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One Sentence Summary: A multi-method synthesis of climate risks to forests globally.
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Abstract

Earth’s forests harbor extensive biodiversity and are currently a major carbon sink. Forest
conservation and restoration can help to mitigate climate change. Yet climate change could
fundamentally imperil forests in many regions and undermine their ability to provide such
mitigation. The extent of climate risks facing forests has not been synthesized globally, nor have
different approaches to quantifying forest climate risks been systematically compared. Here we
combine outputs from multiple mechanistic and empirical approaches to modeling carbon,
biodiversity, and disturbance risks to conduct a synthetic climate risk analysis for Earth’s forests
in the 21 century. Despite large uncertainty in most regions, we find some forests consistently at

higher risk, including southern boreal forests, western North America, and parts of the Amazon.
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Main text

Earth’s forests store carbon, support enormous terrestrial biodiversity, and provide
trillions of dollars each year in ecosystem goods and services to society (/, 2). Due to forests’
potential carbon sequestration capacity and co-benefits, there is widespread and growing interest
in leveraging forests for climate mitigation through nature-based climate solutions (3, 4). Yet the
future of forests globally is uncertain due to both land-use decisions and climate change (5—7).
Forests face substantial climate risks that could trigger carbon-cycle feedbacks, accelerating
climate change and fundamentally undermining their role in climate mitigation (7—9). Critical
climate-sensitive risks to forest stability, biodiversity, and long-term carbon storage include
disturbance triggered by extreme weather (e.g. fire, drought, hurricanes), biotic agents and
invasive species, and large-scale demographic shifts (e.g. elevated mortality rates, species
turnover, physiological limits to growth or regeneration) (7, 10—12).

The large-scale and cross-biome patterns of climate risks to forests are not well-
understood. With respect to ecosystems, the Intergovernmental Panel on Climate Change (IPCC)
defines risk as the potential for adverse consequences for ecological systems and highlights that
risk results from the dynamic interaction of climate-related hazards, exposure, susceptibility and
(lack of) adaptive capacity of a system (3, /3). Three major approaches have been used to
examine key determinants of forest risk, each considering different processes, with distinct
uncertainties and limitations. First, global mechanistic vegetation models, such as those included
in Earth system models, simulate forest carbon fluxes and pools, climate impacts on those
processes, some key climate-sensitive disturbances such as fire, and dynamic growth and
recovery after disturbances (74, 15). Second, ‘climate envelope’ approaches use empirical

models based on relationships between observed climate patterns and forest attributes, such as
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biomass, species presence/abundance, or ecoregion/life-zone presence (/6—18). Third, empirical
assessments of climatic controls on stand-replacing disturbances, typically based on satellite data
of forest loss or meta-analyses of field studies, are other common approaches (71, 19). These
major approaches roughly capture different ‘axes’ of forest climate risk to: (i) carbon
stocks/storage (hereafter ‘C risk’), (ii) species composition changes (‘species risk’), and (iii)
disturbance regime change (‘disturbance risk’). These approaches have different inherent
strengths and weaknesses, but a synthesis of approaches at a global scale is lacking. A multi-
method analysis to quantify risks spatially and estimate which regions may be particularly
vulnerable in future climates is urgently needed to inform land management, conservation, and
climate mitigation efforts.

Here, we compare results from these three types of approaches to provide a global
assessment of climate risks facing Earth’s forests in the 21% century. We ask: 1) what are the
mean and uncertainty in projections of forest carbon storage and potential forest carbon losses in
mechanistic vegetation models included in Earth system models (e.g. ‘C risk’), i1) what do
empirical ‘climate envelope’ and ‘climate-sensitive disturbance’ approaches estimate for spatial
and temporal climate risks to forests (e.g. ‘species risk’ and ‘disturbance risk’), and iii) what
broader risk patterns emerge from the synthesis and comparisons of these three different axes of
risks?

We first examined simulations of the live carbon in vegetation in forested areas (‘C risk’)
from mechanistic vegetation models from the Coupled Model Intercomparison Project — Phase 6
(CMIP6: 23 models total, 13 with prognostic fire and 6 with dynamic vegetation, Table S1),
removing the direct influences of human land use change, to contextualize overall forest carbon

changes (20). Comparing 2081-2100 with 1995-2014, these models on average show carbon
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gains in currently forested areas in both high and low emissions scenarios (Fig. 1, Fig. S1). The
multi-model mean was positive across most of the world, but with very high variation and
uncertainty across models, particularly in the tropics and swaths of the boreal forests (Fig. 1A,
1B, Fig. S1). We examined relative agreement in spatial patterns of carbon gains and losses
across models and found that spatial correlations across models for carbon changes were modest,
with an average of r=0.30 across the 23 models considered here (Fig. S2).

We calculated two complementary metrics of potential climate C risk from these models
as: 1) the number of models with carbon losses by 2081-2100 compared to 1995-2014 and 2) the
percent change from tree functional types to other vegetation in a grid cell between those two
periods for the subset of models (N=14) that reported data on vegetation change (20). The first
metric uses the inherent variability in the model ensemble and assumes that the higher the
number of models with C loss, the greater the risk, whereas the second metric directly calculates
forest loss in models where it is represented. With the first metric, large areas of the Neotropics,
the Mediterranean region and eastern Europe, as well as southwestern North America show
notable risk (Fig. 1C). With the second metric, subtropical and southern boreal regions were
more likely to lose tree functional types (Fig. 1D). We further found that these two metrics
showed similar patterns of higher projected risk in southern boreal and drier regions in the
Amazon and African tropics. Spatial patterns of carbon changes and climate risks were broadly
similar between emissions scenarios (Fig. 1, Fig. S1) and between models with versus without
prognostic fire simulated (Fig. S3).

We then examined forest ‘species risk’, estimated via empirical climate envelope models
in three recently published papers. Using observed climate relationships at global scales, two

papers estimated ecoregion/life-zone transitions (i.e. shifts from one ecoregion/life-zone to
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another) and the third modeled changes in forest species richness within a biome (17, 21, 22).
Ecoregion transitions were projected to be most likely at current biome boundaries (sub-tropic —
temperate, temperate — boreal, and tropical — subtropical biomes; Fig. 2A, 2B). We note that
there could be similarly large transitions in terms of species composition within individual
biomes, but that by their inherent ecoregion-focused structure the underlying analyses in Fig 2A-
B would not capture community-level changes. Considering the third paper’s analyses, risk of
species loss estimates were highest in boreal regions and western North America and generally
lower in tropical regions (Fig. 2C).

To quantify climate-sensitive ‘disturbance risk’, we used two complementary methods: 1)
an empirical random-forest model linking observed climate to stand-replacing disturbance
estimates based on satellite data from 2002-2014 with human land-use conversion removed (but
harvest included, (20)), and 2) upscaled climate-dependent rates of disturbance in 103 protected
areas from temperate and boreal biomes (/9). For both methods, the models were built with
observed relationships in the historical period. We estimated the change in stand-replacing
disturbance rates using climate model output from the same 23 climate models we used for C
risk for 2081-2100, with a moderate climate scenario (SSP2-4.5). The model of stand-replacing
disturbances indicated that if current forests were exposed to projected future temperatures and
precipitation, the largest increases of disturbance would be expected to occur in the tropics and
southern boreal forests (Fig. 3A, 3B), whereas upscaled relationships from protected areas
indicated high disturbance vulnerability broadly across boreal forests, although this dataset did
not include tropical forests (Fig. 3B).

We emphasize that these three distinct axes of risk are capturing different aspects and

dimensions of climate risks to forests, all of which are generally considered important responses
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160

of forests to climate change (20). The spatial and cross-biome relative risk patterns within each
approach are likely what is most insightful and important in these comparisons, rather than the
absolute values. Thus, we compared the spatial correlations in relative projected risk patterns
with a correlation matrix and computed spatial covariation of risk percentiles across all metrics.
Strikingly, none of the different metrics were significantly spatially correlated with each other
(p>0.05), leading to high variability across risk metrics in many regions (Fig. S4), and the
mechanistic vegetation model projections tended to be slightly negatively correlated with the
other approaches (Fig. 4B). Despite this broad-scale disagreement, identification of regions that
are at relatively higher or lower risk in a majority of approaches can still provide useful
information for risk management. Aggregating risk metrics by the average percentile across all
metrics with data in a given grid cell, southern boreal regions (e.g. central Canada) and drier
regions of the tropics (e.g. southeast Amazonia) emerged as regions with higher than average
risk across metrics, consistent with multiple observational studies (e.g. 23, 24). By contrast,
eastern North America, western Amazonia, and southeast Asia exhibited lower than average risk
(Fig. 4A, Fig. S5); a recent pan-tropical study also observed lower vulnerability in southeast
Asian tropics (25). These regional patterns were generally robust in a sensitivity analysis that
sequentially excluded individual risk maps (Fig. S6). Considering biome-wide patterns, tropical
forests had slightly higher average median risk percentiles (51%ile and 62%ile for tropical moist
broadleaf and tropical/subtropical dry broadleaf forests, respectively) than boreal (44%ile) or
temperate (35%ile and 42%ile for broadleaf and coniferous, respectively) forests (Fig. S7).

All of the different approaches to estimating forest climate risk have limitations and
different uncertainties that are worth bearing in mind. Mechanistic model projections (C risk

axis) include the benefits of rising atmospheric CO2 concentrations on forest productivity (i.e.
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CO: fertilization), as well as coarse estimates of climate sensitivities of plant functional types
and fire disturbance. However, these models are generally thought to be lacking a substantial
range of key impacts of climate on tree mortality and other disturbances, making it likely that
risk estimates from this approach are overly conservative and carbon gains may be overestimated
(26). Furthermore, these models do not realistically capture current tropical forest carbon
dynamics (27) and the potential for biome shifts remains very uncertain in these models (14, 28),
in part because they frequently neglect processes of tree regeneration (29).

The empirical species distribution and ecoregion biome transition models (species risk
axis) are correlative in nature and do not directly include mechanistic processes of growth,
mortality, COz-related effects, or disturbance. They are, nevertheless, widely used across the
globe for conservation planning efforts (16, 30), as they provide a powerful approach to estimate
the species pool under given climatic conditions. Empirical disturbance models (disturbance risk
axis) capture only one key component of forest carbon cycling and do not account for regrowth,
species turnover, and other dynamics. Nonetheless, a broad body of literature has demonstrated
that changes in disturbance regimes have strong leverage on forest carbon cycling in many
ecosystems globally (9, 72, 28). Finally, all of these approaches treat direct human impacts of
land-use change and management distinctly. Forest management, as a key disturbance and arbiter
of forest risk, is included implicitly or explicitly in all methods here. Whilst we have made
extensive efforts to screen out changes due to land conversion (20), land management remains an
important uncertainty and caveat in these analyses. A previous global risk analysis for forest loss
using a single, older mechanistic vegetation model (3 /) projected highest forest loss in the

eastern Amazon, eastern North American boreal, and broad areas of the European and Asian
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boreal forests, which is partially consistent with the species turnover and biome transition
estimates presented here (e.g. Fig 2A) and the multi-method aggregate map.

Ultimately, our analysis reveals a strikingly divergent set of projections when comparing
across a wide range of methods and approaches to examine the vulnerability of Earth’s forests to
climate risks. If forests are tapped to play an important role in climate mitigation, an enormous
scientific effort is needed to better shed light on when and where forests will be resilient to
climate change in the 21 century. These results highlight an urgent need for more detailed
treatment of climate-sensitive disturbances in mechanistic vegetation models, more extensive
benchmarking of those models against disturbance and mortality datasets, and better
identification of agents of change in observational datasets to underlie more nuanced empirical
approaches. Continuing the long-term monitoring efforts that enable such work will be
fundamental to improving such models. Our results also underscore key needs to focus on
climate-driven biome transitions. Currently, enormous uncertainty remains about the spatial and
temporal patterns of forest vulnerability to climate change. They further emphasize that the
effectiveness of nature-based climate solutions currently under discussion (3, 4) are faced with

great uncertainties, given the profound climate impacts on forests expected in the 21% century.
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Figure 1: Future forest carbon and climate risk projections from mechanistic vegetation models.
All panels analyze the change between 2081-2100 in Shared Socioeconomic Pathway 5-8.5
(SSP585) compared to 1995-2014 historical simulations and are masked by present forested
areas. Multi-model mean (A) and range (B) of the change in live carbon mass in vegetation
(kg*m2) across 23 models. (C) Number of models projecting vegetation carbon losses in a grid
cell over the same time period. (D) Multi-model mean spatial patterns of the percent change in
fraction of tree plant functional types in a grid cell. Gray hatched areas indicate grid cells
removed from analysis due to land use-driven forest loss.
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Figure 2: Global forest risk estimates from ‘climate envelope’ approaches. (A) Projected percent
transition (%Trans) of ecoregions to another ecoregion with a warming of +2 C above pre-
industrial from Dobrowski et al. 202177, (B) Projected percent transition of climate ‘life-zones’
between 1979-2013 and 2061-2080 in a moderate (RCP 4.5) climate scenario from Elsen et al.
202171, (C) Risk of loss in species richness (quantified as an ‘effect size’ (ES) of —1 x
log(ASpeciesRichnesshighce-mitigation/AS Rbaseline) where higher numbers indicate more risk of
species loss) in the 2070s in a high climate change (RCP 8.5) scenario from Mori et al. 2021,
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Figure 3: Projected change in climate-sensitive disturbance risks. (A) Average change in percent
disturbed in a grid cell from random-forest model projections of Landsat-based stand-replacing
disturbances for 2081-2100 in a moderate climate change scenario (Shared Socioeconomic
Pathway 2-4.5 (SSP245)) compared to 1995-2014. (B) Average change in percent disturbed in a
grid cell from protected area disturbance models for only temperate and boreal ecosystems in
2081-2100 in a moderate climate change scenario (SSP245) compared to 1995-2014. Gray
hatching in grid cells indicates no data from this data source.
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Figure 4: Comparisons and syntheses across different climate risk axes. (A) Average percentile
of risk combined across all metrics where 0%ile is lowest climate risk and 100%ile is highest
climate risk, averaged across all datasets that covered a given grid cell. (B) Correlation matrix
between different climate risk axes and metrics where the size and color are proportionate to
correlation strength and magnitude (all correlations n.s.). Risk axes and metrics: number of
models showing carbon losses in forested regions in Coupled Model Intercomparison Project
Phase 6 data (cmip6-#mod), change in tree fraction in the subset of CMIP6 models (cmip6-dTF),
species distribution/climate niche models of ecoregion percent changes from Dobrowski et al.
(2021)!7 (sdm-D21), species distribution/climate niche models of life-zone percent changes from
Elsen et al. (2021)?° (sdm-E21), species distribution models of loss of species richness from Mori
etal. (2021)% (sdm-M21), random-forest based projections of Landsat-detected stand-replacing
disturbances (dist-LS), and change in percent disturbed in a grid cell from protected area
disturbance models from Seidl et al. (2020)° (dist-S20).
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