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EXPLORING A PLANET, REVISITED
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AssTrAcT. How should we place n great circles on a sphere to minimize the furthest distance between
a point on the sphere and its nearest great circle? Fejes Téth conjectured that the optimum is attained
by placing n circles evenly spaced all passing through the north and south poles. This conjecture
was recently proved by Jiang and Polyanskii. We present a short simplification of Ortega-Moreno’s
alternate proof of this conjecture.

In a classic 1973 MonNTHLY Research problems column [5], wonderfully titled Exploring a
planet, L. Fejes Toth asked for the most economical way to explore a planet using n satellites.
Mathematically, the problem asks to place n great circles on a sphere to minimize the furtherest
distance between a point on the sphere and its nearest great circle. He conjectured that the optimal
configuration has n evenly spaced great circles all passing through the north and south poles, which
he equivalently stated as:

If n equal zones cover the sphere then their width is at least 7/n. Here a zone of
width w is defined as the parallel domain of a great circle of distance w/2.

This “zone conjecture” is a spherical analog of Tarski’s plank problem from the 1930’s, which asks
to show that any covering of a ball by planks (a plank is the space between two parallel hyperplanes)
must use planks of total width at least the diameter of the ball [10]. Tarski gave a beautiful proof of
the problem in dimensions 2 and 3 (see the introduction of [8] for an exposition of Tarski’s proof,
which relies on an observation by Archimedes). The problem in all dimensions was settled some
twenty years later by Bang [2, 3] in a stunning proof. See [4, Section 3.4] for a survey of related
problems.

Fejes Toth’s zone conjecture was recently proved in a beautiful paper of Jiang and Polyanskii [7].
Ortega-Moreno [9], apparently unaware of Jiang and Polyanskii’s work, found another very nice
proof of the conjecture. Amazingly, these two proofs are completely different! They both prove
the result in arbitrary dimensions. The Jiang—Polyanskii proof builds on the ideas of Bang [3] and
Goodman and Goodman [6], and it allows zones of different widths. Ortega-Moreno’s proof, how-
ever, is inspired by Ball’s solution to the complex plank problem [1] and uses inverse eigenvectors
and trignometric polynomials, though it only works for equal-width zones.

Here we give a streamlined presentation of Ortega-Moreno’s proof. His proof starts by refor-
mulating the problem in terms of inverse eigenvectors. We eliminate the need to discuss inverse
eigenvectors, thereby giving a shorter and more direct proof.

The problem in R is equivalent to showing that given n hyperplanes through the origin in R,
there is always a point on the unit sphere with distance at least sin 5~ to every hyperplane. Let
Vi, ..., V, be the unit normal vectors to the hyperplanes. By compactness of the sphere, it suffices

to prove the following.
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n=3
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(LeFt) The vectors used in the proof. (Rigut) The dotted points are known values of f(6) overlaid
on the plot of cosné. Since |f(0)| < 1 for all 6 ¢ Zn, the intermediate value theorem shows that
f(6) and cos nf have at least 2n — 4 additional crossings in [0, 277), not counting the ones drawn.

Theorem. Let vy, .. ., v, be unit vectors in R%. If u maximizes [T, [{vi, u)| among unit vectors,
then |(v;,u)| > sin 3- for all i.

Proof. Suppose for contradiction that (v, u)| < sin 5. (note that [(vi,u)| > 0 due to the choice
of u) . Then (see left figure) in the 2-dimensional plane spanned by {u, v|}, we can take a vector
w L u with |w| < 1 such that, setting

= (cos O)u + (sinO)w,

one has uz(2,) L v1 (picture what happens when |w| = 1, and then shorten w). Let

f(@) — l—[ <<Vl’ Ltg)

We have ug,, = —ug and so f(60 +n) = (—1)"f(6). Let us focus on the domain 6 € [0, 7). Since
uo = u, we have f(0) = 1. Since vi L uz/(2n), we have f(5-) = 0. So f(8) = cosnf for 6 € {0, 7-
Since |w| < 1, forany 6 € (0, 7) we have |ug| < 1 and thus | f(6)| < 1 by the maximality hypothesw
on u. So f(#) —cos nd has sign changes at § = n/n,2x/n, ..., (n—1)x/n (where cos n alternates
between +1), and thus it has at least n — 2 distinct zeros in (7/n, (n — 1)x/n). Combining with
the two additional zeros at § = 0, r/(2n), we see that f(6) — cos n6 has at least n distinct zeros in
[0, ), and hence at least 2n distinct zeros in [0, 27) (see right figure).
Expanding, for some trignometric polynomial /| () of degree at most n — 2,

% (i, (cos O)u + (sin O)w) = (vi, W)
f(0) = & =cos" 0 + 2~ cos" ! 9sin 6 + sin® Oy ().
] S 24 G
We saw in the previous paragraph that f(6) is maximized at 6 = 0, and thus
’ - <vl" W>
0=f"(0) = .

10=2 G

So the second term in the expansion of f(#) above is zero. Thus

£(6) — cosnf = cos™ 0 + sin® Oy, (0) — cos nb = sin® Oy (6),

for some trignometric polynomial v, (6) of degree at most n — 2. So f(6) — cosné = sin” 6> (6)
has at most 2n — 2 distinct zeros in [0, 27), contradicting the earlier claim. O
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