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Towards Adversarial Robustness in Unlabeled
Target Domains

Jiajin Zhang, Hanqing Chao, Pingkun Yan, Senior Member, IEEE

Abstract—In the past several years, various adversarial train-
ing (AT) approaches have been invented to robustify deep
learning model against adversarial attacks. However, mainstream
AT methods assume the training and testing data are drawn
from the same distribution and the training data are annotated.
When the two assumptions are violated, existing AT methods fail
because either they cannot pass knowledge learnt from a source
domain to an unlabeled target domain or they are confused
by the adversarial samples in that unlabeled space. In this
paper, we first point out this new and challenging problem—
adversarial training in unlabeled target domain. We then propose a
novel framework named Unsupervised Cross-domain Adversarial
Training (UCAT) to address this problem. UCAT effectively
leverages the knowledge of the labeled source domain to prevent
the adversarial samples from misleading the training process,
under the guidance of automatically selected high quality pseudo
labels of the unannotated target domain data together with the
discriminative and robust anchor representations of the source
domain data. The experiments on four public benchmarks show
that models trained with UCAT can achieve both high accuracy
and strong robustness. The effectiveness of the proposed com-
ponents is demonstrated through a large set of ablation studies.
The source code is publicly available at https://github.com/DIAL-
RPI/UCAT.

Index Terms—Adversarial robustness, domain adaptation, con-
trastive learning, pseudo labeling.

I. INTRODUCTION

DVERSARIAL robustness of deep learning models has

been intensively studied in the past few years. Many
works show the vulnerability of deep learning models to ad-
versarial samples that contain imperceptible perturbations [[1]],
[2], [3]. Various approaches have been proposed to train
deep learning models resilient to adversarial attacks [3], [4].
However, the existing approaches assume that a) training
and testing data are drawn from the same distribution, and
b) the training set is fully labeled. When the assumptions
are violated, i.e., testing data distribution deviating from the
training data and lacking training labels, such approaches
would experience a significant performance drop or even
become inapplicable. In this paper, we aim to tackle this
new and yet very challenging problem, where both the two
assumptions are violated. The problem is coined as adversarial
training in unlabeled target domain.
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Fig. 1. Performance of adversarial training in unsupervised target domain

on dataset Office-31 D—A. First row shows the variation of the performance
through training. Second row shows the final learnt representations visualized
by t-SNE. Compared to the two baseline strategies, i.e., SAT finetuned UDA
(SATFT + UDA) and label-free adversarial training loss with UDA (LFAT
+ UDA), the proposed UCAT effectively utilizes the knowledge from the
source domain and achieved both high accuracy and strong robustness in the
unlabeled target domain. The UDA method used here is SRDC [3].

Solving this new problem is highly nontrivial. Recent work
of semi-supervised adversarial training (SAT) [6] deals with
partially labeled training data, but the training and testing
sets still belong to the same distribution/domain. Shafahi et
al. 7] adapted a robust model trained in a source domain to a
target domain but requires full supervision. A simple strategy
is to combine such existing methods, i.e., to first train a non-
robust model in the unlabeled target domain with unsupervised
domain adaptation (UDA), then generate pseudo labels using
the trained model in the unlabeled target domain, and finally
apply SAT with those pseudo labels to further finetune the
model. We call this strategy SAT finetuned UDA (SATFT
+ UDA). Nevertheless, since the model cannot effectively
leverage source domain data during finetuning, the model
would “forget” the knowledge learned with UDA, which
results in poor performance (see Fig. [Th). The other baseline
strategy is to introduce label-free adversarial training loss used
in SAT into UDA, denoted as LFAT + UDA. Such a loss con-
strains KL-divergence between logits from a clean sample and
its adversarial counterpart, respectively. While the label-free
adversarial training loss works effectively in a single domain
problem, such as SAT, significant distribution shift and missing
labels in the target domain confuse the models as illustrated in
Fig.[Ib. Since the adversarial samples are designed to fool the
model, merely enforcing the consistency between the target
clean-adversarial sample pairs in the unlabeled target domain
could mislead the UDA training and cause the model to map
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clean samples into the wrong classes.

In this paper, we propose a novel adversarial training
framework named Unsupervised Cross-domain Adversarial
Training (UCAT), which can effectively leverage the knowl-
edge of the labeled source domain to prevent the adversarial
samples from misleading the training process and achieve
both high accuracy and strong robustness in the unlabeled
target domain. Under the guidance of high quality pseudo
labels, the proposed UCAT aligns the representations of target
domain clean and adversarial samples with the source anchors,
which are discriminative and robust representations of the
source domain samples. This alignment helps UCAT in two
ways: explicitly minimizing the distribution deviation between
the source and target domains and implicitly regularizing the
distance between the target domain clean samples and their
adversarial counterparts.

The proposed UCAT consists of three key components, 1)
a Source Anchored Learning (SAL) loss for robustly aligning
the target and source domains, 2) QUality-QUantity Auto-
balanced Pseudo Labeling (QUAPL) for providing pseudo
labels to SAL loss, and 3) a discriminative and robust source
model for generating anchors.

Our work makes three major contributions:

a) To the best of our knowledge, this is the first work focus-
ing on adversarial training in an unlabeled target domainﬂ Our
analysis demonstrate that robustifying models in an unlabeled
target domain is a daunting task, because the inevitable domain
distribution deviation worsens the adversarial attacks.

b) We propose a new framework of Unsupervised Cross-
domain Adversarial Training (UCAT) to tackle the above
problem by effectively utilizing knowledge from the labeled
source domain to enhance the representation learning in the
unlabeled target domain.

¢) The experiments on four public benchmarks (DIGITS [9]],
[10], [L1]], Office-31 [12] and VisDA-2017 [[13]) demonstrate
that the proposed UCAT can efficiently train a model to have
high accuracy and be resilient to adversarial attacks in an
unlabeled target domain.

II. RELATED WORKS
A. Adversarial Attack and Defense

Szegedy [14] first reported that deep neural networks can
be fooled by adversarial samples, which heralded the era of
adversarial attacks and robustness of deep learning models.
Soon after that, Goodfellow et al. [2] proposed the fast
gradient sign method (FGSM) to efficiently find such adver-
saries and presented a robust training approach by including
adversarial samples into the training data. More effective
attack and defence approaches, such as CW [1], PGD [3l,
BIM [135], MIM [16], DeepFool [17], JSMA [18], FAB [19],
and AWP [20], were soon proposed to identify the instabilities
of deep neural networks. However, all these methods require
fully supervised learning, and the training and testing data
to be in the same domain. Kannan et al. [21] proposed the
first label-free robust training strategy, adversarial logit pairing

I'This work was firstly posted on Arxiv on Nov. 2020 [8]

(ALP). It applies an additional loss term constraining the
pairwise logit feature distance between a clean-adversarial
sample pair. Later, TRADES [4] proposed a trade-off-inspired
adversarial defense via surrogate-loss minimization, which
measures model accuracy on clean samples and model ro-
bustness on adversarial samples with two separate loss terms
derived theoretically.

Inspired by the seminal work of TRADES [4], which
generates adversarial samples without labels, several Semi-
supervised Adversarial Training (SAT) methods [6], [22]
were proposed for adversarial training with partially labeled
samples. However, SAT assumes there is no domain shift
between the labeled and unlabeled data. Another group of
recent works explored robust transfer learning to deal with
the Out-of-Distribution(OoD) data in a target domain [7],
[23]. Nevertheless, those works require both the source and
target domain data to be fully labeled, in order to adopt the
knowledge distillation and fine tuning strategies. Unlike the
previous works, we consider a more challenging situation,
where both the requirements are unmet, i.e., improving ad-
versarial robustness in an unlabeled OoD target domain.

B. Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) aims to train a
model in an unlabeled target domain with significant data
distribution shift from the source domain. One representative
group of UDA approaches, such as [11], [24], [25], [26],
align source and target domains by learning domain invariant
representations. Among these works, [27], [28], [29] use
individual task classifiers for the two domains to detect non-
discriminative features and reversely learn a discriminative
feature extractor. Other works [30], [31]], [32] focus attention
on transferable regions to derive a domain-invariant clas-
sification model. To help achieve target-discriminative fea-
tures, [33], [34] generate synthetic images from raw input
data of the two domains via generative adversarial networks
(GANS) [35]]. A recent work [36]] improves adversarial feature
adaptation by dealing with the deterioration of the discrimi-
native structures of target data.

The cluster assumption states that the classification bound-
ary should not pass through high-density regions, but instead
lie in low density regions [37]. To enforce the cluster as-
sumption, conditional entropy minimization is widely used
in the UDA community [38], [39], [40], [41], [42], [43],
[44]. Another group of methods including [45], [46l, [47],
directly minimize the domain discrepancies, which can be
quantified by the maximum mean discrepancy (MMD) in
practice [48]]. Some recent works, such as DIRT-T [42],
CAN [49], SRDC [3] and CAT [50], show that alleviating the
intrinsic inter-class mismatch via cluster assumption benefits
the model adaptation performance. Recently, there is also
another line of researches [31], [52] working on to leverage ad-
versarial training process to find hard-to-learn or OoD samples
for further enhancing the model generalization performance.
However, the existing methods listed above generally neglect
the adversarial robustness of models in the target domain.

Our work aims to bridge the research gap by enhancing
the adversarial robustness of models in an unlabeled target
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Fig. 2. The overview of the Unsupervised Cross-domain Adversarial Training (UCAT). The proposed UCAT has three key components, i.e., Source Anchored
Learning (SAL) loss, QUality-QUantity Auto-balanced Pseudo Labeling (QUAPL), and the discriminative and robust source model.

domain. We were the first in the field to formulate the problem
and a preprint of our work was publicly released earlier [8]].
Recently, Yang et al. [53] explored the robustness of UDA
in segmentation tasks, where a contrastive loss constrains
the model prediction on clean-adversarial sample pairs. It is
worth noting that, modern segmentation deep neural networks
are intrinsically robust to adversarial attacks compared with
classification networks [54]. Thus, the problem tackled in our
work is more challenging and general. This paper presents a
novel robust training framework to effectively deal with the
problem.

C. Pseudo Labeling

Pseudo-labeling methods [55], [56]] generate pseudo labels
to facilitate the use of unlabeled data for training models.
The output from pretrained models are directly use for this
task in some early works. Inspired by the noise correction
works [57]], [58] attempted to update the pseudo-labels through
an optimization framework. Xie [59] showed self-training can
improve the performance of supervised classification tasks.
Although the previous pseudo-labeling methods are general
and domain-agnostic, they tend to generate noisy labels. Nay-
eem [60] tried to reduce label noise by improving network
calibration, which is defined as the consistency between the
model’s confidence and accuracy [61]. Naive strategies typ-
ically use a manually set threshold and accept all predicted
probabilities higher than that threshold as valid pseudo la-

bels. However, such strategies cannot balance the quantity
and quality of valid pseudo labels. In our work, the target
domains are completely unlabeled and thus parameter-tuning
is inapplicable. We present a novel approach to balance the
quantity and quality of the pseudo labels to automatically
determine optimal thresholds.

IIT. METHOD

Fig. [2] shows the overall architecture of the proposed frame-
work of Unsupervised Cross-domain Adversarial Training
(UCAT). Sitting at the center of our innovation, the Source
Anchored Learning (SAL) loss utilizes the discriminative and
robust representations from a source domain as fixed anchors
to pull the clean and adversarial representations in the target
domain towards the anchors or push them away, depending
on the pseudo labels of the target domain data. SAL requires
solid source anchors and high quality pseudo lables to be
effective. In our work, the source anchors are generated by
a discriminative and robust source model, which is trained
by integrating the fully supervised adversarial training with
the conventional contrastive learning. High quality pseudo
labels are obtained using QUAPL, which automatically selects
suitable labeling threshold for each class by gauging the
quantity and quality of pseudo labels.

In addition to the SAL loss, UCAT also incorporates
the label-free adversarial training [6] and the typical UDA
losses [24], [3]] to further improve the performance of the target
model.
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A. Problem Formalization

Let S = {(=1,%7), ..., (®}., YN, )} denote a labeled source
domain dataset and 7 = {af,..,@% } be an unlabeled
target domain dataset, where  denotes the input images and
y € {1,..., K'} indicates the labels. The new problem requires
training a model, which not only performs well on the clean
samples ! in the target domain 7, but also be robust against
the adversarial attacks x’". Here, =’ b= gt 4 7 denotes an
adversarial counterpart of @', where [|n||, € (0,€| is an
imperceptible adversarial perturbation. We use p*(x), p'(x) €
[0, 1], and f*(x), f'(x) to denote the predicted probabilities
and the learnt representations (the output of the penultimate
layer).

B. Discriminative and Robust Source Model

To provide discriminative and robust representations of the
source domain data as source anchors for the SAL loss, we
first integrate the adversarial training (AT) [3] loss L,; and
the contrastive loss L., to train a discriminative and robust
source model as shown in Fig. [2).

Specifically, AT feeds the model with adversarial samples
x' generated by using the method of projected gradient

descent (PGD) [3]] and optimizes the model with cross entropy
loss £ee(x,y) = —logp; (z):
»Cat = ]E

(x5,y7)€S

i

Cee(2'7, ), (D

where @'} = argmax||r g <. lee(@’, y7), and pj(x) de-
notes the y-th item of the K dimensional prediction.

The contrastive loss constrains the learned representations
f2(x’?) of the adversarial samples via minimizing the intra-
class distance and maximizing the inter-class distance. It is
formulated as

s 2 s 12
Letr = 1Si?SNS]l[y$:yj]Dij + ]l[y#y;f] [m — Dij]Jr’ @)
where Dj; = || f*(2’;")— f*(«;")]|2 is the Euclidean distance

between two feature vectors, m > 0 is a margin to prevent
over-fitting, and []; represents max(0, -). The complete loss
function for the discriminative and robust source model train-
ing is given by L. = Lgt+ Actr Letr, Where Mgy, is a positive
weighting parameter.

C. Source Anchored Learning

In order to robustify a model in the unlabeled target domain,
the Source Anchored Learning (SAL) loss is proposed to
simultaneously align the target and source domains and reg-
ularize the deviations caused by adversarial perturbations. As
introduced in Sec. [I} although a regular label-free adversarial
training loss can help reduce the distance between clean sam-
ples and their adversarial counterparts, such a direct constraint
may confuse the the model when the unlabeled data has
significant distribution deviation from the labeled data. While
it intends to enforce a classifier to assign similar labels to the
adversarial samples and the corresponding clean samples, such
an adversarial training loss will inevitably pull clean samples
towards the adversarial samples due to the absence of labels.

In contrast, as shown in Fig. 2} our proposed SAL loss
uses source data representations as fixed anchors. Based on the
pseudo labels of target domain data samples, SAL pulls the
representations of both clean and adversarial target samples
towards the source anchors of the same class and pushes
them away from the fixed source anchors of different classes.
The pulling minimizes the distance between the target clean-
adversarial pairs, while in the same time prevents adversarial
samples from dragging clean samples towards wrong classes.
The pushing enlarges the margin of the decision boundary,
which makes the model more robust against attacks.

Let 7 = {(z!,9!) | ®% € T,! has valid §!} denote the
pseudo-labeled target domain subset which includes all target
domain data with valid pseudo label §! generated by QUAPL
(details of QUAPL are introduced in Sec. [[II-D).

The proposed SAL loss is formulated as

L:sal = E N
(xf,97)€T,
(@.)eS

+ Ly <[m = Dy i+ Im - ny;,ﬂi) } ;

where D, ; = |[|f'(z) — f°(z})|]2 and m is the same
margin used in Lg,. :cj is a clean source sample. x’ f
is the adversarial counterpart of the clean sample x! gen-
erated using the label-free adversarial training [4]: =’ f =
Arg Max, |57 _q1), < KL(p'(@)|[p"(x})), where KL(-) repre-
sents KL-divergence. In practice, to include sufficient number
of source anchors of each class in a mini-batch with size n; to
compute the SAL loss, we randomly sample [n:/K| source
samples of each class as source anchors.

2 2
{ﬂ[ﬁfzyj](ptmg,j + Dy ;) (3)

D. Pseudo Labeling (PL)

To align the unlabeled target data with the labeled source
data, SAL loss requires using pseudo labels. Naive strategies
typically use a manually set threshold and accept all predicted
probabilities higher than that threshold as valid pseudo labels.
However, such strategies cannot balance the quantity and
quality of valid pseudo labels. A greater threshold would help
select higher quality labels but could result in small number
of valid samples. In contrast, a lower threshold would yield
abundant samples, but with noisy labels.

To deal with the problem, we propose QUality-QUantity
Auto-balanced Pseudo Labeling (QUAPL) strategy, which
evaluates both the quality and quantity of pseudo labels
under various thresholds to automatically determine the best
threshold.

Quantity Computation: Let S¢ = {(xf,v]) |
argmaxeqy, gy Pe(®;) = ¢} denote a sample
set composed of all the source test samples
predicted as class ¢ € {1,..,K}, where pg(-)

represents the k-th entry of the label generator’s K-
dimensional prediction. Let ¢ € {Zt|i € {1,..,L}}
denotes a discretized PL threshold on class ¢ and
Vye = {(=5,97) | (x3,97) € 8% pel=]) > 7} © S
represents the correspondingly %enerated valid sample set.

The quantity is evaluated as ‘I?:I .
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Quality Evaluation: To evaluate the quality of the pre-
dicted labels, we split the sample set S¢ into L disjoint
subsets based on the range of the predicted probability
pe(x?). The [-th sample subset (I € {1,...,L}) is denoted
as S = {(af,47) | (@,u5) € 8, pe(xf) € (4 £}
For a nonempty subset Sf, the label generator’s prediction
accuracy is formulated as Acc] = E(m;,y;j)eslc]l[y;j:cy The
confidence of the label generator on a nonempty subset Sf
is Conj = E(g: ys)esepe(]), ie., the mean prediction value.
Following [61]], the calibration of the label generator is defined
as

Cal] =1 —|Acci — Conjl, 4)

which indicates the consistency between the confidence and
accuracy of the label generator [61].

Finally, we define a quality-quantity score Q(-) of PL
threshold ¢ as

Quality
Ve ‘
) = 7 . Acc - Cal’) . 5
Q)= o L E__, (e Cal).
Si#o
Quantity

It is worth noting that calibration indicates how likely a
generator predicted label may be correct. Good calibration has
been assumed by the existing pseudo labeling works. However,
as pointed out by the previous work [61]], deep learning models
are usually mis-calibrated. By considering both accuracy and
calibration, we strike a good balance between them when
generating the pseudo labels.

To automatically select the best threshold, we calculate
Q(~°) for all v¢ and use the one with the highest score as the
optimal threshold 7¢ for class ¢, i.e., 7° = argmax,. Q(y°).
Fig. B|illustrates how QUAPL balances the quantity and quality
of pseudo labels through the quality-quantity score Q(y¢).
Without loss of generality, we use the class ‘0’ (c=0) in
the MNIST dataset [10] as an example. When increasing the
value of 7°, the quality-quantity score (") initially increases
gradually. In this stage, since the PL threshold is relatively
small, most the samples are selected, so the quantity term in
Q(7°) does not change much. As the PL threshold further
becomes greater, the quality of the selected pseudo labels
quickly increases. Therefore, (") is dominated by quality in
this stage. Until 70 = 0.91, Q(+") reaches its peak value. After
that, it goes down rapidly. In this stage, because the quality of
the selected pseudo labels is already good, further increasing
the threshold cannot effectively increase the quality. However,
many samples are filtered out by the large threshold. Thus, the
quantity term reduces quickly, which causes a significant drop
of Q(7°). The peak of the curve marks the tipping point that
the dominance shifts from quality to quantity. Thus, 7° = 0.91
for this peak is chosen as the optimal threshold 79 for class
‘0.

In our work, the data in the target and source domains are
on the same task, despite the distribution difference between
them. Therefore, a model may have a similar quality-quantity
relationship in both domains. We then apply the label generator
with the set of thresholds {7!,..., 7%} selected using the
test samples in the source domain to the unlabeled target
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~
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Fig. 3. The illustration of how QUAPL works to balance the quality and
quantity of the valid pseudo labels.

domain samples. Let y; = argmaxyc(y  xy Pr(]) denote
the predicted label of x!. A pseudo label considered to be
valid, if pg: (x!) > 79 The SAL loss is then computed using
the target domain sample set 7 = {(z!,§!) | =t € T, 4! =
argmaxye 1 iy Pr(®]), pye(®f) > 79}, In practice, we
compute the thresholds twice during the training procedure.
We first use the trained source model F'*(-) as the label
generator and determine the initial set of thresholds. After v
epochs, when the target model ' becomes stable, it kicks in
to serve as the label generator. The second set of thresholds
is computed using the new label generator.

E. Overall Loss Function and Training Procedure

Although the proposed SAL loss with QUAPL can uti-
lize most of the unlabeled target samples, it is inevitable
that some target samples cannot be used due to the lack
of reliable pseudo labels. To make use of the most of all
data, we include the label-free adversarial training loss and
UDA losses in the the target model training. Following [6],
the label-free adversarial training loss can be formulated as
Lifat = Egee7KL(p"(2")|[p" (x)). For UDA loss Ly, We
investigatedltwo representative UDA methods using different
mechanisms, i.e., ADDA [24] and SRDC [5]. ADDA applies
an adversarial-discriminative loss to force the target model
F*'(-) to map the target samples into the same representation
space as the source model F*(-). SRDC is a deep clustering
based method, which achieves state-of-the-art performance by
regularizing source and target domain feature distributions
with additionally introduced auxiliary distributions. The over-
all loss function for target model training is:

Etgt = /\salﬁsal + Elfat + ﬁudm (6)

where )4, is a positive weighting parameter.

Alg. 1 shows the overall training procedure of the proposed
UCAT. First, a discriminative and robust source model F** is
trained with L. Then, the robust target model F'* is trained
by optimizing L;q. In this process, the previously trained
F® has three uses: a) its parameters are used to initialize
Ft; b) it is served as the label generator to provide pseudo
labels to the SAL loss until F* is converged; ¢) it provides
representations of source data as source anchors to L4,;. When
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Algorithm 1 The overall training procedure of UCAT.

Input: source domain data {(z$,y$)}2" ; target domain data
{wﬁ}f\gl, batch size n;; weighting parameter \,;.
Output: target model I
1: Train a discriminative and robust source model F'* with
L. on the source domain data.
Initialize the target model F* = [
Initialize the label generator g = F°.
Select class-wise pseudo-label thresholds via QUAPL.
while L;,; has not converged do
Form a source batch: randomly sample [n;/K | source
data of each class as source anchors {(xf, y5)} .

7: Form a target batch: randomly sample n; target data
{zi}i)-

8: Form the target pseudo-labeled batch 7 from the target
batch.

9: Compute L4, with {(zf,y?)

10:  Compute L;pq; with {x!};.

11: Compute Lq; with {(z5, )}, & T.

12: £tgt = Asal - £sal + ﬁlfat + ﬁuda

13: Update the parameters of F* by minimizing ;4.

14: end while

15: Update the label generator g = F*.

16: Re-select the pseudo-label thresholds with QUAPL.

17: while L4 has not converged do

18: Repeat Step 6 - Step 13.

19: end while

20: Return F*

A i

¢ t\ne
iy &z

the target model converges with the pseudo label provided by
the source model, F'* will replace F'* as the label generator
to provide better pseudo labels. With this new label generator,
the target model will be iteratively trained until it reaches a
new convergence.

IV. EXPERIMENTS
A. Datasets

1) Handwritten digits (DIGITS): DIGITS includes three
data domains, i.e., MNIST (M) [10], USPS (U) [9] and
MNIST-m (M-m) [11]. The number of samples are imbal-
anced across the three domains, with 100,000 binary images
in MNIST, 9,298 binary images in USPS and 68,002 RGB
images in MNIST-M. The binary images in the MINIST and
USPS dataset are converted into RGB images. We follow the
original dataset split for the train and test set in the source and
target domain.

2) Office-31 [12]]: Tt is composed by 31 classes of images
from three imbalanced domains, i.e., Amazon (A), Webcam
(W) and DSLR (D). The datasets are imbalanced across
domains, with 2,817 images in domain A, 795 images in
domain W, and 498 images in domain D. There are a total of
31 classes shared across domains. Both the target and source
domain data are split to training and test sets following the
ratio of 4:1.

3) VisDA-2017 [13)]: This is a large-scale dataset focus-
ing on the Synthetic-Reality(S—R) adaptation. In the source
domain, 120,000 synthetic images are used for training, and

32,397 images are reserved for testing. In the target domain,
40,000 images are randomly selected for training, and the
remaining 10, 000 images are kept for testing.

4) Office-Home [62]]: This challenging benchmark dataset
consists of 65 classes shared across four extremely distinct
domains: 2,427 Artistic images (Ar), 4,365 Clip Art images
(CD, 4,439 Product images (Pr), and 4,357 Real-world
images (Rw). All 4 domains are split into training and test
sets in a ratio of 4:1.

B. Baseline Methods

To the best of our knowledge, this is the first work focusing
on adversarial robustness in an unlabeled target domain. We
compare the proposed method with two types of baselines
introduced in Sec.[l} i.e., SAT finetuned UDA (SATFT+UDA)
and direct integration of label-free adversarial training loss
with UDA (LFAT+UDA). For each of the two types, multiple
baseline models are created by using different UDA methods
(ADDA and SRDC) and PL strategies. In addition, we also in-
clude the results of using fully supervised adversarial training
(w/ PGD) in the target domain as a reference.

C. Implementation Details

1) Training Details: A modified LeNet [10], ResNet-
50 [63], ResNet-101, and ResNet-50 are used as the backbone
models in DIGITS, Office-31, VisDA-2017, and Office-Home,
respectively. For each benchmark, only the last FC layer
is modified to fit the task. Mini-batch Stochastic Gradient
Descent (SGD) is used as the optimizer in all the training
processes with a momentum of 0.9 and a weight decay of
2e — 4. The total training epochs for DIGITS, Office-31,
VisDA-2017, and Office-Home are 80, 250, 300, and 200,
respectively. We follow the same learning rate schedule as
described in [5]].

Switching the pseudo label generator at a particular epoch
v is determined by the convergence of the training loss L.
In our experiments, v is set to 20, 100, 200, and 100 for DIG-
ITS, Office-31, VisDA-2017, and Office-Home, respectively.
The adaptive PL thresholds are only calculated twice during
training: first at the beginning when setting the fixed robust
source model F'*(-) as the label generator, then at the time of
switching the label generator to using the target model F(-).
Compared with the overall training time, the computation time
for PL threshold selection is negligible. For each experiment,
we trained the model from scratch three times with different
random seeds and reported averaged performance in the form
of mean + std. All our networks were implemented using
PyTorch v1.3.0.

2) Hyperparameter Selection: To balance the contributions
of the losses, both A\, and A4, are fixed to be 0.01 in all the
experiments. In QUAPL, to balance the fineness of thresholds
7¢ and the computation complexity, L is fixed to be 100 in
all the experiments. For margin size m, we performed a grid
search in the source domain and then adopted the selected
value in the target domain. It is set to be 10 for DIGITS and
25 for the other benchmarks. A further sensitivity analysis of

m is presented in Sec.
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TABLE I
CLEAN DATA ACCURACY (ACC. (%)) AND ADVERSARIAL ROBUSTNESS (ROB. (%)) ON DIGITS. THE BEST RESULT IN EACH COLUMN IS MARKED IN
BOLD (EXCEPT FOR THE LAST ROW).

AT methods Acc. MTU Rob. Acc. UTM Rob. Accl.w—>[M mRob.

SATFT(0.8) +ADDA 70.3+0.2 | 48.8+0.2 68.740.2 | 46.7£0.3 58.44+0.3 | 42.840.1

SATFT(0.8) +SRDC 77.5+0.3 | 56.4+0.2 74.840.2 | 54.5+0.2 66.2+0.2 | 48.5+0.3

SATFT(QUAPL) +ADDA 72.44+0.2 | 51.0+0.1 712402 | 49.5+0.1 60.7+0.2 | 44.24+0.2

SATFT(QUAPL) +SRDC 79.3+0.1 | 58.3%+0.1 78.31+0.2 | 56.2+0.1 67.7+0.2 | 53.84+0.1

LFAT +ADDA 82.4+0.3 | 53.44+0.2 754403 | 54.2+£0.1 56.7£0.3 | 36.4+£0.2

LFAT +SRDC 88.1+£0.3 | 57.2%0.1 82.21£0.2 | 60.8+£0.1 68.5+£0.2 | 48.2+0.2

UCAT AppA 90.440.1 | 78.5+0.2 89.5+0.1 | 79.3+0.2 72.7+£0.2 | 64.0£0.2

UCATsrpc 96.6+0.1 | 86.91+0.1 97.2+0.2 | 90.3+0.2 86.6+0.1 | 74.5+0.2

Fully Supervised AT 96.2+£0.2 | 81.1£0.2 99.51+0.1 | 90.0£0.2 96.1+0.2 | 79.6+0.2
a. SATFT(0.8) + ADDA b. LFAT + ADDA ¢ UCAT oo SATFT+UDA and LFAT+UDA, it can be seen that incorpo-
I e ’ rating UDA in the adversarial training process (LFAT+UDA)
N g%'& " benefits the clean data accuracy in most of the case (M—U,
A P RELI PP A éi‘ U—M), especially wheg using. advanced UDA method like
N .%} iz 2% M- SRDC. Such an observation verifies that SATFT+UDA would
N . T g “forget” the source domain knowledge in the finetuning pro-

i 3 cess.

However, on a more challenging task like M—M-m,
& SATFIOS) SR AL L UCATboc LFAT+UDA hardly outperforms SATFT+UDA and sometimes
.i e D: : even performs worse, especially on adversarial robustness. It
“; oo @:" o 0 el is because when the target domain has a larger distribution de-
L9 &4"""; el _‘y%;: .t g viation from the source domain, label-free adversarial training
. e, and . N SIE. loss is more likely to mislead the UDA training. To further
4 ~ fe verify this, we visualize the learnt representations on M—M-
N . - m with t-SNE [64] (see Fig. @). As shown in Fig. @p&e,

[ 00 Source clean samples ‘4’, °5°, ‘9’ @ @ @ Target clean samples A Target adversarial samples ‘4’ J

Fig. 4. Visualization by t-SNE on representations learnt by different adver-
sarial training strategies on DIGITS M—M-m. Hollow squares ((J) and Solid
dots (e) represent source and target clean samples respectively. Colors red,
blue, and green depicts clean samples of class ‘4’, 5°, and ‘9’ respectively.
Auburn triangles (A) represents adversarial samples of class ‘4’.

3) Adversarial Attacks: In our experiments, all the images
are normalized into the range of [0, 1] and [..-norm is the
metric to bound the adversarial perturbation. In the training
phase, PGD and label-free attack are used for generating
adversarial samples in source and target domains, respectively.
For MNIST and USPS, the perturbation radii is 0.3, and the
number of perturbation steps is 10 with step size = 0.07. For
other colorful image datasets, the attack perturbation is 0.031,
and the number of attack steps= 10 with step size= 0.007. In
Secs. and the target model robustness is evaluated
by PGD-20 with perturbation radii and step size the same as
the training phase. We also evaluate target model robustness
under a wide variety of attacks in Sec[[V-H|

D. Main Results

1) DIGITS: Tab. || presents the comparison of UCAT
with baselines on the DIGITS benchmark. For SATFT+UDA,
“QUAPL” indicates the use of the proposed QUAPL and the
fraction number is the manually selected threshold for the
naive PL.

UCAT outperforms all baselines on both clean data ac-
curacy and adversarial robustness. Comparing the results of

although the target adversarial samples of class ‘4’ (A) are
close to their corresponding clean samples (e), all of them are
mapped to ‘9’((O&e).

We also notice that on the task of M—M-m, comparing with
LFAT+SRDC, UCATappa achieves much higher adversarial
robustness, in spite of the accuracy on clean data is more close.
It demonstrates the significance of learning discriminative
representations. Comparing the visualizations in Fig. Bkc&e,
we can see that representations learnt by UCAT sppa are more
discriminative between classes and more compact within each
class, which makes the model more resilient to adversarial per-
turbations. Similar results are observed in Fig. 4f (UCATsrpc)-

Furthermore, Fig. @h&d illustrates the weakness of
SATFT+UDA on losing the knowledge from a source domain
learnt by UDA pretraining. After finetuning, not only the
source clean sample ‘4’ and ‘9’ are mixed together, but also
the target domain data of different classes are close to each
other. This explained the poor performance of SATFT+UDA.

2) Office-31: The results on Office-31 are presented in
Tab. Compared with the DIGITS benchmark, Office-31
includes more challenging tasks like D—A and W—A. Here
the weakness of LFAT+UDA becomes more evident. On
D—A, the performance of LFAT+UDA baselines drops up to
13.8% on clean data accuracy and around 20% on adversarial
robustness, compared with their SATFT(QUAPL)+UDA coun-
terparts with the same UDA strategies. In comparison, UCAT
consistently obtained high performance on both accuracy and
robustness on all the three tasks. On all the tasks except D—A
and W—A, UCATsrpc even significantly outperforms ‘Fully
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TABLE II
CLEAN DATA ACCURACY (ACC. (%)) AND ADVERSARIAL ROBUSTNESS (ROB. (%)) ON THE OFFICE-31. THE BEST RESULT IS MARKED IN BOLD IN EACH
COLUMN (LAST ROW EXCLUDED).

AT methods I A—W i W—D i D—A i A—D i D—W i W—A |

| Acc. [ Rob. ][ Acc. [ Rob. [ Acc. [ Rob. I Acc. [ Rob. ]| Acc. [ Rob. [ Acc. I Rob. |
SATFT(0.8) +tADDA 650202 | 517203 || 642£02 | 438403 || 472203 | 403203 || 642202 | 43.8£0.1 || 604E02 | 523202 || 51.6202 | 44.7£0.1
SATFT(0.8) +SRDC 661202 | 53702 || 87.5£02 | 58.6£02 || 59.2£02 | 44.8E02 || 66.8£0.2 | 452E0.1 || 79.5E0.2 | 55.7E02 || 603E0.1 | 462502
SATFT(QUAPL) +ADDA 66.8F02 | 53.0£02 || 660502 | 44.6E0.1 || 485502 | 41.1E03 || 66.0£02 | 44.6E0.1 || 64.8E0.2 | 55.620.1 || 534502 | 46.2E0.1
SATFT(QUAPL) +SRDC 63.8+0.2 54.6+0.1 90.2+0.2 61.7£0.1 63.4+0.2 46.5+0.2 68.9£0.1 47.240.1 83.2+£0.2 60.2+0.1 62.2+0.2 47.1+0.2
SATFT(QUAPL) +ADDA +src || 642F0.1 | 507201 || 63.5F0.1 | 412202 || 442502 | 38.0£02 || 634X01 | 403L0.1 || 613E0.1 | 52.8£0.1 || 502£02 | 43101
SATFT(QUAPL) +SRDC +src || 65.10.1 | 51.5F0.1 || 89.1F0.1 | 58201 || 607202 | 427202 || 632E£02 | 43.0£0.1 || 80402 | 57.6E0.1 || 575502 | 435202
LFAT +ADDA 66.5+0.2 37.7+0.1 84.3+0.2 53.540.1 49.54+0.2 22.140.1 64.34+0.2 33.5+0.1 88.6+0.1 42.340.1 31.6+£0.2 20.7+0.1
LFAT +SRDC 66.8X02 | 477202 || 962E0.1 | 63.8£0.1 || 49.6E0.1 | 263£02 || 67.2£0.1 | 44102 || 93.620.1 | 623F0.1 || 48.6302 | 285502
UCAT AppA 72.140.1 59.6+0.1 82.8+0.2 66.2+0.1 60.84+0.2 47.240.1 81.7+0.1 56.54+0.1 91.040.1 69.94+0.2 73.74+0.2 44.6 £+0.1
UCATsrpc 89.2+0.1 68.4+0.1 98.7+0.1 70.6+0.2 78.0+0.2 48.6+0.2 95.2+0.2 67.9+0.1 97.1+0.1 70.5+0.1 78.0+0.1 49.7+0.2
Fully supervised AT 80.5£0.1 | 59.7£0.1 || 92.1E0.1 | 64.0£02 || 773202 | 56.920.1 || 92.120.1 | 64.020.1 || 80.5E0.1 | 597202 || 773202 | 56.9£0.1

TABLE III data accuracy and target adversarial robustness. This result

CLEAN DATA ACCURACY (ACC. (%)) AND ADVERSARIAL ROBUSTNESS
(ROB. (%)) ON VISDA-2017. THE BEST RESULTS IN EACH COLUMN IS
MARKED IN BOLD (LAST ROW EXCLUDED).

S—R

AT methods Acc [ Rob.
SATFT(0.8) +ADDA 55.14£0.2 | 31.940.1
SATFT(0.8) +SRDC 64.0+0.2 | 44.5+0.2
SATFT(QUAPL) +ADDA 57.74+0.2 | 33.840.1
SATFT(QUAPL) +SRDC 66.3+0.1 | 46.24+0.1
LFAT+ADDA 52.740.2 | 27.610.1
LFAT+SRDC 60.4+0.2 | 38.6+0.2
UCAT ApDA 65.54+0.2 | 52.74+0.1
UCATsrpC 80.7+0.1 | 61.3+0.2
Fully Supervised AT 84.3+0.1 | 63.740.1

Supervised AT’. This observation may attribute to the fact that
UCAT can fully utilize both the source and target domain
images, while fully supervised adversarial training only has
access to the target domain data. It further demonstrates the
importance of fully utilizing the labeled source data.

3) VisDA-2017: The comparison of UCAT and the other
baseline models on VisDA-2017 benchmark is presented in
Tab. UCAT significantly outperforms all the baselines on
adversarial robustness with steady high accuracy on clean
data. Consistent with the observation on DIGITS and Office-
31, since the target domain severely deviates from the source
domain, LFAT+UDA suffered significant performance degra-
dation. Similarly, SATFT+UDA is limited by the lack of
guidance from the source domain.

4) Office-Home: The results on Office-Home are presented
in Tab. Consistent with the observations on other datasets,
UCAT significantly outperforms all the baselines on adversar-
ial robustness with steady high accuracy on clean data. In ad-
dition, we also observed that the proposed UCAT outperform
fully supervised adversarial training (the last row), especially
on the tasks with a small target domain, such as Cl—Ar,
Pr—Ar, and Rw—Ar.

E. Ablation Studies

In this section, effectiveness of all the components of
UCAT is evaluated on DIGITS M—U, and Office-31 A—W,
D—A. Tab. [V]presents the results of leave-one-component-out
ealuation of both UCAT apps and UCATsgpc.

1) Source Domain Contrastive Loss L..;: For both
UCATappa and UCATsgpc, removing L. in source model
training caused a drop of performance on both target clean

confirms our analysis of the experiments that mapping data
into a more discriminative and robust space can benefit both
clean data accuracy and adversarial robustness.

2) SAL Loss Lsq: Removing L, significantly harms
both the clean data accuracy and the adversarial robustness
on all the three tasks. The observation indicates that the
SAL loss plays a critical role to simultaneously align the
target and source domains and regularize the deviations caused
by adversarial perturbations, which leads to an increase of
robustness and high clean data accuracy.

3) Label-free Adversarial Training Loss L;s.;: Compar-
ing the rows ‘w/o. L.’ and ‘Full model’ in Tab. one
can see that incorporating label-free adversarial training loss
brings benefits to UCAT, instead of causing performance drop
like in LFAT+UDA. This phenomenon shows that, by using
source anchors, SAL loss can prevent L;;q; from misleading
the model training. By correctly aligning the representations
of clean-adversarial sample pairs, L;.; helps leverage the
target domain data without valid pseudo label from QUAPL
to improve the performance.

4) UDA Losses L.,4,: From the rows ‘w/o. L,q,” and
‘Full model’ in Tab. one can see that, for UCAT appa,
the L4, only brought limited benefits. However, the L, 4,
significantly increase the performance in UCATsgpc. On one
hand, the results indicate that the original UDA loss £, 4, can
help our UCAT better utilize all data from both source and
target domains. In addition, better UDA loss, i.e. SRDC loss in
our case, could have more positive contributions to the overall
UCAT clean sample accuracy. On the other hand, the model
robustness is less sensitive to the L,4,. It is mainly because
the robustnesss is brought from the target domain contrastive
learning with QUAPL-assisted SAL loss.

5) QUAPL: The rows with ‘Th=0.8" and ‘Th=0.9’ in
Tab. |V| indicate the baseline models using naive PL with
threshold = 0.8 and 0.9 in UCAT. Compared with these two
methods, UCAT using QUAPL improves on both clean data
accuracy and adversarial robustness.

We further investigated the effects of switching label gen-
erators in QUAPL. The result is presented in the row ‘w/o
switch’ in Tab. [V] The performance drop suggests that a well-
trained UDA model can generate better pseudo labels than a

source domain model, which in turn improves the performance
of UCAT.
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TABLE IV
CLEAN DATA ACCURACY (ACC. (%)) AND ADVERSARIAL ROBUSTNESS (ROB. (%)) ON THE OFFICE-HOME. THE BEST RESULT IS MARKED IN BOLD IN
EACH COLUMN (LAST ROW EXCLUDED).

AT method I Ar—Cl i Ar—Pr i Ar—Rw i Cl—Ar i Cl—Pr i Cl—Rw |

| Acc. ] Rob. || "Acc. | Rob. ]| Acc. [ Rob. ][ Acc. | Rob. || Acc. [ Rob. [ Acc. [ Rob. |
SATFT(0.8) +ADDA 36.410.1 18.240.1 40.6+0.2 | 18.340.1 48.9+0.2 | 24.540.1 41.0£0.1 18.740.1 43.7+0.1 | 20.8+0.1 50.2+0.1 | 24.5+0.2
SATFT(0.8) +SRDC 38.24+0.1 | 20.74+0.2 47.7+0.1 | 23.040.1 57.6+0.1 | 28.3+0.2 46.2+0.1 | 21.1+0.1 49.0+0.1 | 22.1+0.1 58.6+0.1 | 29.6+0.3
SATFT(QUAPL) +ADDA 38.6+0.1 | 21.04+0.2 45.840.2 | 22.640.1 53.240.1 | 26.74+0.1 44.5+0.1 | 20.4+0.1 459+0.2 | 21.6+0.1 54.940.1 | 28.3+0.2
SATFT(QUAPL) +SRDC || 40.9+0.2 | 21.940.1 || 54.940.1 | 23.5402 || 61.840.2 | 30.440.1 || 51.3£02 | 21.640.3 || 53.540.1 | 224402 || 64.840.1 | 31.6+0.1
LFAT +ADDA 33.540.1 17.64+0.2 38.7£0.1 17.5+0.2 52.5+0.3 | 24.31+0.1 38.640.1 18.440.2 42.4+0.1 17.04+0.2 54.5+0.1 | 28.840.1
LFAT +SRDC 36.9+0.2 | 21.240.1 44.240.1 22.640.1 58.740.1 30.61+0.2 52.940.2 | 20.540.1 47.240.1 22.940.1 63.5+0.1 33.240.2
UCAT AppA 39.6+0.1 | 20.840.1 50.5+0.1 | 21.140.1 55.1+£0.2 | 28.610.1 58.0+0.2 | 23.84+0.1 53.54+0.1 | 22.1+0.2 60.9+0.2 | 33.540.1
UCATSsrpc 47.5+£0.1 | 24.3+0.1 64.6+0.2 | 27.61+0.1 67.8+0.1 | 32.91+0.1 70.7+£0.2 | 27.9+0.1 66.1+0.2 | 28.61+0.1 72.4+0.1 | 36.8+0.2
Fully supervised AT 50.310.1 28.610.1 71.710.1 31.24+0.1 79.610.1 36.710.1 69.510.1 27.440.1 72.340.1 | 27.9+£0.1 71.0£0.1 34.610.1

AT method I Pr—Ar i Pr—Cl i Pr—Rw i Rw—Ar i Rw—Cl i Rw—Pr |

| Acc. ] Rob. [ Acc. [ Rob. [ Acc. | Rob. [ Acc. [ Rob. [| Acc. | Rob. || Acc. [ Rob. |
SATFT(0.8) +ADDA 38.6+0.2 | 19.740.2 36.6+0.2 | 13.9+0.2 41.3+0.3 17.8+£0.2 36.9+0.2 | 14.54+0.2 39.7+0.3 | 17.84+0.2 39.54+0.2 | 18.5+£0.2
SATFT(0.8) +SRDC 43.4+0.1 22.54+0.2 39.040.2 14.310.1 48.4+0.1 18.540.1 44.3+0.2 16.84+0.2 42.7+0.2 18.24+0.2 45.6+0.2 | 23.9+0.2
SATFT(QUAPL) +ADDA 40.3+£0.2 | 21.0+0.1 40.440.1 14.840.1 53.04+0.3 20.1£0.1 50.5£0.2 18.940.2 44.240.1 16.940.3 51.1+0.3 21.340.1
SATFT(QUAPL) +SRDC 48.9+0.1 23.240.1 43.2+0.1 16.240.1 60.5+0.1 21.6+0.1 56.740.1 21.340.1 46.9£0.1 19.440.1 58.2+0.1 25.640.1
LFAT +ADDA 38.21+0.2 18.240.3 32.740.1 14.310.1 42.140.1 20.940.1 55.7+0.3 26.21+0.2 36.91+0.2 17.3+0.2 40.6+0.2 | 20.2+0.2
LFAT +SRDC 42.8+0.1 23.040.1 35.6+0.1 18.540.1 52.64+0.2 | 24.340.1 64.8+0.2 | 31.04+0.2 40.3+0.2 | 21.54+0.2 47.8+0.2 | 25.840.1
UCAT AppA 46.1£0.1 | 21.1£0.1 34740.2 | 16.3£0.1 65.5+0.2 | 22.940.1 51.240.1 | 29.640.1 41.8+£0.1 | 21.6+0.1 61.84£0.2 | 32.440.1
UCATsrpc 64.31+0.1 | 26.61+0.1 46.1+0.1 | 21.140.1 74.4+0.1 | 31.240.1 74.6+£0.1 | 40.7+0.1 53.5+0.1 | 23.61+0.1 75.3+0.1 | 32.74+0.1
Fully supervised AT 63.3+0.1 | 24.540.1 50.5+0.1 | 24.840.2 78.6+0.1 | 31.940.1 73.7+0.1 | 39.740.1 54.6+0.1 | 26.140.1 75.5+0.1 | 31.2+0.2

TABLE V

ABLATION STUDIES ON ALL COMPONENTS IN UCAT EVALUATED ON DIGITS M—U, AND OFFICE-31 A—W, D—A. THE ROW ’w/o. switch’ MEANS
QUAPL WITHOUT SWITCHING THE LABEL GENERATOR.

Methods M—-U A—-W D—A
Clean |  Rob. Clean | Rob. Clean |  Rob.
w/o. Letr 86.6+0.1 | 71.840.1 | 67.3+0.2 | 51.64+0.2 | 54.8£0.1 | 36.7£0.1
w/o. Lgq] 833+0.2 | 56.1£0.1 | 67.2+0.1 | 48.5£0.2 [ 50.1£0.1 | 32.9£0.1
wlo. Lifat 86.1+0.1 | 72.94+0.1 | 66.2+0.1 | 54.24+0.1 | 57.3£0.2 | 40.8£0.1
w/o. L,da 85.7+0.1 | 76.5+0.1 | 67.44+0.1 | 55.7+0.2 | 56.6£0.2 | 44.5£0.2
UCATappa | Th=0.8 84.7£0.1 | 74.1£0.1 | 67.0£0.1 | 54.7£0.2 | 55.2£0.1 | 42.7£0.1
Th=0.9 87.840.2 | 77.44+0.2 | 70.940.1 | 57.84+0.2 | 58.4+0.1 | 45.3£0.2
w/o. switch 78.9+0.3 | 68.2+0.1 | 66.1+0.1 | 44.54+0.1 | 47.44+0.2 | 37.3+0.3
Non-robust src model 87.3+0.1 | 74.6+0.2 | 68.2+0.2 | 56.8+0.1 | 57.8£0.1 | 43.8+0.2
Adversarial src anchors 87.6+0.2 | 77.6+0.2 | 71.44+0.2 | 58.3+0.1 | 58.3£0.2 | 46.2+0.1
Full model 90.4+0.2 | 78.5+0.2 | 72.1+0.2 | 59.6+0.1 | 60.8+0.2 | 47.240.1
w/o. Letr 95.6+£0.1 | 76.1+£0.2 | 86.8+0.2 | 58.94+0.1 | 74.74+0.1 | 42.240.1
wlo. Lgq1 88.7£0.2 | 66.5+0.1 | 67.4+0.1 | 50.3£0.1 | 49.6£0.1 | 36.9£0.1
w/o. Lifat 96.0+£0.1 | 77.2+0.1 | 85.94+0.1 | 63.8+0.1 | 75240.2 | 44.0%0.1
w/o. Ly,da 84.6+0.1 | 75.4%£0.1 | 67.2+0.1 | 55.5£0.2 | 56.2£0.2 | 44.4£0.1
UCATSsrpc Th=0.8 93.8+£0.1 | 78.0+£0.2 | 85.94+0.2 | 65.1+0.1 | 72.24+0.1 | 43.940.1
Th=0.9 95.3+£0.1 | 80.2+0.1 | 87.4%+0.1 | 6534+0.2 | 74.94+0.2 | 45.7%0.1
w/o. switch 88.6+0.1 | 73.8£0.1 | 77.9£0.1 | 56.6£0.2 | 652£0.1 | 45.8£0.2
Non-robust src model 96.6+0.1 | 80.6+0.1 | 87.9+0.2 | 61.5+0.2 | 75.54+0.2 | 41.24+0.2
Adversarial src anchors 96.6+£0.2 | 86.1+0.1 | 88.6+0.1 | 67.1+0.1 | 76.1+0.2 | 47.7+0.2
Full model 96.6+0.2 | 86.9+0.2 | 89.2+0.2 | 68.4+0.1 | 78.0+0.2 | 48.610.1
a., b..,. the pseudo label generator is switched to the target model.
T a0 o] o There is a significant increase of the loss due to more validate
0.7 . o . .
801 W sample are included for training. The target domain clean data
5 e=fo ZZ / accuracy and adversarial data robustness presented in Fig. [Sp.
~os 5o v=120 shows that after the switching, both accuracy and robustness
o 40 are improved. This results justify the necessity of switching
© o the pseudo label generators, when the L, is converged.
®% 10 20 % @ 5 @ 7 s o 1 2 0 4 s 6 70 @ 6) Robust source model: Comparing the rows ‘Non-robust

Epoch number Epoch number

Fig. 5. Effects of switching label generators on a. training losses, and b.
clean accuracy and robustness.

The training process on DIGITS M—U of switching the
pseudo label generator is presented in Fig. [5] The converting
epoch v is determined by the convergence of the training loss
Lige. As shown in Fig. Eh, with the robust source model
as the label generator, the L:;,; converged in the first 20
epochs, indicating that the target model has been stable. Then

src model’ with the Full model in Tab. V, we can see that
using a robust source model indeed helps improve the model
performance in the target domain. The main reason is that
a robust model usually extracts/focuses on different features
compared to a non-robust model [65]. Thus, the features
extracted by a non-robust source model are not suitable for
serving as anchors in the training of a robust target model.
7) Clean source anchors: The rows ‘Adversarial src an-
chors’ show that using adversarial images as source anchors
leads to inferior performance. To further study how the adver-
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Fig. 6. Visualization by t-SNE on representations learned by a robust source
model. The source model is trained with L. a. The representations of the
source clean images. b. The representations of the source adversarial images.

sarial source anchors jeopardize the target model performance,
we visualize the representation space of a discriminative
and robust source model with t-SNE as in Fig. @ Here,
different colors indicate different classes. Fig. [6p shows the
representations of the source clean images and Fig. [6p presents
the representations of source adversarial images. Compared
with the compact clusters in Fig. [6p, the distributions of
the adversarial source samples within the red dash circles
in Fig. [6b are more dispersed and less discriminative. This
less discriminative distribution will introduce extra noise and
compromise the alignment of the target domain representations
to the source domain.

F. Further Analyses on QUAPL

In this section, we further analyze and evaluate QUAPL
from three perspectives: a) How does QUAPL balance the
quality and the quantity of pseudo labels? b) Whether it is
reasonable to select PL thresholds on the source test set and
then directly apply these thresholds to the target domain?
¢) Will increasing the frequency of PL threshold selection
significantly boost the performance?

1) Balancing Quality and Quantity: In Fig.[]| we present
the class-wise quality-quantity scores Q(7°) calculated over
varying thresholds ¢ on DIGITS-M. As the threshold in-
creases to improve the quality of pseudo labels, the score
Q(7°) increases initially, supported by the label quality. How-
ever, when the threshold gets greater than a certain value
(around 0.9 on DIGITS-M), the score Q(v°) starts to drop
rapidly due to the reduction in label quantity.

14 o 4 14 =
®  ® © © o
S & S & o

Quality-quantity Score Q(y¢)
°
&

0‘5520 30 40 80 90 100

50 60 70
Pseudo label threshold y¢

Fig. 7. The curves of the quantity-quality score as a function of PL threshold.

Tab. [VI] shows the quality (Rat, the ratio of the valid
samples) and quantity (Acc, the accuracy of the valid samples)

TABLE VI
COMPARISON OF DIFFERENT PLS ON DIGITS M—U. THE RESULTS ARE
EVALUATED ON THE TARGET DOMAIN TRAINING SET. Rat: THE RATIO OF
THE VALID SAMPLES IN THE TARGET DOMAIN. Acc: THE ACCURACY OF
THE VALID SAMPLES IN THE TARGET DOMAIN.

Evaluation [ 70" [ "' [ 2 [ "3 [ 4 [ 5 [ 76 [ 7 [ 8 ] 79 [ Ag

Ratin—o.8

83.6

81.5

78.2

73.6

84.9

72.1

85.5

834

92.7

78.2

814
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74.7

74.6

63.5

55.6

79.8

65.5

71.6
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84.1
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79.2

734
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78.6
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834
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of pseudo labels in the target domain training set generated by
different approaches. Compared with QUAPL, although naive
PL with a threshold = 0.8 selects more samples (Rat +7.1%,
Th=0.8 v.s. QUAPL), the quality of the selected samples is
significantly lower (Acc —7.0%, Th=0.8 v.s. QUAPL). When
the threshold is increased to 0.9, naive PL suffers a significant
drop on sample quantity (Rar —9.0%, Th=0.9 v.s. Th=0.8)
with improved on sample quality (Acc +6.8%, Th=0.9 v.s.
Th=0.8). By adaptively applying the automatically determined
thresholds to each class, QUAPL obtains a higher gain on
quality (Acc +0.2%, QUAPL vs Th=0.9) with a lower loss on
quantity (Rat +1.9%, QUAPL vs Th=0.9) without requiring
manual tuning.

2) From Source to Target Domain: As mentioned in
Sec. we select PL thresholds on the source domain
because a model would have a similar quality-quantity rela-
tionship in both source and target domains. Here, we conduct
experiments to verify this assumption. We independently com-
pute the QUAPL-selected PL thresholds on the source domain
and the target domain (given the ground truth labels) with the
source model as the label generator. The consistency between
the source and target PL thresholds is then evaluated. Fig. [8p-
d present the QUAPL-selected PL thresholds of source (blue
lines) and target (red lines) domains on four different UDA
tasks, including M—U, U—M, A—D, and D—A. The x-axis
shows the names of all classes in the dataset. From left to right,
the classes are sorted according to the PL thresholds selected
on the source domain. We can intuitively observe that, as the
PL thresholds selected on the target domain follow the same
increasing trend as their counterparts selected on the source
domain. We noticed that most of the PL thresholds selected on
the target domain are slightly higher than their source domain
counterparts. It is because the source model performs relatively
worse on the target domain, QUAPL automatically selects
higher PL thresholds to achieve better pseudo label quality.
Pearson correlations between the PL thresholds selected on
the source and the target domain. The resulting 7 values are
reported in the top left corner of each figure. The high r values
verify the good consistency between the QUAPL-selected PL
thresholds in the source domain and target domains, which
indicates that it is reasonable to select the PL thresholds with
the source domain samples.

3) Selection Frequencies: In the default settings, the PL
thresholds are only selected two times in the whole training
process. Here, we evaluate the effects of increasing the selec-
tion times on the UCAT performance. We gradually decrease
the interval of updating the PL thresholds. The results are
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Fig. 9. Evaluating the target model performance with different epoch interval
for the pseudo label threshold selection.

shown in Fig. O] Fig. [Pp, b, and c respectively present the
variant of the clean data accuracy, the adversarial robust-
ness, and the PL threshold selection time consumption on
M—U and U—M. Compared with only updating the pseudo
label generator twice (the rightmost point on each figure),
higher updating frequency brings very limited improvement
in accuracy (< 0.5% increment) and robustness (< 0.4%
increment), but costs significantly more time (> 38 min). It
is because the PL thresholds did not change much after the
second selection when the target model take place the of the
source model to serve as the label generator. Similar results
on the task A—D and D—A are shown in Fig. EH, e, and
f. Considering the trade-off between model performance and
time consumption, we keep the original experimental settings.
However, for other different tasks in other future work, we
still recommend following this analysis to select the optimal
epoch interval.

G. Hyperparameter sensitivity.

The margin size m in L, and L, is the only hyperparam-
eter need to be tuned for different tasks. To select appropriate
m, a grid search is performed in the source domain (L.¢,-) and
then the selected value is directly adopted to the target domain
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Fig. 10. The sensitivity of UCATappa W.r.t. hyperparameter margin size m.
The accuracy and robustness in the target domain are evaluated on the tasks
of a. M—U and b. A—W.

TABLE VII
ROBUSTNESS(%) EVALUATION OF UCATsrpc UNDER DIFFERENT
NON-TARGETED ADVERSARIAL ATTACKS (BIM-40, PGD-40, PGD-100,
FAB-100 AND CW-100).

Untargeted Attacks DIGITS Office-31 VisDA-2017
M—-U | U—-M A=W | W—A Syn.—Real

BIM-40 86.3 88.2 66.9 48.0 60.3

PGD-40 86.4 88.3 67.1 47.7 59.8

PGD-100 85.5 87.9 67.2 46.7 58.3

FAB-100 84.9 86.6 65.5 46.0 574

C&W-100 82.8 85.6 64.4 45.2 56.1

TABLE VIII

ROBUSTNESS(%) EVALUATION OF UCATgrpc UNDER DIFFERENT
TARGETED ADVERSARIAL ATTACKS (BIM-40, PGD-40, PGD-100,
FAB-100 AND CW-100).

Targeted Attacks DIGITS Office-31 VisDA-2017
M—U | U—-M AW | W—A Syn.—Real
BIM-40 88.2 89.4 69.7 50.5 61.5
PGD-40 87.6 89.0 69.1 50.2 61.5
PGD-100 86.9 88.9 68.7 48.8 60.6
FAB-100 86.7 88.5 68.6 48.5 60.1
C&W-100 85.5 87.2 67.8 48.1 59.3

(Lsq1)- Fig. @l presents the performance of UCATspps on
the two tasks (DIGITS M—U and Office-31 A—W) under
varying m. It can be seen that the target model performance
(clean data accuracy and adversarial robustness) do not vary
a lot around the margin selected based on the source model.
The performance on other tasks follows the similar trend.

H. Robustness Under Different Attacks

To evaluate the generalizability of the adversarial robustness
of UCAT, we evaluated UCATsgpc under multiple adversarial
attacks, including BIM-40, FAB-40, PGD-40, PGD-100 and
CW-100 (CW loss optimized by PGD-100). All other settings,
such as perturbation radii and step size, are the same as those
introduced in Sec. [V=Cl The results in Tab. [VII show that
UCAT can effectively defend against various attacks.

In addition, we evaluate the UCAT robustness under targeted
attacks with the same five adversarial attack methods. In our
experiments, each class is randomly assigned a targeted label
different from the ground truth label. For each attack method,
we run the experiments five times and report the average
value in Tab. [VII] The results show that compared with
non-targeted attacks, UCAT generally performs better under
the targeted attacks. Such results are reasonable. Since non-
targeted attacks are less constrained, it is easier to generate ad-
versarial samples to manipulate the original model prediction.
This observation is also consistent with the previous work [3]].
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TABLE IX
ROBUSTNESS (%) OF UCATsrpc WITH DIFFERENT SOURCE MODEL
TRAINING STRATEGIES (BIM AND C&W). THE RESULTS ARE EVALUATED
ON OFFICE-31 A—»W.

Training method BIM-40 | PGD-40 | PGD-100 | FAB-100 | CW-100
BIM-10 66.9 67.1 66.6 66.2 65.6
C&W-10 66.7 66.7 66.5 66.7 65.8

Another thing worth of mentioning is that we adopt PGD
for source model training because PGD is the one of the most
efficient method for improving the model robustness. We also
conduct additional experiments using BIM and C&W in the
training phase with other settings kept unchanged. Tab.
shows the results on the Office-31 A—W. We can see that,
as long as the attack used in the training is strong, the model
can achieve good robustness.

V. CONCLUSION

In this paper, we present a new problem of adversarial
training in unlabeled target domain, which concerns training
an adversarial robust model in a target domain without data
annotation. Correspondingly, we propose a novel framework
of Unsupervised Cross-domain Adversarial Training (UCAT)
to tackle this problem by effectively utilizing knowledge
from the labeled source domain to enhance the representation
learning in the unlabeled target domain. Experiments on four
public benchmarks demonstrate that the proposed UCAT can
efficiently train a high performance model resilient to various
adversarial attacks in an unlabeled target domain. The effec-
tiveness of each components in the proposed framework has
been thoroughly validated through ablation studies. Domain
adaptation and deep learning robustness have been highly
valued in various applications, including autopilot, finance, and
medical image analysis. With both high accuracy and strong
robustness, our work has great potential in these applications.
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