
PHYSICAL REVIEW B 106, 144504 (2022)

Loop currents in AV3Sb5 kagome metals: Multipolar and toroidal magnetic orders
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Experiments in the recently discovered vanadium-based kagome metals have suggested that their charge-
ordered state displays not only bond distortions, characteristic of a “real” charge density wave (rCDW), but
also time-reversal symmetry breaking, typical of loop currents described by an “imaginary” charge density
wave (iCDW). Here, we combine density-functional theory, group theory, and phenomenological modeling to
investigate the complex charge-ordered states that arise from interactions between the low-energy van Hove
singularities present in the electronic structure of AV3Sb5. We find two broad classes of mixed iCDW-rCDW
configurations: triple-Q iCDW, triple-Q rCDW order, dubbed 3Q-3Q, and double-Q iCDW, single-Q rCDW
order, dubbed 2Q-1Q. Moreover, we identify seven different types of iCDW order, stemming from the different
vanadium-orbital and kagome-sublattice structures of the two pairs of van Hove singularities present above and
below the Fermi level. While the 2Q-1Q states trigger an orthorhombic distortion that breaks the threefold
rotational symmetry of the kagome lattice, the 3Q-3Q states induce various types of subsidiary uniform
magnetic orders, from conventional ferromagnetism to magnetic octupolar, magnetic toroidal, and even magnetic
monopolar order. We show that these exotic orders display unique magnetostriction, magnetoelectric, and
magnetoelectrostriction properties that can be probed experimentally to identify which iCDW state is realized
in these compounds. We briefly discuss the impact of an out-of-plane modulation of the charge order and the
interplay between these complex charge-ordered states and superconductivity.
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I. INTRODUCTION

Systems in which electronic correlations and nontrivial
topology are simultaneously present are of major interest
for the condensed matter community. The kagome lattice
[1] offers a promising platform to realize these phenomena
[2], as its electronic structure exhibits Dirac cones [3–5],
flat bands [6,7], and van Hove singularities [8]. Hence, the
recent discovery of a new family of superconducting (SC)
kagome materials [9], AV3Sb5 (A = K, Rb, Cs), with Tc ∼
2 K depending on the alkali atom [10–12], was met with great
enthusiasm by the community [2,13–15]. The nature of the
SC state remains widely debated: While experiments have
reported both nodeless [16–20] and nodal behavior [21,22],
theoretical models have proposed unconventional chiral d-
wave and f -wave states [23–26]. More exotic SC phenomena
have also been discussed, motivated by intriguing data, includ-
ing a time-reversal symmetry-breaking pairing state [21,27–
29], a pair density-wave [19], and charge-4e and charge-6e

condensates [30].
Superconductivity in these materials, however, emerges

inside a charge density wave (CDW) state, which onsets at
TCDW ∼ 100 K [9,31]. Importantly, TCDW and Tc anticorrelate
as a function of pressure, uniaxial stress, and doping [32–35].
Therefore, to achieve a complete description of the SC phase,
much of the experimental and theoretical research has fo-
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cused on elucidating the properties of the charge-ordered
state [8,19,27,28,36–60]. It is well established that the CDW
leads to a 2 × 2 increase of the unit cell in the (a, b) plane
[37], whereas along the crystallographic c axis the increase
can be a factor of 1, 2, or 4 depending on the alkali atom,
pressure, and temperature [31,41,44,48,61]. The threefold ro-
tational symmetry of the lattice has also been reported to
be broken at either TCDW or well below the onset of CDW
order [38,46,47,62,63]. Consistent with these observations,
a second CDW phase has been observed to emerge in the
phase diagram of certain compounds [29,61]. These results
are compatible with a scenario in which multiple CDW states
with wave vectors sharing the same in-plane components
(1/2, 1/2, Qz ) have comparable energy scales, as suggested
by first-principles calculations [39,53,54,60].

The most surprising property of the CDW state, which
makes it stand out compared to other CDW phases like those
seen in metallic chalcogenides [64–67], is that it appears
to break time-reversal symmetry, as reported by scanning
tunneling microscopy (STM), muon spin resonance (μSR),
and magneto-optical Kerr effect (MOKE) measurements
[21,27,28,37,49,63,68]. A time-reversal symmetry-broken
charge order has a natural interpretation in terms of periodic
patterns of loop currents [69,70], reminiscent of the Hal-
dane model for the quantum Hall effect [71]. Theoretically,
these loop currents are described in terms of an “imagi-
nary” CDW (iCDW) order parameter—to be contrasted with
a “real” CDW (rCDW) order parameter describing bond dis-
tortions or charge variations at the lattice sites [70,72,73].
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The existence of such loop currents is further supported
by recent measurements of field-tuned chiral transport in
CsV3Sb5 [74]. Previous work has shown that the combination
of van Hove singularities (vHs) in the electronic dispersion
and electron-electron interactions can promote such iCDW
states [50–52]. Importantly, the symmetries of the kagome
lattice generally entangle the iCDW and rCDW order pa-
rameters, creating complex charge-order patterns that display
both loop currents and bond distortions [50,51,57]. Moreover,
while the symmetry of the rCDW order parameter can be
inferred from first-principles and recent phonon spectroscopy
data [39,48,53,54,60], the symmetry of the iCDW state re-
mains unsettled. Thus, distinguishing the unique signatures
of the many allowed mixed iCDW-rCDW configurations is
paramount to establish the origin of the charge-order insta-
bility and, ultimately, the properties of the normal state from
which superconductivity emerges.

In this paper, we combine group theory, first-principles
calculations, and phenomenology to classify the viable iCDW-
rCDW configurations that arise from interactions between
the low-energy electronic states associated with the vHs
of AV3Sb5, which are located near the three symmetry-
equivalent M points of the Brillouin zone (BZ). The key
point is that there are multiple low-energy vHs—a pair of
points above and a pair of points below the Fermi energy—
with different vanadium orbital characters (dz2 , dxz, and dyz)
and distinct vanadium sublattice polarization (p type, cor-
responding to “pure” sublattice polarization, and m type,
corresponding to “mixed” sublattice polarization [52,75]).
From this rich landscape, we find various intraorbital and
interorbital loop-current patterns, resulting in seven different
types of iCDW order parameters, corresponding to seven dif-
ferent irreducible representations (irreps) of the space group.
In the presence of spin-orbit coupling, an iCDW transition
necessarily triggers a spin density wave (SDW) at the same
wave vectors [76], which could in principle be probed by
neutron scattering. By using group theory, we show that the
most natural way to understand the SDW is in terms of mag-
netic moments on the in-plane Sb ions, whose directions (i.e.,
in-plane versus out-of-plane) depend on the orbital character
of the iCDW order.

Remarkably, all cases considered here display the same
iCDW-rCDW coupled Landau free energy. By analyzing the
minima of this free energy, we find two general types of mixed
iCDW-rCDW configurations for each of the seven iCDW or-
der parameters. The first one is a 3Q-3Q configuration, in
which the iCDW and rCDW order parameters both condense
at the three distinct M wave vectors. The second one is a
2Q-1Q configuration, where the iCDW order parameter con-
denses at two distinct M wave vectors and the rCDW order
parameter condenses at the remaining M wave vector. We note
that, while the first type of mixed iCDW-rCDW configuration
was discussed in Ref. [50] for the case of intraorbital iCDW
order, here we also consider interorbital iCDW states as well
as the 2Q-1Q configuration.

Given the challenges in directly probing loop currents ex-
perimentally, we also analyze the experimental manifestations
of these different mixed iCDW-rCDW configurations. Besides
the finite-q magnetism (i.e., SDW) triggered by the iCDW
alone, the mixed iCDW-rCDW phases with 3Q-3Q order

also display uniform (i.e., q = 0) magnetism. In the case of
an iCDW involving the same vHs, the latter corresponds to
ferromagnetic (FM) order with spins on the Sb sites pointing
out of the plane. Conversely, in the case of iCDW involving
different vHs, the 3Q-3Q mixed phase displays no net dipolar
moment. Instead, we find that it gives rise to exotic types
of uniform magnetism, such as octupolar, toroidal, and even
monopolar magnetic order. We show that each of these sub-
sidiary orders couples uniquely to a combination of external
magnetic, electric, and strain fields, displaying characteristic
magnetostriction and multiferroic properties that can be de-
tected experimentally.

As for the 2Q-1Q mixed iCDW-rCDW configurations, al-
though they do not display any type of uniform magnetic
order, they spontaneously break the threefold rotational sym-
metry of the lattice and give rise to an orthorhombic distortion.
This happens regardless of whether the iCDW is made out of
electronic states from the same or different vHs. Finally, we
extend our analysis to the case of an iCDW modulated along
the c axis and discuss the broad implications of our results
for the identification of the complex charge-order patterns
realized in the AV3Sb5 compounds, as well as their interplay
with superconductivity.

This paper is organized as follows: In Sec. II, we analyze
the orbital and sublattice characters of the Bloch states at
the van Hove singularities at the M point and classify these
according to the irreps of the P6/mmm space group. The
candidate charge orders that can arise from the occupied vHs
Bloch states are introduced in Sec. III. These come in both
intra- (Sec. III A) and interorbital (Sec. III B) varieties, each
giving rise to distinct types of charge order with different
properties. In Sec. IV, we introduce the coupled Landau free
energy of real and imaginary charge orders and argue that a
mixed configuration—either a 3Q-3Q or a 2Q-1Q phase—
is generally favored. Section V presents the experimental
signatures of the mixed charge ordered phases. In Sec. VI,
we discuss the impact of the unoccupied vHs Bloch states.
Finally, Sec. VII contains our conclusions. Additional details
of the first-principles calculations are show in Appendix A,
whereas details of the classification of the Bloch states in
terms of space group irreps are included in Appendix B.

II. ORBITAL AND SUBLATTICE CHARACTER OF THE

VAN HOVE SINGULARITIES

We start by employing group theory to elucidate the sym-
metry properties of the low-energy electronic states near the
vHs. Interactions involving these states have been proposed
to give rise to different types of CDW and SC order [50–52].
Note that a similar type of analysis was previously done in
Ref. [50]. In this paper, besides recovering some of the results
of Ref. [50], we consider additional types of iCDW order and
mixed iCDW-rCDW configurations.

At room temperature, the AV3Sb5 compounds belong to
the crystallographic space group P6/mmm, which has a sim-
ple hexagonal BZ. In Fig. 1(a) we illustrate the vanadium
atoms of the kagome layer, with the three distinct vana-
dium sublattice sites highlighted by different colors. The vHs
correspond to the saddle points of the band dispersion located
at the M points of the BZ. There are three symmetry-related M
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FIG. 1. (a) Vanadium kagome layer of AV3Sb5 including the
choice of lattice vectors, a and b, and the three distinct V sublattice
sites, V1, V2, and V3 (in orange, blue, and green, respectively). The
generators of D2h, which is the V site-symmetry point group, are
denoted in gray and consist of two axes of twofold rotations, 2001 and
2010, as well as inversion. (b) Hexagonal BZ of the unit cell shown in
(a) with reciprocal lattice vectors a∗ and b∗ and the three symmetry-
related M points denoted by M1, M2, and M3. (c) Band structure
along the Ŵ − M − K direction obtained from DFT calculations for
CsV3Sb5 and the associated Bloch states near M1. Four vHs (two
occupied and two unoccupied) arise from the saddle points at the M
point, whose Bloch states are dominated by the dz2 , dxz, and dyz V
orbitals (insets). Note that the sign of each orbital is modulated along
M1. The extended 2 × 1 unit cell is denoted by the gray rectangle
in the insets. At three of the M1 vHs, the Bloch states are composed
of orbitals located at V1 (p-type vHs). The Bloch state at the fourth
vHs, which is farthest from the Fermi level, is composed of orbitals
located at the V2 and V3 sites (m-type vHs). The irreps of each Bloch
state are indicated in the insets.

points, which we denote by Mi and describe by the momenta
Qi = (±π, π√

3
, 0), (0, 2π√

3
, 0), with i = 1, 2, 3 [see Fig. 1(b)].

As shown in Fig. 1(c), electronic structure calculations using
density functional theory (DFT) predict two vHs below the
Fermi level and two vHs above the Fermi level at the M
point in the AV3Sb5 materials [8,9,25,37,53,77,78]. This is
consistent with results from angle-resolved photo-emission
spectroscopy (ARPES) [8,79]. We note that the band disper-
sions associated with the two vHs located above the Fermi
level undergo an avoided crossing before the M point is
reached, which masks the saddle points. While the electronic

TABLE I. Characters of the irreps of the little group of the M1

point. We only list the characters for the three generators of the
little group, and these irreps correspond to the space group irreps
by the same name. Note that even though the little group irreps
are one dimensional, the corresponding space group irreps are three
dimensional, because the star of M has three distinct wave vectors.

2001 2010 1̄

M±
1 +1 +1 ±1

M±
2 +1 −1 ±1

M±
3 −1 +1 ±1

M±
4 −1 −1 ±1

structure shown in Fig. 1(c) is obtained for CsV3Sb5, the
general features are valid for all the AV3Sb5 compounds. In
particular, the analysis of the wave functions presented below
does not depend on the specific compound in question.

Let us first analyze the wave functions of the vHs below the
Fermi level, i.e., the occupied vHs. The key result is that these
saddle points have atomic contributions from only one of the
three vanadium atoms in the unit cell. In other words, labeling
the three distinct V atoms in real space by Vi [Fig. 1(a)], the
saddle points at a particular Mi point in momentum space
below the Fermi level [Fig. 1(b)] arise from the dispersion of
orbitals at Vi only. Thus, in the notation of, e.g., Refs. [8,75],
both saddle points correspond to a p-type (i.e., “pure”) vHs.
To highlight the fact that these saddle points are located below
the Fermi level, here we denote them as p−-type vHs.

The main difference between these two vHs is that they
have different vanadium orbital characters. To show that, we
classify them in terms of the irreducible representations (irrep)
of the space group P6/mmm at the M point, which are labeled
by M±

α with α = 1, . . . , 4 (see also Table I). Note that italic
M refers to the irrep whereas regular M refers to the BZ point.
While the state at the occupied saddle point at M closest to
(but below) the Fermi level transforms as the M+

1 irrep, the
state at the lower one transforms as the M+

4 irrep. To connect
these irreps to the V d orbitals, we note that the latter can be
classified according to the irreps of the site-symmetry point
group of the V site, which is D2h. Considering first the fully
symmetric Ag orbitals, corresponding to the dz2 and dx2−y2

orbitals, we can use group theory to establish the irreps of the
bands induced by them [80],

Ag ↑ P6/mmm ∼ M+
1 ⊕ M−

3 ⊕ M−
4 . (1)

In this notation, the z axis is parallel to the crystallographic c

direction, whereas the x axis can be chosen parallel or perpen-
dicular to the b direction for V1. Note that even though all three
vanadium atoms are symmetry equivalent, they each have
a different local coordinate system that differ by a rotation
around the z axis. Hereafter, we use local coordinate axes such
that the x axes point towards the center of the hexagon formed
by vanadium atoms. Therefore, from Eq. (1), we conclude
that the occupied saddle point nearest to the Fermi level at
the M point has Ag orbital character. Our DFT calculations
(details in Appendix A) reveal that the dz2 orbital provides
the leading contribution, whereas dx2−y2 gives the subleading
one. The fact that the orbitals of only one of the three V atoms
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FIG. 2. Orbital and V-sublattice character of the Bloch states de-
scribing the two occupied vHs closest to (but below) the Fermi level
at each of the three M points. The phase of the orbital is modulated
along a different direction depending on the BZ point, M1, M2, and
M3. The orbital weight for a given M point is concentrated on a
distinct V site resulting in p-type vHs. Moreover, the V dxz orbital
is defined with respect to a local coordinate system, as explained in
the main text.

contributes to this saddle point is illustrated in Fig. 1(c), where
we show for simplicity only the dominant dz2 orbital. Note
that the appearance of only dz2 and dx2−y2 as orbital states is
a consequence of using a local coordinate system for each V
atom. As the local coordinate system is different at each V
atom, the lobes of the dx2−y2 states are also oriented differently
at each site. Hence, the dx2−y2 states cannot be defined with
respect to a global coordinate system. In this case, the states
at two of the V atoms would become superpositions of dx2−y2

and dxy, defined with respect to the global coordinate system,
in addition to the dominant dz2 orbital.

The second occupied saddle point at M closest to the Fermi
level arises from a B2g orbital (or B3g depending on the choice
of the x axis), which corresponds to the dxz orbital in the
aforementioned local coordinate system. If a single global
coordinate system is used for all three vanadium atoms in the
unit cell, then the B2g orbitals would correspond to a linear
superposition of dxz and dyz orbitals (see Appendix B for
details). In a manner similar to Eq. (1), the B2g orbital also
induces three bands near M, one of which transforms precisely
as M+

4 . This band also has a particularly simple wave function
with contributions from only a single V atom in the unit cell,
as shown in Fig. 1(c).

Figure 2 summarizes the main results of the group theory
analysis performed in this section for the Bloch states of the
occupied saddle points at the three different M points that are
closest to (but below) the Fermi level. At each M point, the
wave functions of a given saddle point are located on different
V atoms. Moreover, the spectral weight of each of the two
vHs at a given M point is dominated by a different type of
V d orbital, denoted here by Ag (dz2 , dx2−y2 ) and B2g (dxz).
As we discuss in Sec. III, the different symmetry properties
of the two occupied van Hove singularities have important
implications for the types of charge order that can arise in the
AV3Sb5 kagome metals.

We now move to the two unoccupied vHs whose energies
are above the Fermi energy. While they appear more distant
from the Fermi level than the pair of occupied vHs, the relative
energy difference is small enough that it is prudent to also

FIG. 3. Orbital and V-sublattice character of the Bloch states
describing the two unoccupied vHs above the Fermi level at each
of the three M points. The phases of the orbitals are modulated along
a different direction depending on the BZ point, M1, M2, and M3.
The dyz orbitals contributing to the Bloch state associated with the
unoccupied vHs closer to the Fermi level arise from a single V site.
This is similar to the situation in Fig. 2, thus resulting in a p-type
vHs. On the other hand, the dxz orbitals contributing to the other
unoccupied vHs arise from the other two V sites, leading to an m-type
vHs.

consider them in the analysis. The unoccupied vHs closest to
the Fermi level has the same p-type structure as the occupied
vHs—in this case, we denote it p+-type to emphasize that it
is located above the Fermi level. As illustrated in Fig. 1(c),
its wave function is dominated by the (local) dyz orbitals from
a single vanadium site. In contrast to the occupied vHs, the
lobes of these B3g orbitals point towards the V-V bonds. As a
result, this Bloch state transforms as a different irrep than the
two occupied ones, namely M+

3 .
The wave function of the unoccupied vHs that is farthest

from the Fermi energy in Fig. 1 has a completely different
sublattice structure from the other vHs discussed so far. As
shown in Fig. 1(c), this wave function is also dominated by
dxz orbitals in the local coordinate system, but from the other
two vanadium sites. More specifically, at the Mi point, the vHs
wave function has sublattice contributions from the vanadium
sites V j and Vl , where (i, j, l ) is a permutation of (1,2,3).
Using the nomenclature of Refs. [8,75], this is an m-type
(i.e., “mixed”) vHs; since there is no m-type vHs below the
Fermi energy in our low-energy model, we do not include the
subscript +. More importantly, the Bloch state of this m-type
vHs transforms as the M−

2 irrep of the space group. The minus
sign in the superscript is a consequence of the fact that this
combination of orbitals is odd under an inversion operation
with respect to the center of the hexagon formed by V sites.
As we will discuss later in Sec. VI, the distinct symmetry
properties of this particular vHs have crucial implications
for the types of iCDW that it can generate. In Fig. 3, we
summarize the orbital and sublattice character of the Bloch
states corresponding to the pair of unoccupied vHs.

III. CANDIDATE CHARGE ORDERS: OCCUPIED VAN

HOVE SINGULARITIES

Because they are the ones closest to the Fermi level, we
start our analysis by considering first only the two occupied
p−-type vHs at the M point. These are made out of different
vanadium orbitals from the same V sublattice. The role of
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the unoccupied vHs will be considered in Sec. VI. In our
approach, we depart from the electronic Bloch states obtained
in Sec. II, classify the possible intra- and interorbital charge
order parameters, and discuss their real-space realizations.
We note that a similar analysis was performed in Ref. [50]
considering only one of the saddle points.

Our focus is on the rCDW and iCDW order parameters
with wave vector QMi

, which we denote by Ni and �i, re-
spectively, following the notation of Ref. [50]. Importantly,
these order parameters must transform as one of the M±

α

irreps of the P6/mmm space group. Because the irreps as-
sociated with rCDW and iCDW transform in different ways
under the time reversal operation (even and odd, respectively),
they are distinct order parameters with different symmetry
properties. Formally, the irreps M±

α are all real and three
dimensional, arising from the three vectors in the star of M.
Hence, order parameters transforming as these irreps have
three components. As a consequence, the rCDW and iCDW
order parameters are independent of each other, and do not
transform as the real and imaginary parts of a single complex
CDW order parameter as this would have six components.

A. Intraorbital rCDW and iCDW

Let c
†
kσ

and d
†
kσ

denote the creation operator of an energy
eigenstate near the occupied M+

1 and M+
4 vHs, respectively.

Here, k denotes momentum and σ spin. Because the M+
1 and

M+
4 saddle points are composed of different types of orbitals

(Ag and B2g, respectively), the allowed intraorbital charge
order parameters with wave vector Qi are those that combine
fermions of the same species, i.e., fermions from the same
type of saddle point at two different M points.

As discussed above, there are two independent types of
charge order: rCDW and iCDW. The intraorbital rCDW order
parameters are given by (see also Ref. [50])

Nc
i =

∑

kσ

〈c†
k+Q jσ

ck+Ql σ
+ H.c.〉, (2)

Nd
i =

∑

kσ

〈d†
k+Q jσ

dk+Ql σ + H.c.〉. (3)

In the equations above and in all definitions of the CDW order
parameters in this paper, we use the convention that (i, j, l ) is
a permutation of (1,2,3). The subscript i = 1, 2, 3 denotes the
three components of the order parameter, associated with the
three wave vectors QMi

in the star of M. Similarly, the iCDW
order parameters are

�c
i = i

∑

kσ

〈c†
k+Q jσ

ck+Ql σ − H.c.〉, (4)

�d
i = i

∑

kσ

〈d†
k+Q jσ

dk+Ql σ − H.c.〉. (5)

Note that, despite the “imaginary” denomination, the iCDW
order parameter is real valued. As we emphasize below, the
distinction between rCDW and iCDW stems from the fact
that the first corresponds to charge disproportionation at sites
and/or bonds and the second, to loop currents.

The symmetry properties of the order parameters N
μ

i and
�

μ

i , with μ = c, d , can be directly obtained from the symme-
try properties of the creation and annihilation operators. The
latter, in turn, are determined by the Bloch states derived in

Sec. II, which transform as either M+
1 (for μ = c fermions)

or M+
4 (for μ = d fermions). Details of the derivation can

be found in Appendix B. For the rCDW case, we find that
both intraorbital order parameters N

μ

i transform as the M+
1

irrep of the P6/mmm group. Since the point symmetry part
of the little group at M is D2h, this means that each of the
three components of N

μ

i transforms trivially under the oper-
ations of D2h (with rotation axes aligned differently for each
wave vector), as shown in Table I—although they break the
translational symmetry along the ith direction. Such an rCDW
order corresponds to V-V bond distortions, and is consistent
with experimental evidence for the presence of an M+

1 lat-
tice distortion concomitant with the onset of charge order
[39,40,48]. The triple-Q rCDW order, which corresponds to
the condensation of all three components N

μ

i with equal am-
plitudes, gives rise to either the star-of-David or trihexagonal
bond-order configurations depending on the sign of N1N2N3

[54].
As for the iCDW case, we find that the order parameters

�
μ

i transform as the mM+
2 irrep of P6/mmm. Here, m denotes

the fact that the irrep is odd under time-reversal symmetry.
Additionally, it breaks the lattice translational symmetry and
the in-plane twofold lattice rotation axis, as indicated in Ta-
ble I. In Fig. 4(b), we illustrate �c

1 as hopping between dz2

orbitals centered on the V2 and V3 sites. The different colors
denote a relative phase of π/2 between orbitals on neighbor-
ing V atoms; it is such a phase difference that defines the
current direction. In this particular case, the translational sym-
metry is broken along the crystallographic a axis, as expected
for the wave vector Q1. A similar current pattern involving the
B2g orbitals also exists simultaneously to the pattern shown
in Fig. 4(b). Indeed, since �c

1 and �d
1 transform as the same

irrep, one order necessarily triggers the other one.
For a single-Q iCDW order involving only one V orbital,

which is shown more schematically in Fig. 5(a), the loop
currents close only at the edges of the system. In contrast, the
triple-Q iCDW configuration, consisting of an equal superpo-
sition of the three single-Q order parameters �

μ

i features the
closed loops shown in Fig. 5(b). The properties of this type of
order were previously considered in Refs. [50,51].

B. Interorbital rCDW and iCDW

Interorbital charge orders are constructed by combining
fermions from different types of occupied saddle points (M+

1
and M+

4 ) at two different M points. This case is more involved
than the intraorbital one, as only symmetric (s) and antisym-
metric (a) combinations of the interband bilinears transform
as irreps of the little group (see Appendix B). For the rCDW
case, we find

N s
i =

∑

kσ

〈c†
k+Q jσ

dk+Ql σ + c
†
k+Ql σ

dk+Q jσ + H.c.〉, (6)

Na
i =

∑

kσ

〈c†
k+Q jσ

dk+Ql σ − c
†
k+Ql σ

dk+Q jσ + H.c.〉, (7)

which transform as the M+
3 and M+

4 irreps, respectively. As
mentioned above, experimental evidence, as well as DFT cal-
culations, point to the rCDW order transforming as M+

1 as the
one realized experimentally [39,40,44,48,53,60]. Therefore,
we will not discuss the M+

3 and M+
4 rCDW orders further.
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FIG. 4. Schematics of the different constituents of the possible
iCDW phases involving the occupied vHs, in terms of currents
involving the Ag orbitals (dz2 ) and the B2g orbitals (dxz). Panel (a)
defines the phase of the orbitals, and [(b)–(d)] refer to iCDW order
along M1, where the Bloch states are centered on the V2 and V3

sites. While (b) corresponds to the mM+
2 intraorbital iCDW phase,

the mM+
3 and mM+

4 interorbital iCDW phases are the symmetric and
antisymmetric combinations of (c) and (d), respectively.

In contrast, the properties of the possible iCDW order are
not known from either experiments or first-principles calcu-
lations. Similar to the rCDW case, it is necessary to form
symmetric and antisymmetric combinations of the fermion
bilinears to construct proper iCDW order parameters,

�s
i = i

∑

kσ

〈c†
k+Q jσ

dk+Ql σ + c
†
k+Ql σ

dk+Q jσ − H.c.〉, (8)

�a
i = i

∑

kσ

〈c†
k+Q jσ

dk+Ql σ − c
†
k+Ql σ

dk+Q jσ − H.c.〉. (9)

We find that, while �s
i transforms as the mM+

3 irrep of
P6/mmm, �a

i transforms as mM+
4 . In terms of the symmetry

operations of the little group D2h, �s
i breaks the twofold rota-

tional symmetry with respect to the out-of-plane axis, whereas
�a

i breaks also the twofold rotational symmetry with respect
to the in-plane axis [see Table I and Fig. 1(a)].

The loop current patterns generated by these types of
iCDW order can be obtained by combining the two interor-
bital current patterns shown in Figs. 4(c) and 4(d) according
to Eqs. (8) and (9). The resulting single-Q symmetric combi-
nation (mM+

3 ), corresponding to �s
1, is shown schematically

in Figs. 5(c) and 5(e), and connects the V2 and V3 sites on
opposite sides of the hexagon. Notably, the current density
associated with this iCDW order vanishes on the kagome layer
and thus does not lead to a current on the V atoms. However,
net currents are induced both above and below the kagome
layer, which must necessarily involve the apical Sb atoms.
Note that the simultaneous presence of currents above and
below the plane implies that charge is conserved for these
configurations as well. The fact that there is no current on the
V atoms despite the iCDW order parameter being constructed
from operators of V atomic orbitals can be understood from
the structure of the orbitals in question. Indeed, the mM+

3
order parameter mixes orbitals with and without a node on
the kagome plane itself, as shown in Figs. 4(c) and 4(d). As
a consequence, such an iCDW phase is only possible in a
multiorbital model. The triple-Q configuration of the mM+

3
iCDW is shown in Figs. 5(d) and 5(f), and consists of counter-
circulating loops above and below the plane, which coincide
in a single hexagon. In contrast to the triple-Q mM+

2 iCDW
configuration, it does not give rise to a dipole moment. We
will see this manifested in Sec. V as well.

Finally, the single-Q and triple-Q configurations associated
with the antisymmetric (mM+

4 ) iCDW order, described by �a
1,

are depicted in Figs. 5(g)–5(j). Like the mM+
3 case, these

configurations feature no net currents in the kagome layer
itself. Moreover, the triple-Q case also consists of counter-
circulating loops above and below the plane that, once again,
results in no uniform dipole moment.

In Table II, we summarize our results for the symmetry
properties of the rCDW and iCDW order parameters formed
out of fermions from the two vHs below the Fermi level.

IV. MIXED REAL AND IMAGINARY CHARGE-ORDER

CONFIGURATIONS: OCCUPIED VHS

Experimentally, the condensation of a CDW order at TCDW

has been attributed to the softness of a specific M+
1 phonon

mode [39,40,44,48,53]. Since iCDW states transforming as
M+

1 (or mM+
1 ) do not appear, this soft phonon has been

interpreted as signaling the onset of an rCDW phase, cor-
responding to charge bond order. However, this does not
explain the observations of time-reversal symmetry breaking
below TCDW [21,27,63,81]. Instead, these observations could
be explained by an iCDW. To reconcile these two scenarios,
it has been pointed out that a multi-Q iCDW necessarily
triggers an rCDW due to the existence of trilinear terms in
the free-energy expansion of the coupled iCDW-rCDW order
parameters [50,51]. As a result, an iCDW instability may be
enough to explain the observations of both a soft M+

1 phonon
mode and the spontaneous breaking of time-reversal symme-
try below TCDW.
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FIG. 5. Illustration of the single-Q (upper panels) and triple-Q (lower panels) configurations associated with each of the three distinct
types of iCDW order arising from the occupied vHs. The latter are labeled here by the M-point irrep of the P6/mmm space group according to
which they transform. The intraorbital iCDW order, transforming as mM+

2 [(a),(b)], gives rise to currents in the kagome plane. The two types
of interorbital iCDW order, mM+

3 [(c)–(f)] and mM+
4 [(g)-(j)], promote counter-propagating currents above and below the kagome planes, as

discussed in the main text. Note that for the mM+
3 and mM+

4 cases, the configurations above and below the plane coexist. The dashed lines in
(a) and (b) denote the 2 × 1 and 2 × 2 unit cells of the single-Q and triple-Q configurations. The thicker (thinner) arrows in [(c)–(j)] refer to
currents above (below) the plane. Note that, due to the coexistence of the above- and below-plane configurations in [(c)–(j)], all states depicted
here are charge-conserving.

Reference [50] explored the case in which a triple-Q iCDW
induces a triple-Q rCDW—a mixed iCDW-rCDW configura-
tion that we dub 3Q-3Q. As we show in this section, there
is another viable mixed configuration in which a double-
Q iCDW and a single-Q rCDW coexist—which we denote
2Q-1Q. To study the possible mixed iCDW-rCDW configu-
rations, we construct the free energy of the high-symmetry
phase by finding all possible polynomials of Ni and �i that
remain invariant under the symmetry operations of the space
group, as well as time reversal symmetry [82,83]. While we
restrict Ni to be a M+

1 rCDW (i.e., an intraorbital rCDW), we
allow �i to be any of three possible iCDW states constructed
from the occupied vHs (see Table II), i.e., intraorbital (mM+

2 ),
symmetric interorbital (mM+

3 ), and antisymmetric interorbital
(mM+

4 ). It turns out that, in all cases, the Landau free-energy
expansion acquires the same form

FCDW = Fr + Fi + Fi−r, (10)

with the rCDW and iCDW free energies

Fr = ar

2
N2 + γr

3
N1N2N3

+ur

4
N4 + λr

4

(

N2
1 N2

2 + N2
1 N2

3 + N2
2 N2

3

)

, (11)

Fi = ai

2
�2 + ui

4
�4 + λi

4

(

�2
1�

2
2 + �2

1�
2
3 + �2

2�
2
3

)

, (12)

and the coupling between them given by

Fi−r =γir

3
(N1�2�3 + �1N2�3 + �1�2N3)

+ κir

4

(

N1N2�1�2 + N1N3�1�3 + N2N3�2�3
)

+ λ
(1)
ir

4

(

N2
1 �2

1 + N2
2 �2

2 + N2
3 �2

3

)

+ λ
(2)
ir

4
N2�2. (13)

In these expressions, N2 ≡ ∑

i N2
i and �2 ≡ ∑

i �
2
i . The

quadratic Landau coefficients are defined in the standard way,
aμ = aμ,0(T − Tμ), with μ = r, i, the coefficient aμ,0 > 0 and
Tμ denote the bare transition temperatures. The Landau coef-
ficients uμ refer to quartic terms; γμ, to trilinear terms; λμ,
to biquadratic terms; and κμ, to quadrilinear terms. Note that,
while the little group irreps have uniquely defined matrices,
the space group irreps are arbitrary up to minus signs in certain
off diagonal elements, which do not affect their characters.
Similarly, shifting the origin by a unit cell changes the signs
of certain components of the order parameters. As a result,
the sign of the trilinear term is arbitrary, and is valid only for
a fixed origin choice.

The fact that the bare iCDW and rCDW transition temper-
atures are different, Tr 
= Ti, is a consequence of the two order
parameters transforming as different irreps. Nevertheless, the
renormalization-group calculation of Ref. [50] found that for
certain regimes of the interaction parameters, the two tran-
sition temperatures can be comparable. Even if this is not the
case, a sufficiently strong trilinear coefficient γir will generally
cause the two transitions to happen simultaneously and in a
first-order fashion, regardless of the sign of γir.

The free energy in Eq. (10) allows for various types of
mixed phases. To gain insight into the typical global min-
ima of this free energy, we note that it has the exact same
functional form as the free energy for the coupled in-plane
and out-of-plane rCDW orders studied by us in Ref. [54]. In
that case, it was shown that much of the phase diagram is
dominated by two phases in particular, which in our situation
translate to a 3Q-3Q phase, where all three Ni and all three
�i are nonzero, and to a 2Q-1Q phase, where only �i, � j ,
and Nl are nonzero, with (i, j, l ) denoting a permutation of
(1,2,3). Indeed, it is clear that these two mixed configurations
are those that minimize the energy of the trilinear term with
coefficient γir. Whether the 3Q-3Q or the 2Q-1Q phase is
realized depends on the quadrilinear and biquadratic coeffi-
cients, as discussed in Ref. [54].
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TABLE II. Possible rCDW and iCDW order parameters constructed from the c†
kσ and d†

kσ fermionic operators. The latter refer to energy
eigenstates of the M+

1 and M+
4 occupied saddle points, respectively. M+

i are irreps of the little group of the M point of the space group P6/mmm.
As explained in the text, the interorbital CDW orders are obtained as symmetric and antisymmetric combinations of the interorbital fermionic
bilinears. In the equations below, (i, j, l ) is a permutation of (1,2,3).

Order Order parameter(s) Irrep

rCDW N c
i = ∑

kσ 〈c†
k+Q jσ

ck+Ql σ
+ H.c.〉

M+
1Nd

i = ∑

kσ 〈d†
k+Q jσ

dk+Ql σ
+ H.c.〉

N s
i = ∑

kσ 〈c†
k+Q jσ

dk+Ql σ
+ c†

k+Ql σ
dk+Q jσ + H.c.〉 M+

3

Na
i = ∑

kσ 〈c†
k+Q jσ

dk+Ql σ
− c†

k+Ql σ
dk+Q jσ + H.c.〉 M+

4

iCDW �c
i = i

∑

kσ 〈c†
k+Q jσ

ck+Ql σ
− H.c.〉

mM+
2�d

i = i
∑

kσ 〈d†
k+Q jσ

dk+Ql σ
− H.c.〉

�s
i = i

∑

kσ 〈c†
k+Q jσ

dk+Ql σ
+ c†

k+Ql σ
dk+Q jσ − H.c.〉 mM+

3

�a
i = i

∑

kσ 〈c†
k+Q jσ

dk+Ql σ
− c†

k+Ql σ
dk+Q jσ − H.c.〉 mM+

4

Of course, it is also possible to realize nonmixed phases,
such as a pure triple-Q rCDW phase or a pure single-Q iCDW
phase. The latter is the only case in which iCDW order does
not trigger rCDW order, as also discussed in Ref. [50]. Be-
cause these nonmixed phases cannot explain the experimental
observations of time-reversal symmetry breaking and a 2 × 2
increase of the unit cell, we will focus on the mixed iCDW-
rCDW phases hereafter.

Figure 6 illustrates both types of mixed rCDW-iCDW
phases, 3Q-3Q and 2Q-1Q, for the particular case of an in-
traorbital mM+

2 iCDW order parameter. As explained above,
we are only considering the intraorbital rCDW order, as it
transforms as M+

1 . As expected, the kagome lattice displays
not only bond distortions but also loop currents. We empha-
size that a pure double-Q iCDW phase or a pure triple-Q
iCDW phase are not minima of the free energy, as they can
only arise in conjunction with rCDW order. Moreover, for the
3Q-3Q phase, while the sign of the product �1�2�3 does
not change the loop-currents configuration [50], the sign of
N1N2N3 distinguishes between a star-of-David and a trihexag-
onal bond-order configuration [54].

FIG. 6. Illustration of the two mixed iCDW-rCDW phases that
can minimize the coupled free energy, Eq. (10). For concreteness,
we show the case of intraorbital iCDW order (i.e., mM+

2 ) made out
of the states from the same vHs. The rCDW order is also intraorbital
(i.e., M+

1 ). (a) The 2Q-1Q phase consists of a double-Q iCDW phase
combined with a single-Q rCDW, such that the three wave vectors
are a permutation of (Q1, Q2, Q3). Blue bonds denote the bond
distortions promoted by the rCDW order, whereas the red arrows
denote the currents generated by the iCDW order. (b) The 3Q-3Q

phase consists of a triple-Q iCDW coexisting with a triple-Q rCDW
phase.

V. EXPERIMENTAL SIGNATURES OF THE MIXED CDW

STATES: OCCUPIED VHS

By focusing on the low-energy electronic states near the
two vHs below the Fermi level at the M point, we found three
possible types of iCDW states, illustrated in Fig. 5: intraorbital
(mM+

2 ), symmetric interorbital (mM+
3 ), and antisymmetric

interorbital (mM+
4 ). When coupled to the intraorbital rCDW

order parameter (M+
1 ), they in turn give rise to two dif-

ferent types of mixed iCDW-rCDW states, denoted 3Q-3Q

and 2Q-1Q, illustrated in Fig. 6 in the case of intraorbital
iCDW order. There are therefore six different candidate CDW
states formed out of the occupied vHs that could explain the
experimental observations of a 2 × 2 unit cell increase and
time-reversal symmetry breaking below TCDW. In this section,
we discuss the experimental signatures of these six states,
focusing on the magnetic and structural properties that can be
probed experimentally to unambiguously distinguish between
them. A summary of the results of this section and of Sec. VI
is contained in Table III for convenience.

A. Finite-momentum magnetism: Spin-density wave

In the presence of spin-orbit coupling, the iCDW orders
must necessarily induce spin-density wave (SDW) orders
[76]. Indeed, an iCDW corresponds to an imaginary hopping
between two sites on the lattice. This leads to ordering of the
electrons’ orbital angular momentum, which in turn results
in ordering of the spin angular momentum in the presence of
spin-orbit coupling.

In terms of symmetry, we can define other fermionic bi-
linears built out of the Bloch states of the saddle points that
transform as the same irreps as the iCDW order parameters.
For instance, consider the intraorbital SDW order parameter
with wave vector Q1,

�
1 =
∑

kσσ ′

〈c†
k+Q2,σ

�τσσ ′ck+Q3,σ ′ + H.c.〉, (14)

where τ i denotes a Pauli matrix in spin-space. Using the local
coordinate system of V1 to label the spin directions, it turns
out that 
z

1 transforms as mM+
2 , 
x

1 transforms as mM+
3 , and



y

1, as mM+
4 . However, the directions of the in-plane spins for

the mM+
3 and mM+

4 order parameters are different for different
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TABLE III. Summary of the different types of mixed iCDW-rCDW configurations found in this work, arising from the low-energy
electronic states associated with the two occupied vHs (p−-type) and the two unoccupied vHs (p+-type and m-type) shown in Fig. 1(c).
Note that, in rows 4 and 5, p− refers only to the occupied vHs closest to the Fermi level. In all cases, the rCDW is described by an M+

1 order
parameter, whereas the iCDW order parameter � is given by the second column of the table. There are two different kinds of mixed state,
3Q-3Q and 2Q-1Q. The first displays different types of subsidiary uniform magnetic order, whose order parameter μ scales as �3, whereas
the latter displays only an orthorhombic distortion η that scales quadratically with �. For each subsidiary order we include both the space
group irreps (using the convention of Ref. [84]) and point group irreps (using the convention of Ref. [85]; in the first seven rows, the irreps
are odd under time-reversal whereas in the last two rows, it is even). The fourth column shows which combination of external fields couples to
the subsidiary order parameter μ or η. Here, B is the magnetic field, E is the electric field, and ε‖ is the in-plane strain field given by Eq. (16).
The last column shows the name and number of the magnetic space groups (M.S.G.) of each mixed state in the Belov-Neronova-Smirnova
notation. Primed operations refer to point symmetry operations followed by time reversal. For example, 6′ denotes a 60◦ rotation followed by
time-reversal, and m′ denotes a mirror reflection followed by time reversal.

Mixed iCDW-rCDW iCDW type Subsidiary order External field coupling M.S.G.

Any intraorbital Ferromagnetic Bz P6/mm′m′

(mM+
2 ) (mŴ+

2 , A2g) (#191.240)
p−-p− symm. interorbital Magnetic octupolar (B‖ × ε‖) · ẑ P6′/m′mm′

(mM+
3 ) (mŴ+

3 , B2g) (#191.239)
p−-p− antisymm. interorbital Magnetic octupolar B‖ · ε‖ P6′/m′m′m

(mM+
4 ) (mŴ+

4 , B1g) (#191.238)
3Q-3Q p−-m symm. interorbital Magnetic monopolar EzBz, E‖ · B‖ P6′/m′m′m′

(μ ∼ �3) (mM−
1 ) (mŴ−

1 , A1u) (#191.241)
p−-m antisymm. interorbital Magnetic toroidal dipolar (E × B) · ẑ P6/m′mm

(mM−
2 ) (mŴ−

2 , A2u) (#191.235)
p+-m symm. interorbital Magnetic toroidal octupolar Ez(B‖ · ε‖) P6′/mm′m

(mM−
3 ) (mŴ−

3 , B2u) (#191.236)
p+-m antisymm. interorbital Magnetic toroidal octupolar E · (B‖ × ε‖) P6′/mmm′

(mM−
4 ) (mŴ−

4 , B1u) (#191.237)
2Q-1Q mM+

2 , mM−
3 , mM−

4 Orthorhombic distortion ε‖ Cammm

(η ∼ �2) (mŴ+
5 , E2g) (#65.489)

mM+
3 , mM+

4 , mM−
1 , mM−

2 Orthorhombic distortion ε‖ Camma

(mŴ+
5 , E2g) (#67.509)

wave vectors. As a result, labeling these order parameters
with a Cartesian direction could be misleading. Instead, we
note that the mM+

3 order parameter gives rise to a spin stripe
with spins normal to the wave vector, whereas for mM+

4 the
spins are parallel to the wave vector. As a result, we refer to
the mM+

3 and mM+
4 SDW orders as 
⊥

i and 

‖
i respectively,

instead of 
x
i and 


y

i .
Since there are SDW order parameters that transform as the

same irrep as the iCDW order parameters, the condensation
of the iCDW order parameter �1 leads to the condensation
of an intraorbital SDW at the same wave vector, since it is
bilinearly coupled in the free energy to one of the components
of �
. In particular, the magnetic moments in the SDW phase
are polarized along different axes depending on the nature of
the iCDW state: z axis, for intraorbital iCDW; the axis normal
to the wave vector, for symmetric interorbital iCDW; and the
axis parallel to the wave vector, for antisymmetric interorbital
iCDW.

This result provides another route to probe the existence of
an iCDW, as neutron scattering experiments could in principle
directly assess the existence of SDW order from the magnetic
Bragg peaks that it creates. Of course, the feasibility of such
a measurement will depend on the size of the SDW magnetic
moment. Interestingly, polarized neutron scattering could fur-
ther distinguish between the three different types of iCDW
by determining the direction of the moments. One important
caveat related to this last point is that interorbital SDW can

also be induced, but with a moment direction that is generally
different from that of the order parameter in Eq. (14).

Figure 7 illustrates the magnetic patterns of the SDW
phases induced by single-Q (a), double-Q (b), and triple-Q (c)
intraband iCDW order. Rather than determining these mag-
netic configurations indirectly from the loop-current patterns,
here we directly derive them from the symmetry properties of
the relevant irrep—which in this case is mM+

2 . As expected,
a single-Q iCDW generates a stripe SDW with the moments
oriented out-of-plane. Interestingly, in both the double- and
triple-Q phases, the superposition of the different stripe SDWs
results in peaks of the magnetization density at the Sb sites,
rather than the V sites.

B. Uniform magnetism: Ferromagnetism and magnetic

octupolar order

In addition to the SDW orders that accompany the onset of
iCDW orders, different types of subsidiary uniform magnetic
order also appear in the mixed iCDW-rCDW phases. They are
described by the scalar order parameter

μ = �1�2�3 ∝ N · �, (15)

which is clearly odd under time reversal and has zero wave
vector. Note that μ is only nonzero in the 3Q-3Q mixed phase,
and the 2Q-1Q phase does not display subsidiary uniform
magnetic order.
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FIG. 7. Illustrations of the spin-density wave patterns induced by intraorbital iCDW in the case of single-Q [panel(a)], double-Q [panel(b)],
and triple-Q [panel(c)] order. Note that the spin-density wave has peaks at the Sb atoms, rather than at the V atoms. In panels (b) and (c),
corresponding to the 2Q-1Q and 3Q-3Q states, respectively, rCDW order must accompany the iCDW one. The bond-distortion patterns
corresponding to these rCDW orders are illustrated as well. In the 3Q-3Q case, the local environment experienced by the sites with spin-up is
different from that experienced by the sites with spin-down, resulting in a net magnetic moment.

Importantly, the transformation properties of μ, and thus
the nature of the uniform magnetic order, depend crucially
on the type of iCDW order. For intraorbital iCDW order
(mM+

2 ), μ transforms as the time-reversal-odd A2g irrep of
the D6h point group (or, equivalently, mŴ+

2 of P6/mmm using
the notation of INVARIANTS, which follows the Cracknell-
Davies-Miller-Love tables [85,86]). Therefore, μ corresponds
to ferromagnetic order with moments pointing out-of-plane,
as illustrated in Fig. 8(a). This is in agreement with the SDW
pattern shown in Fig. 7(c): in a single unit cell there are
smaller moments at three Sb sites pointing in one direction
and a bigger moment at another Sb site pointing in the op-
posite direction. Because the local environments experienced
by the two types of Sb sites are inequivalent due to the ac-
companying bond-distortion pattern, the four moments do not
cancel, and a net dipolar magnetic moment is generated. Alter-
natively, one can conclude that a net magnetic moment must
be present because the application of time-reversal symmetry
cannot be undone by a translation. We note that Ref. [50]
previously pointed out that a triple-Q iCDW order induces
an out-of-plane magnetization. Indeed, the magnetic space
group of the 3Q-3Q configuration with intraband iCDW order,
shown in the last column of Table III, allows a nonzero out-
of-plane magnetic dipole moment.

From the definition of μ, we conclude that the induced
magnetization scales as |�|3, where |�| is the magnitude of
the iCDW order parameter. Thus, because the induced SDW

z scales linearly with |�|, there is a well-defined relationship
between the uniform magnetization and the finite-momentum
magnetization, μ ∼ (
z )3. This result provides yet another

route to probe iCDW order in AV3Sb5 through a coupling to
the SDW order.

In the case of interorbital iCDW orders, a finite μ implies
different types of uniform magnetic orders, as it transforms
as the time-reversal odd B2g and B1g irreps of D6h for the
symmetric (mM+

3 ) and antisymmetric (mM+
4 ) types of iCDW

order, respectively. In terms of the irreps of the space group
P6/mmm, they correspond to mŴ+

3 and mŴ+
4 , respectively.

Physically, an order parameter with these transformation
properties results in magnetic octupolar order [87].

The real-space configuration of magnetic moments asso-
ciated with these two types of magnetic octupolar order are
shown in Figs. 8(b) and 8(c), which we dub transverse [B2g,
panel(b)] and longitudinal [B1g, panel (c)] ferro-octupolar or-
ders. In both cases, the magnetic moments point in-plane,
but are subjected to different spatial modulations. Neither
configuration results in a net magnetic moment, in agreement
with the fact that, for the triple-Q interband iCDW orders, the
loop currents above and below the kagome plane cancel each
other, as shown in Fig. 5.

The most straightforward way to probe these subsidiary
magnetic octupolar orders is to assess their magnetostriction
properties. We start by constructing the following vectors
from the in-plane components of the magnetic field and of
the strain tensor

B‖ =
(

Bx

By

)

, ε‖ =
(

εx2−y2

−εxy

)

. (16)

Here, εi j ≡ (∂iu j + ∂ jui )/2, where u denotes the lattice dis-
placement vector. In order to be consistent with the irrep

FIG. 8. Illustrations of different types of uniform magnetic order: (a) ferromagnetism; (b) transverse magnetic octupolar order; and
(c) longitudinal magnetic octupolar order. These subsidiary orders appear in the 3Q-3Q states with intraband, symmetric interband, and
antisymmetric interband iCDW orders generated from the occupied vHs, respectively.
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matrices of Ref. [83], we choose a global coordinate axis with
ŷ parallel to the crystallographic a axis (the [100] direction).
Using the fact that B‖ transforms as the mŴ+

6 irrep, whereas
ε‖ transforms as Ŵ+

5 , we derive the following magnetostriction
free-energy term in the 3Q-3Q state with symmetric interor-
bital iCDW order:

F
(mM+

3 )
mag−str ∼ μ(B‖ × ε‖) · ẑ, (17)

where μ is the magnetic octupolar moment defined in
Eq. (15). Conversely, for the 3Q-3Q state with antisymmetric
interorbital iCDW order, we find

F
(mM+

4 )
mag−str ∼ μ(B‖ · ε‖). (18)

The first of these equations, Eq. (17), implies that, in the
3Q-3Q state with symmetric interorbital iCDW order, ap-
plication of an in-plane magnetic field generates strain in
the “transverse” direction (in the abstract subspace of two
dimensional irreps). For example, a magnetic field applied
along the y axis (which is the crystallographic a axis) will
generate the strain component ǫx2−y2 . In contrast, in the case
of antisymmetric interorbital iCDW order, the strain gener-
ated by an in-plane magnetic field is “longitudinal”—e.g., a
finite By induces ǫxy. Of course, the reverse is also true: shear
strain ǫxy induces magnetic moments along the y axis in the
latter case and along the x axis in the former. These unique
magnetostriction properties could be used to experimentally
probe the character of the 3Q-3Q phases. A summary of these
results is contained in Table III.

C. Lattice distortion: Threefold rotational symmetry breaking

While the 3Q-3Q states display uniform magnetic order,
the 2Q-1Q states are accompanied by a uniform lattice dis-
tortion that breaks the threefold rotational symmetry of the
kagome lattice. This is apparent in Fig. 6(a), as the loop-
current and bond-distortion patterns are not invariant under
120◦ rotation. Formally, we can construct an order parameter
that is quadratic in the iCDW order parameters and transforms
as the same Ŵ+

5 irrep as the in-plane strain ε‖ defined in
Eq. (16),

η1 =
(

�2
1 + �2

3 − 2�2
2√

3
(

�2
3 − �2

1

)

)

. (19)

Clearly, η1 is only nonzero in the 2Q-1Q phase, leading to
an orthorhombic distortion of the lattice. Similarly, we can
define an order parameter that also transforms as Ŵ+

5 and that
depends explicitly on the rCDW order parameter N,

η2 =
(

N1�2�3 + �1�2N3 − 2�1N2�3√
3(�1�2N3 − N1�2�3)

)

. (20)

Note that, in contrast to η1, η2 is quartic in �.
Recent experiments have reported the breaking of the

threefold rotational symmetry of the kagome lattice inside the
CDW phase of the AV3Sb5 compounds [38,46,47,62,63,74].
In contrast to time-reversal symmetry breaking, however, the
rotational symmetry seems to be broken only well below
TCDW. Therefore, this type of order does not onset before the
CDW and breaks translational symmetry; as such, it should
not be classified as a nematic phase.

Previously, the breaking of threefold rotational symmetry
was proposed to arise from an admixture between two real
CDWs, one with and one without out-of-plane modulation
[39,50,54]. Our analysis shows that it could also be explained
by an admixture between real and imaginary CDWs in the
2Q-1Q state, without the need to invoke an out-of-plane com-
ponent of the wave vector. In this respect, it is tempting to
attribute the experimental observations to a transition from
the 3Q-3Q phase to the 2Q-1Q phase. However, in several of
these experiments, the threefold rotational symmetry breaking
was observed in the presence of an in-plane magnetic field,
which presumably aligns the different orthorhombic domains.
As we showed in the previous subsection, B‖ induces a finite
orthorhombic distortion ε‖ in the 3Q-3Q phase with interor-
bital iCDW order. Therefore, to shed light on this issue, it is
important that future experiments clarify the relationship be-
tween the in-plane field and the threefold rotational symmetry
breaking.

D. Impact of out-of-plane modulation

Our analysis so far has focused solely on iCDW and rCDW
orders with in-plane wave vectors Qi coinciding with the Mi

points of the BZ. X-ray experiments on AV3Sb5, however,
reveal that the charge-order wave vector can also have a fi-
nite commensurate z component, resulting in a 2 × 2 × 2 or
2 × 2 × 4 unit cell in the ordered state [41,44]. The precise c

axis modulation depends not only on the alkali-metal atom A,
but also on temperature and pressure [31,61,88].

It is straightforward to extend our analysis to the case of
an ordering wave vector along the M − L line of the BZ,
which we label by its z axis component Qz. Based on the
experimental results mentioned above, we restrict our anal-
ysis to two different possible out-of-plane modulations for
the iCDW order parameter, Qz

iCDW = 1/2 and Qz
iCDW = 1/4

(in reciprocal lattice vector units). As we saw in Sec. IV,
the intrinsic coupling between the iCDW and rCDW order
parameters arises from the trilinear term in the free energy of
Eq. (13). In order for that term to be preserved, it must follow
that

Qz
rCDW = 2 Qz

iCDW, (21)

i.e., the rCDW modulation must be equal to half of the iCDW
modulation. By symmetry, it also follows that the induced
SDW has the same modulation as the iCDW, Qz

SDW = Qz
iCDW.

The properties of the subsidiary order parameters μ and η

can also be determined in a straightforward way. Because μ is
cubic in �i, it has the same z component of the wave vector
as the iCDW order parameter, Qz

μ = Qz
iCDW (recall that we are

restricting our analysis to Qz
iCDW = 1/2, 1/4). Consequently,

in the 3Q-3Q state, the induced magnetic order is uniform in
the kagome planes but exhibits the same modulation along
the c axis as the iCDW order parameter. This implies that
antiferromagnetic order emerges in the case of intraorbital
iCDW; for interorbital iCDW, the same antiferromagnetic pat-
tern arises if uniaxial in-plane stress is applied.

As for η, which is proportional to the square of �, its wave
vector remains at the Ŵ point, i.e., Qz

η = 0. Consequently, the
2Q-1Q state displays an orthorhombic distortion regardless
of the modulation of the iCDW. To arrive at this conclusion,
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it is important to note that, unlike the Qz
iCDW = 0, 1/2 cases,

the iCDW order parameter becomes a complex-valued three-
component order parameter for Qz

iCDW = 1/4, since QiCDW 
=
−QiCDW. As a result, η1 in Eq. (19) must be rewritten with
�2

i → |�i|2; in contrast, η2 in Eq. (20) remains the same.

VI. CANDIDATE CHARGE ORDERS: UNOCCUPIED VAN

HOVE SINGULARITIES

We now repeat the analyses of Secs. III, IV, and V for the
iCDW phases that arise from the Bloch states associated with
the unoccupied vHs of Fig. 1(c). We recall that the unoccupied
vHs closest to the Fermi level transforms as the M+

3 irrep and
is of p type, whereas the second unoccupied vHs closest to the
Fermi level is of m type and transforms as the M−

2 irrep. Since
the steps are the same as in the previous sections, we do not
delve into details of the calculation and just present the main
results.

A. iCDW phases from the unoccupied vHs only

Mirroring what we did for the two occupied vHs, we first
consider the three different types of iCDW order that emerge
from combinations of electronic states associated with the two
unoccupied vHs. As shown in the insets of Fig. 1(c), the local
dyz orbitals contribute to the M+

3 vHs whereas the local dxz

orbitals contribute to the M−
2 vHs. For this reason, we continue

using the nomenclature of intraorbital and interorbital iCDW.
Labeling the electronic states near the M+

3 vHs by the
operator c

†
kσ

and the electronic states near the M−
2 vHs by d

†
kσ

,
we obtain the iCDW order parameters as in Table II. While the
intraorbital �c

i and �d
i iCDW order parameters still transform

as mM+
2 , the interorbital �s

i and �a
i now transform as mM−

3
and mM−

4 , respectively. Remarkably, they couple to the M+
1

rCDW order parameter Ni in the same way as their counter-
parts in Table II, i.e., the coupled iCDW-rCDW Landau free
energy acquires the same form as Eq. (10). Consequently,
there are two viable mixed iCDW-rCDW states, the 3Q-3Q

and the 2Q-1Q ones.
The 3Q-3Q mixed configuration displays subsidiary uni-

form magnetic order described by the cubic order parameter
μ ∼ �3 defined in Eq. (15) above. Like the magnetic oc-
tupolar orders generated in the case of interband iCDW order
involving the occupied vHs, these subsidiary magnetic or-
ders do not have a net magnetic dipole moment. However,
they are odd under inversion, as indicated by their transfor-
mation properties: mŴ−

3 (or time-reversal odd B2u), for the
case of the symmetric interorbital iCDW, and mŴ−

4 (or time-
reversal odd B1u), for the antisymmetric interorbital iCDW.
Therefore, they can be identified as two different types of
magnetic toroidal octupolar order, following the classifica-
tion of Ref. [87]. Indeed, the key property of an octupolar
magnetic toroidal moment is that it changes sign not only
under time reversal, but also under spatial inversion. These
magnetic toroidal octupolar orders can be probed experimen-
tally by a combination of magnetic field B, in-plane uniaxial
strain ε‖, and electric field E. Using group theory, we find the
following free-energy couplings between the external fields
and the magnetic toroidal octupolar moment μ, corresponding

to magnetoelectrostriction terms,

F
(mM−

3 )
mag−el−str ∼ μ Ez(B‖ · ε‖), (22)

as well as

F
(mM−

4 )
mag−el−str ∼ μ E · (B‖ × ε‖). (23)

Therefore, application of in-plane uniaxial strain induces mul-

tiferroic order characterized by an in-plane magnetic moment
(whose direction can be longitudinal or transverse to the strain
direction) and an out-of-plane electric polarization.

As for the 2Q-1Q mixed configuration, its subsidiary uni-
form order is not magnetic, but orthorhombic, like in the case
of interorbital iCDW made out of the occupied vHs. It is
described by the same order parameter η defined in Eq. (19),
which scales as the square of the iCDW order parameter
�. Table III summarizes the properties of the mixed iCDW-
rCDW states generated by the unoccupied vHs, including the
magnetic space groups that describe them.

B. iCDW phases from mixed occupied and unoccupied vHs

So far we have considered the two pairs of vHs—occupied
and unoccupied—separately. The reasoning is that the energy
separation between these pairs, of the order of 200 meV [see
Fig. 1(c)], is significant enough that it is likely to prevent insta-
bilities driven by the coupling between states associated with
occupied and unoccupied vHs. Nevertheless, it is possible
that this energy splitting could be reduced by correlations not
captured by DFT, or by different doping schemes. Moreover,
even within DFT, upon moving away from the M point along
the M − L line, the energy splitting between the pairs of vHs
changes as a function of out-of-plane momentum [8].

Therefore, and for the sake of completeness, we briefly
discuss the properties of the possible iCDW order parameters
obtained by combining states from vHs above and below the
Fermi level. The only combinations that give iCDW orders not
already discussed above are the symmetric and antisymmetric
interorbital iCDW order parameters made out of states from
the m-type vHs and from the p−-type vHs that is closest to the
Fermi level. Specifically, the corresponding order parameters
�s

i and �a
i , as defined in Table II, transform as the irreps

mM−
1 and mM−

2 . The corresponding coupled iCDW-rCDW
free-energy expansions, with the rCDW order parameter Ni

transforming as M+
1 , are once again identical to that written

in Eq. (10), which promotes the mixed 3Q-3Q and 2Q-1Q

configurations.
Similar to the cases studied above, the 2Q-1Q configura-

tion breaks the threefold rotational symmetry of the kagome
lattice by causing an orthorhombic distortion given by the
order parameter η [see Eq. (19)]. On the other hand, the
3Q-3Q mixed configuration is accompanied by uniform mag-
netic order, whose order parameter μ transforms as either
mM−

1 (i.e., time-reversal-odd A1u), for symmetric interorbital
iCDW order, or as mM−

2 (i.e., time-reversal-odd A2u), for
antisymmetric interorbital iCDW order. While the former cor-
responds to magnetic monopolar order, the latter is a magnetic

toroidal dipolar order [87]. They have unique magnetoelectric
properties, as described by the following Landau free-energy
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couplings:

F
(mM−

1 )
mag−el ∼ μ EzBz, (24)

and

F
(mM−

2 )
mag−el ∼ μ (E × B) · ẑ. (25)

We note that magnetic toroidal dipolar order has been
previously proposed to explain the time-reversal symmetry-
breaking state of the AV3Sb5 kagome compounds in Ref. [89].
Indeed, the resulting magnetic space group name associated
with the 3Q-3Q configuration with mM−

2 iCDW order (see
Table III) is the same as that discussed in Ref. [89]. The
main difference is that, in our case, the toroidal moment is
a subsidiary order of a triple-Q iCDW order that also breaks
the translational symmetry of the crystal.

VII. CONCLUSIONS

We have combined phenomenology, DFT calculations, and
group theory to derive the possible mixed iCDW-rCDW states
of AV3Sb5 compounds that can arise from interactions involv-
ing the two pairs of occupied and unoccupied vHs closest to
the Fermi level. Because these four vHs have different orbital
and sublattice structures, as shown in Fig. 1, various types of
rCDW and iCDW states are possible. Current experimental
and first-principles results constrain the rCDW to transform
as the M+

1 irrep, which corresponds to intraorbital/intra-vHs
order in our model. On the other hand, the available exper-
imental data does not allow one to unambiguously identify
the type of iCDW order that is possibly realized in AV3Sb5.
Our findings, which are summarized in Table III, reveal seven
different possible iCDW order parameters involving these two
pairs of vHs. As we discussed here, any of these iCDW
configurations must be accompanied by an SDW pattern that
shares the same symmetry properties; in the particular case of
intraorbital/intra-vHs iCDW, the magnetization density peaks
at the Sb atoms, as shown in Fig. 7. We note that one of
such iCDW orders (mM+

2 ) was previously identified in Ref.
[50], and that an alternative classification scheme was also put
forward in Ref. [57].

One of our main results, derived from the analysis of the
coupled iCDW-rCDW free-energy expansion, is that, unless
the iCDW order is unidirectional, it will be accompanied
by rCDW order, either in a 3Q-3Q or in a 2Q-1Q mixed
configuration. The intrinsic coupling between these two types
of order was previously discussed in Refs. [50,51]; here, we
focused on the most favored minima of the full free energy in
the large parameter space available.

Thus, because we identify seven types of iCDW order and
two possible minima of the coupled free energy with the M+

1
rCDW order, there are 14 different viable mixed iCDW-rCDW
configurations, as shown in Table III. Although our list of
seven iCDW orders was derived from the symmetry properties
of the Bloch states at the four vHs, it is quite comprehensive,
as there are only eight possible irreps for the iCDW order
parameter with wave vector corresponding to the M point. The
only irrep that did not appear in our analysis is mM+

1 . The
reason for this absence is because this irrep is trivial in the
sense that it breaks no symmetries other than the translational
symmetry (due to its finite wave vector) and time-reversal

symmetry. Thus, there is no combination of currents normal to
the c axis that gives rise to an order parameter that transform
as mM+

1 .
Our second main result is the identification of the experi-

mental manifestations of these 14 different states. The formal
assignment in terms of magnetic space groups is presented in
the last column of Table III. While the seven 3Q-3Q phases
have seven different magnetic space groups, the seven 2Q-1Q

configurations group in just two different magnetic space
groups. In principle, detailed x-ray and neutron scattering ex-
periments may be able to distinguish between these magnetic
space groups and thus identify which iCDW order is realized
in AV3Sb5.

Conversely, these iCDW-rCDW mixed configurations dis-
play subsidiary uniform (i.e., zero wave vector) orders that
can be identified experimentally, as discussed in Table III. In
particular, while the 2Q-1Q phases have no uniform mag-
netic order, they all display an orthorhombic distortion that
scales as the square of the iCDW order parameter, regard-
less of the type of iCDW order present. In contrast, each of
the seven 3Q-3Q phases display different types of uniform
magnetic order, whose order parameters scale as the cube
of the iCDW order parameter. The simplest type of uniform
magnetic order—ferromagnetism—is realized in the case of
intraorbital/intra-vHs iCDW order. In all cases that involve
inter-vHs order, a more exotic type of uniform magnetism
arises, namely, magnetic octupolar, magnetic toroidal, and
magnetic monopolar order. Each of them displays unique
magnetostriction, magnetoelectric, or magnetoelectrostriction
properties, which can be probed by the appropriate combina-
tions of magnetic fields, electric fields, and in-plane uniaxial
strain shown in the last column of Table III. Moreover, as we
discussed above, if the iCDW order also breaks translational
symmetry along the c axis, these uniform magnetic states
become “antiferromagnetic,” in the sense that they acquire
modulation along the c axis

Our results therefore provide concrete guidance to exper-
imentally establish the type of loop-current order realized
in AV3Sb5. In this regard, we note that while experiments
have reported threefold rotational symmetry breaking deep
inside the charge-ordered phase of certain kagome metals
[38,46,47,62,63], which seems consistent with the 2Q-1Q

state, it is important to establish whether this symmetry break-
ing is a bulk or surface phenomenon, and whether it persists
in the absence of applied magnetic fields, which could imply
one of the 3Q-3Q states. Establishing the type of iCDW order
realized in these compounds is important not only to identify
the dominant interactions between the various vHs present
near the Fermi level, but also to elucidate the properties of
the superconducting state that onsets deep inside the charge-
ordered phase.

Indeed, the type of subsidiary uniform order realized in the
mixed iCDW-rCDW state can have profound consequences
for the pairing state. For instance, the ferromagnetic moments
generated in the 3Q-3Q intraorbital-iCDW state are expected
to oppose pairing and thus strongly suppress conventional
superconductivity. On the other hand, the orthorhombic dis-
tortion in the 2Q-1Q state can mix pairing states of different
symmetries, and even induce nodes in a chiral superconduct-
ing state [21]. As for the higher-order magnetic multipolar
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orders induced in the other 3Q-3Q states, little is known
about their interplay with superconductivity. One interesting
prospect is that the simultaneous presence of both electric
and magnetic dipole moments may harbor the unusual pair-
density wave (PDW) state [90]. Interestingly, a PDW was
recently proposed to be realized in these compounds [19].
More broadly, the AV3Sb5 systems offer a promising frame-
work to investigate and elucidate how pairing is modified by
exotic types of uniform magnetic order.
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APPENDIX A: FIRST-PRINCIPLES METHODS

First-principles density functional theory (DFT) calcula-
tions were performed using the Vienna ab initio Simulation
Package (VASP) [91,92]. Further details of the first-principles
calculations were discussed in Ref. [54]. The band structure
shown in Fig. 1(c) is that of CsV3Sb5. Since the effect of the
alkali metal is mostly geometric in these systems, the band
structure of KV3Sb5 and RbV3Sb5 are similar [9]. While it is
possible that small energy shifts change the order of the vHs,
this does not affect the present discussion.

The irreps of the DFT bands were obtained by using
the Kohn-Sham band wave functions at the M point, and
finding their transformation properties under space group by
inspection. The resultant irreps and orbital characters were
confirmed to be consistent with each other by using the in-
duced band representations approach [93].

APPENDIX B: TRANSFORMATION PROPERTIES OF

POSSIBLE ORDER PARAMETERS

In this section, we derive the transformation properties
(and hence the irreps) corresponding to the different order
parameters, by starting from the individual atomic orbitals of
the V atoms and then building the Hermitian bilinears. For the
sake of brevity, we only focus on the two bands that give rise
to the vHs below the Fermi level, but the same procedure can
be extended to include the ones above the Fermi level as well.

We consider ideal kagome layers stacked with atoms
aligned on top of each other. This configuration gives rise
to the space group P6/mmm, and corresponds to the crystal
structure of AV3Sb5 compounds. The unit cell and the lattice
vectors are shown in Fig. 1(a). There are three symmetry-
equivalent V atoms in each unit cell. The kz = 0 plane of the
Brillouin zone is shown in Fig. 1(b). There are two bands near
the Fermi level at the M points, which transform as M+

1 and
M+

4 irreps of the space group. Note that we use the convention
of the Cracknell-Davies-Miller-Love tables [85,86] available

TABLE IV. Characters of the irreps of the little group of the
M1 point (similarly to Table I in the main text). We only list the
characters for the three generators of the little group, and these irreps
correspond to the space group irreps by the same name. Note that
the space group irreps are three dimensional, because the star of
M has three distinct wave vectors. The only ambiguity upon going
from the little group irreps to the space group irreps is possible
minus signs in the off-diagonal elements, which are trivial up to a
coordinate transformation, and do not change the characters of the
irreps. Time-reversal (TR) odd irreps (not shown) are denoted by a m

prefix as mM∓
i .

CDML [85] Koster [94] 2001 2010 1̄

M∓
1 M∓

1 +1 +1 ∓1
M∓

2 M∓
3 +1 −1 ∓1

M∓
3 M∓

4 −1 +1 ∓1
M∓

4 M∓
2 −1 −1 ∓1

in the tables of the Bilbao Crystallographic Server, whereas
another commonly used resource is the book of Koster [94].
The irreps of the little group of M in both conventions are
shown in Table IV.

The M+
1 and the M+

4 bands near the Fermi level at M are
formed by vanadium dz2 and dxz orbitals, respectively. These
orbitals transform as the A1g and B2g (or B3g, depending on the
axis choice) irreps of the mmm site symmetry group of the V
site (see Fig. 1). We denote the annihilation operator for the
A1g orbital on atom Vi in the unit cell at R = m · �a + n · �b as
aiσ,(m,n), where σ is the spin component along ẑ ‖ �c. By in-
spection, i.e., by considering the effect of different symmetry
operations on the positions of the atoms and on the alignment
of the orbitals, we find that

1̄a
†
1σ,(0,0)1̄

−1 = a
†
1σ,(0,1),

2001a
†
1σ,(0,0)2

−1
001 = (σ i)a†

1σ,(0,1),

2010a
†
1σ,(0,0)2

−1
010 = (+i)a†

1−σ,(0,0),

1̄a
†
2σ,(0,0)1̄

−1 = a
†
2σ,(−1,0),

2001a
†
2σ,(0,0)2

−1
001 = (σ i)a†

2σ,(−1,0),

2010a
†
2σ,(0,0)2

−1
010 = (+i)a†

3−σ,(0,0),

(B1)

1̄a
†
3σ,(0,0)1̄

−1 = a
†
3σ,(1,1),

2001a
†
3σ,(0,0)2

−1
001 = (σ i)a†

3σ,(1,1),

2010a
†
3σ,(0,0)2

−1
010 = (+i)a†

2−σ,(0,0),

where the spin-1/2 nature of the electrons are taken into
account so that rotations by π bring in a phase factor of
∓i. Similarly, we denote the annihilation operator for the B2g

orbital on atom Vi in the unit cell at R = m · �a + n · �b as
biσ,(m,n). By inspection, we find that

1̄b
†
1σ,(0,0)1̄

−1 = b
†
1σ,(0,1),

2001b
†
1σ,(0,0)2

−1
001 = (−σ i)b†

1σ,(0,1),

2010b
†
1σ,(0,0)2

−1
010 = (−i)b†

1−σ,(0,0),
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1̄b
†
2σ,(0,0)1̄

−1 = b
†
2σ,(−1,0),

2001b
†
2σ,(0,0)2

−1
001 = (−σ i)b†

2σ,(−1,0),

2010b
†
2σ,(0,0)2

−1
010 = (+i)b†

3−σ,(0,0),

(B2)

1̄b
†
3σ,01̄−1 = b

†
3σ,(1,1),

2001b
†
3σ,02−1

001 = (−σ i)b†
3σ,(1,1),

2010b
†
3σ,02−1

010 = (+i)b†
2−σ,(0,0).

Note that a† and b† are creation operators for atomic orbitals
localized in real space. The momentum-space counterparts
that create electrons on Bloch states with wave vector �q =
q1�a∗ + q2�b∗ are defined as

c
†
iσ �q =

∑

m,n

a
†
iσ (m,n) exp {−i(q1m + q2n)}, (B3)

d
†
iσ �q =

∑

m,n

b
†
iσ (m,n) exp {−i(q1m + q2n)}. (B4)

We focus solely on the k = Q1 = a∗/2 point in the Brillouin
zone, and drop the �q subscript in the c and d operators. The
transformation properties of these momentum-space operators
are

1̄c
†
1σ 1̄−1 = c

†
1σ ,

2001c
†
1σ 2−1

001 = (σ i)c†
1σ ,

2010c
†
1σ 2−1

010 = (+i)c†
1−σ ,

1̄c
†
2σ 1̄−1 = −c

†
2σ ,

2001c
†
2σ 2−1

001 = (−σ i)c†
2σ ,

2010c
†
2σ 2−1

010 = (+i)c†
3,−σ ,

(B5)

1̄c
†
3σ 1̄−1 = −c

†
3σ ,

2001c
†
3σ 2−1

001 = (−σ i)c†
3σ ,

2010c
†
3σ 2−1

010 = (+i)c†
2−σ ,

as well as

1̄d
†
1σ 1̄−1 = d

†
1σ ,

2001d
†
1σ 2−1

001 = (−σ i)d†
1σ ,

2010d
†
1σ 2−1

010 = (−i)d†
1−σ ,

1̄d
†
2σ 1̄−1 = −d

†
2σ ,

2001d
†
2σ 2−1

001 = (σ i)d†
2σ ,

2010d
†
2σ 2−1

010 = (+i)d†
3−σ ,

(B6)

1̄d
†
3σ 1̄−1 = −d

†
3σ ,

2001d
†
3σ 2−1

001 = (σ i)d†
3σ ,

2010d
†
3σ 2−1

010 = (+i)d†
2−σ ,

The transformation properties of the bilinears follow from
these equations.
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