

1 **ELECTRONIC MEASUREMENT OF CELL ANTIGEN EXPRESSION IN WHOLE
2 BLOOD**

3 Ozgun Civelekoglu ^a, Ruxiu Liu ^a, Can F. Usanmaz ^a, Chia-Heng Chu ^a, Mert Boya ^a, Tevhide
4 Ozkaya-Ahmadov ^a, A K M Arifuzzman ^a, Ningquan Wang ^a and A. Fatih Sarioglu ^{a, b, c, *}

5 ^a School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta,
6 Georgia 30332, USA

7 ^b Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology,
8 Atlanta, Georgia 30332, USA

9 ^c Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia
10 30332, USA

11 * Correspondence should be addressed to A.F.S. (sarioglu@gatech.edu)

13 **ABSTRACT**

14 Membrane antigens are phenotypic signatures of cells used for distinguishing various
15 subpopulations and therefore, are of great interest for diagnosis diseases and monitoring of patient
16 in hematology and oncology. Existing methods to measure antigen expression of a target
17 subpopulation in blood samples require labor-intensive lysis of contaminating cells and subsequent
18 analysis with complex and bulky instruments in specialized laboratories. To address this
19 longstanding limitation in clinical cytometry, we introduce a microchip-based technique that can
20 directly measure surface expression of target cells in hematological samples. Our microchip
21 isolates an immunomagnetically-labeled, target cell population from the contaminating
22 background in whole blood and then utilize differential responses of target cells to on-chip
23 magnetic manipulation to estimate their antigen expression. Moreover, manipulating cells with
24 chip-sized permanent magnets and performing quantitative measurements via an on-chip electrical
25 sensor network allows the assay to be performed in a portable platform with no reliance on
26 laboratory infrastructure. Using our technique, we could successfully measure expressions of
27 CD45 antigen that is commonly expressed by white blood cells, as well as CD34 that is expressed
28 by scarce hematopoietic progenitor cells, which constitutes only ~0.0001% of all blood cells,
29 directly from whole blood. With our technology, the flow cytometry can potentially become a
30 rapid bedside or at-home testing method that is available around the clock in environments where
31 this invaluable assay with proven clinical utility is currently either outsourced or not even
32 accessible.

1 **INTRODUCTION**

2 Surface antigens regulate the interaction of a cell with its environment and are responsible for wide
3 range of functions, including cell activation and proliferation¹, cell adhesion², particle transport³,
4 as well as cytokine reception and cell signaling⁴. Because antigen expressions are dynamic
5 throughout a cell's lifecycle and vary from one cell type to another, they provide invaluable
6 information on the identity of a cell and its stage of maturation and activation. Hence, reliable
7 identification and quantitative measurement of these antigens, especially the cluster of
8 differentiation (CD) molecules⁵, are essential for detecting malignancies.

9 Currently, flow cytometry is the gold standard technique for the characterization of cell
10 populations. This powerful technique allows rapid investigation of the physical and biochemical
11 properties of a cell population at the single cell level⁶⁻⁹. In flow cytometry, fluorescently labeled
12 cells are hydrodynamically focused into a detection spot that is illuminated by a laser beam to
13 excite the fluorophores. Consequent fluorescent emission is then measured one cell at a time by
14 optical detectors, and the surface expression of a cell population is characterized by the distribution
15 of the measured fluorescence intensity. As this technique enables a precise measurement of surface
16 antigens, flow cytometry has become an essential tool in clinical hematology¹⁰⁻¹³ and oncology^{14,15}
17 for diagnosing and monitoring of acute lymphoblastic leukemia (ALL)^{16,17}, minimal residual
18 disease (MRD)^{18,19}, and acute myeloid leukemia (AML)²⁰ based on the surface antigens of
19 leukocytes. In addition to leukocyte testing, flow cytometry on circulating progenitor cells (i.e.,
20 CD34+ cells in peripheral blood) reveal coronary artery disease^{21,22} and peripheral arterial
21 disease^{21,23} as well as a patient's regenerative capacity^{24,25}.

22 Although flow cytometers are well-established tools for surface antigen analysis, their high cost,
23 complex operation, and large form factor⁸ in addition to the need for labor-intensive sample
24 preparation prevent their use in decentralized settings. Consequently, for small clinics, the access
25 to the instrument relies on outsourcing, which introduces sample transportation, increased
26 turnaround times, and limited emergency testing in situations where a bedside alternative could
27 potentially be a lifesaver²⁶. Recent advances in fluorescent flow cytometry have rendered smaller
28 devices, yet these systems still require a significant investment and expertise²⁷, offering limited
29 practicality for point-of-care testing. While microfluidic devices are gaining attention for their
30 promised utility in clinical settings by offering mass-producible, cost-effective, and portable
31 solutions²⁸⁻³¹, challenges remain in terms of laborious and specialized sample preparation,
32 especially for analyzing hematological samples.

33 We have recently developed a method to measure cell surface expression by electrically
34 monitoring the magnetophoretic trajectory of an immunomagnetically-labeled cell^{32,33}. Here we
35 exploit the ability to manipulate an immunomagnetically-labeled cell for inline enrichment of
36 target cell population in the upstream in order to directly analyze cell surface antigen density in
37 complex matrices such as whole blood. From a technical point of view, our technique combines
38 multi-stage magnetophoresis on a microfluidic device with electrical monitoring of cells'
39 trajectories under a magnetic field gradient through integrated network of sensors in order to
40 compute expression of a target antigen. As such, we not only simplify the flow cytometer by
41 transducing the surface antigen density directly into electrical signals, bypassing conventionally

1 employed optical measurements, but also eliminate laborious sample processing steps such as red
2 blood cell lysis and centrifugation by taking the advantage of physical manipulation capabilities
3 of magnetic-activated cell sorting (MACS)³⁴.

4 **DESIGN AND OPERATION**

5 **Device Design**

6 Our device performs the analysis of a magnetically labeled cell suspension in two stages: In the
7 first stage, labeled cells are enriched from whole blood via binary sorting. In the second stage, the
8 enriched population of cells differentially expressing the targeted antigen is subjected to a
9 discriminating magnetic field and surface expression for each cell is computed from its
10 magnetophoretic trajectory (Figure 1a). The process starts with immunomagnetically labeling cells
11 in whole blood against the surface antigen of interest using 1 μ m-diameter magnetic beads
12 conjugated with matching antibodies. Magnetically labeled blood sample along with a buffer
13 solution are then driven through the device. Under an externally applied magnetic field,
14 magnetically labeled cells deviate from their original course and are enriched by crossing into the
15 buffer solution, while the non-target red blood cells (RBCs), white blood cells (WBCs), and
16 platelets are discharged from a waste outlet. Subsequently, magnetically labeled cells are first
17 hydrodynamically focused through a sheath flow and then fractionated under a magnetic field
18 gradient. In response to the magnetic field, each cell follows a distinct trajectory that exposes the
19 amount of magnetic load it carries, which in turn can be linked to its surface antigen density^{35,36}.
20 We electrically acquire the magnetophoretic deflection of cells through a network of electrical
21 sensors integrated on the device and compute the expression of the target antigen in the blood
22 sample.

23 Our cytometer was fabricated as a single-use assay with a 2-inch by 3-inch footprint. (Figure 1b).
24 The fabrication process involved bonding a microfluidic layer that was fabricated out of
25 polydimethylsiloxane (PDMS) and a glass substrate with a 500 nm of Cr/Au film stack that had
26 been surface micromachined to create the electrical components (Methods). The microfluidic layer
27 was designed to bifurcate the blood sample at the inlet to sandwich 1X phosphate buffered saline
28 (PBS) buffer flowing at the center of a 1 mm-wide by 25 mm-long channel. Along this channel,
29 the labeled cells are magnetically pulled into the central buffer stream before the flow divides into
30 three paths at the end. The central path receives the labeled cells and transfers them to the
31 differential sorting stage. The outer two paths receive the blood, depleted of target cells, and directs
32 it into two 500 μ m-wide and 25 mm-long channels for a redundancy pass prior to disposal to ensure
33 retrieval of any remaining labeled cells that potentially evaded detection in the first pass. The
34 channels carrying the enriched population (one from the first pass, two from redundancy passes)
35 are merged and cells are directed towards one of the two differential sorting chambers that are each
36 3 mm-wide and 10 mm-long. The differential sorting chambers are purposely positioned
37 asymmetrically (200 μ m vertical shift) with respect to the magnets so that each operates under
38 different magnetic gradients to achieve a wider dynamic range³⁷. Across the whole device,
39 serpentine channels were used as hydrodynamic resistors to regulate sample and buffer flow rates
40 and also ensure the proper direction of the fluidic flow (i.e., prevent backflow) (Methods). The
41 dead volume of the whole device was calculated to be 5.82 μ L.

1 To track the trajectories of the differentially sorted cells, we integrated an array of code-
2 multiplexed Coulter sensors (Microfluidic CODES³⁸) on the device (Figure 1c). Through
3 micromachined electrode patterns, these sensors encoded each cell's magnetic deflection and size
4 into an electrical signal in the form of distinct code signals. Moreover, we designed the sensors to
5 produce Gold sequences (Methods), which are specialized orthogonal codes used in multiplexing
6 information in asynchronous data communications³⁹, to facilitate reliable decoding of the
7 signal^{40,41}. Because Gold sequences remain mutually orthogonal to other Gold sequences in a code-
8 set even when they interfere with each other due to coincident events with random time delays,
9 this design allows us to identify matching sequences in an interference signal by correlating the
10 output signal with a library of all code templates. Overall, we constructed a network of 16 sensors,
11 each producing a distinct a 31-bit Gold sequence (Table 1). 31-bit code length was specifically
12 chosen because 31-bit Gold sequences were the shortest Gold code that could still form a code-set
13 large enough to produce 16 distinct codes to be assigned to individual sensors on the device^{40,41}.
14 The arrangement of the positive and negative sensing electrodes for each sensor followed the
15 assigned code (Figure 1c). As sorted cells passed over these electrodes, momentary changes in the
16 electrical impedance produced code signals that would be deciphered to observe how cells
17 responded to magnetic manipulation.

18 To establish a field gradient for all magnetic manipulations on the device, we used permanent
19 magnets external to the device. We designed a custom housing (Methods) that accommodated four
20 neodymium magnets (BX884, K&J Magnetics) in a quadrupole magnetic configuration to
21 establish a high field gradient to maximize the magnetic force on cells^{42,43} (Figure 1d). We
22 specifically fabricated the housing with self-alignment features that ensured (1) the same distance
23 between magnets and (2) precise positioning of the microfluidic device with respect to the
24 magnets, both to guarantee consistent magnetic field gradient between measurements.

25 Computational modeling of on-chip cell trajectories

26 To establish a link between a cell's behavior on the device to its properties, we first constructed a
27 quantitative model that accounts for magnetic and hydrodynamic force fields acting on cells and
28 then employed this model to simulate cell response as a function of its properties.

29 As the first step, we quantitatively mapped magnetic forces throughout our device by simulating
30 the magnetic field distribution in a faithful 3-D representation of our device and the permanent
31 magnets (Methods). In the quadrupole configuration, magnets faced the same polarity vertically
32 and the opposing polarity laterally (Figure 2a). This magnet configuration generated a field
33 intensity with three extrema in the transverse direction (Figure 2b). Across the device, the cell
34 sorting channels were strategically positioned to utilize gradients in the field for generating force
35 on the magnetic beads attached to the cells. Because paramagnetic beads are drawn to higher field
36 intensity, magnetic field pattern resulted labeled cells to be drawn towards center as the cells make
37 their first and second pass through binary sorting channels and outwards in the differential sorting
38 chambers for electrical analysis (Figure 2c). The highest field gradient was purposely reserved for
39 the binary sorting stage to maximize the magnetic force in ensuring retrieval of labeled cells out
40 of blood irrespective of their magnetic load. Based on our calculations (Methods), the binary
41 sorting stage was estimated to apply a 1.29 pN and 0.93 pN of average forces per bead in the first

1 and second passes, respectively. In contrast, the top and bottom differential sorting chambers were
2 estimated to generate 0.34 pN and 0.2 pN average magnetic forces per bead across the full width
3 of the chambers, respectively. Differences in magnetic forces in sorting chambers were utilized to
4 increase the dynamic range of analysis. Specifically, the top differential sorting chamber were used
5 to discriminate low-to-medium expressors, while the bottom chamber could separate medium-to-
6 high expressor cells.

7 Next, we introduced hydrodynamic forces into our model and simulated flow of cells on the device.
8 The trajectory a cell followed on the device depended on multiple factors: First, more magnetic
9 beads led to more deflection driving the cells to further outlets. Second, the size of the cell had a
10 convoluted effect on the deflection (Figure 2d). Because Stokes drag forces counteract the
11 magnetic forces, a larger cell with the same magnetic load ended up deflecting less. Third, the
12 faster the cells flowed, the less they deflected, which made flow rates an important operational
13 parameter. Finally, the higher magnetic field gradient in the top differential sorting chamber led to
14 cells deflecting ~1.7X the bottom chamber, a result we sought for increasing the dynamic range of
15 our measurements.

16 The developed model not only allowed us to optimize the design of the device and set operating
17 parameters, but also provided the theoretical framework to interpret sensor data in estimating cell
18 surface expression. By aggregating model predictions for cells of varying magnetic loads and sizes,
19 we constructed look-up tables that link the specific outlet a cell was sorted into cell properties
20 (Figure 2e). Because our coded sensors provide the cell size and outlet identity, we could calculate
21 number of magnetic beads on a cell from its corresponding sensor signal. Based on the
22 computational model, we could also estimate the magnetic load saturation point for our sensor
23 network under different operating conditions for cells with different sizes. Considering the upper
24 limit of our measurements as the minimum magnetic load that can deflect the cell to the furthest
25 outlet (i.e., sensor #8), we calculated the upper limit for both sorting chambers for different cell
26 sizes at different flow rates and reported these saturation load limits (Supplementary Figure 1).

27 EXPERIMENTAL RESULTS

28 Characterization of the assay with control samples

29 We characterized our device by analyzing control samples prepared by spiking pre-labeled cell
30 populations into whole blood. Spiked cells were chosen from human cancer lines, PC-3, SK-BR-
31 3, and MCF-7, all of which are known to express epithelial cell adhesion molecule (EpCAM)
32 unlike normal blood cells. The nuclei of cancer cells were fluorescently stained with Hoechst dye
33 for downstream microscopic investigation and then cells were labeled with anti-EpCAM
34 conjugated magnetic beads (Methods). Whole blood samples containing labeled tumor cells were
35 then processed using our device to measure the sample EpCAM expression.

36 We first investigated the enrichment of the magnetically labeled cell population from whole blood.
37 While it was not possible to microscopically observe the enrichment process in real time with the
38 device being operated in between permanent magnets, a snapshot inspection of an operational
39 device taken out of its housing confirmed the bulk of the non-labeled blood cells to be directed
40 towards the waste as intended (Figure 3a). To quantitatively measure the enrichment efficiency,

1 we compared the prevalence of labeled cells in the enriched and the waste cell populations with a
2 fluorescence microscope (Methods). Under the optimal sample flow rate, MCF-7 cells were found
3 to be enriched with the highest efficiency among different spiked tumor cell populations with a
4 mean enrichment rate of 96% (Figure 3b). In contrast, an average of 87% of SK-BR-3 and 85% of
5 PC-3 cells could successfully be recovered from whole blood to advance into the differential
6 sorting stage. The observed differences in the enrichment efficiencies were anticipated due to
7 differences in EpCAM expression between the spiked cell populations (Supplementary Figure 2),
8 as high expressor cells (e.g., MCF-7) carrying more magnetic beads could be pulled out of
9 unlabeled blood cells by greater magnetic forces. Also supporting this conclusion was that for all
10 samples tested, labeled cells missed to the waste were determined to be the low expressors cells
11 with fewer magnetic beads. Measurement cell enrichment efficiencies under different sample flow
12 rates determined 1,000-2,000 μ L/h as the optimal sample flow rate that consistently yielded the
13 highest enrichment rates across all samples. Faster flow rates were found to lower the enrichment
14 efficiency as magnetically labeled cells had less time to deflect out of the flow stream. On the other
15 end, flow rates less than 750 μ L/h, labeled cells, especially the highest expressors, were found to
16 be trapped in the device likely from reduced drag force being insufficient to overcome the axial
17 magnetic force.

18 To investigate any potential bias from the enrichment process, we compared the surface expression
19 of the enriched and the parent cell populations. We enriched different cell populations spiked in
20 whole blood and counted the magnetic beads on individual cells from their microscope images
21 through a custom image-processing software³³ (Methods). For all cell populations tested, we found
22 that the expression of the enriched population closely matched with the respective parent
23 population (Figure 3c). Specifically, enriched PC-3 cells were found to carry an average of ~80
24 magnetic beads per cell versus ~78 magnetic beads of the parent population and produced
25 expression profiles matching with a correlation coefficient of ~0.98. Enriched MCF-7 cells carried
26 virtually the same number of magnetic beads on average (~143 versus ~142) with the parent
27 population and the expression profiles matched with a correlation coefficient ~0.96. SK-BR-3 cells
28 were found to carry an average of ~123 magnetic beads following enrichment compared to ~134
29 beads counted for the parent population and produced a matching expression profile with a ~ 0.96
30 correlation coefficient. These results demonstrated that enriched population remained a faithful
31 representation of the sample with negligible bias introduced during the enrichment. On the other
32 hand, we found that cells lost to the waste had average magnetic loads of 5.11, 10.46 and 7.42
33 beads/cell for PC-3, SK-BR-3 and MCF-7 cells, respectively. Magnetic load profile of cell
34 populations lost to the waste ultimately determines the lower limit to the range of magnetic loads
35 that could reliably be measured using our system.

36 Finally, we tested the full device and processed the electrical data to compute cell surface
37 expression. The device was driven with a 1.5V sine wave at 500 kHz and the electrical current was
38 measured from a pair of sensing electrodes (Figure 3d). Through a differential amplifier, these
39 signals were combined into a bipolar waveform, which we decoded to estimate cell trajectories
40 using a custom-built software (Methods). By comparing the waveforms for each cell with a library
41 of templates, we have identified the specific outlet that the cell was sorted into (Figure 3e). The
42 orthogonality of different sensor codes ensured that we could reliably decode the electrical data

1 with minimal interference. Moreover, our sensors were designed to remain idle to any passing
2 unbound (free) beads by exploiting their significantly smaller size and higher conductivity than a
3 cell.

4 We measured the size of each cell from the peak amplitude of sensor signals calibrated according
5 to the Coulter principle (Methods). Then with the knowledge of cell trajectory (i.e., the outlet),
6 size and the flow speed, we calculated the magnetic load on each cell based on the computational
7 model we developed previously. Running the assay with blood samples spiked with cancer cells,
8 we recorded electrical data corresponding to >2000 cells per experiment to measure the EpCAM
9 expression of the three cells lines (Figure 3f). Electrical measurements confirmed the relative
10 EpCAM expression levels between the cell lines (Supplementary Figure 2) with MCF-7 cells
11 having the highest expression among the cell lines with 133 beads per cell on average, followed
12 by SK-BR-3 cells with an average of 131 beads/cell and the PC-3 cells as the lowest expressors
13 with a mean magnetic load of 62 beads per cell. To validate our results, we also compared these
14 magnetic load estimations from the interpretation of sensor data based on our computational model
15 with microscopic measurement of magnetic load on the same population. We found that the mean
16 magnetic load estimate from our device closely matched with microscopic measurements, which
17 resulted in averages of 78, 134 and 142 magnetic beads/cell for PC-3, SK-BR-3 and MCF-7 cell
18 lines, respectively. Furthermore, model-estimated magnetic load distribution for each cell
19 population were highly correlated with microscopically measured bead counts resulting in
20 correlation coefficients of 0.79, 0.90 and 0.91 for PC-3, SK-BR-3 and MCF-7 populations,
21 respectively (Supplementary Figure 3).

22 **Analysis of hematological cells**

23 We applied our technology on blood samples collected from consenting donors to measure the
24 expression of different hematological surface antigens. We first targeted CD45, a phenotypic
25 biomarker whose expression level is commonly used for immunophenotyping leukocytes by flow
26 cytometry⁴⁴. Whole blood samples were labeled with biotinylated anti-CD45 antibody and
27 magnetic particles (Figure 4a) and were processed with our cytometry chip at a flow rate of 1,500
28 μ L/h. Operational parameters optimized earlier using cancer cell lines were also confirmed to be
29 valid for analyzing leukocytes despite differences in size (Supplementary Figure 4). The analysis
30 took ~10 minutes to process up to ~200 μ L of sample, which was amply sufficient to acquire data
31 on \geq 2,000 leukocytes for each sample. For each leukocyte, we measured its size and the number
32 of magnetic beads it carried. For validation purposes, we independently analyzed matching
33 samples via flow cytometry and compared with our electrical measurements. For all samples
34 analyzed, our measurements resulted in a bimodal CD45 expression (Figure 4b), an expected result
35 due to differential expression of the antigen between granulocytes and other leukocyte subtypes⁴⁴.
36 Moreover, electronically measured CD45 expression profiles (Figure 4c) matched with those from
37 flow cytometry to the extent that donor-specific features such as relative prevalence of high vs low
38 CD45 expressor subtypes were consistent. On this point, some samples (Samples 1, 3, 4, 8, 9 and
39 10) were found to be rich in low CD45 expressor cells (defined as cells with <50 magnetic beads),
40 while the other samples (Samples 2, 5, 6 and 7) were found to have more high-expressor leukocytes
41 (Figure 4d). In terms of leukocyte sizes, our measurements captured heterogeneity between blood

1 samples. For example, we found Sample 1 had relatively smaller leukocytes than Sample 2 with a
2 mean diameter of $10.62 (\pm 1.78) \mu\text{m}$ vs $11.86 (\pm 1.30) \mu\text{m}$, while the leukocytes from Sample 3 had
3 more size variation around a mean diameter of $11.22 (\pm 2.45) \mu\text{m}$. These results matched
4 remarkably well with our calibrated forward scatter width (FSC-W) measurements from flow
5 cytometry (Methods) which reported mean leukocyte diameters of $10.65 (\pm 0.134) \mu\text{m}$, 11.5
6 (± 0.131) μm and $11.25 (\pm 0.132) \mu\text{m}$ for Samples 1, 2 and 3, respectively.

7 Next, we attempted to analyze hematopoietic progenitor cells (HPCs), a rare blood cell
8 subpopulation with an average basal density of 2-10 cells per μL of blood in healthy
9 individuals^{21,45}. To target HPCs, we labeled blood samples against CD34, which is a commonly
10 used biomarker for their isolation²¹ (Figure 5a). To probe a sufficient number of progenitor cells,
11 we ran our assay ~ 5 x longer than the CD45-based study and processed 0.6-1.0 mL sample to
12 compensate for the lower concentration of the progenitor cells. Consequently, we analyzed >800
13 cells for each sample. HPCs were found to carry less magnetic load across all donors with an
14 average of ~ 22.61 beads per cell compared to leukocytes with ~ 34.56 beads per cell (Figure 5b)
15 and were also smaller with a mean diameter of $8.92 \mu\text{m}$ vs $10.94 \mu\text{m}$ for leukocytes. These
16 measurements translated into a similar mean magnetic bead density on the cell surface at ~ 0.0226
17 beads/ μm^2 for HPCs and ~ 0.0230 beads/ μm^2 for leukocytes. In terms of differences between
18 samples analyzed, we found varying levels of CD34 expression on HPCs ranging from ~ 42.8
19 beads/cell at Sample 3 to ~ 16.79 beads/cell at Sample 8 (Figure 5c). Relative ranking of CD34
20 expression among samples were also confirmed by flow cytometry (Figure 5d). Electronically
21 measured cell size also closely followed FSC-W data with our measured mean HPC diameter for
22 Sample 3, 5 and 8 were $8.19 (\pm 0.45) \mu\text{m}$, $8.03 (\pm 0.82) \mu\text{m}$ and $8.06 (\pm 1.34) \mu\text{m}$, compared to the
23 results from FSC-W as $8.07 (\pm 0.26) \mu\text{m}$, $8.24 (\pm 0.16) \mu\text{m}$ and $8.22 (\pm 1.31) \mu\text{m}$, respectively. The
24 greater variance in our size measurements was likely due to the fact that the electrical measurement
25 is volumetric⁴⁶, whereas the forward scatter measurement is cross-sectional⁹ causing the
26 discrepancies in the cell morphology to affect these two measurements differently⁴⁷.

27 To test the capability of our device's ability to process samples with larger volumes, we attempted
28 to process a whole blood sample of ~ 3.1 mL volume (Methods), which is approximately an order
29 of magnitude larger than a typical sample volume used for flow cytometry analysis in a single
30 run⁴⁸ (Supplementary Figure 5). Throughout this analysis, our device detected a total of 71,604
31 CD34+ cells, which corresponded to a concentration of ~ 23.32 cells/ μL . Independent flow
32 cytometry analysis of the same sample found virtually the same (~ 22.68 cells/ μL) concentration
33 of CD34+ cells validating our results and demonstrating the feasibility of analyzing large volume
34 samples.

35 In terms of device throughput, our sensors successfully detected up to 960 cells per second and we
36 could successfully resolve interferences from as many as 6 interfering cells for each sensor bank
37 at a sample concentration of 6,400 cells per microliter. To characterize our device in terms of the
38 detection limit, we compared the concentration of rare HPCs measured using our device with the
39 values obtained from a commercially available benchtop flow cytometer on matched samples. In
40 these experiments, we were able to detect HPCs at a concentration as low as ~ 2 cells per microliter
41 of whole blood using our device (Supplementary Table 1). Accepting the results from the

1 fluorescence-based flow cytometry as the ground truth for each sample, we found that our
2 measurements led to a root mean squared (RMS) error of 2.06 cells/ μ L of whole blood (n=11),
3 which we considered as the limit of detection for our assay.

4 Finally, to quantitatively compare electronic antigen expression measurements to flow cytometry,
5 we employed two-sample-Kolmogorov-Smirnov (K-S) test, a statistical method that tests if two
6 distributions originate from the same sample by calculating the differences in their cumulative
7 distribution functions (CDFs)⁴⁹⁻⁵². For all samples analyzed in this work, we found that the
8 resemblance between our technique and flow cytometry was statistically significant (i.e., p > 0.05).
9 Asymptotic p-values were on average ~7X of the threshold, emphasizing the statistical
10 resemblance between the magnetophoretic and flow cytometric measurements. We also observed
11 a higher mean p-value for CD45 assays (0.462) versus CD34 assays (0.261), with similar standard
12 deviations for both groups (Table 2). This was likely contributed by the smaller number of data
13 points in both magnetophoretic and fluorescent measurements from CD34 assays due scarcity of
14 HSCs in blood.

15 DISCUSSION

16 We introduced a microchip-based assay to electronically measure antigen expression of a target
17 cell population directly within a complex, dense and heterogenous matrix such as whole blood.
18 Regardless of their type (blood, lymph fluid, urine, biopsy sample etc.), clinical samples contain
19 impurities such as erythrocytes, lymphocytes, endothelial cells or contamination by a neighboring
20 tissue that introduces interference obstructing the assay. Hence, these samples are often subjected
21 to purifications, enrichments or refinements based on the nature of the samples. Consequently,
22 current flow cytometers are incapable of processing blood samples without a prior RBC lysis or
23 dilution due to the extreme interference otherwise these cells would cause. In this work, we
24 addressed this longstanding limitation by developing a microfluidic platform that couples MACS³⁴
25 with on-chip electronic cell tracking to make flow cytometry analysis of whole blood samples
26 possible at the point-of-care with minimal sample preparation.

27 To accommodate cell populations with a large contrast in expression of the target antigen, we
28 equipped our microchip with an electrical sensor network that monitored immunomagnetically
29 manipulated cells at 16 different locations on the chip. These sensors were specifically placed in
30 asymmetrically-positioned microfluidic chambers with different magnetic field gradient so that
31 measurements from each sensor provided complementary data when computationally constructing
32 the expression profile. The larger sensor network with the asymmetric magnetic field gradient
33 across the channels allowed us to achieve high-dynamic surface expression measurements with no
34 sample flow rate modulation, which is in contrast with our earlier report³³. This “single shot”
35 approach to increase the dynamic range eliminates the need for an adjustable precision flow
36 controller and is scalable to further increase the dynamic range by expanding the sensor network
37 size.

38 While we demonstrated the measurement of antigen expression levels of spiked cancer cell lines
39 and hematological cells in whole blood in this work, our technique can be applied to perform
40 measurements on other cell types in a variety of matrices. To achieve such widespread

1 compatibility, we can expand our experimentally demonstrated magnetic load measurement range
2 by $\sim 3x$, either through higher flow rate or through a larger sensor network, which would then
3 ensure that the theoretically maximum bead concentration a cell membrane can accommodate⁵³
4 falls below the saturation limit of our device at tested conditions. Otherwise, the operating
5 conditions optimized on specific cell types in this work would still be applicable to processing of
6 different cells since the trajectories of labeled cells depend on their size and magnetic load
7 irrespective of the cell/antigen type as long as the matrix type and magnetic beads remain the same.

8 Compared to conventional fluorescence-based flow cytometry platforms, our technique has several
9 advantages that makes it amenable and also practical for use at the point of care. First, samples
10 admixed with magnetic microbeads could directly be processed on the chip. While all cells in a
11 sample are screened by our technique, only the cells of interest are analyzed for surface antigens
12 eliminating the need to pre-lyse contaminating cells in the matrix. Therefore, we could not only
13 eliminate the manual laboratory work and associated overhead needed for preparing samples, but
14 also ensure against sample manipulation-induced artifacts in the measurements and data analyses.
15 Second, all-electronic nature of our analysis enables an integrated and portable tool, which
16 eliminates the need for sample transportation, ensures testing of the sample while it is fresh and
17 reduces the turnaround time. Electrical data streaming from on-chip sensors could automatically
18 be processed in real-time through machine-learning algorithms that use convolutional neural
19 networks^{54,55}. As such, the integrated approach presented here requires minimal external input and
20 provides an automated quantitative assay with built-in sample manipulation.

21 The ability to process a wide range of sample volumes is an important criterion for our device to
22 be used in the analysis of cells with different concentrations in blood. We have experimentally
23 demonstrated our device can process sample volumes $\sim 10x$ larger than the volumes typically used
24 in flow cytometry. We also do not anticipate a fundamental limit on the maximum sample volume
25 that can be analyzed as our device continuously discharge assayed cells and does not store or retain
26 sample within the device. On the other end of the spectrum, the device in its current form can
27 process samples with a volume as small as $0.77 \mu\text{L}$, which is set by the volume that the sample
28 needs to travel before they reach the detection region. For volume-limited samples, the minimum
29 sample volume limit can potentially be reduced by injecting the sample as a plug through an
30 actively controlled flow controller at the inlet, similar to a chromatography system. On the other
31 hand, for the samples that are cell-limited, the minimum sample volume would be the volume to
32 reach the desired number of cells to be processed. As a common practice, the flow cytometry
33 analyses are performed over at least 1000 target cells to capture the population dynamics.

34 To measure the surface expression of the cells, we employ commercial super-paramagnetic beads
35 widely used for MACS. While these beads only magnetize under the presence of an external
36 magnetic field, they unavoidably aggregate or attach to cell membranes non-specifically leading
37 to noise in our expression measurements. In our workflow, we took several steps minimized the
38 bead aggregation. First, we treated the beads with a blocking buffer to eliminate any non-specific
39 active sites on the surface of the beads. Second, we performed the labeling with not external
40 magnetic field, and importantly, directly in whole blood, where the presence of RBCs, WBCs and
41 platelets is expected to act as barriers between the magnetic beads and minimize their physical

1 encounter with each other. Lastly, the labeling was performed under mild mechanical agitation,
2 which not only prevented settling of the blood samples, but also is expected to help dissociate
3 weakly bound bead aggregates⁵⁶.

4 We should finally note that only because we could enrich the target cell population on the chip
5 prior to analyzing cell trajectories, we could analyze cell subtypes that were admixed with a more
6 populous background population in contrast with our previous reports³³. In this work, we
7 demonstrated this capability by measuring antigen expression of leukocytes and rare HSCs, which
8 constitutes only ~0.0001% of blood cells, directly from whole blood samples and were able to
9 capture donor-specific differences in the antigen expression profiles. Importantly, our electronic
10 measurements were found to correlate with the results obtained from conventional flow cytometry.
11 Considering the fact that flow cytometry analysis of samples is routinely ordered for clinical
12 decisions in treating a variety of medical conditions¹¹, the ability to perform on-demand antigen
13 measurements on cells with minimal sample preparation can potentially lead to new diagnostic
14 and prognostic testing schemes with fast turnaround times. Measurement of cell antigen expression
15 has long been a specialized assay exclusively performed in centralized laboratories. Typically
16 outsourced, these measurements therefore suffer from prolonged sample transport, poor specimen
17 leading to ambiguous results. An electronic device that can directly perform cell antigen
18 expression measurements can make flow cytometry analysis as routine as blood glucose
19 measurements and present new avenues in cell-based blood analysis, especially for point-of-care
20 and emergency testing.

21 MATERIALS AND METHODS

22 **Microfluidic design.** The binary sorting channel was constructed as a 4 cm-long and 1 mm-wide
23 straight channel. The blood sample is designed to be introduced from the sides to this channel,
24 while a buffer solution is provided in the central stream. This side-introduction of the sample
25 effectively sets a 500 μ m deflection distance instead of a full 1 mm. Binary sorting features were
26 constructed as a 1 cm-long 3 mm-wide chambers to allow free-flow magnetophoresis. While
27 combining these chambers to the previous binary sorting channel, we observed a backflow in our
28 finite element analysis due to the waste outlets introducing pressure sinks in the connection lines.
29 This issue was solved by introducing serpentine channels of 2 cm-length 100 μ m-width before the
30 waste outlets and a 4 cm-long 100 μ m-wide serpentine channel immediately after the central flow
31 stream of the binary sorting stage.

32 **Electronic sensor design.** The set of 31-bit Gold sequences that were implemented in the sensors
33 was calculated according to Liu et al.⁴⁰. In the calculations, the polynomials representing the linear-
34 feedback shift registers were chosen as x^5+x^3+1 and $x^5+x^3+x^2+x+1$, both of which were set to the
35 initial state of “10000”. A total of 16 sequences among the resulting 33 unique Gold sequences
36 were chosen to be employed as the spreading codes for the sensors (Table 1). These sequences
37 were implemented in the device by positive and negative electrodes that were placed strategically
38 around a reference electrode. Electrode fingers were devised as 5 μ m-wide and 90 μ m-long with
39 5 μ m finger-to-finger spacing with the total sensor length of 625 μ m.

1 **Finite element analysis.** Magnetic and microfluidic characterization of the device was performed
2 by building a finite element analysis model in COMSOL Multiphysics 5.4a (COMSOL, Inc.). The
3 computer-aided designs of the microfluidic chips were imported in COMSOL, and a 3-dimensional
4 model was designed. Then, “Magnetic Fields, No Currents”, “Laminar Flow”, and “Particle
5 Tracing for Fluid Flow” physics were employed for simulating the magnetic characterization,
6 hydrodynamic characterization, and studying the trajectory of cells, respectively. The
7 hydrodynamic simulations of the device were conducted to optimize the channel dimensions. The
8 simulated velocity profile (Supplementary Figure 6) was used to determine the cell flow speed at
9 different points across device and the fluidic channels were designed to exert sufficient drag force
10 to overcome adverse magnetic force that may undesirably immobilize the cells. Based on these
11 analyses, we opted for a 1mm-wide channel for the main binary sorting stage that provided a
12 balance between desired fluidic characteristics and an ample tolerance for fabrication errors.

13 The properties of the neodymium magnets were applied according to the manufacturer
14 specifications (K&J Magnetics). The magnet, BX884 from K&J Magnetics, has 1 ½" length, ½"
15 width and ¼" thickness, with 3,510 Gauss magnetic field at its surface. The residual flux density
16 of 13,200 Gauss provided by the vendor was used to define the magnetic properties of the
17 neodymium magnet in COMSOL. The 3-dimensional design was simulated for the steady-state
18 characteristics of the magnetic field and the hydrodynamic profile. For cell trajectories, a 2-
19 dimensional cut-plane along the mid-height of the microfluidic features was sliced. The magnetic
20 and hydrodynamic characteristics of the cut-plane were imported into a 2-dimensional study using
21 the built-in interpolation definitions. To be implemented in the magnetophoretic force component
22 in particle tracing, the properties of magnetic beads (Dynabeads MyOne C1, Invitrogen) were
23 acquired from the manufacturer and the study from Tarn et al.⁵⁷. Trajectories of cells with varying
24 sizes and numbers of beads were calculated using a time-dependent parametric sweep. Finally, a
25 comprehensive look-up table was compiled from the resulting trajectories.

26 **Magnetic force and work calculations.** For superparamagnetic materials, the magnetic force can
27 be calculated using the following equation,

$$28 \quad F_{mag} = \frac{\chi V_m (\nabla B^2)}{\mu_0}$$

29 where χ is the magnetic susceptibility of the material, V_m is the volume of the paramagnetic
30 components in the material, μ_0 is the permeability of free space, and B is the magnetic flux density
31 exhibited on the material. For Dynabeads MyOne particles, χ was taken as 0.22⁵⁸ and V_m was
32 taken as 4.7×10^{-20} cubic meter⁵⁶. Then, the magnetic work can be defined as the integral of the
33 magnetic force across the trajectory,

$$34 \quad W = \int_a^b F_{mag} \cdot ds$$

35 The resulting magnetic force graphs are given in Supplementary Figure 7.

36 **Device fabrication.** The device requires the fabrication of three elements, namely a microfluidic
37 layer, a glass substrate with electrical sensors, and an assembly housing containing the neodymium

1 magnets. The microfluidic layer was fabricated using soft lithography. To create its mold, a 4-inch
2 silicon wafer was coated with SU-8 2025 photoresist (MicroChem) at a thickness of 20 μm . The
3 microfluidic features were transferred onto the photoresist using photolithography under a
4 maskless aligner (MLA150, Heidelberg). The mold was treated with trichloro(octyl)silane for 8
5 hours for a natural demolding process. PDMS base and crosslinker (Sylgard 184, Dow Corning)
6 were mixed at 10:1 weight ratio, poured on the mold, degassed, and cured at 65°C in an oven.
7 Cured PDMS was then peeled off, and fluidic ports were opened using a biopsy punch. The
8 electrical sensors were fabricated on a 2-by-3-inch glass slide using a lift-off process. The glass
9 slide was coated with NR9-1500PY photoresist and patterned via photolithography using a chrome
10 mask under a mask aligner. Upon the development of the photoresist, 500 nm-thick Cr/Au film
11 stack was deposited on the glass slide using e-beam evaporation (Denton Explorer). The sacrificial
12 layer was then removed in an acetone bath with mild sonication. To create the final chip, PDMS
13 layer and the glass substrate were treated under oxygen plasma, aligned under a microscope, and
14 bonded on a hot plate at 80°C.

15 To accommodate the neodymium magnets and the microfluidic chip in a single assembly, a 3-
16 dimensional housing was designed on Solidworks, and 3D-printed from polylactic acid (PLA)
17 filament. Then, the neodymium magnets and the microfluidic chip were placed in their respective
18 places. The housing consisted of two layers aligned with four screws. The bottom housing layer
19 also contained a 2-inch by 3-inch groove that is 1 mm deep, specifically for the chip to sit securely
20 and precisely in place. Four bolts acted as a physical stopper for the top layer to assure the same
21 vertical gap between experiments and presented a safe route for the electrical wiring going out of
22 the assembly. The top layer contained rectangular cut-offs above the fluidic inlets and outlets to
23 provide access for the tubing.

24 **Human cancer cell line culture.** SK-BR-3 (ATCC HTB-30), MCF-7 (ATCC HTB-22), and PC-
25 3 (ATCC CRL-1435) human cancer cell lines were acquired from American Type Culture
26 Collection (ATCC) and cultured according to the manufacturer's protocol. Cell lines were cultured
27 in an incubator with 5% CO₂ environment at 37°C. In terms of the growth medium, SK-BR-3,
28 MCF-7, and PC-3 cells were cultivated in McCoy's 5A Medium (Gibco), Dulbecco's Modified
29 Eagle's Medium (Gibco) and Kaighn's Modification of Ham's F-12 Medium (Gibco),
30 respectively. The growth media were supplemented with 10% Fetal Bovine Serum (Corning) and
31 1% Penicillin/Streptomycin (AMRESCO). When a cell population reached 80% confluence in the
32 culture flask, the cells were detached from the flask surface via 3-minute incubation with 0.25%
33 Trypsin-EDTA solution (Gibco). Afterward, the population was pelleted via centrifugation and
34 washed. Finally, the cells were suspended in 1X Phosphate Buffered Saline (PBS) to be used in
35 experiments.

36 **Flow cytometry analysis of cancer cells.** SK-BR-3, MCF-7, and PC-3 human cancer cells were
37 labeled with phycoerythrin (PE) conjugated anti-human EpCAM antibody (Cat #: 324206,
38 BioLegend) from the same clone used in our magnetic labeling. Upon adjusting the optimal laser
39 parameters, all three cell lines were investigated consecutively on a BD LSR II flow cytometer. At
40 least 5000 events were recorded for each cell line. Acquired data was gated (Supplementary Figure
41 2) and analyzed in FlowJo software (FlowJo, LLC).

1 **Immunomagnetic labeling of spiked cancer cells.** Before being spiked into blood, SK-BR-3 and
2 MCF-7 cells were immunomagnetically labeled with 1 μ m-size magnetic beads that were
3 conjugated with anti-human EpCAM antibody. For this conjugation, 12 μ L of streptavidin-coated
4 magnetic beads (Dynabeads MyOne Streptavidin C1, Catalog #: 65002, Invitrogen) were washed
5 in 1X PBS. Then, the bead solution was incubated with 10 μ L of biotinylated monoclonal anti-
6 EpCAM antibody (Catalog #: 324216, BioLegend) at 4°C for 15 minutes. Functionalized magnetic
7 beads were collected via a permanent magnet and washed with SuperBlock T20 blocking buffer
8 (Catalog #: 37516, Thermo Scientific) to eliminate non-specific binding sites. Both cell lines were
9 incubated with the functionalized beads at the ratio of 300 beads/cell for 45 minutes at room
10 temperature on a rocker. Once the incubation was complete, the cancer cells were spiked into blood
11 samples obtained from healthy donors according to an Institutional Review Board (IRB)-approved
12 protocol.

13 **Immunomagnetic labeling of hematological cells.** Blood samples were acquired from healthy
14 human donors complying with an IRB approved protocol. Prior to labeling, the samples were
15 analyzed by a commercial benchtop hematology analyzer (CELL-DYN Emerald, Abbott) for a
16 complete blood count. Based on the experiment type, either biotin-conjugated anti-human CD45
17 antibody (Cat #: 304004, BioLegend) or biotin-conjugated anti-human CD34 antibody (Cat #:
18 343524, BioLegend) was introduced into the blood sample at the amount of 50 fg antibody per
19 WBC⁵⁹ and incubated for 30 minutes at room temperature on a rocker. For the labeling of magnetic
20 particles, commercially available magnetic beads (Dynabeads MyOne C1, Invitrogen) were
21 introduced into the antibody labeled blood sample at 125 beads per WBC for CD45⁵⁸, and 12
22 beads per WBC for CD34 due to anticipated lower concentrations of the targeted cells. The mixture
23 was incubated at room temperature on a rocker for another 30 minutes. All the labeling and
24 experiments were performed within 6 hours of blood withdrawal.

25 **Image analysis of magnetic beads.** To calculate the magnetic load on the cells from their
26 microscopic images, we created a custom image processing program using MATLAB. The cell
27 populations were imaged under a scanning microscope for the 4',6-diamidino-2-phenylindole
28 (DAPI)-channel and the brightfield (Supplementary Figure 8). As the spiked cells were previously
29 labeled with Hoechst Dye, the DAPI-channel images were used to detect the location of the
30 individual cells. Based on this location, we defined a region of interest (ROI) in the size of 200 by
31 200 pixels around each cell and cropped the ROIs. Then, we applied a histogram equalization on
32 each image to minimize the effects of potential variations in the lighting conditions between
33 images. A threshold value was chosen to specifically discriminate the magnetic beads from the
34 rest of the features of the cells, such as the membrane. To calculate the number of beads on each
35 cells, the resulting black pixels in the binary images were summed, and then divided by the average
36 number of pixels that a single bead corresponds to. Although this method provides an automated
37 way to count beads, it should be noted that the approach has a limitation due to working on a 2-
38 dimensional projection of a 3-dimensional cell. Hence, the technique has a tendency to
39 underestimate the bead count as surface expression increases.

40 **Sample processing.** Prior to the experiment, all microfluidic devices were incubated with
41 SuperBlock T20 blocking buffer for 30 minutes to eliminate non-specific binding and adhesion of

1 cells and magnetic beads within the microfluidic environment. During processing, the 1X PBS
2 buffer solution and the sample were injected into the device using a syringe pump. 3 mL syringes
3 (Becton Dickinson) were used for the buffers and a 1 mL syringe (Becton Dickinson) was used for
4 the sample. This selection induced a 6.56 times on-chip dilution of the blood sample, causing
5 minimal red blood cell interference and allowing clear electrical signals. A 500 kHz sine wave was
6 applied to the reference electrode for electrical measurements, and the resulting waveforms were
7 recorded via a lock-in amplifier (HF2LI, Zurich Instruments). Incoming signal data was
8 simultaneously processed with a custom MATLAB (version 2018a, Mathworks) program for
9 decoding and data visualization. Once an experiment was completed, the device was disposed in
10 a biohazard waste.

11 **Validation of operational parameters in hematological samples.** The labeled samples (CD45
12 and CD34, respectively) were then driven into the device using a syringe pump, and the device
13 was tested for flow rates ranging from 500 μ L/h to 10,000 μ L/h to identify the optimum flow
14 conditions for hematological cells. For each flow rate, fluids were collected from the target and
15 waste outlets for the enumeration of enriched and lost cells. The cell populations in the collected
16 fluids were fluorescently stained for the nucleus and the targeted surface antigen, imaged under a
17 scanning multi-color fluorescent microscope, and processed using a custom-made image
18 processing program (Methods). The results (Supplementary Figure 4) showed similar enrichment
19 characteristics with the spiked cell experiments and indicated an optimal flow rate range of 1,000-
20 2,000 μ L/h.

21 **Fluorescent staining and counting of the target cells.** To enumerate the number of cells that
22 were successfully extracted for differential sorting and the number of cells that were missed (i.e.,
23 in the waste), the cancer cells were labeled with Hoechst 33342 dye (Cayman Chemical) prior to
24 being spiked into the blood sample. The samples from both target and waste outlets were imaged
25 under DAPI fluorescent channel, and the number of DAPI+ cells was counted using the
26 “Automated Measurement” function of the NIS Element AR (Nikon) for enumeration. For the
27 enumeration of hematological cells, a cocktail of PE/Dazzle 594 conjugate anti-human CD45 or
28 CD34 antibody (Cat #: 368534 and 343534, BioLegend) and PE/Dazzle 594 conjugate anti-mouse
29 IgG1, κ antibody (Cat #: 406628, BioLegend) to fluorescently tag any potential unbound antigen
30 sites and bound immunomagnetic labeling sites together for identification of the antigen positive
31 cells. The blood sample was also stained with Hoechst 33342 dye to be able to discriminate any
32 unbound magnetic beads from introducing false positive results. Upon collection of the fluids from
33 both target and waste outlets, the red blood cells were lysed using an RBC lysis buffer (Cat #:
34 420301, BioLegend) according to the manufacturer’s protocol. The suspensions were spun in
35 Shandon EZ Megafunnels (Thermo Scientific) using a cytocentrifuge (CytoSpin 4, Thermo
36 Scientific) at 800 rpm for 5 minutes to refine cells for imaging. The slides of the cytocentrifuge
37 were imaged under the microscope for multi-color fluorescence. The fluorescent images were
38 analyzed under a custom image processing software to identify and count both DAPI+ and PE+
39 cells for the enumeration of successfully extracted and missed cells (Supplementary Figure 9).

40 **Calibration of cell size.** The signal amplitude from the Coulter sensors is proportional to the
41 volume of the corresponding cell⁴⁶. To calibrate the electrical cell size measurements, non-

1 functionalized microspheres of 10 μm size (Cat #: 17136-5, Polysciences) were introduced into
2 the device, and the electrical signal from generated by these particles was studied. At least 17,000
3 events were recorded and analyzed. The histogram of the amplitude resulted in a sharp peak
4 (Supplementary Figure 10), which was determined to represent the volume of a 10 μm cell.
5 Corresponding calibration parameters were then implemented on the decoding software.

6 **Processing of the electrical signals.** Data from the lock-in amplifier (HF2LI, Zurich Instruments)
7 was recorded through LabOne software (Zurich Instruments). Recorded data was then streamed to
8 a custom MATLAB program for processing. Initially, the program was only given the digital codes
9 associated with each sensor and correlated the code sequence with the data stream for
10 identification. By averaging the detected waveforms for each sensor sufficiently enough ($n > 20$),
11 a library of templates was created. Utilizing the orthogonality of the Gold sequences, we resolved
12 the coincident events (i.e., multiple cells interacting with the sensors simultaneously) by a
13 successive interference cancellation algorithm. In successive interference cancellation, an
14 estimated signal was generated from the dominant peak and subtracted from the recorded signal.
15 This was repeated until there is no remaining peak left in the correlation calculations³⁸. As the final
16 step, the software provided the sensor identity and cell size for each detected event and calculated
17 their surface expression using the look-up table created by the finite element analysis study.

18 **Flow cytometry analysis of hematological cells.** For fluorescent analysis, allophycocyanin
19 (APC) conjugated anti-human CD45 antibody (BioLegend, Cat #: 304011) and fluorescein
20 isothiocyanate (FITC) conjugated anti-human CD34 antibody (BioLegend, Cat #: 343503) were
21 used. To eliminate a sample loss in the sample preparation step, the stain – lyse – no wash protocol
22 of BD Biosciences was followed. 20 μL of fluorophore-conjugated antibody cocktail was
23 introduced to 50 μL of blood in a 12 by 75-mm cytometry tube. The mixture was incubated for 15
24 minutes in the dark at room temperature. Upon incubation, 10X red blood cell lysing buffer
25 (BioLegend, Cat #: 420302) was diluted to 1X, and 450 μL of the 1X lysis buffer was added to the
26 mixture and incubated for 30 minutes in the dark with occasional gentle vortex. After the
27 optimization of laser parameters, the samples were successively analyzed with LSRII flow
28 cytometer (BD Biosciences). At least 1,000,000 events were recorded to ensure enough data points
29 would be acquired for live cells given that most of the recorded events would correspond to the
30 debris due to no-wash sample preparation. Besides the analysis of blood samples, a pure sample
31 of 10 μm polystyrene beads was measured under the same laser configuration for size calibration
32 at the end of the analysis. Flow cytometry data was then analyzed using FlowJo software. Initially
33 cell debris and live cells were gated, then CD34+ and CD45+ populations were classified
34 (Supplementary Figure 11). The peak in the histogram of forward scatter width of 10 μm beads
35 were used as size calibration for fluorescent measurements (Supplementary Figure 12).

36 **Processing of high-volume samples.** The blood sample was withdrawn from a healthy adult in an
37 EDTA coated 4 mL Vacutainer tube. Upon cell labeling as previously described, the sample was
38 taken into a 3 mL syringe to be injected into the device. To match the on-chip dilution ratio of 6.56
39 as a regular operation (i.e., 1 mL syringe for the sample and 3 mL syringes for the buffer), we used
40 a secondary syringe pump to drive the buffer solution (1X PBS) via two 10 mL syringes. The
41 sample was operated at 1,000 $\mu\text{L}/\text{hr}$ flow rate, and the analysis took 3 hours.

1 **Calculation of Kolmogorov-Smirnov statistics.** For the calculations of the statistical analysis,
2 the number of bins for histogram representation of the empirical distributions were calculated
3 using the Freedman-Diaconis rule⁶⁰ and averaged across the donors to settle on a fixed value,
4 which resulted in 36 bins. For flow cytometry histogram (in logarithmic axis) the industrial
5 standard of 256 bins was chosen. Both distributions were then normalized to their maximum values
6 to achieve a common ground between the measurements from different techniques. The resulting
7 distributions spanned from 0 to 1, indicating the minimum and the maximum values respectively.
8 Calculations were performed on MATLAB using the default 2-sample K-S test function with a
9 default threshold of 0.05. For reference, a hypothesis result of “0” indicates that the samples are
10 likely to share the same origin, where as a result of “1” shows that the hypothesis can be rejected
11 within the confidence intervals (i.e., the samples come from different distributions). Asymptotic
12 p-value ranges between 0 to 1, with a higher score indicating closer similarity.

13 **Data availability.** The authors declare that the data supporting the findings of this study are
14 available within the article and its Supplementary Information, or from the corresponding author
15 upon a reasonable request.

16 **Code availability.** The authors declare that custom codes and programs used in this work are
17 available from the corresponding author upon a reasonable request.

18 AUTHOR CONTRIBUTIONS

19 O.C. and A.F.S. designed the research and wrote the manuscript. O.C., R.L., and J.C. designed the
20 device and the experimental setup. O.C. and C.F.U. designed the computational model of the
21 system. O.C. and T.O.A. processed the fluorescent data. M.B., A.K.M.A., and R.L. did the
22 cleanroom fabrication. O.C. prepared the final devices and conducted all experiments. O.C. and
23 N.W. wrote the custom data analysis program. O.C. and A.F.S. analyzed the data. All authors read
24 and approved the final manuscript.

25 CONFLICT OF INTEREST

26 The authors declare no conflicting financial interests.

27 ACKNOWLEDGEMENTS

28 The work was supported by the National Science Foundations (NSF) Awards No. ECCS 1610995
29 and ECCS 1752170, and the Arnold and Mabel Beckman Foundation (Beckman Young
30 Investigator Award to A.F.S.). The authors would like to thank Dr. Yajun Mei and Dr. Baki Berkay
31 Yilmaz for their kind discussions and helpful suggestions in statistical methods. The authors would
32 also like to thank Brandi E. Swain and Georgia Tech Stamps Health Services staff for their
33 contributions in the collection of blood specimens from donors.

34 REFERENCES

35 1 Shipkova, M. & Wieland, E. Surface markers of lymphocyte activation and markers of cell
36 proliferation. *Clin Chim Acta* **413**, 1338-1349, doi:10.1016/j.cca.2011.11.006 (2012).

1 2 Edelman, G. M. & Crossin, K. L. Cell adhesion molecules: implications for a molecular
2 histology. *Annu Rev Biochem* **60**, 155-190, doi:10.1146/annurev.bi.60.070191.001103
3 (1991).

4 3 Gullberg, E. *et al.* Expression of specific markers and particle transport in a new human
5 intestinal M-cell model. *Biochem Biophys Res Commun* **279**, 808-813,
6 doi:10.1006/bbrc.2000.4038 (2000).

7 4 Schlessinger, J. Cell signaling by receptor tyrosine kinases. *Cell* **103**, 211-225,
8 doi:10.1016/s0092-8674(00)00114-8 (2000).

9 5 *Human Cell Differentiation Molecules (HCDM)*, <<http://www.hcdm.org/>>

10 6 Kamentsky, L. A., Melamed, M. R. & Derman, H. Spectrophotometer: new instrument for
11 ultrarapid cell analysis. *Science* **150**, 630-631, doi:10.1126/science.150.3696.630 (1965).

12 7 Kamentsky, L. A. & Melamed, M. R. Spectrophotometric cell sorter. *Science* **156**, 1364-
13 1365, doi:10.1126/science.156.3780.1364 (1967).

14 8 Shapiro, H. M. *Practical flow cytometry*. 4th edn, (Wiley-Liss, 2003).

15 9 Givan, A. L. Principles of flow cytometry: an overview. *Methods Cell Biol* **63**, 19-50,
16 doi:10.1016/s0091-679x(01)63006-1 (2001).

17 10 Orfao, A. *et al.* Clinically useful information provided by the flow cytometric
18 immunophenotyping of hematological malignancies: current status and future directions.
19 *Clin Chem* **45**, 1708-1717 (1999).

20 11 Brown, M. & Wittwer, C. Flow cytometry: principles and clinical applications in
21 hematology. *Clin Chem* **46**, 1221-1229 (2000).

22 12 Czader, M. in *Molecular Genetic Pathology* (eds Liang Cheng & David Y. Zhang) 155-
23 183 (Humana Press, 2008).

24 13 Zola, H. Medical applications of leukocyte surface molecules--the CD molecules. *Mol Med*
25 **12**, 312-316, doi:10.2119/2006-00081.Zola (2006).

26 14 Barlogie, B. *et al.* Flow cytometry in clinical cancer research. *Cancer Res* **43**, 3982-3997
27 (1983).

28 15 O'Hara, M. F., Bedrossian, C. W., Johnson, T. S. & Barlogie, B. Flow cytometry in cancer
29 diagnosis. *Prog Clin Pathol* **9**, 135-153 (1984).

30 16 Coustan-Smith, E. *et al.* Prognostic importance of measuring early clearance of leukemic
31 cells by flow cytometry in childhood acute lymphoblastic leukemia. *Blood* **100**, 52-58,
32 doi:10.1182/blood-2002-01-0006 (2002).

33 17 Pui, C. H., Robison, L. L. & Look, A. T. Acute lymphoblastic leukaemia. *Lancet* **371**,
34 1030-1043, doi:10.1016/S0140-6736(08)60457-2 (2008).

35 18 Orfao, A. *et al.* Acute Lymphoblastic Leukemia (ALL): Detection of Minimal Residual
36 Disease (MRD) at Flow Cytometry. *Leukemia & Lymphoma* **13**, 87-90,
37 doi:10.3109/10428199409052682 (1994).

38 19 Theunissen, P. *et al.* Standardized flow cytometry for highly sensitive MRD measurements
39 in B-cell acute lymphoblastic leukemia. *Blood* **129**, 347-357, doi:10.1182/blood-2016-07-
40 726307 (2017).

41 20 Lacombe, F. *et al.* Flow cytometry CD45 gating for immunophenotyping of acute myeloid
42 leukemia. *Leukemia* **11**, 1878-1886, doi:10.1038/sj.leu.2400847 (1997).

43 21 Mackie, A. R. & Losordo, D. W. CD34-positive stem cells: in the treatment of heart and
44 vascular disease in human beings. *Tex Heart Inst J* **38**, 474-485 (2011).

1 22 Patel, R. S. *et al.* Circulating CD34+ progenitor cells and risk of mortality in a population
2 with coronary artery disease. *Circ Res* **116**, 289-297,
3 doi:10.1161/CIRCRESAHA.116.304187 (2015).

4 23 Hayek, S. S. *et al.* Circulating Progenitor Cells Identify Peripheral Arterial Disease in
5 Patients With Coronary Artery Disease. *Circ Res* **119**, 564-571,
6 doi:10.1161/CIRCRESAHA.116.308802 (2016).

7 24 Al Mheid, I. *et al.* Age and Human Regenerative Capacity Impact of Cardiovascular Risk
8 Factors. *Circ Res* **119**, 801-809, doi:10.1161/CIRCRESAHA.116.308461 (2016).

9 25 Topel, M. L. *et al.* Sex Differences in Circulating Progenitor Cells. *J Am Heart Assoc* **6**,
10 doi:10.1161/JAHA.117.006245 (2017).

11 26 Bourgoin, P. *et al.* Clinical research assessment by flow cytometry of biomarkers for
12 infectious stratification in an Emergency Department. *Biomark Med* **13**, 1373-1386,
13 doi:10.2217/bmm-2019-0214 (2019).

14 27 Kim, J. S. & Ligler, F. S. Microflow Cytometer. *Microflow Cytometer*, 1-379,
15 doi:10.1201/b11115 (2010).

16 28 Chung, T. D. & Kim, H. C. Recent advances in miniaturized microfluidic flow cytometry
17 for clinical use. *Electrophoresis* **28**, 4511-4520, doi:10.1002/elps.200700620 (2007).

18 29 Cheung, K. C. *et al.* Microfluidic Impedance-Based Flow Cytometry. *Cytom Part A* **77a**,
19 648-666, doi:10.1002/cyto.a.20910 (2010).

20 30 Rajawat, A. & Tripathi, S. Disease diagnostics using hydrodynamic flow focusing in
21 microfluidic devices: Beyond flow cytometry. *Biomed Eng Lett* **10**, 241-257,
22 doi:10.1007/s13534-019-00144-6 (2020).

23 31 Liu, R. *et al.* Combinatorial Immunophenotyping of Cell Populations with an Electronic
24 Antibody Microarray. *Small* **15**, e1904732, doi:10.1002/smll.201904732 (2019).

25 32 Civelekoglu, O. *et al.* A Microfluidic Device for Electronic Cell Surface Expression
26 Profiling Using Magnetophoresis. *2017 19th International Conference on Solid-State
27 Sensors, Actuators and Microsystems (Transducers)*, 480-483 (2017).

28 33 Civelekoglu, O. *et al.* Electronic profiling of membrane antigen expression via
29 immunomagnetic cell manipulation. *Lab Chip* **19**, 2444-2455, doi:10.1039/c9lc00297a
30 (2019).

31 34 Miltenyi, S., Muller, W., Weichel, W. & Radbruch, A. High gradient magnetic cell
32 separation with MACS. *Cytometry* **11**, 231-238, doi:10.1002/cyto.990110203 (1990).

33 35 McCloskey, K. E., Chalmers, J. J. & Zborowski, M. Magnetophoretic mobilities correlate
34 to antibody binding capacities. *Cytometry* **40**, 307-315, doi:10.1002/1097-
35 0320(20000801)40:4<307::aid-cyto6>3.0.co;2-h (2000).

36 36 McCloskey, K. E. *et al.* Magnetophoretic cell sorting is a function of antibody binding
37 capacity. *Biotechnol Prog* **19**, 899-907, doi:10.1021/bp020285e (2003).

38 37 Riek, K. *et al.* Wide-range dynamic magnetic resonance elastography. *Journal of
39 Biomechanics* **44**, 1380-1386, doi:https://doi.org/10.1016/j.jbiomech.2010.12.031 (2011).

40 38 Liu, R., Wang, N., Kamili, F. & Sarioglu, A. F. Microfluidic CODES: a scalable
41 multiplexed electronic sensor for orthogonal detection of particles in microfluidic
42 channels. *Lab Chip* **16**, 1350-1357, doi:10.1039/c6lc00209a (2016).

43 39 Gold, R. Optimal binary sequences for spread spectrum multiplexing (Corresp.). *IEEE
44 Transactions on Information Theory* **13**, 619-621, doi:10.1109/TIT.1967.1054048 (1967).

1 40 Liu, R. *et al.* Design and modeling of electrode networks for code-division multiplexed
2 resistive pulse sensing in microfluidic devices. *Lab Chip* **17**, 2650-2666,
3 doi:10.1039/c7lc00545h (2017).

4 41 Liu, R., Wang, N., Asmare, N. & Sarioglu, A. F. Scaling code-multiplexed electrode
5 networks for distributed Coulter detection in microfluidics. *Biosens Bioelectron* **120**, 30-
6 39, doi:10.1016/j.bios.2018.07.075 (2018).

7 42 Lara, O., Tong, X., Zborowski, M. & Chalmers, J. J. Enrichment of rare cancer cells
8 through depletion of normal cells using density and flow-through, immunomagnetic cell
9 separation. *Exp Hematol* **32**, 891-904, doi:10.1016/j.exphem.2004.07.007 (2004).

10 43 Ozkumur, E. *et al.* Inertial focusing for tumor antigen-dependent and -independent sorting
11 of rare circulating tumor cells. *Sci Transl Med* **5**, 179ra147,
12 doi:10.1126/scitranslmed.3005616 (2013).

13 44 Hermiston, M. L., Xu, Z. & Weiss, A. CD45: a critical regulator of signaling thresholds in
14 immune cells. *Annu Rev Immunol* **21**, 107-137,
15 doi:10.1146/annurev.immunol.21.120601.140946 (2003).

16 45 Martino, M. *et al.* Basal CD34+ Cell Count Predicts Peripheral Blood Stem Cell
17 Mobilization in Healthy Donors after Administration of Granulocyte Colony-Stimulating
18 Factor: A Longitudinal, Prospective, Observational, Single-Center, Cohort Study. *Biol
19 Blood Marrow Transplant* **23**, 1215-1220, doi:10.1016/j.bbmt.2017.03.024 (2017).

20 46 Bryan, A. K., Engler, A., Gulati, A. & Manalis, S. R. Continuous and long-term volume
21 measurements with a commercial Coulter counter. *PLoS One* **7**, e29866,
22 doi:10.1371/journal.pone.0029866 (2012).

23 47 Tzur, A., Moore, J. K., Jorgensen, P., Shapiro, H. M. & Kirschner, M. W. Optimizing
24 optical flow cytometry for cell volume-based sorting and analysis. *PLoS One* **6**, e16053,
25 doi:10.1371/journal.pone.0016053 (2011).

26 48 Pitoiset, F. *et al.* A standardized flow cytometry procedure for the monitoring of regulatory
27 T cells in clinical trials. *Cytometry B Clin Cytom* **94**, 621-626, doi:10.1002/cyto.b.21622
28 (2018).

29 49 Watson, J. V. *Flow cytometry data analysis : basic concepts and statistics.* (Cambridge
30 University Press, 2005).

31 50 Cox, C., Reeder, J. E., Robinson, R. D., Suppes, S. B. & Wheeless, L. L. Comparison of
32 frequency distributions in flow cytometry. *Cytometry* **9**, 291-298,
33 doi:10.1002/cyto.990090404 (1988).

34 51 Lampariello, F. On the use of the Kolmogorov-Smirnov statistical test for
35 immunofluorescence histogram comparison. *Cytometry* **39**, 179-188,
36 doi:10.1002/(SICI)1097-0320(20000301)39:3<179::AID-CYTO2>3.0.CO;2-I (2000).

37 52 Massey, F. J. The Kolmogorov-Smirnov Test for Goodness of Fit. *Journal of the American
38 Statistical Association* **46**, 68-78, doi:10.1080/01621459.1951.10500769 (1951).

39 53 Hinrichsen, E. L., Feder, J., & Jøssang, T. Geometry of random sequential adsorption.
40 *Journal of statistical physics*, **44**(5), 793-827 (1986).

41 54 Wang, N., Liu, R., Asmare, N., Chu, C. H. & Sarioglu, A. F. Processing code-multiplexed
42 Coulter signals via deep convolutional neural networks. *Lab Chip* **19**, 3292-3304,
43 doi:10.1039/c9lc00597h (2019).

44 55 Wang, N., Liu, R., Asmare, N., Chu, C. H., Civelekoglu, O., & Sarioglu, A. F. Closed-loop
45 feedback control of microfluidic cell manipulation via deep-learning integrated sensor
46 networks. *Lab Chip* **21**, 1916-1928 (2019).

1 56 Martinez, L. M., The Basic Guide for Re-suspending Magnetic Beads, *Sepmag Blog*, 2013.
2 <https://www.sepmag.eu/the-basic-guide-for-resuspending-magnetic-beads-free-download>
3 (Accessed on July 12, 2021).

4 57 Tarn, M. D. *et al.* The importance of particle type selection and temperature control for on-
5 chip free-flow magnetophoresis. *J Magn Magn Mater* **321**, 4115-4122,
6 doi:10.1016/j.jmmm.2009.08.016 (2009).

7 58 Grob, D. T., Wise, N., Oduwole, O., Sheard, S., Magnetic susceptibility characterisation
8 of superparamagnetic microspheres. *J Magn Magn Mater* **452**, 134-140, doi:
9 10.1016/j.jmmm.2017.12.007 (2018).

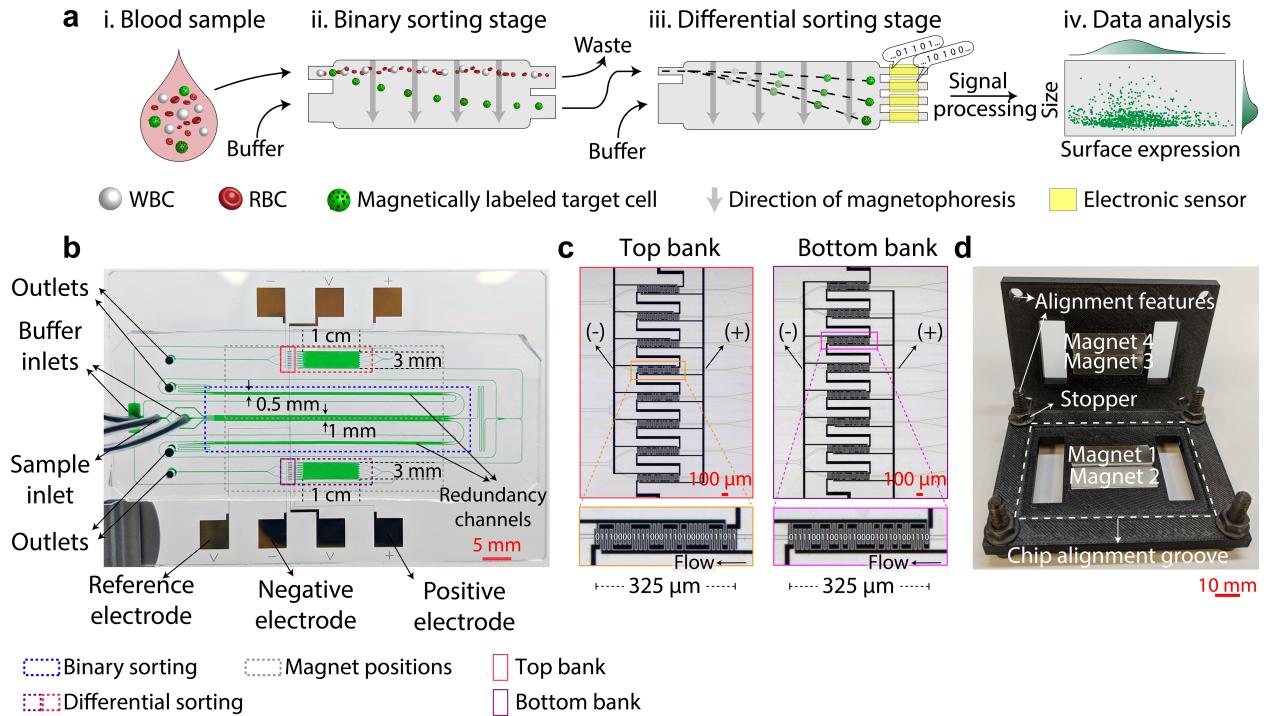
10 59 Karabacak, N. M. *et al.* Microfluidic, marker-free isolation of circulating tumor cells from
11 blood samples. *Nat Protoc* **9**, 694-710, doi:10.1038/nprot.2014.044 (2014).

12 60 Freedman, D. & Diaconis, P. On the histogram as a density estimator: L2 theory. *Zeitschrift
13 für Wahrscheinlichkeitstheorie und Verwandte Gebiete* **57**, 453-476,
14 doi:10.1007/BF01025868 (1981).

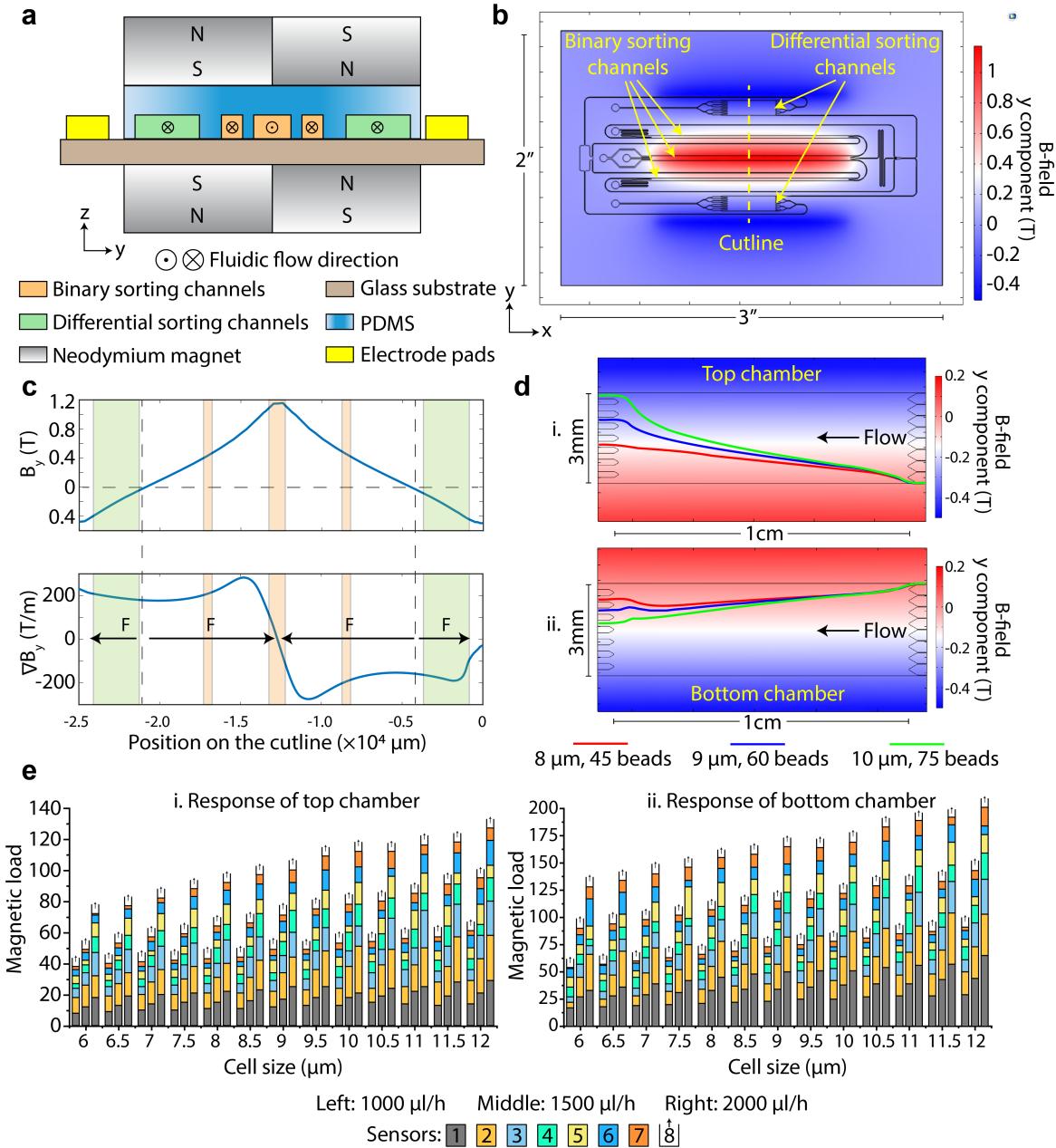
1 **Table 1** | 31-bit Gold sequences implemented in the device.

Implementation	31-bit Gold sequence
Top #1	0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 1 1 0 0 1 0
Top #2	1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 1 0 1 1
Top #3	0 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 1
Top #4	0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1
Top #5	1 1 0 1 1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0
Top #6	1 1 1 1 1 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1
Top #7	1 1 1 1 0 1 1 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0
Top #8	1 0 0 1 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0
Bottom #1	1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1
Bottom #2	0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 0 0 0
Bottom #3	0 1 1 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 1 1 0 0 1 1 1 0
Bottom #4	0 0 0 0 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 0 1 0 0 0 1 1 0 1 1
Bottom #5	1 1 0 0 0 0 1 1 0 0 1 0 0 0 1 1 1 0 0 1 1 0 1 1 0 1 1 0 1 0 1
Bottom #6	0 0 0 1 1 0 1 1 1 1 0 1 1 0 1 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0
Bottom #7	1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 0
Bottom #8	1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 0 0

2


1 **Table 2** | The Kolmogorov-Smirnov statistics on the measurements.

CD45			
	Hypothesis	Asymptotic p-value	Maximum difference
Sample 1	0	0.915	0.097
Sample 2	0	0.505	0.143
Sample 3	0	0.295	0.170
Sample 4	0	0.318	0.241
Sample 5	0	0.231	0.210
Sample 6	0	0.493	0.164
Sample 7	0	0.441	0.122
Sample 8	0	0.259	0.246
Sample 9	0	0.648	0.177
Sample 10	0	0.514	0.172
Mean (\pm STD)	0	0.462 (\pm 0.197)	0.174 (\pm 0.046)



CD34			
	Hypothesis	Asymptotic p-value	Maximum difference
Sample 1	0	0.084	0.295
Sample 2	0	0.369	0.215
Sample 3	0	0.767	0.156
Sample 4	0	0.407	0.219
Sample 5	0	0.085	0.354
Sample 6	0	0.064	0.388
Sample 7	0	0.233	0.250
Sample 8	0	0.080	0.333
Sample 9	0	0.287	0.250
Sample 10	0	0.132	0.281
Mean (\pm STD)	0	0.261 (\pm 0.210)	0.274 (\pm 0.067)

2

Figure 1 | Operation principle and the device design of the magnetophoretic cytometer. **(a)** Concise process flow. (i.) Target cells in the blood sample are immunomagnetically labeled using the antigen of interest and are introduced into the magnetophoretic cytometer. (ii.) Labeled cells are continuously purified and enriched into a separate flow stream in a binary sorting scheme. (iii.) While the unwanted cells go to waste, the enriched population continues into a second magnetophoresis stage, where they are differentially sorted into separate fluidic bins based on their magnetic load. (iv.) As cells traverse through the fluidic bins, their size and trajectory data are encoded into distinct electrical signals. These signals are then computationally decoded and reveal the surface expression of the labeled population. **(b)** A photo of the magnetophoretic cytometer with microfluidic channels filled with a green dye for visual representation. The blood sample makes two passes of binary sorting, the latter of which is a redundancy pass to eliminate potential misalignments within the assembly. Target cells then proceed into one of the two sorting chambers for differential magnetophoresis. **(c)** Microscopy images of the top and bottom bank of electronic sensors. Each microfluidic bin is coupled with a Coulter sensor encoded with a unique 31-bit Gold sequence. The sensor network employs three electrodes: a reference electrode and two sensing electrodes (positive and negative) for bipolar signal output. The placement of the positive and negative electrode fingers determines the code sequence. **(d)** A photo of the chip housing. The housing accommodates 4 neodymium magnets and various alignment features.

1

2 **Figure 2** | Magnetic and hydrodynamic characterization. (a) Magnetic and fluidic configuration of the

3 system in the z-y plane. (b) y-component of the magnetic field at the middle-height of the fluidic channels.

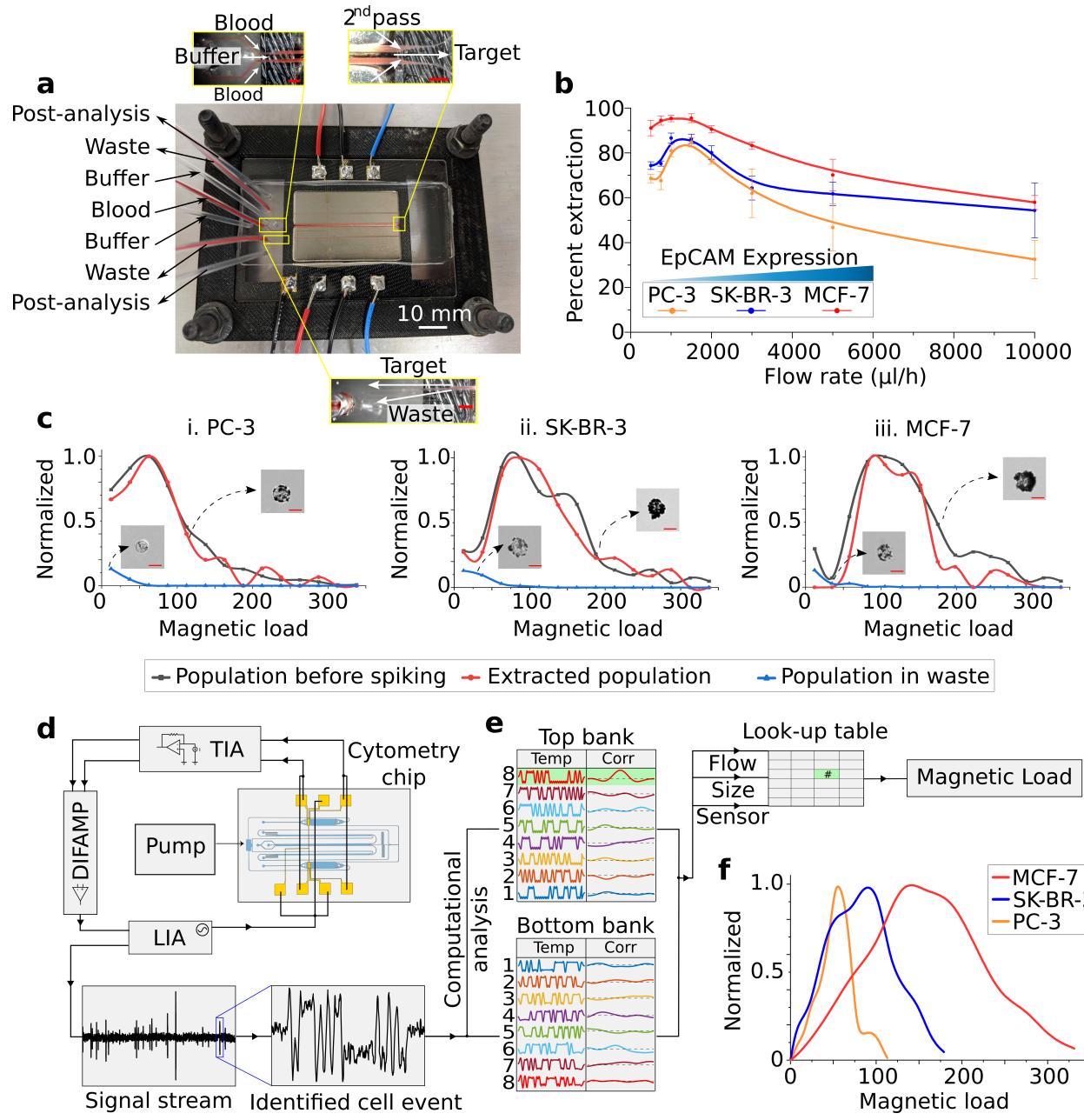
4 There are three extremum points for the magnetic field. The peak in the middle (i.e., red extremum) is

5 dedicated to the binary sorting, whereas the two side peaks (i.e., blue extrema) are devoted to differential

6 sorting. The sorting chambers are placed in an asymmetrical manner to accommodate a wider dynamic

7 range in operation. (c) Graph of the magnetic field and the gradient across the y-axis. The direction of the

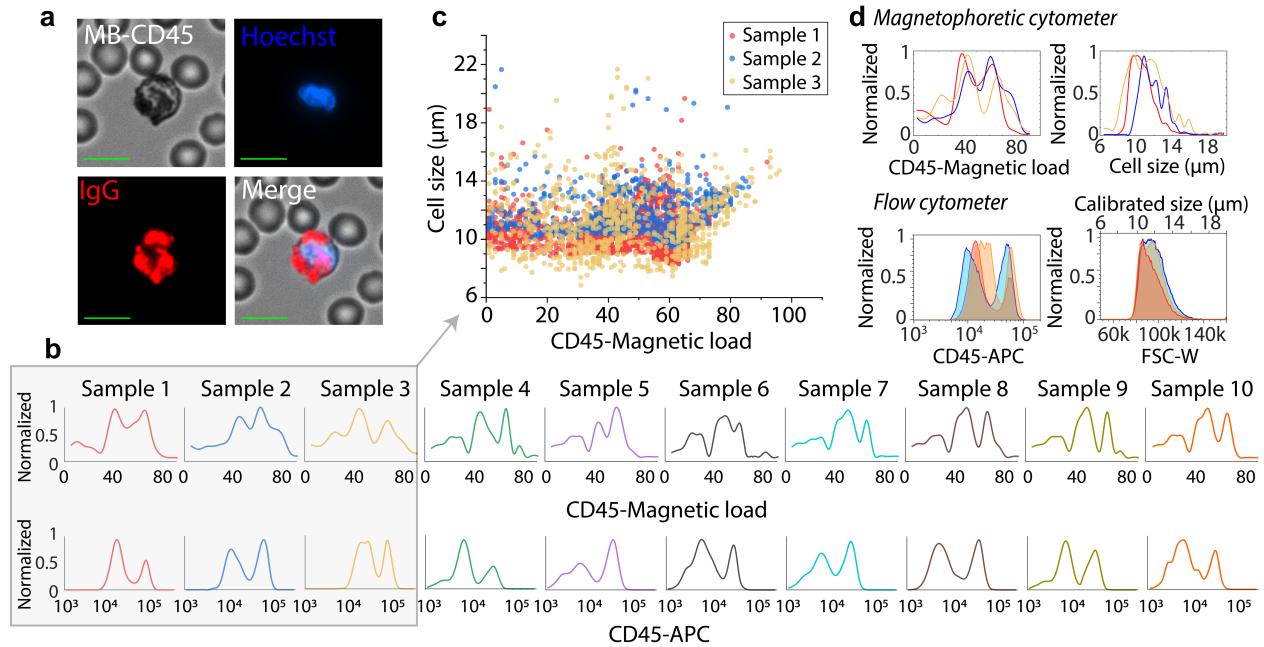
8 magnetophoretic force for each fluidic feature is shown with an arrow. (d) Characterization of cell


9 trajectories. Panel (i.) and (ii.) shows the trajectories of three different cells in terms of size and expression

10 in the top and bottom differential sorting chambers, respectively. The top chamber offers good

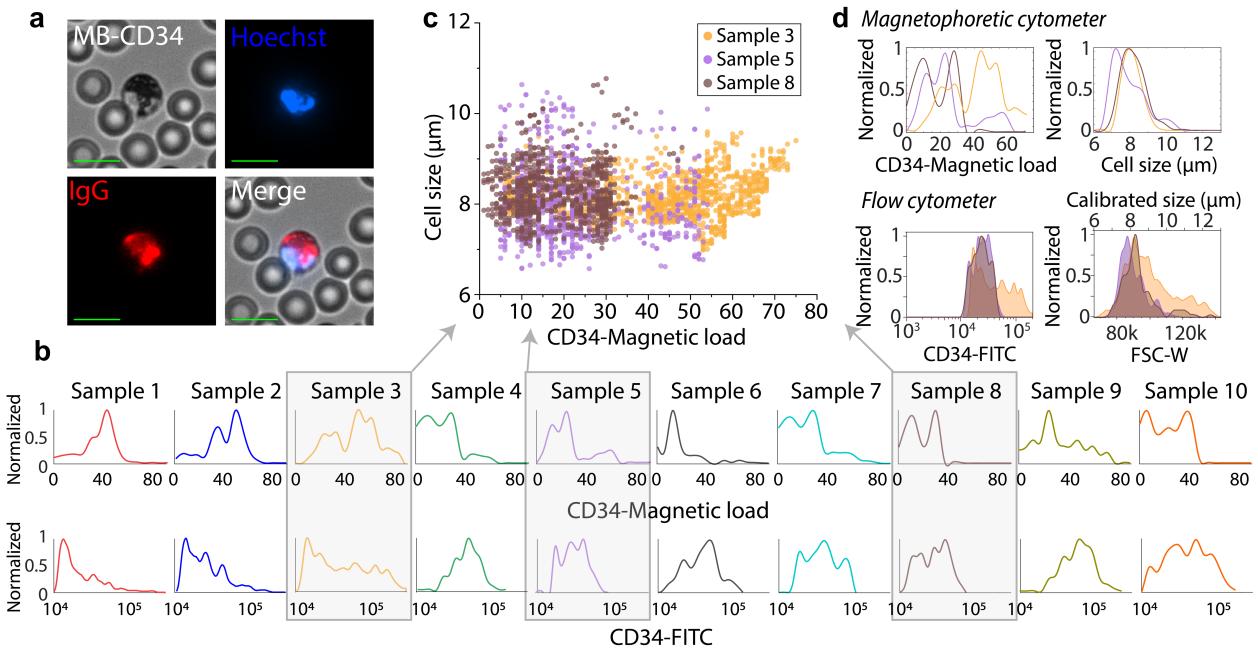
11 discrimination for low expressors, whereas the bottom chamber can better differentiate high expressors. (e)

12 System responses of top (i.) and bottom (ii.) differential sorting chambers. This data is used to calculate the


13 magnetic load from the sensor readout.

1
2

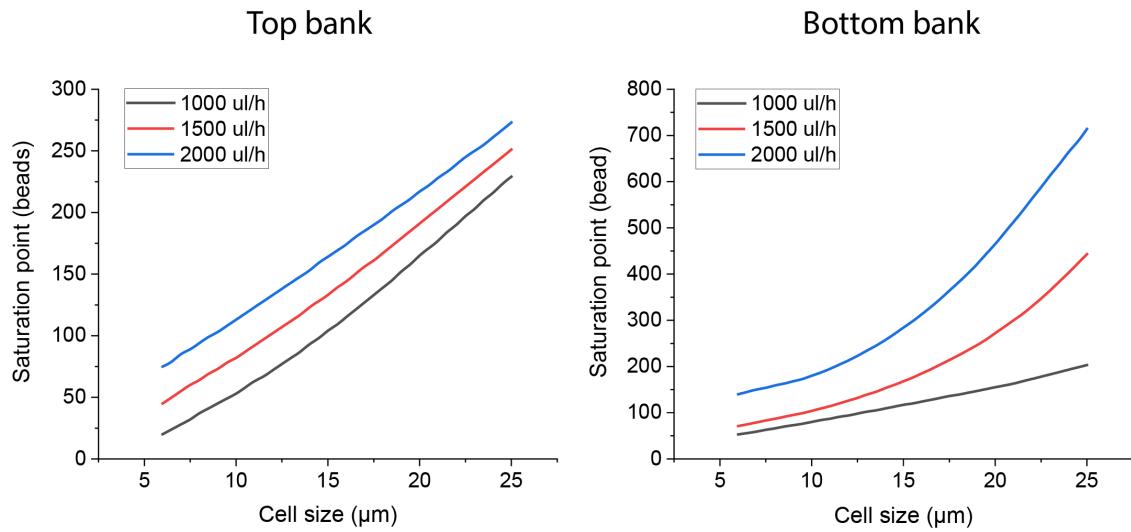
1 **Figure 3** | Testing of the system operation using cell populations with known expressions. (a) Photo of the
2 device under operation with a blood sample. The top layer was intentionally removed to take the photo.
3 Inlays show zoomed-in versions of the depicted areas. The color of the tubing in the image shows that the
4 RBCs were completely discarded from the waste outlets and the fluid fed into the differential sorting is
5 clear of any RBCs. Enrichment measurements for the cell lines under different flow rates. (b) Enrichment
6 percentage showed an overall decrease with decreasing surface expression at the population level.
7 Moreover, 1500 μ l/h was determined to be the optimal flow rate for device operation. The dot denotes mean
8 value, and the whisker denotes the standard error. N = 3 for each cell line. (c) Comparison of the binary
9 sorted populations and their original populations. Surface expression of PC-3, SK-BR-3, and MCF-7 cells
10 were analyzed using microscopic analysis before they were spiked into whole blood, and analyzed again
11 after binary sorting stage by collecting the fluids at the post-analysis and waste outlets. Sample size is >500
12 for parent and enriched populations and >50 for wasted populations. (d) A schematic of the electrical
13 connections in the experimental setup. TIA: Transimpedance amplifier, DIFAMP: Differential amplifier,
14 LIA: Lock-in amplifier (e) Decoding procedure of the recorded electrical signals. Using a correlation
15 analysis, the recorded signal is compared with a template library that contains an estimated average signal
16 for each sensor in the network. The specific case in the figure shows a match with the 8th sensor of the top
17 chamber. Combined with the operating flow rate, the sensor identity and cell size information are used to
18 estimate the magnetic load using the look-up table. (f) EpCAM expression analysis of the PC-3, SK-BR-3,
19 and MCF-7 cells that were spiked into whole blood and analyzed through the whole chip. Sample size is
20 >1000 for each cell line.


1

2

3 **Figure 4** | Magnetophoretic cytometry of leukocytes expressing CD45. (a) Bright-field and fluorescent
4 images of the sample labeled with CD45 conjugated magnetic particles. Nucleated cells can be
5 differentiated from RBCs via Hoechst staining, and the specific binding of the magnetic particles was
6 confirmed using a secondary antibody. Each scale bar represents 15 μm . (b) Surface expression results
7 from our device and the flow cytometry validations. Sample size is >2000 for all samples. (c) Combined
8 scatter plot of Samples 1, 2 and 3 for better visualization and closer inspection. (d) Benchmarking with
9 fluorescent flow cytometry. Our system successfully captures the multimodal distribution of CD45 antigen
10 and profiles the size distribution with great accuracy.

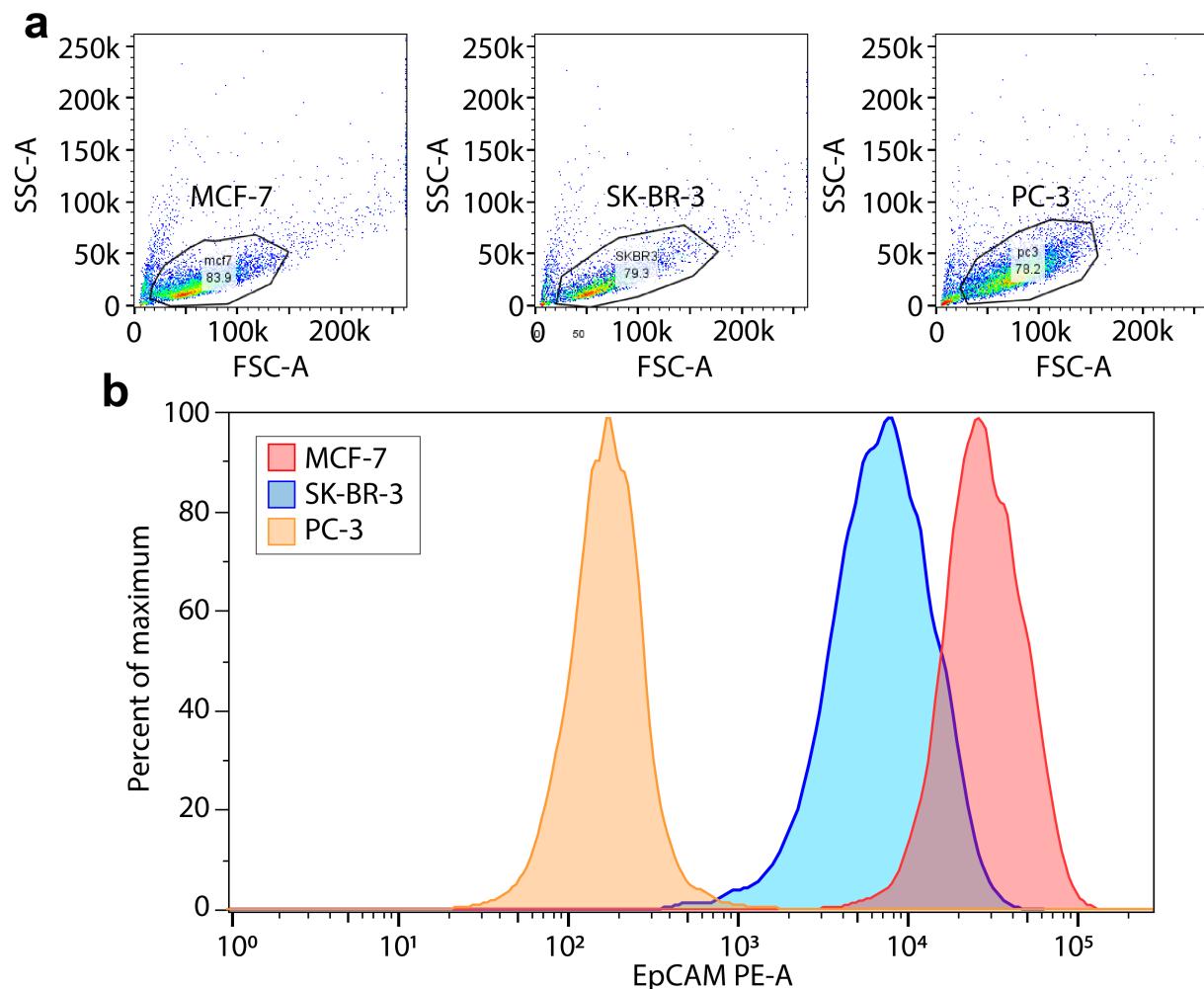
11



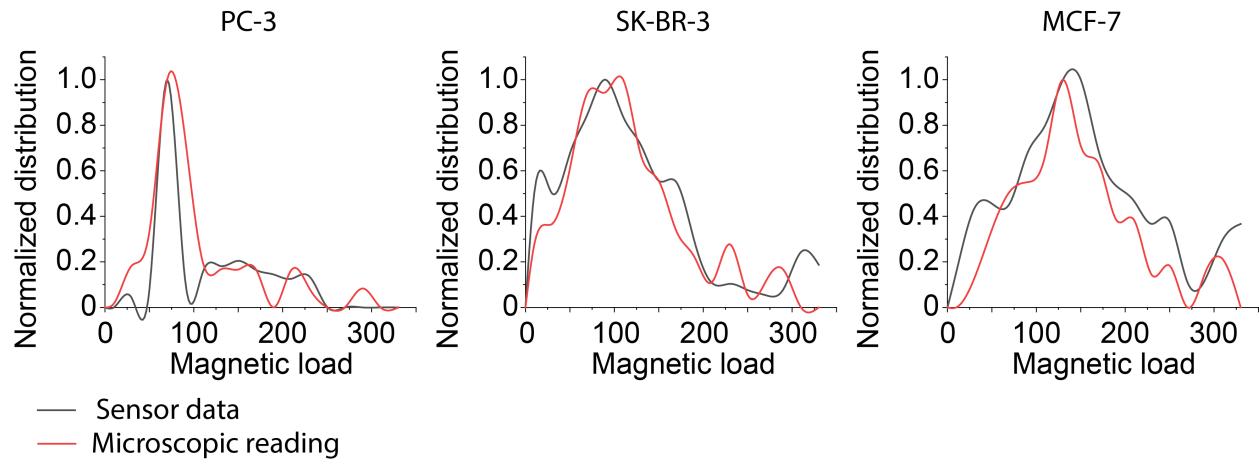
1 **Figure 5** | Magnetophoretic cytometry of circulating progenitor cells expressing CD34. (a) Bright-field and
2 fluorescent images of the sample labeled with CD45 conjugated magnetic particles. Each scale bar
3 represents 15 μ m. (b) Cumulative surface expression results acquired from 10 different samples from our
4 device and their flow cytometry validations. Sample size is >800 for all magnetophoretic measurements
5 and >60 for flow cytometry. (c) Combined scatter plot of Samples 3, 5 and 8 to highlight sample specific
6 characteristics. (d) Benchmarking with flow cytometry measurements. The data demonstrates that our
7 magnetophoretic cytometer can effectively acquire differences in the expression levels between the
8 samples.

1 **Supplementary Information**

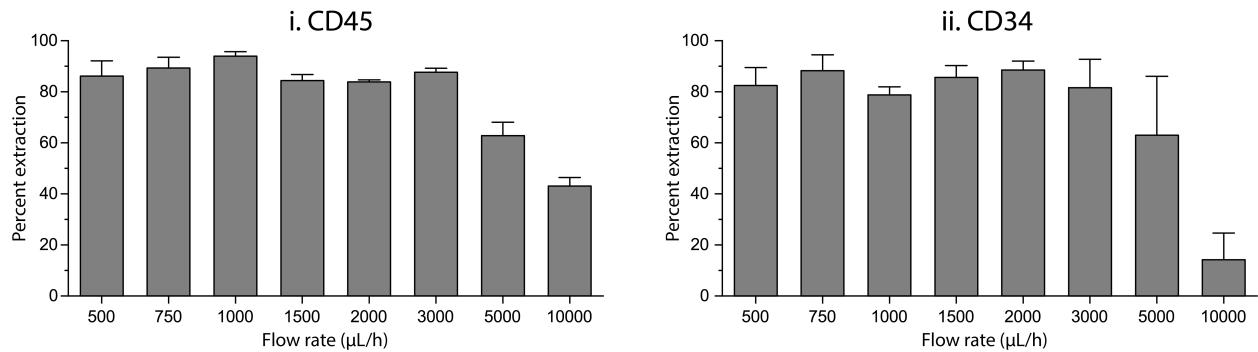
2 **Supplementary Table 1** | Detection limit and density testing


	CD34+ cells per μ L	
	Magnetophoretic Cytometry	Flow Cytometry Control
Sample 1	3.08	5.82
Sample 2	4.01	4.91
Sample 3	9.44	10.54
Sample 4	5.35	5.21
Sample 5	1.92	1.79
Sample 6	2.07	4.58
Sample 7	2.49	5.37
Sample 8	2.27	3.16
Sample 9	3.67	8.17
Sample 10	5.02	5.99
Sample 11	23.32	22.68

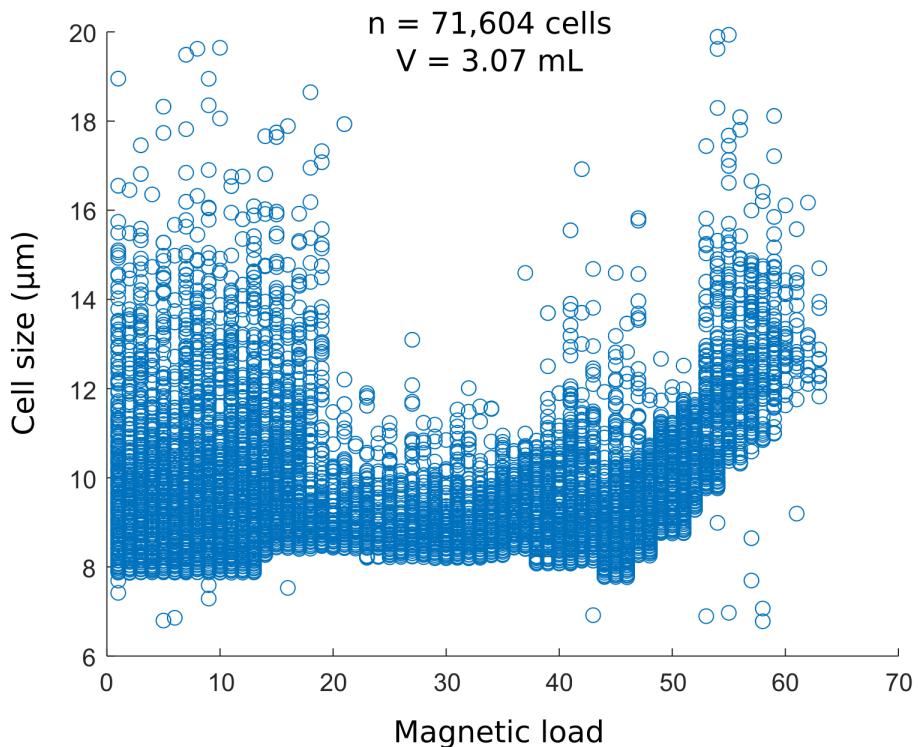
1


2 **Supplementary Figure 1** | Dynamic range limits for the top and bottom sensor banks versus the cell size
3 under different flow rates.

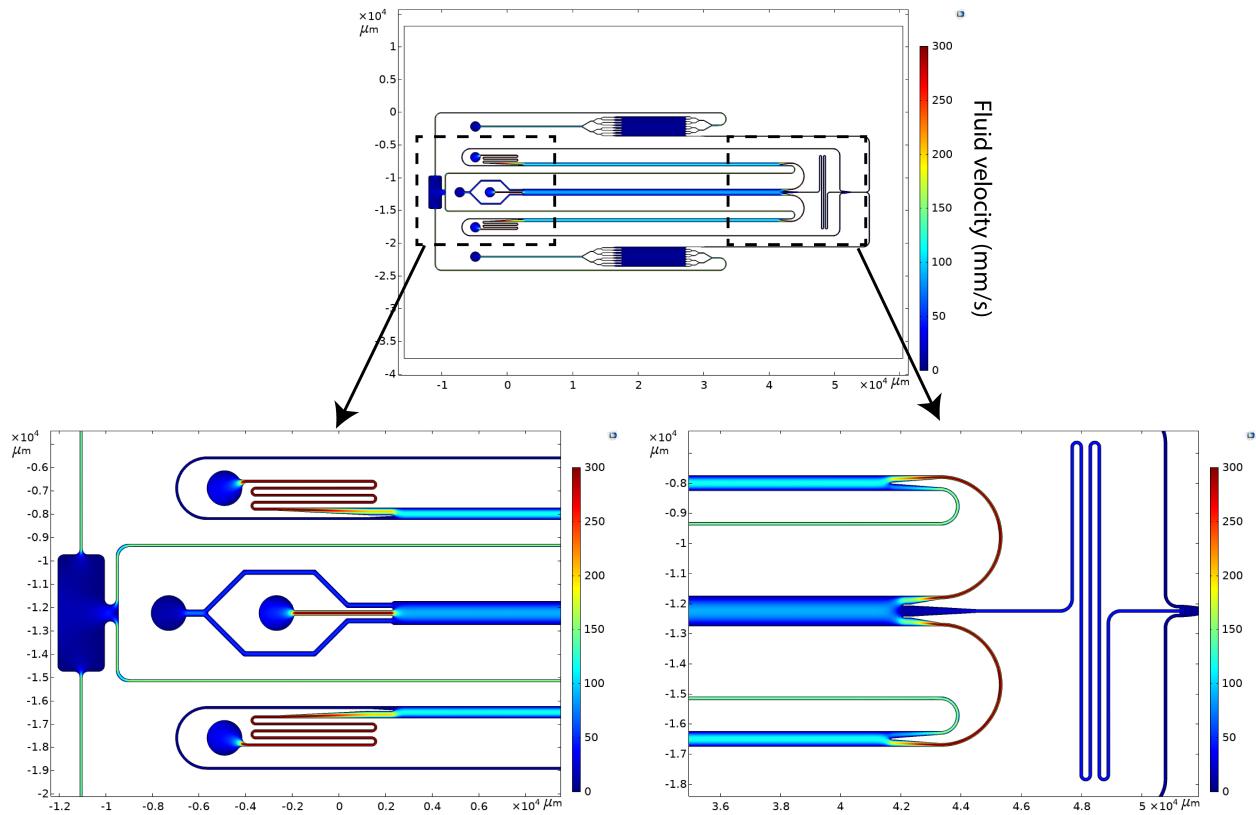
1



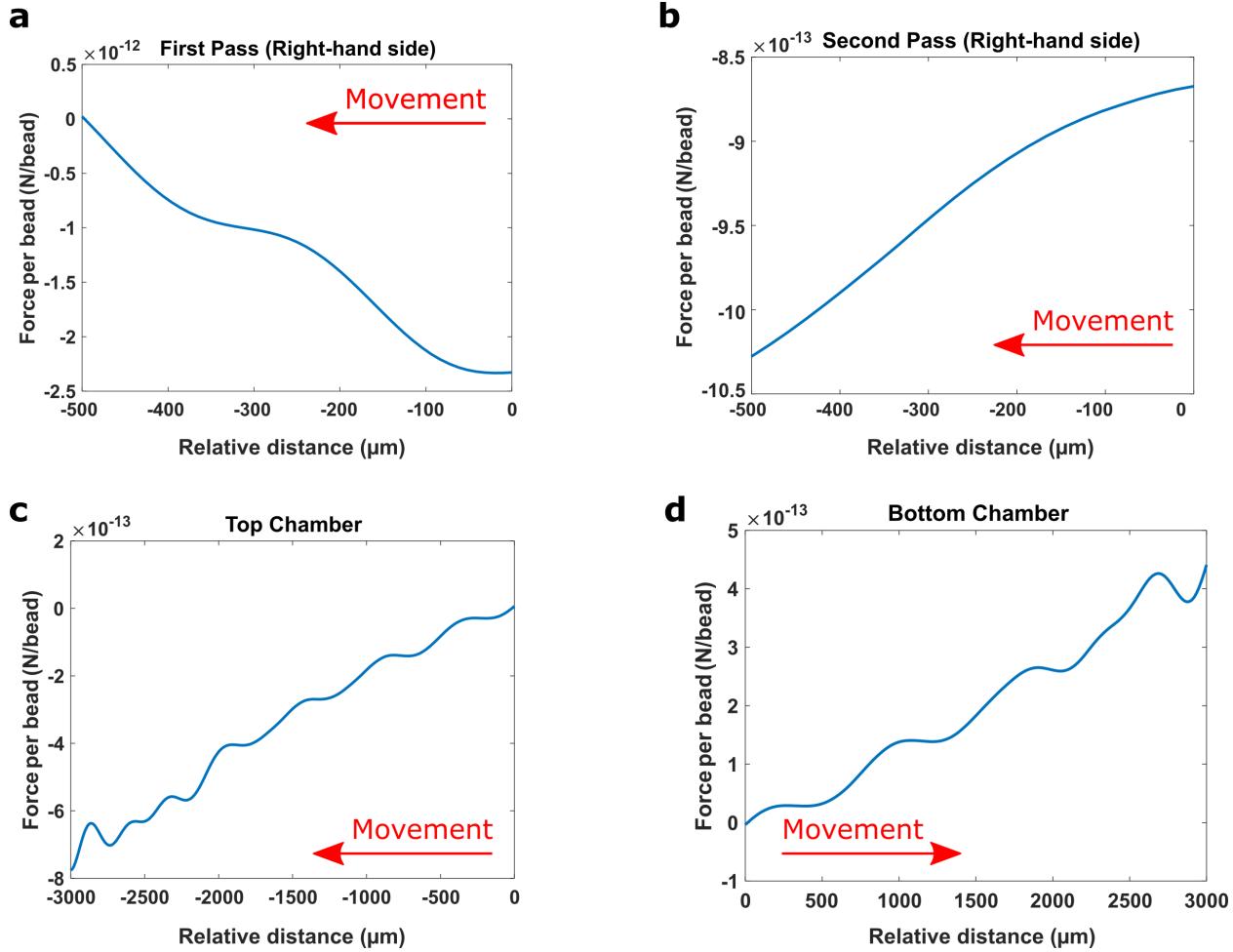
2


3 **Supplementary Figure 2** | Flow cytometry analysis of PC-3, SK-BR-3, and MCF-7 cancer cell lines. (a)
4 The live cells were gated using forward scatter versus side scatter plots to eliminate debris from the samples
5 of MCF-7, SK-BR-3, and PC-3 cells. (b) MCF-7 cells showed the highest EpCAM expression, while PC-
6 3 showed the least among the three cell lines.

1 **Supplementary Figure 3** | Validation of computational modeling and experimental measurements using
 2 the microscopic counting of magnetic load. The populations had correlation coefficients of 0.79, 0.90 and
 3 0.91 for PC-3, SK-BR-3 and MCF-7 populations, respectively.
 4

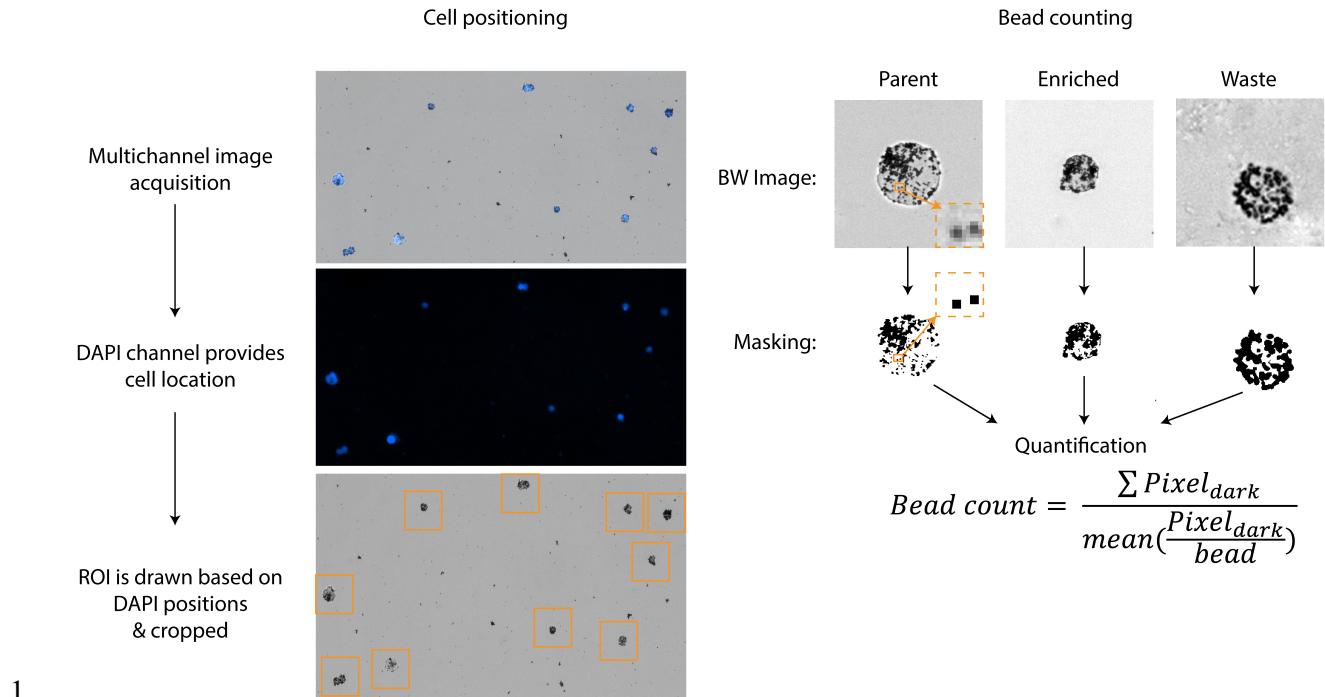


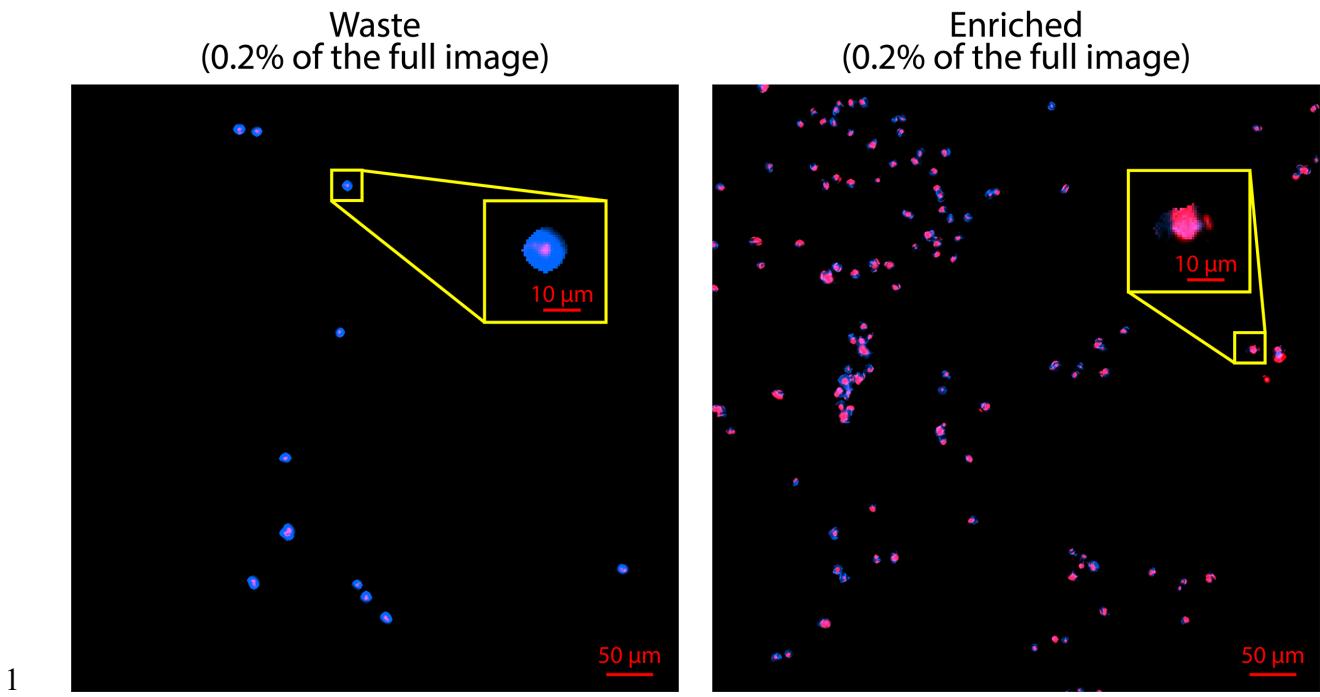
1
2 **Supplementary Figure 4** | Validation of the optimal flow rate ranges with hematological cells.
3 Magnetically labeled CD45+ and CD34+ samples were analyzed under various flow rates to identify the
4 optimal flow conditions for experiments.

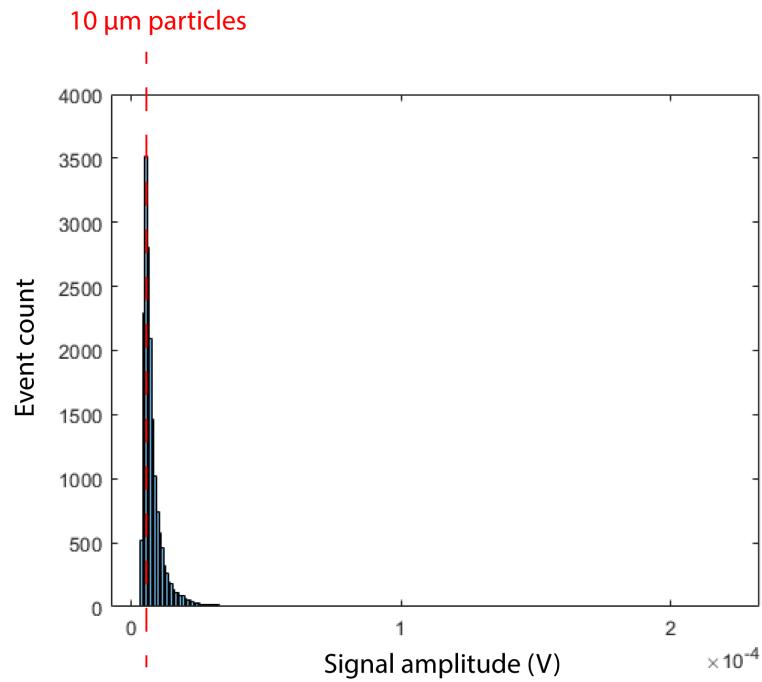


1

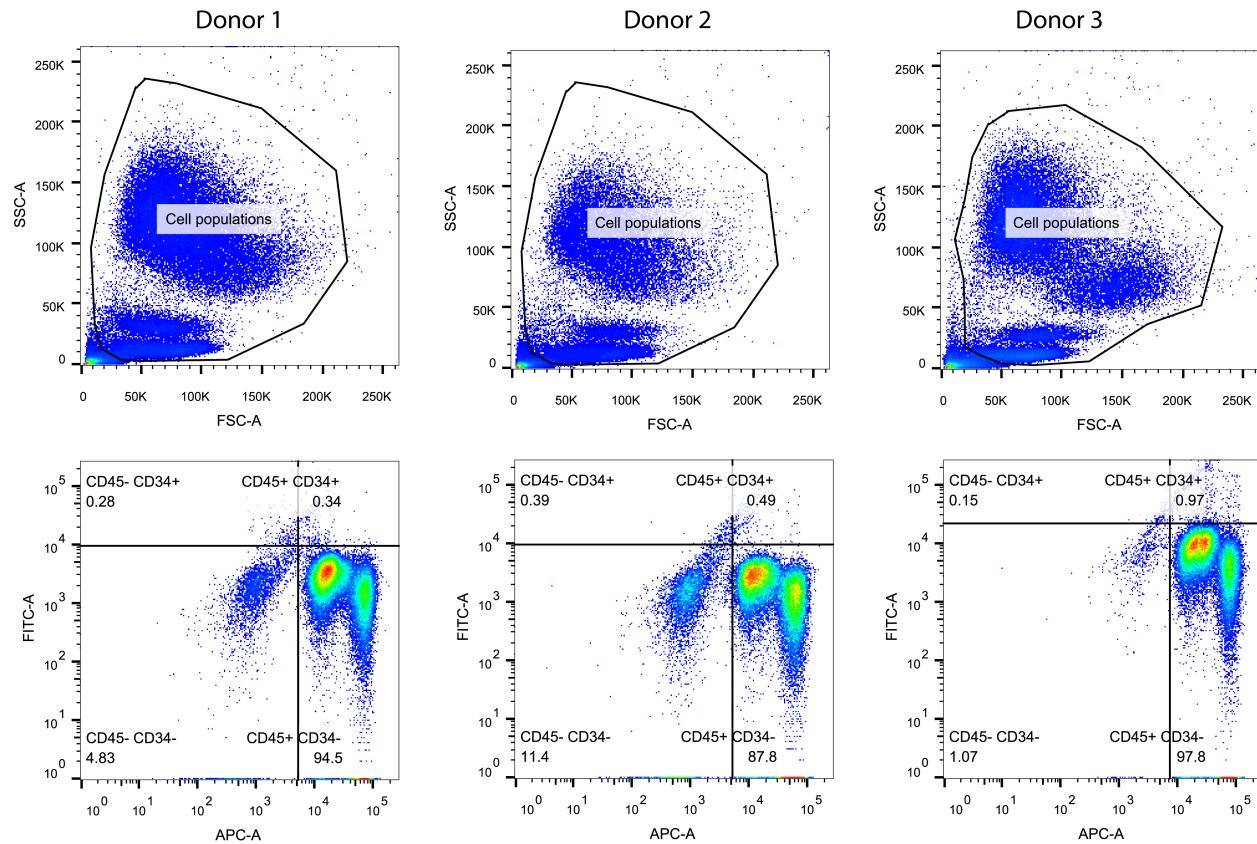
2 **Supplementary Figure 5** | Results from the high-volume sample testing. 3mL of peripheral blood sample
3 obtained from a healthy donor was labeled for CD34 and processed through the device in a single run at
4 1,500 $\mu\text{L}/\text{h}$ flow rate. At the end of the analysis, a total of 71,604 CD34+ cells were recorded, yielding a
5 density of 23.32 cells per μL . The cells also presented an average size of 8.82 μm , and a mean magnetic
6 load of 39.41 beads.

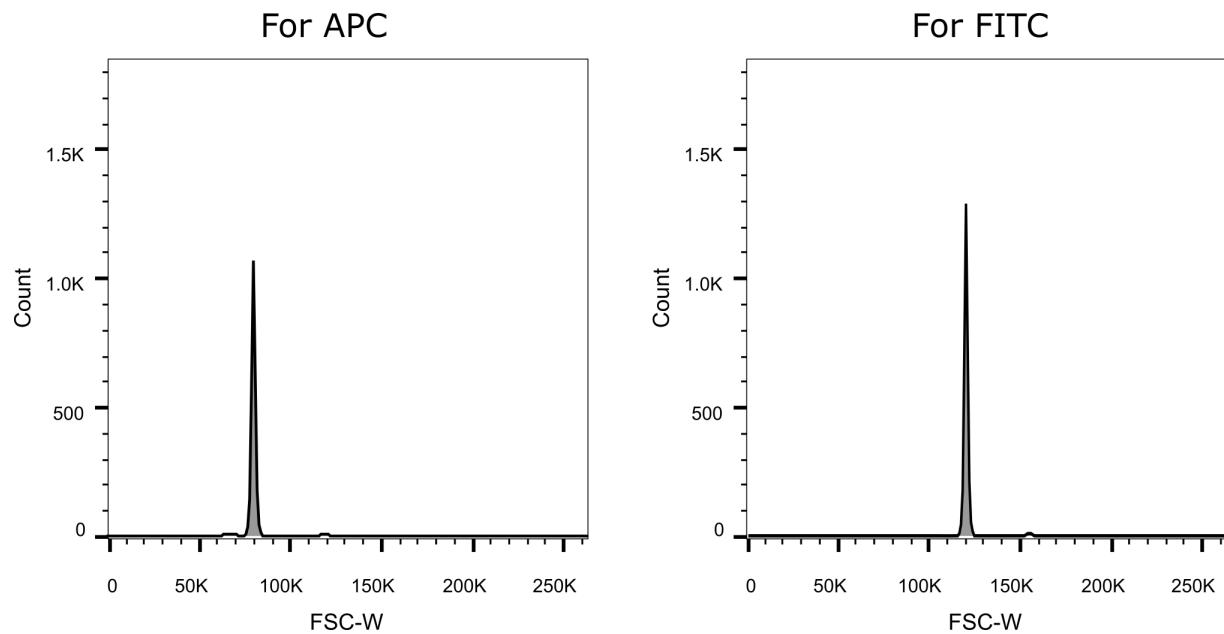



1 **Supplementary Figure 6** | The velocity profile of the fluid flow in the device at 1000 $\mu\text{l/h}$. Insets show
2 the zoomed in versions at the beginning and at the end of the central channel and the redundancy
3 channels. The color bars have the unit of mm/s.



1 **Supplementary Figure 7** | Magnetic forces in the transverse direction with respect to fluid flow for each
 2 region of the device. **(a)** Force profile of the first pass of the binary separation stage. Only the right-hand
 3 side is shown as both sides are symmetrical for the force profile with a sign difference. The magnetic force
 4 in the transverse direction becomes zero when the cell reaches the central streamline. **(b)** Force profile in
 5 the second (i.e. redundancy) pass. Both right and left redundancy channels have the same force profile, but
 6 in opposite directions. **(c)** Magnetic force vector acting on a cell based on the position of the cell in the top
 7 chamber. As the cell deflects more, the force acting on the cell increases. **(d)** Magnetic force vector for the
 8 bottom chamber for a given relative position of a cell in the chamber. Like the top chamber, there is a trend
 9 of an increasing magnetic force as the cell deviates further from original trajectory.
 10


11



1
2 **Supplementary Figure 10** | Size calibration of the electrical signals. 10 μm -sized polystyrene microspheres
3 were used as the calibration agent. The mode of the amplitudes of the recorded signals was matched to the
4 corresponding volume of the particles.

1

2 **Supplementary Figure 11** | Gates used in the flow cytometry analysis of blood samples from donors. The
3 analysis was done using a stain-lyse-no wash method, so the residue and debris were gated out first. Then,
4 the target populations were identified using the APC-A (CD45) vs. FITC-A (CD34) graph.

1

2 **Supplementary Figure 12** | Calibration of the forward scatter width for cell size for APC and FITC-
3 based analyses, separately. 10 μ m polystyrene microspheres were analyzed under the same laser
4 configurations as the experiment. The FSC-W value of the resulting peaks was set to represent the size of
5 10 μ m.