subgroups,
and the number of pairs from different subgroups that are assigned to the same subgroup, respectively. A higher value of
Rl indicates a better agreement between the identified subgroups and the true subgroup allocation. Below are the detailed
settings of three cases:

Case 1: y;=0foralli e {1,...,n}, p = 100, g, = 2,4 and 6, meaning that the data is generated from a homogeneous
model and the true number of subgroup is 1;

Case 2: Pr{p; = o) = Pr(p; = —«) = 1/2, « = 0.3,0.5 and 0.7, p, = 10,50 and 100, g, = 2, meaning that the true
number of subgroups is 2;

Case 3: Pr(p; = 1) = Pr{p; = 0) = Pr(p; = —1) = 1/3, p, = 10, 50 and 100, g, = 1 and 2, meaning that the true number
of subgroups is 3.

The simulation results are summarized in Tables 1-2 and Figs. 2-3 based on 100 replicates for each scenario. For all
cases, specificity is 1.000(0.000), and we omit it in the table. From Figs. 2-3, we see that the performances of gmcp, sgmcp
and Oracle are similar when the data is generated from a homogeneous model. The mean values of K obtained using sgmcp
are 1(g, = 2), 1(g, = 4), and 1.020 (g, = 6), respectively. The mean values of RI obtained using sgmcp are 1 (g, = 2),
1(gn = 4), and 0.995 (g, = 6), respectively. We conclude that sgmcp can recover the homogeneous model. Cluster fails
to identify the homogeneous model. The mean values of K obtained using Cluster are 4.780 (g, = 2), 5.130 (g, = 4), and
4.860 (g, = 6), respectively. The mean value of RI obtained using Cluster are 0.251 (g, = 2), 0.231 (q, = 4), and 0.244
(gn = 6), respectively. From Table 1, we can see that for a large value of «, it is easier to identify the two subgroups with
sgmcp. The proposed method leads to a more accurate subgroup structure than Cluster in terms of RI and K. Both methods
get worse when p, increases. When the value of « is large, gmcp and Cluster fail to select positive functional predictors.
From Table 2, we can see that the proposed method performs better than gmcp and Cluster, and both methods get worse
when p, or g, increases. To demonstrate performance of the proposed method in terms of subgroup identification, the
results of additional simulation comparing Cases 2-3 are provided in Tables 3-4, From Table 3, we can see that as the
separation parameter « increases, the mean of estimated number of subgroups becomes closer to the true value, and RI
becomes closer to 1. From Table 4, we can see that as the sample size n increases, the mean of estimated number of
subgroups becomes closer to the true value, and RI becomes closer to 1. We conclude that subgroup identification of the
proposed method can be improved with the separation parameter & or sample size n increasing.
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Fig. 3. ISE under Case 1 for Oracle, gmcp, Cluster, and sgmcp with p; =0 for all i € {1,...,n}, p, = 100, g, = 2,4 and 6. The data is generated
from a homogeneous model and the true number of subgroup is 1. The boxplots are based on 100 Monte Carlo replicates.

Table 1
Simulation results under Case 2 with Pr(p; = @) = Pr{p; = —w)=1/2, « = 0.3,0.5 and 0.7, p, = 10, 50 and 100, g, = 2 based on 100 Monte Carlo
replicates. The true number of subgroups is 2.

o DPn method K(mean) K(median) Rl MSE ISE Sensitivity
0.3 10 Oracle - - - 0.136(0.109) 0.082(0.011) -
gmcp - - - 0.341(0.056) 0.183(0.053) 1(0)
Cluster 4.530(1.389) 4(1.483) 0.754(0.098) 0.179(0.090) 0.142(0.047) 1(0)
sgmcp 2.930(1.559) 2(0) 0.901(0.100) 0.181(0.098) 0.130(0.068) 1(0)
50 Oracle - - - 0.139(0.011) 0.082(0.011) -
gmcp - - - 0.342(0.057) 0.183(0.053) 1(0)
Cluster 4.070(1.350) 4(1.483) 0.782(0.111) 0.178(0.093) 0.136(0.046) 1(0)
sgmcp 3.080(1.482) 2.5(0.741) 0.854(0.120) 0.204(0.100) 0.163(0.089) 1(0)
100 Oracle - - - 0.136(0.109) 0.082(0.011) -
gmcp - - - 0.341(0.056) 0.183(0.053) 1(0)
Cluster 3750(1.321) 4(1.483) 0.806(0.118) 0.173(0.093) 0.130(0.046) 1(0)
sgmcp 3.120(1.458) 2.5(0.741) 0.840(0.117) 0.209(0.098) 0.172(0.087) 1(0)
0.5 10 Oracle - - - 0.136(0.109) 0.082(0.011) -
gmcp - - - 0.526(0.039) 0.282(0.089) 1(0)
Cluster 2.730(1.325) 2(0) 0.928(0.117) 0.157(0.102) 0.111(0.057) 1(0)
sgmcp 2.270(0.649) 2(0) 0.966(0.073) 0.172(0.117) 0.118(0.080) 1(0)
50 Oracle - - - 0.136(0.109) 0.082(0.011) -
gmcp - - - 0.526(0.039) 0.478(0.670) 0.920(0.273)
Cluster 2710(1.233) 2(0) 0.907(0.156) 0.258(0.377) 0.316(0.714) 0.920(0.273)
sgmcp 2.590(1.006) 2(0) 0.930(0.092) 0.207(0.124) 0.169(0.136) 1(0)
100 Oracle - - - 0.136(0.109) 0.082(0.011) -
gmcp - - - 0.526(0.039) 1.188(1.182) 0.630(0.485)
Cluster 3.270(1.588) 2(0) 0.799(0.232) 0.663(0.686) 1.068(1.273) 0.630(0.485)
sgmcp 2.620(0.951) 2(0) 0.913(0.097) 0.220(0.126) 0.193(0.144) 1(0)
07 10 Oracle - - - 0.136(0.109) 0.082(0.011) -
gmcp - - - 0.717(0.030) 2.514(0.659) 0.090(0.288)
Cluster 5.050(1.366) 5(1.483) 0.562(0.136) 1.514(0.444) 2.484(0.753) 0.090(0.288)
sgmcp 2.090(0.494) 2(0) 0.986(0.052) 0.158(0.120) 0.110(0.107) 1(0)
50 Oracle - - - 0.143(0.115) 0.083(0.011) -
gmcp - - - 0.719(0.033) 2.720(0.000) 0(0)
Cluster 5.040(0.953) 5(1.483) 0.521(0.013) 1.657(0.118) 2.720(0.000) 0(0)
sgmcp 2.700(1.474) 2(0) 0.944(0.100) 0.202(0.140) 0.176(0.179) 1(0)
100 Oracle - - - 0.139(0.110) 0.082(0.011) -
gmcp - - - 0.717(0.030) 2.720(0.000) 0(0)
Cluster 4.800(0.910) 5(1.483) 0.521(0.013) 1.652(0.121) 2.720(0.000) 0(0)
sgmcp 2.790(1.328) 2(0) 0.928(0.108) 0.229(0.146) 0.217(0.212) 1(0)
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Table 2
Simulation results under Case 3 with Pr{p; = 1) = Pr{p; = 0) = Pr{w; = —1) = 1/3, p, = 10,50 and 100, g, = 1 and 2 based on 100 Monte Carlo
replicates. The true number of subgroups is 3.

Gn Dn method K{mean) K(median) Rl MSE ISE Sensitivity
1 10 Oracle - - - 0.110(0.076) 0.057(0.010) -
gmep - - - 0.823(0.030) 0.842(0.756) 0.680(0.469)
Cluster 4.100(1.403) 3(0) 0.859(0.165) 0.468(0.460) 0.700(0.852) 0.680(0.469)
sgmcp 3.640(1.124) 3(0) 0.942(0.075) 0.206(0.117) 0.176(0.170) 1(0)
50 Oracle - - - 0.110(0.076) 0.057(0.010) -
gmep - - - 0.823(0.030) 1.104(0.799) 0.520(0.502)
Cluster 4.220(1.353) 4(1.483) 0.805(0.175) 0.634(0.495) 0.987(0.908) 0.520(0.502)
sgmcp 3.710(1.266) 3(0) 0.906(0.094) 0.255(0.143) 0.232(0.194) 1(0)
100 Oracle - - - 0.110(0.076) 0.057(0.010) -
gmep - - - 0.823(0.030) 1.231(0.791) 0.440(0.499)
Cluster 4.150(1.242) 4(1.483) 0.775(0.176) 0.717(0.489) 1.133(0.900) 0.440(0.499)
sgmcp 3.730(1.221) 3(0) 0.886(0.110) 0.279(0.154) 0.267(0.206) 1(0)
2 10 Oracle - - - 0.137(0.108) 0.082(0.012) -
gmep - - - 0831(0 035) 2.698(0.217) 0.010(0.100)
Cluster 5.350(1.009) 5(1.483) 0.616(0.038) 646(0.190) 2.695(0.248) 0.010(0.100)
sgmcp 3.830(1.484) 3(0.741) 0.867(0.098) 0 327(0.136) 0.359(0.231) 1(0)
50 Oracle - - - 0.218(0.104) 0.412(0.190) -
gmep - - - 0.831(0.035) 2.698(0.217) 0.010(0.100)
Cluster 5.070(1.018) 5(1.483) 0.613(0.039) 1.640(0.190) 2.695(0.248) 0.010(0.100)
sgmcp 3.750(1.395) 3(1.483) 0.798(0.117) 0.410(0.149) 0.468(0.243) 1(0)
100 Oracle - - - 0.218(0.104) 0.412(0.190) -
gmep - - - 0.831(0.035) 2.698(0.217) 0.010(0.100)
Cluster 4790(1.047) 5(1.483) 0.610(0.040) 1.634(0.189) 2.695(0.248) 0.010(0.100)
sgmcp 4.010(1.560) 4(1.483) 0.780(0.127) 0.427(0.157) 0.486(0.244) 1(0)
Table 3

Additional simulation results for the proposed method under two subgroups and three subgroups with p, = 10 based on 100 Monte Carlo replicates.
As the separation parameter « increases, the mean of estimated number of subgroups becomes closer to the true value, and Rl becomes closer to 1.

Setting o K(mean) K(median) Rl

Two subgroups with 0.3 2.930(1.559) 2(0) 0.901(0.100)

Prip; =a)=Pr(u; = —a)=1/2 0.5 2.270(0.649) 2(0) 0.966(0.073)
07 2.090(0.494) 2(0) 0.986(0.052)
1 2 040(0.400) 2(0) 0.992(0.040)
15 040(0.400) 2(0) 0.992(0.039)

Three subgroups with g, = 1 1 3 640(1 124) 3(0) 0.942(0.075)

and Pr(u; = a) = Pr(p; = 0) = Pr{pi = —a) = 1/3 15 3.460(1.176) 3(0) 0.960(0.073)
3 3.210(0.701) 3(0) 0.971(0.068)

Table 4

Additional simulation results for the proposed method under Cases 2-3 with p, = 10 based on 100 Monte Carlo replicates. As the sample size n
increases, the mean of estimated number of subgroups becomes closer to the true value, and Rl becomes closer to 1.

Setting n K(mean) K(median) Rl

Case 2 with @ = 0.5 100 2.270(0.649) 2(0) 0.966(0.073)
200 2.210(0.742) 2(0) 0.990(0.045)
300 2.160(0.677) 2(0) 0.994(0.028)

Case 3withgn =1 100 3.640(1.124) 3(0) 0.942(0.075)
200 3.260(0.613) 3(0) 0.986(0.026)
300 3.140(0.493) 3(0) 0.994(0.013)

5. Application

The TFT-LCDs extend over various applications such as office-automation, electric home appliances, transportations,
and more [27]. In this section, we apply the proposed method to the TFT-LCD dataset. Since TFT-LCDs have excellent
features such as a low profile, lightweight, low operating-voltage, low power-consumption, full color capabilities, large
area, and higher resolution, they now play a leading role in various flat-panel electronic display devices [27]. Since the
technological environment has become increasingly competitive due to globalization's rapid speed, fast and accurate
estimation is essential to a successful delivery of devices in a timely manner [3]. Data analysis can help the semiconductor
industry make better use of product information and improve product quality.

As mentioned earlier, the manufacturing process of TFT-LCD is comprised of hundreds of working procedures. It can
be roughly divided into the following four processed: thin-film transistor (TFT), color filter (CF), cell, and module. TFT
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Fig. 4. Density plot of thickness after adjusting for the covariates' effects in each of the two identified subgroups by using the sgmcp method. The
distribution is more homogeneous within each subgroup in Fig. 1. The dataset is collected from 149 subjects with 56 functional variables and a
scalar response.

and CF are fabrication processes. The cell process is to assemble TFT and CF into LCD panels. The module process then
assembles LCD panels with other necessary parts to complete final TFT-LCD products [26].

The data we analyze is collected in the TFT process. In this process, circuit is connected to glass substrate to form
a TFT board. Glass substrate is coated with an organic film, and what we are concerned about is its thickness. This
dataset is collected from 149 subjects. 56 variables are collected, such as temperature, gas, liquid flow, and power with
manufacturing time. The values of these variables are recorded over time, and so these variables can be regarded as
functional. Without loss of generality, we transform the data for proprietary information protection. To eliminate the
effect of the large numerical difference between those variables, we first conduct global rescaling. Following Happ and

Greven [7], we use the rescaled elements w.”zxj(t) to build models with w; = [fr Var {xj{tj)} dtj]_1.

The histogram of thickness after adjusting for the effects of the covariates by using the gmcp method is shown in
Fig. 1. It still shows multiple modes among the samples. Therefore, in addition to identifying the affected processes, we
also need to group the samples.

With the proposed method, the samples are divided into two subgroups. The subgroup sizes are 97 and 52, respectively.
The estimated values of the intercepts are 8.471 and 8.587, respectively. Though the difference may seem small, it is
comparable to Zf; 7 Xij(t)bj(£)de, the standard deviation of which is 0.132. We present the histogram after adjusting
for the effects of the covariates in Fig. 4. We see that the distribution is more homogeneous within each subgroup in
Fig. 1. With the alternatives, Cluster divides the samples into four subgroups. As for variable selection, gmcp selects
two predictors: S4_ACT_CALIFEO1_L and S4_ACT_DCO1VOL; Cluster selects one predictor: S4_ACT_CALIFEO1_L; and sgmcp
selects four predictors: S4_ACT_DCO1PWR, S4_ACT_DCO1VOL, S4_ACT_TMPOS and ST_ACT_CALIFEO1_L. Following Zhang
et al. [36], we fit logistic regression of the subgroups (1 for subgroup 1 and 0 for subgroup 2) against the four variables
selected by sgmcp, and report the coefficient estimation in Fig. 5. We see that S4_ACT_DCO1PWR and S4_ACT_DCO1VOL
may affect subgrouping. For a new subject, we can predict the response according to this logistic regression.

6. Conclusions

This paper has introduced the methodology and an effective estimation algorithm for subgroup analysis for high-
dimensional functional regression. The proposed method can automatically divide observations into subgroups and
simultaneously perform variable selection to identify relevant predictors. The objective function includes three parts.

10
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Fig. 5. Plots of the estimated coefficients in the logistic regression of the subgroups (1 for subgroup 1 and 0 for subgroup 2) against the four
variables selected by sgmcp (54_ACT_DCO1PWR, S4_ACT_DCO1VOL, S4 ACT_TMPOS and ST_ACT_CALIFEO1_L).

The first term is the standard squared loss. The second term is the sum of concave penalty functions on the pairwise
differences of the intercepts, whose main function is subgrouping. And the last term is used to identify relevant predictors.
The ADMM technique has been used to realize the proposed method, and we choose the tuning parameters by BIC. We
allow the number of functional predictors and number of subgroups to go to infinity when establishing the oracle property
of the proposed estimator. The simulation studies have illustrated that the proposed method is effective in practice.

In this paper, we have assumed that heterogeneity can be modeled through subject-specific intercepts. Extension to
the scenario where heterogeneity is modeled through functional coefficients is also worth pursuing. Though Ma et al. [21]
have considered a heterogeneous regression model by assuming that the coefficients of treatment variables are subject-
dependent, the corresponding algorithm and proof of oracle property will be more complex for functional predictors. A
critical statistical challenge for functional coefficients arises from identifying subregions correctly for a heterogeneous
population without any subgroup information. Another line of research is robust estimation, for example, against outliers
in response and heteroscedasticity in regression by taking advantage of Huber loss.
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Appendix

Regularity assumptions are described in Appendix A. In Appendix B, we state some useful Lemmas and the proof of
Theorem 1. Technical assumptions and Theorem 2 for the homogeneous model are given in Appendix C.

Appendix A. Regularity assumptions

Write |la| and [, B (or (a,B)) for {J, ocz{t)dt}”2 and [} «(t)B(t)dt, where «(-) and B(-) are square-integrable
functions on T. The following condition (CA1) concerns the design on which x;; is observed and the local linear smoother
%;. Condition (CA2) allows the smooth estimate X;; serve as well as the true x;; in asymptotic analysis.
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(CA1) Forj € {1,...,pn}. [t,-j-;, lefl,..., m,-j}} are deterministic and ordered increasingly for i € {1,...,n}. There
exist densities g uniformly smooth over i, satisfying f],g,-j-{t)dt = 1land 0 < ¢ < inf,-[infrerg,-j-{t)} <
sup; {sup,r gj(t)} < 2 < oo that generate t; according to tjy = G;' {I/(mj+ 1)}, where G;' is the inverse
of Gij(t) = f_too gij(s)ds. For each j € {1,...,d}, there exists a common sequence of bandwidth hj such that
0 < ¢ < infihjj/hj < sup;h;/hj < c; < oo, where h;; is the bandwidth for the smoothed trajectories X;;. The
kernel density function is smooth and compactly supported.

(CA2) Let T = [ao, bol, tijo = do, tijm;+1 = bo, Aj = sup {t 141 — tyjs, | € {0, ..., my}} and m; = m;(n) = infi(y,_._n M. For

je{l,....pa}. sup; Ay =0 (m;"), by ~ mj_l’ﬁ, mjn~—>/4 — oo, where we denote 0 < lima, /b, < oo by a, ~ by.

Appendix B. Auxiliary lemmas and Proof of Theorem 1

Lemma 1. Define the following notations, for k, k1, k2 € {1, ...,s:} and j,j1,j2 € {1,...,pn},

n
2
(1) _ £ —1 (2) _ 22 -1
o) = (B — &) vi', ol 2  (BierBinks — it ) (Uit Vit

i=1 i=1

n
j1j2(3 —1/2 4 3
6}J<:J]<22[ )= E {gﬁlklgﬁzkz - E(.E_hkl.i:izkz)] (Uilkl szkz) ’ 911_12'[ ) Qjﬂz 9;2];32{ }'
i=1

kqka
Under conditions (C1), (C2), (C5) and (CA1)-(CA2), we have

6‘ =0, (ka+2) 'u'kz(Z} =0, (kr;ﬂﬂnuz n k;ﬂﬂnuz) ,

182
A = 0y (7). B = 0p (47 ),
where the Oy(-) and op(-) terms are uniform for k, ki, ky € {1, ...,s,} and j, j1,j> € {1,..., pa}-

Lemma 1 quantifies the asymptotic orders of several important types of expressions that will be encountered in the
proofs of our lemmas and main theorems. The asymptotic properties of &3 are well studied by Kong et al. [12], and we
omit the detailed proof here, _ . . _

Recall that we reparameterize by writing S, = vjl" Zﬁjk, B denotes the estimate of 8, and 8 denotes the estimate of j.

Define W1 as the n x (K + g,5,) matrix with the ith row
—1/2 —1/2 -1/2 —1/2
(Zn, -+ > Zik» §i11Vyy / v _Ehsnvun; s 'ff:hﬂqnjf s _Eflhsnvqngi ) .
Moreover, define W as the n x (K + qnSy) matrix with the ith row

z 12 z —1/2 z —-1/2 2 ~12
(Zn, e Ziks Ei1ilyy ey _Ehsnvun s fs‘fmﬂm s _Eflhsnvqngi ) .

The next lemma characterizes the eigenvalues of W. The essential difference between Lemma 3 in Kong et al. [12]
and the following lemma is that we allow the number of functional predictors g, to grow with the sample size n, while
Kong et al. [12] assumed it fixed.

Lemma 2. Under conditions (C1), (C2), (C5), (C7) and (CA1)-(CA2),

|xmm (w w,/|gmm|) Amin (UN/18%1)| = 0,(1), |Am (w wj,!n) Amax(U) |_op{1)

Proof. Let ||A|; denote the L; norm of matrix A. We have:

v T o~ T v
Amin (W w1;|g£;m|) — hmin (Unflg,“,,ml) < | Wi W/ 1ghl — Un/ighal |

S|gr?1i.n| 0p QH ‘Qi'(?gi (EUSH Eil'jsn) Visy Zﬂ]+EZEﬂ(Uﬂ< ZZ'
=1 im (B.1)
+z“i‘z{( b suk)vﬁ zﬂ] YD g
j=1 k=1 i=1 j=1 k=1 i=1

12
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Recall that z; = 1 if i € g and 0 otherwise. Then we have

: g g\, 12, 0]1/2 - £ s 2 4 " 0,1/2 j@/2+1

D { (B — ) v za| < (P12 4 D0 (G — ) wi'p =05 (1871 K. (82)
i=1 i=1

2
Since E [Ereg}] [gijk —E (Euk)] Uj;'lﬂ] < |giD|E [gijk —E (Eijk)lz Uj;l — Igiul_ we have

Z {&ix — E (&) } vjk =0, (Ig IUZ)

iy
Thus
2 ’Efﬁv;"zzﬂ = {&ixzi — E (&iza) } Ujim = 2 {&jk — E (&)} UJ-IU =0p (Igi ”2) - (B.3)
i=1 i=1 ieg?

By Lemma 1, (B.1)-(B.3) and condition (C5), we have;:

|A-min (W;rwlﬂgr?nnl) - lmin (Uﬂf’lgginl)

E Z {(’E!JSn fusn) s Zﬂ} + Z E'sljk”;k /2,

I=1 i=1

= Igmm OP q" | gi:_isi{‘i}

+§i {(uk ’fljk) Ui zﬂ}+ZEZ§ﬂ<vﬂ< 2z

k=1 i=1 j=1 k=1 i=1

K
112 1/2
=12%1"'0p { g E(ka,‘2+l n'/2 4 §2+1p 1;2)+E|g| I2+l+E|gi|+qﬂ|gmax| Ekmﬂ
k=1 I=1 k=1

1/2
+GnSn |80

1/2 /242

-1 1/2 1/2
=Igminl " Op (anse/> 202 + K52/ 10| + Klghaxl " + dulgiia + Qusalghad )

-1 12
=0, {188l /7" (ausun™ +K1ghnl %)} = 04(1)
Similarly, we can get ‘km (VvlllTl/vV“fn) — Amax(U )‘ = 0p(1). This completes the proof. O
Define 75 = (ao, B ... fign) Lemma 3 concerns the asymptotic order of Iy = Py, (y — W f;?) where Py, =
. LT oo\l LT
Wy (W, W1) W,
Lemma 3. Under conditions (C1), (C2), (C3), (C5) and (CA1)-(CA2), |13 = Op (K + GnSn + G2).
Proof. Note that
2 5 =042 = 5\ =0]?
i . e ) ]

2 2 (B.4)
<0 | "PﬂHf ]

2 - .
P, (w W )"”
2+|| wy T 1) i,
where i = (i1, ..., kn)" and ki = 30", 30 E By
2
- T
Since HPWIEHZ EX Pﬁ,le

E(e P, €) =E{E(TPa,e | Wi) | =E[ur[PaE(TO}] = 02w (Ps,) = 0 @usa +5) = 0@asn +0,
13
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and Var (ETPWIE) =E {Var (GTPw,€|W1) } + Var {E (GTPWIE | ﬁh) } = Op(qnSn + K), we get
2
HPWI e"2 = Op(gnSn + K). (B.5)

As Var (X321 6B) = L tik(B))” = 0(Xi, ik k ) = 0(5;), we have Var () = 0 (dus;?),
E (k?) = 0(gns; ). Thus, ||«|l3 = Op (ngss; ). Then, we have:

2
[Pare] = 113 = 0p (naus; ™) (B6)

For Py, (V"IM - ﬁh) i1}, we have:
[P, (92— )i < | (e ) 2] = 0
Sn 2
olu 35l 10335 (- 0) ] @)

i=1 j=1 k=1 i=1 j=1 k=1

Sn

2": i (’éqk ’;‘uk) Bik
i=1 | j=1k

=1

In n Sn 2
<0la3 3 Iulo, (zwkn-w) 0|0 35 oy —x? (zk-b) _0,(@).
k=1

j=1 i=1 j=1 i=1

By conditions (C4) and (B.4)-(B.7), we have:

IT113 < Op (GnSn + K + nGus; 2 + q2) = Op (K + GuSn +2) -

This completes the proof. O

Proof of Theorem 1. When the true subgroup memberships of samples are known, that is, G*=1{g?, ....g0} and Z are
known, the oracle estimators for i and 8 are:

(3.F) = argmin LGB+ > P (1B s).

RLEM, BeRPrsn j=1
where
2
Pn Sn
Lu(pe, B) = Z yi— ZZ (gi;kvjk ) Bk — i ¢
Jj=1 k=1

and Mg is the subspace of R" defined as
Mg={peR": ;= p, foranyi,jegl, 1<k <K}.

Correspondingly, the oracle estimators for the common intercepts « and 8 are

(&a, ﬁ“) = argmin Ly(Za, B)+n EP (Ilﬁjllz, A2),

acRK | BeRPnsn j=1

ST ,
with 2° = Z&®. For the simplicity of notation, we denote 7 = (a:T, ﬁT) and Q; (i) = Ln(Za, B) + n Y31, P (|| Bjll2, A2)-

- T
The proof includes two steps. In Step 1, we establish properties of the oracle estimators #° = (&°', ,SDT . The

oracle estimators are theoretical constructions useful for stating properties of the proposed estimators. In Step 2, we

show that ¢ = ("’T ,8 ) with fi° = Z&° is a local minimizer of the proposed penalized objective function Q,(x, B)
with probability approaching one,
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- - T
Step 1. We first constrain L,(Ze, ) on the subspace where the true zero parameters are set as 0, thatis [f; = (a:T, ﬂT)
- ~Ty T
e RK+Pusn - B 0 = 0}. Define i, = (OET, ;3,4) and

n Gn  sp

T (= 1 = —1/2 45
La(m) =3 Dyi=D2D vy B -z«

i=1 =1 k=1
- - - ~0T
73";0 - 73'[1} , Op(an), where ’?[1} = ( 0T Ba )
and oy = (K + GaSn + ¢2) V2 i/ 2|gmm| . If we can prove that for any & > 0, there exists a large constant Cs such that

We now show that there exists a local minimizer i3’ of Ly(#;) such that

Pr|II l:nfc La(7 + atntt) > Ln{rh)} >1—¢, (B.8)
then Ly(7;) has a local minimizer ;" that satisfies -7 ||2 = Op(cn).
We have
_— - 1 « T [ 2 1
o)) = 7 3 ) LT
1 T o« « 1 - v T
= o’ (wl wl) u— [ Wiau > Solu (wl w,) u— I3, A2 (wlw,) o ], -
(B.9)
letr, = (K + aSn + qﬁ)”z. According to Lemma 2, we have
- T 1 - T -1
T (Wi W ) > S (W1 W) af 3 > Calghyale? [l = Canlgh, '3 Jul- (B.10)
Besides, we have
T~ -1
|— 177112 Ania (W1 wj) annuuz( < Gyran'an|lullz = Gig, | T2 lull2, (B.11)

where (; is a positive constant. Allowing Cs = ||u||, to be large enough, (B.11) is dominated by (B.10), which is positive.
This proves (B.8).
~00T

Denote #* = ('"DT B ac ) € REK+Pnsn with Bf:: = 0. Next, we show that #” is a local minimizer of Q?(7) over the
whole space R¥+Prsn_ By the Karush-Kuhn-Tucker conditions, it suffices to show that #* satisfies the following conditions:

st (3) =0, lef1,....,K}, (B.12)
- 00
S; (1) +nP’ (II;SJ IIz,kz) ﬁ— =0, jeA, (B.13)
|h3J lI2
ISi@*)|, < A2n, e A", (B.14)
where
1 n K Pn  Sn 2
Si(m)=2 > _’/i'_zzi!al— EiikBik /30!1,
l i=1 =1 j=1 k=1 J
1 n K Pn Sn 2
5i(i) = 0 [5 yi— Y=y Y Euby| t /o8,
i=1 I=1 j=1 k=1

ﬁ is the estimate of S, ,é is the estimate of fi and ﬁj-k = }(2,8);(
Obviously, we have S*(7) = 0 for | € {1,. K} and (B.12) holds. If minjc ||,81 Il = @A, we have

P’ (13”12, 22) = 0. and certainly (5.13) holds. Note that ks = VB0~ 1 — A0l We have mie [8002/z — o0
under condition (C6), Since ||,8j- - ﬂj- ll2 = Op(cts) and 5ﬂ< = vj{”z % we have ||,81 —Bll2=0, (sn a") = 0p (A2). Thus
MiNje 4 ||,§;-m||2,b\2 — 00 in probability. Then we get Pr (||,8j lz2=ar forje{l,..., qn}) — 1. Then (B.13) follows.
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Now we prove (B.14), It suffices to show that
w00
Pr|ngi§ Isi@™)|, > lzn] - 0.

Denote the kth element of §;(7™) as Sy(7”). We have

Sik() E%‘qk Yi— ZZM 2 D Envp B =) (%‘ijk + Eij — %‘ijk)
j=1 k=1 i=1
Ezﬂai IR
Jj=1 k=1
=— E (.Efj.k + & — Uk) l!ﬁ +e+ Zzﬂ of — &)
i=1
Pn S ~ . Sn N .
+3 0 gy (ﬁﬁ - ﬁﬁ”) + Z > (Euk - %‘ijk) vy B
=1 k=1 =1 k=1

Let & be the n x 1 vector with the ith element &, é,ﬂ( be the n x 1 vector with the ith element §,-jk, and I, =
- « AT -
K+ (W1 — W1) i+ W, (ﬁ? - f}ﬂ'”). Then we have

- T " T - T
(i) = — (E.jk + &k — 'E-jk) (I +€) = —£3 15 — Eje— (Evjk - §.jk) I;— (E.jk - E-jk) €
Hence, it follows that

Pr |}Ei§ ||5j(ﬁaﬂ)||2 > 12n] <Pr [Ei)‘(kemﬁm |sjk(ﬁao)| - JLGs"_”Z]

<Pr (max max IIEJkIIzlllelz > kzns_wﬂ)
jeACke(1,..

+Pr (max max |&Le| > Azns"_”z,hl)

jeACke(1,....5n} (B.15)

Pr{max max [[&, — &[] > Aons V2/4
+ (jeAckE[L‘",sn}”Evjk Eul212ll2 > Aans, 7/

P —-1/2
+ Pr| max max o — & €llz > Aans 4
(jEAckE“,‘",Sn}”Ejk Eillzllellz > Aznsy 75/

=P;+P+P3+ P,

"From the pzroof of L"emma 3, we have |23 = 0p(r7) = op(ns;'43/16) unde"r condition (C6). As Y i, &5 =
Yo ([xen)” = X (l’lIgl®) = Op(n). we have maxjcac MaXien,..sn) Xict & = Op(n). Then we have
MaXje e MaXierr, .o 16 ell2 172112 = 0p (Aansy 7/4). Thus

= o(1). (B.16)

If we combine conditions (C1), (C2) and (C4), we can get

n n n
Pr( Efﬁkfi > Azns"—1f2j4) =Pr ( Z&;jkvj;lﬂvj}(ﬂei > kgns"—1r‘2;‘4) <Pr (Cs 2 vj}(ﬂef > lzns"—1/2!:‘4)
i=1 i=1 i=1
2% 12 C3A2nke
< Pr| Gk™ €| > Aans 4 /4) <2exp| —
e Gk 3 > dansa) <20 (-5

where Cg and Cy are positive constants. Then,

Cgkzﬂ
P, =Pr{ max max |&éhe| > Aons 2/4) < 2pus,exp | ——=2
g (J'EA‘REIL--‘-SnIE‘Jk | > 2ans;/2/4 | < 2pusn exp 16C2s,

2, (B.17)
:2exp[l0g(ps)|1 Cadn ”
o 16C25, 108 (PnSn)
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under condition (C6). Moreover, we have

max max Z (guk — E,Jk) = 0IJ

jeASke(1,....5n) 4

- —-1/2
Thus maxje ac MaXkeqn,....s0) 1€k — EicllzlI 2]z = 0p (kznsn / l4)- Then

=0(1). (B.18)

1/2 -
Noting that |lel; = (X, € 7 _ 0p (n'/2) and maXjeac MaXyeqs,...sn 1€ — Ejellz = Op(sn). We have maxjcac

MaXeqr,...s0 €5 — Ejell2ll€ll2 = Op (san"/?) = 0, (A2ns~"/2/4) by condition (C6). Then

Py=Pr(max max [&; —&glllel2 > Aans;"/2/4) — 0. (B.19)
JEAC ke(l,osn) Y I
By (B.15)-(B.19), (B.14) follows. Hence 7" = (33", 07)T is a local minimizer of Q2(7) over the whole space RK+Pnsn,
It is easy to deduce that Pr {bq ()= =be() = 0] — 1, where ﬁj"’{t] =2>> 31.‘,’("(31-;(&) is the corresponding
functional coefficient. T
Step 2. Recall that the oracle estimators is denoted by 7° = (&"T, ,ég ) , and

Pn
Qe B) =La(pe, B)+ ) P (Imi— pil, 1) +1 ) P (IBjl2: 22)

1<i<j<n j=1
where
2 2
B Pn  Sn n Pn 5o .
Lu(p, B) = Z iy (Eukvjk 2 )ﬁﬂc mig =5 Z = ) EwBr—m
j=1 k=1 i=1 j=1 k=1

Now we show that ¢ = ('“T ,8 ) with i° = Z&° is a local minimizer of the proposed penalized objective
- - 2
function Q,(p, B) with probability approaching one. Denote T}(¢) = @ |1,’ 2y, (y,- — 2 D ik — ,uf) ] / a i

. 2
and Tj(¢) = @ |1,’2 >, (yf — 2 Y e GieBik — ,uf) ] /Bﬂj. Inspired by the proof of Theorem 1 in Jeon et al. [11],

the goal is to show that ¢ satisfies the following conditions with probability tending to one, provided that conditions
(C1)«(C7) and (CA1)-(CA2) hold. Thart is

- ~0 S TN
min |Bjll2 > a2, , <o, ZT.- (5)=0,1<k=<K, (B.20)
min ) — ﬂﬂ > WA, (B.21)
iegf‘jegf‘1<k<l<i(
max |T*{c)|f g0 — 1) < A1 (B.22)
ieg 1=k=

Obviously, (B.20) holds by the definition of Z. Next, we prove (B.21). Under condition (C6), we have "&" —ao° .

Op (an) = 0p (l‘l), As

. =0 0 ~0 0
min 20 —a0| /2 > min_|of —of ,fx,—z"u —a || /h
iegl jegl 1=k <l<K } | 1=k<I=K I I 2 ,
. 50 _ 20
we have Pr (mmfegf,jeg.",lsk-:lgi( | —af| < alll) — 0asn — oo.

Now we prove (B.22), It suffices to show that

Prl max |T*(;)| (|gf|—1)l1]—>0. (B.23)

iegk, 1=k=

17
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Fork € {1,...,K}, we have T} ({) = — (I} + €;), where I} is the ith component of I. Hence, it follows that

Prl_ max IT*(2)| > (|gf|—1)l1] gprl max |I}| > (|ggm|—1)x,,!2}
iegk,lqkd( K

<ks= ieg 1<k=
+Pr { max il > (|gminl — 1)l1f2] :
iegkjskgi(
From the previous derivations, we have [|I32 = 0y (r,f) Then we have
Prl max |53] > (Igml — 1)11,!2} <Pr{lI3l; > (Igoil — 1) 21/2} — 0 (B.24)
i'egk,lsksi(

under condition (C6). Besides, we have

Pr{leil > (I8l — 1) 41/2} < 2exp {-C323 (1ghal — 1)7 /4]

Then
Pri max el > (1ghal — 1) 41/2 < 2nexp{—Coa? (Ighal — 1)° /4]
iegd 1<k<K (B.25)
— 2exp [logn {1 — G322 (1% — 1)2,’(410gn)” 50
under condition (C6). By (B.24) and (B.25), (B.23) holds.
This completes the proof. O
Appendix C. Technical assumptions and theorem for a homogeneity model
When the true model is homogeneous given as Eq. (1) with gy = --- = g, = p = « and K = 1, we also reparameterize

by writing ﬁﬂ( = vj}f 2 B and introduce the following conditions,

(C8) The smoothing parameters s, and g, satisfy g2s2*%/n — 0, s2°*2/n — 0, s2~1/n — o0.
(C9) Tuning parameters A; and A; satisfy: (i) A1 = 0(1), (qusa + qz) ™" = 0 (A3); (ii) A2 = 0(1), minjc4 ||,81'.]||2,’12 — 00,
max {s2 (qnSs + q2) n~1, 52071, 53 log (Pasp) N~} = 0 (32).
(c10) efine U* = (% 1) where N, = (g- 2k u‘”z)T is (Gusa) X 1.0 < C* < Amn(U*) <
0 E{N.‘Ni ) v i i11Y91  » -+~ Sigpsp Vggsy n-n - = 4min =
Ama(U*) < CF < 0.
- T

Theorem 2. Under conditions (C1)-(C4), (C8)-(C10) and (CA1)-(CA2), there exists a local minimizer (ﬁT, ,ST) of objective
function Qu(p, B) satisfying

(i) Pr(fui = iy, Vi, j) — 1, i, Pr (K - 1) S,

(ii) Pr{bg,41(t) = - -- = by, (£) = 0} — 1,

o [ AT 2T\T =0T\ T 12 _

(iii) (,uT,ﬁ ) — (,u.OT,,S zop{(q"s"+q§)" n ”2}.

2

Theorem 2 shows that homo%eneiry and sparsity can be recovered with a high probability. Similar to Theorem 1, we

can conclude that Hﬁj[t) — bj[t}H = Op {57 (qnsn +q3) n~"}. Next, we give a brief sketch of the proof of Theorem 2.

Proof of Theorem 2. When the true subgroup memberships of samples are known, that is, Z = 1, is known, the oracle
estimators for u and g are:

Pn
(a°.F") = argmin Ly B)+nY P (IBjl2. ).

REM, BeRPnsn j=1
where
n M 5 2
- 1 L -
Lu(p. B) = EZ }’i—ZZ(Eiijjkm) B — i g
i=1 j=1 k=1
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and M is the subspace of R" defined as
M={peR 1 py=-=}.

Correspondingly, the oracle estimators for the common intercepts a and ﬁ are

Pn
(a°.8%) = argmin Li(tace, B)+nY_ P (1Bjll2:22).

a€R, BeRPnn j=1

. . ~ ~Ty T - -
With M‘a = lﬂao- Denote n= (as B ) and Qr?(’?) = Lﬂtlnas B) + n an:] P (”ﬁj’”Zs JLZ)'

- T
The proof includes two steps. In Step 1, we establish properties of the oracle estimators 7’ = (&”, ,SDT) . The proof
follows the same arguments as the proof of Theorem 1 by letting Z = 1, and |g2, | = n. Thus we omit it. In Step 2, we

T -
show that Z = (a°", ,éDT with fi° = 1,&° is a local minimizer of the proposed penalized objective function Q,(g, 8)
with probability approaching one. It follows similar procedures as the proof of Theorem 1 with details below. The goal
is to show thar ¢ satisfies the following additional conditions with probability tending to 1, under conditions (C1)-(C4),
(C8)C10) and (CA1)-(CA2). We note that:

n

min |Bl> > o, max [T, <don, PR =0, max|T@)|/n—1) < ha.

i=1

The proof follows the same arguments as the proof of Theorem 1. We omit details here, O
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