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Abstract 23 

Earth’s forests harbor extensive biodiversity and are currently a major carbon sink. Forest 24 

conservation and restoration can help to mitigate climate change. Yet climate change could 25 

fundamentally imperil forests in many regions and undermine their ability to provide such 26 

mitigation. The extent of climate risks facing forests has not been synthesized globally, nor have 27 

different approaches to quantifying forest climate risks been systematically compared. Here we 28 

combine outputs from multiple mechanistic and empirical approaches to modeling carbon, 29 

biodiversity, and disturbance risks to conduct a synthetic climate risk analysis for Earth’s forests 30 

in the 21st century. Despite large uncertainty in most regions, we find some forests consistently at 31 

higher risk, including southern boreal forests, western North America, and parts of the Amazon.  32 
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Main text  46 

Earth’s forests store carbon, support enormous terrestrial biodiversity, and provide 47 

trillions of dollars each year in ecosystem goods and services to society (1, 2). Due to forests’ 48 

potential carbon sequestration capacity and co-benefits, there is widespread and growing interest 49 

in leveraging forests for climate mitigation through nature-based climate solutions (3, 4). Yet the 50 

future of forests globally is uncertain due to both land-use decisions and climate change (5–7). 51 

Forests face substantial climate risks that could trigger carbon-cycle feedbacks, accelerating 52 

climate change and fundamentally undermining their role in climate mitigation (7–9). Critical 53 

climate-sensitive risks to forest stability, biodiversity, and long-term carbon storage include 54 

disturbance triggered by extreme weather (e.g. fire, drought, hurricanes), biotic agents and 55 

invasive species, and large-scale demographic shifts (e.g. elevated mortality rates, species 56 

turnover, physiological limits to growth or regeneration) (7, 10–12).  57 

The large-scale and cross-biome patterns of climate risks to forests are not well-58 

understood. With respect to ecosystems, the Intergovernmental Panel on Climate Change (IPCC) 59 

defines risk as the potential for adverse consequences for ecological systems and highlights that 60 

risk results from the dynamic interaction of climate-related hazards, exposure, susceptibility and 61 

(lack of) adaptive capacity of a system (5, 13). Three major approaches have been used to 62 

examine key determinants of forest risk, each considering different processes, with distinct 63 

uncertainties and limitations. First, global mechanistic vegetation models, such as those included 64 

in Earth system models, simulate forest carbon fluxes and pools, climate impacts on those 65 

processes, some key climate-sensitive disturbances such as fire, and dynamic growth and 66 

recovery after disturbances (14, 15). Second, ‘climate envelope’ approaches use empirical 67 

models based on relationships between observed climate patterns and forest attributes, such as 68 
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biomass, species presence/abundance, or ecoregion/life-zone presence (16–18). Third, empirical 69 

assessments of climatic controls on stand-replacing disturbances, typically based on satellite data 70 

of forest loss or meta-analyses of field studies, are other common approaches (11, 19). These 71 

major approaches roughly capture different ‘axes’ of forest climate risk to: (i) carbon 72 

stocks/storage (hereafter ‘C risk’), (ii) species composition changes (‘species risk’), and (iii) 73 

disturbance regime change (‘disturbance risk’). These approaches have different inherent 74 

strengths and weaknesses, but a synthesis of approaches at a global scale is lacking. A multi-75 

method analysis to quantify risks spatially and estimate which regions may be particularly 76 

vulnerable in future climates is urgently needed to inform land management, conservation, and 77 

climate mitigation efforts.  78 

Here, we compare results from these three types of approaches to provide a global 79 

assessment of climate risks facing Earth’s forests in the 21st century. We ask: i) what are the 80 

mean and uncertainty in projections of forest carbon storage and potential forest carbon losses in 81 

mechanistic vegetation models included in Earth system models (e.g. ‘C risk’), ii) what do 82 

empirical ‘climate envelope’ and ‘climate-sensitive disturbance’ approaches estimate for spatial 83 

and temporal climate risks to forests (e.g. ‘species risk’ and ‘disturbance risk’), and iii) what 84 

broader risk patterns emerge from the synthesis and comparisons of these three different axes of 85 

risks? 86 

We first examined simulations of the live carbon in vegetation in forested areas (‘C risk’) 87 

from mechanistic vegetation models from the Coupled Model Intercomparison Project – Phase 6 88 

(CMIP6: 23 models total, 13 with prognostic fire and 6 with dynamic vegetation, Table S1), 89 

removing the direct influences of human land use change, to contextualize overall forest carbon 90 

changes (20). Comparing 2081-2100 with 1995-2014, these models on average show carbon 91 
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gains in currently forested areas in both high and low emissions scenarios (Fig. 1, Fig. S1). The 92 

multi-model mean was positive across most of the world, but with very high variation and 93 

uncertainty across models, particularly in the tropics and swaths of the boreal forests (Fig. 1A, 94 

1B, Fig. S1). We examined relative agreement in spatial patterns of carbon gains and losses 95 

across models and found that spatial correlations across models for carbon changes were modest, 96 

with an average of r=0.30 across the 23 models considered here (Fig. S2).  97 

We calculated two complementary metrics of potential climate C risk from these models 98 

as: 1) the number of models with carbon losses by 2081-2100 compared to 1995-2014 and 2) the 99 

percent change from tree functional types to other vegetation in a grid cell between those two 100 

periods for the subset of models (N=14) that reported data on vegetation change (20). The first 101 

metric uses the inherent variability in the model ensemble and assumes that the higher the 102 

number of models with C loss, the greater the risk, whereas the second metric directly calculates 103 

forest loss in models where it is represented. With the first metric, large areas of the Neotropics, 104 

the Mediterranean region and eastern Europe, as well as southwestern North America show 105 

notable risk (Fig. 1C). With the second metric, subtropical and southern boreal regions were 106 

more likely to lose tree functional types (Fig. 1D). We further found that these two metrics 107 

showed similar patterns of higher projected risk in southern boreal and drier regions in the 108 

Amazon and African tropics. Spatial patterns of carbon changes and climate risks were broadly 109 

similar between emissions scenarios (Fig. 1, Fig. S1) and between models with versus without 110 

prognostic fire simulated (Fig. S3).  111 

We then examined forest ‘species risk’, estimated via empirical climate envelope models 112 

in three recently published papers. Using observed climate relationships at global scales, two 113 

papers estimated ecoregion/life-zone transitions (i.e. shifts from one ecoregion/life-zone to 114 
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another) and the third modeled changes in forest species richness within a biome (17, 21, 22). 115 

Ecoregion transitions were projected to be most likely at current biome boundaries (sub-tropic – 116 

temperate, temperate – boreal, and tropical – subtropical biomes; Fig. 2A, 2B). We note that 117 

there could be similarly large transitions in terms of species composition within individual 118 

biomes, but that by their inherent ecoregion-focused structure the underlying analyses in Fig 2A-119 

B would not capture community-level changes. Considering the third paper’s analyses, risk of 120 

species loss estimates were highest in boreal regions and western North America and generally 121 

lower in tropical regions (Fig. 2C).  122 

To quantify climate-sensitive ‘disturbance risk’, we used two complementary methods: 1) 123 

an empirical random-forest model linking observed climate to stand-replacing disturbance 124 

estimates based on satellite data from 2002-2014 with human land-use conversion removed (but 125 

harvest included, (20)), and 2) upscaled climate-dependent rates of disturbance in 103 protected 126 

areas from temperate and boreal biomes (19). For both methods, the models were built with 127 

observed relationships in the historical period. We estimated the change in stand-replacing 128 

disturbance rates using climate model output from the same 23 climate models we used for C 129 

risk for 2081-2100, with a moderate climate scenario (SSP2-4.5). The model of stand-replacing 130 

disturbances indicated that if current forests were exposed to projected future temperatures and 131 

precipitation, the largest increases of disturbance would be expected to occur in the tropics and 132 

southern boreal forests (Fig. 3A, 3B), whereas upscaled relationships from protected areas 133 

indicated high disturbance vulnerability broadly across boreal forests, although this dataset did 134 

not include tropical forests (Fig. 3B).  135 

We emphasize that these three distinct axes of risk are capturing different aspects and 136 

dimensions of climate risks to forests, all of which are generally considered important responses 137 
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of forests to climate change (20). The spatial and cross-biome relative risk patterns within each 138 

approach are likely what is most insightful and important in these comparisons, rather than the 139 

absolute values. Thus, we compared the spatial correlations in relative projected risk patterns 140 

with a correlation matrix and computed spatial covariation of risk percentiles across all metrics. 141 

Strikingly, none of the different metrics were significantly spatially correlated with each other 142 

(p>0.05), leading to high variability across risk metrics in many regions (Fig. S4), and the 143 

mechanistic vegetation model projections tended to be slightly negatively correlated with the 144 

other approaches (Fig. 4B). Despite this broad-scale disagreement, identification of regions that 145 

are at relatively higher or lower risk in a majority of approaches can still provide useful 146 

information for risk management. Aggregating risk metrics by the average percentile across all 147 

metrics with data in a given grid cell, southern boreal regions (e.g. central Canada) and drier 148 

regions of the tropics (e.g. southeast Amazonia) emerged as regions with higher than average 149 

risk across metrics, consistent with multiple observational studies (e.g. 23, 24). By contrast, 150 

eastern North America, western Amazonia, and southeast Asia exhibited lower than average risk 151 

(Fig. 4A, Fig. S5); a recent pan-tropical study also observed lower vulnerability in southeast 152 

Asian tropics (25). These regional patterns were generally robust in a sensitivity analysis that 153 

sequentially excluded individual risk maps (Fig. S6). Considering biome-wide patterns, tropical 154 

forests had slightly higher average median risk percentiles (51%ile and 62%ile for tropical moist 155 

broadleaf and tropical/subtropical dry broadleaf forests, respectively) than boreal (44%ile) or 156 

temperate (35%ile and 42%ile for broadleaf and coniferous, respectively) forests (Fig. S7).  157 

All of the different approaches to estimating forest climate risk have limitations and 158 

different uncertainties that are worth bearing in mind. Mechanistic model projections (C risk 159 

axis) include the benefits of rising atmospheric CO2 concentrations on forest productivity (i.e. 160 
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CO2 fertilization), as well as coarse estimates of climate sensitivities of plant functional types 161 

and fire disturbance. However, these models are generally thought to be lacking a substantial 162 

range of key impacts of climate on tree mortality and other disturbances, making it likely that 163 

risk estimates from this approach are overly conservative and carbon gains may be overestimated 164 

(26). Furthermore, these models do not realistically capture current tropical forest carbon 165 

dynamics (27) and the potential for biome shifts remains very uncertain in these models (14, 28), 166 

in part because they frequently neglect processes of tree regeneration (29).  167 

The empirical species distribution and ecoregion biome transition models (species risk 168 

axis) are correlative in nature and do not directly include mechanistic processes of growth, 169 

mortality, CO2-related effects, or disturbance. They are, nevertheless, widely used across the 170 

globe for conservation planning efforts (16, 30), as they provide a powerful approach to estimate 171 

the species pool under given climatic conditions. Empirical disturbance models (disturbance risk 172 

axis) capture only one key component of forest carbon cycling and do not account for regrowth, 173 

species turnover, and other dynamics. Nonetheless, a broad body of literature has demonstrated 174 

that changes in disturbance regimes have strong leverage on forest carbon cycling in many 175 

ecosystems globally (9, 12, 28). Finally, all of these approaches treat direct human impacts of 176 

land-use change and management distinctly. Forest management, as a key disturbance and arbiter 177 

of forest risk, is included implicitly or explicitly in all methods here. Whilst we have made 178 

extensive efforts to screen out changes due to land conversion (20), land management remains an 179 

important uncertainty and caveat in these analyses. A previous global risk analysis for forest loss 180 

using a single, older mechanistic vegetation model (31) projected highest forest loss in the 181 

eastern Amazon, eastern North American boreal, and broad areas of the European and Asian 182 
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boreal forests, which is partially consistent with the species turnover and biome transition 183 

estimates presented here (e.g. Fig 2A) and the multi-method aggregate map.  184 

Ultimately, our analysis reveals a strikingly divergent set of projections when comparing 185 

across a wide range of methods and approaches to examine the vulnerability of Earth’s forests to 186 

climate risks. If forests are tapped to play an important role in climate mitigation, an enormous 187 

scientific effort is needed to better shed light on when and where forests will be resilient to 188 

climate change in the 21st century. These results highlight an urgent need for more detailed 189 

treatment of climate-sensitive disturbances in mechanistic vegetation models, more extensive 190 

benchmarking of those models against disturbance and mortality datasets, and better 191 

identification of agents of change in observational datasets to underlie more nuanced empirical 192 

approaches. Continuing the long-term monitoring efforts that enable such work will be 193 

fundamental to improving such models. Our results also underscore key needs to focus on 194 

climate-driven biome transitions. Currently, enormous uncertainty remains about the spatial and 195 

temporal patterns of forest vulnerability to climate change. They further emphasize that the 196 

effectiveness of nature-based climate solutions currently under discussion (3, 4) are faced with 197 

great uncertainties, given the profound climate impacts on forests expected in the 21st century.  198 

 199 
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Figures 488 

 489 
Figure 1: Future forest carbon and climate risk projections from mechanistic vegetation models. 490 

All panels analyze the change between 2081-2100 in Shared Socioeconomic Pathway 5-8.5 491 

(SSP585) compared to 1995-2014 historical simulations and are masked by present forested 492 

areas. Multi-model mean (A) and range (B) of the change in live carbon mass in vegetation 493 

(kg*m-2) across 23 models. (C) Number of models projecting vegetation carbon losses in a grid 494 

cell over the same time period. (D) Multi-model mean spatial patterns of the percent change in 495 

fraction of tree plant functional types in a grid cell. Gray hatched areas indicate grid cells 496 

removed from analysis due to land use-driven forest loss.  497 

-150 -100 -50 0 50 100 150

-5
0

0
5

0

-18
-15
-12
-9
-6
-3
0
3
6
9
12
15

-150 -100 -50 0 50 100 150

-5
0

0
5
0

0

3

6

9

12

15

-150 -100 -50 0 50 100 150

-5
0

0
5
0

-2

-1

0

1

2

3

4

5

6

-150 -100 -50 0 50 100 150

-5
0

0
5

0

5

10

15

20

-150 -100 -50 0 50 100 150

-5
0

0
5
0

0

3

6

9

12

15

-150 -100 -50 0 50 100 150

-5
0

0
5

0

-18
-15
-12
-9
-6
-3
0
3
6
9
12
15

A

C D

BMean

ΔcVeg
Range

ΔcVeg

# Mod Δ%

Tree

-150 -100 -50 0 50 100 150

-5
0

0
5

0

5

10

15

20

-150 -100 -50 0 50 100 150

-5
0

0
5

0

-2

-1

0

1

2

3

4

5

6



Global forest climate risks – Manuscript – 18 

 

  498 

Figure 2: Global forest risk estimates from ‘climate envelope’ approaches. (A) Projected percent 499 

transition (%Trans) of ecoregions to another ecoregion with a warming of +2 C above pre-500 

industrial from Dobrowski et al. 202117. (B) Projected percent transition of climate ‘life-zones’ 501 

between 1979-2013 and 2061-2080 in a moderate (RCP 4.5) climate scenario from Elsen et al. 502 

202121. (C) Risk of loss in species richness (quantified as an ‘effect size’ (ES) of –1 × 503 

log(ΔSpeciesRichnesshighcc-mitigation/ΔSRbaseline) where higher numbers indicate more risk of 504 

species loss) in the 2070s in a high climate change (RCP 8.5) scenario from Mori et al. 202120.  505 
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 506 
Figure 3: Projected change in climate-sensitive disturbance risks. (A) Average change in percent 507 

disturbed in a grid cell from random-forest model projections of Landsat-based stand-replacing 508 

disturbances for 2081-2100 in a moderate climate change scenario (Shared Socioeconomic 509 

Pathway 2-4.5 (SSP245)) compared to 1995-2014. (B) Average change in percent disturbed in a 510 

grid cell from protected area disturbance models for only temperate and boreal ecosystems in 511 

2081-2100 in a moderate climate change scenario (SSP245) compared to 1995-2014. Gray 512 

hatching in grid cells indicates no data from this data source. 513 
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 519 
Figure 4: Comparisons and syntheses across different climate risk axes. (A) Average percentile 520 

of risk combined across all metrics where 0%ile is lowest climate risk and 100%ile is highest 521 

climate risk, averaged across all datasets that covered a given grid cell. (B) Correlation matrix 522 

between different climate risk axes and metrics where the size and color are proportionate to 523 

correlation strength and magnitude (all correlations n.s.). Risk axes and metrics: number of 524 

models showing carbon losses in forested regions in Coupled Model Intercomparison Project 525 

Phase 6 data (cmip6-#mod), change in tree fraction in the subset of CMIP6 models (cmip6-dTF), 526 

species distribution/climate niche models of ecoregion percent changes from Dobrowski et al. 527 

(2021)17 (sdm-D21), species distribution/climate niche models of life-zone percent changes from 528 

Elsen et al. (2021)20 (sdm-E21), species distribution models of loss of species richness from Mori 529 

et al. (2021)21 (sdm-M21), random-forest based projections of Landsat-detected stand-replacing 530 

disturbances (dist-LS), and change in percent disturbed in a grid cell from protected area 531 

disturbance models from Seidl et al. (2020)19 (dist-S20).  532 
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