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Abstraction  
Microfluidic technologies have long enabled the manipulation of flow-driven cells en masse 
under a variety of force fields with the goal of characterizing them or discriminating the 
pathogenic ones. On the other hand, a microfluidic platform is typically designed to function 
under optimized conditions, which rarely account for specimen heterogeneity and 
internal/external perturbations. In this work, we demonstrate a proof-of-principle adaptive 
microfluidic system that consists of an integrated network of distributed electrical sensors for 
on-chip tracking of cells and closed-loop feedback control that modulates chip parameters 
based on the sensor data. In our system, cell flow speed is measured at multiple locations 
throughout the device, the data is interpreted in real-time via deep learning-based algorithms, 
and a proportional-integral feedback controller updates a programmable pressure pump to 
maintain a desired cell flow speed. We validate the adaptive microfluidic system with both 
static and dynamic targets and also observe a fast convergence of the system under continuous 
external perturbations. With an ability to sustain optimal processing conditions in unsupervised 
settings, adaptive microfluidic systems would be less prone to artifacts and could eventually 
serve as reliable standardized biomedical tests at the point of care. 
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1. Introduction 
Manipulation of suspended cells in microfluidic channels forms the basis of microchip-based 
sample enrichment and biomedical assays1. Those devices are specifically engineered to subject 
flow-driven cell populations to a variety of force fields (e.g., mechanical,2 electrical,3 acoustic,4 
magnetic,5 chemical,6 etc.) and discriminate them based on the contrast in their biophysical7  or 
biochemical8 properties. As such, microfluidic devices are advantageous over conventional 
sample processing technologies due to their flexibility to implement highly selective and 
sensitive cell manipulation schemes that can detect even the scarcest of cells as circulating 
tumor cells (CTCs),9,10 hematopoietic stem cells (HSCs),11 and circulating fetal cells (CFCs)12 
among billions of normal blood cells. 
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While highly effective in manipulating cells, microfluidic devices are designed and 
experimentally optimized to operate under well-controlled conditions that cannot universally 
be maintained in practice.13,14 Inevitable perturbations to device operation such as variation in 
the flow rate due to clogged channels15 or fabrication-related deviations in device geometry32 
could go unnoticed and translate into process artifacts. Moreover, differences between sample 
viscosities16 could lead to different flow dynamics17,18 even if the rest of the operation 
parameters could be made equal. Therefore, microfluidic devices for cell analysis need to be 
engineered to preempt those potential artifacts due to process/sample variance if they were to 
be deployed in the field for biomedical applications. 
 
One strategy to ensure the microfluidic device operates under optimized conditions 
irrespective of unforeseen perturbations is to employ a feedback control. A feedback-controlled 
system automatically regulates a process variable by constantly monitoring instantaneous 
changes (i.e., error) and countering those by triggering a negating stimulus to maintain that 
process variable at a set value.19 Establishing a feedback control on a microfluidic therefore 
requires a quantitative assessment of the state of the device, a control algorithm (i.e., 
controller), and a control input to the system to change its state. In fact, feedback control has 
been successfully demonstrated in regulating microfluidic systems for a variety of applications, 
including digital microfluidics,20-22 productions of micro-droplets,23 modulations of fluidic 
properties,24,25 and automated regulations of fluid height,26 pressure,27 and temperature28 in 
microfluidic chambers. 
 
Here, we demonstrate a system where the process variable is controlled within a feedback loop 
based on direct measurements on cells being manipulated within a microfluidic chip. Our 
system utilizes (1) a network of electrical sensors distributed across the microfluidic device to 
make measurements on flowing cells, (2) a trained deep learning algorithm to process the raw 
sensor data and produce actionable control signals, and (3) a controller that updates external 
stimuli to regulate the process variable. In a proof-of-principle demonstration, we measure cell 
flow speeds across the device and control a programmable pressure pump to maintain the 
same flow speed irrespective of perturbations. We characterize the system performance under 
static and dynamic perturbations and demonstrate its stability. 
 
2. Results 
2.1 System overview 
The introduced adaptive microfluidic system was composed of three main units: the sensing 
unit, the signal processing unit, and the feedback control unit (Figure 1).  
 
The sensing unit was a microfluidic sensor platform consisted of surface micro-electrodes, 
which were designed to produce electrical signals when a cell was detected. To detect cells 
within the device, we utilized the fact that suspended cells modulated the electrical current as 
they flowed over these microelectrodes. To monitor the cell flow throughout the whole device, 
we created a network of sensors distributed to multiple measurement nodes. Because all 
sensors were electrically connected, the data from the network could be acquired as a single 
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time waveform. Nevertheless, by designing each sensor to produce a distinct waveform, we 
ensured a lossless recovery of information from individual sensors in the recorded electrical 
signal. 
 
The signal processing unit acquired raw sensor data, analyzed its content, and calculated 
parameters such as size, instantaneous location, and speed for every cell. The signal processing 
unit could be considered as a combination of a data acquisition block and a data interpretation 
block. The data acquisition block consisted of signal acquisition software and hardware, 
including amplifiers and a data acquisition board, which extracted, amplified, and transmitted 
sensor waveforms in real-time. Conditioned sensor waveforms were then processed by the 
data interpretation block. The sensor waveforms were analyzed using a deep-learning model 
specifically to perform cell measurements in real-time. Real-time analysis of sensor data then 
allowed timely intervention by the controller to modulate the device settings.  

 
The feedback control unit regulated a process variable based on the measurements on cells. 
Measured cell parameters were compared to a predetermined target value (setpoint), and the 

Figure 1: A concept illustration showing the workflow of the adaptive microfluidic system. A feedback 
loop is constructed among a sensing unit, a signal processing unit, and a feedback control unit. Target 
cells are manipulated and detected in the sensing unit, and cell information is extracted and interpreted 
in the signal processing unit. The feedback control unit regulates a process variable based on measured 
cell parameters and a predetermined setpoint.  
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process variable was continuously updated to minimize the difference between the two. In this 
work, we set our feedback loop on the cell flow speed without loss of any generality and 
updated the driving pressure of the sample by controlling a pressure pump. A regulated flow 
ensured cells to flow at a determined speed inside the device irrespective of external 
perturbations or potential miscalibration of the pressure pump or device geometry. 

 
2.2 Design of the sensing unit  
We designed our microfluidic sensor platform based on the Microfluidic CODES technology, 
which allows spatiotemporal tracking of cells in microfluidic channels.29-33 The Microfluidic 
CODES sensor network operated based on the Coulter principle, which had long been employed 
for counting and sizing cells in suspension.34 However, unlike a conventional Coulter counter, 
Microfluidic CODES employed specially-micromachined electrodes to produce distinct electrical 
waveforms for code-multiplexed measurements from different locations on a microfluidic 
platform so as to track cells’ movement.  
 
Our sensor network was composed of eight coded Coulter sensors distributed to monitor eight 
30 μm-wide microfluidic channels. Each sensor was designed to produce a unique binary 
sequence, specifically a randomly-generated 15-bit code sequence, i.e., each bit was treated as 
a Bernoulli random variable with p = 0.5 (Figure 2a). It should be noted that, these eight sensors 
were placed next to each other on the actual device, different from the format shown in the 

Figure 2: Microfluidic sensor platform design and experimental set-up. (a) A microscopy image of the 
microfluidic sensor platform with eight code-multiplexed Coulter sensors. Each sensor is designed with a 
unique electrode pattern determined by a distinct binary code sequence. (b) A block diagram for the 
experimental set-up. (c) The signature waveform for each coded sensor. The pattern of each signature 
waveform follows the corresponding binary code sequence. The threshold values used to determine 
positive and negative peaks are ± 0.05 mV. 

 



 5 

concept illustration (Figure 1), so that the whole network could fit in the field-of-view of a 
microscope for an independent optical inspection while validating the system. To build the 
distributed sensors, we micromachined three coplanar electrodes, a common electrode, a 
positive electrode, and a negative electrode. The common electrode drove the sensors, while 
the positive and negative electrodes were used to measure impedance variations when cells 
flowed by. To encode a specific Coulter sensor, positive and negative electrodes were first 
patterned on either side of a microfluidic channel, and in the sensing region, the electrodes 
were arranged as an interdigitated array with 5 μm-wide electrode fingers separated by 5 μm-
wide gaps. Specifically, electrode fingers were extended from each electrode and across the 
microfluidic channel, and the polarity (positive or negative) order of the electrode fingers was 
determined by the corresponding binary code sequence to be implemented. For example, a ‘1’ 
in the code sequence indicated a positive electrode finger, a ‘0’ in the code sequence indicated 
a negative electrode finger. Finally, the common electrode was routed in between the coding 
electrode fingers to drive the electrical current flow. In this case, when a cell flowed through a 
microfluidic channel equipped with one of these sensors, sequential interaction of the cell with 
electrode fingers induced a signature waveform that resembled a specific binary code dictated 
by the underlying electrode pattern. 
 
To fabricate the sensor network, a 1.2 μm-thick negative photoresist (NR9-1500PY, Futurrex, 
Inc.) was spin-coated on a glass substrate and exposed using a maskless photolithography 
system (MLA150, Heidelberg Instruments). A 20/480 nm Cr/Au film stack was deposited on the 
developed photoresist using e-beam evaporation. Finally, the glass substrate was immersed in 
acetone to lift-off the sacrificial photoresist to create the electrode pattern and then diced into 
individual chips. Microfluidic channels over the sensor network were fabricated using soft 
lithography. A mold was first created by spin-coating a 15 μm-thick SU-8 photoresist 
(MicroChem) on a 4-inch silicon wafer and patterned using the same maskless photolithography 
system. Polydimethylsiloxane (PDMS) prepolymer (Sylgard 184, Dow Corning) was mixed with 
its crosslinker at a 10:1 ratio and then poured on the mold, degassed, and baked at 65 °C for >4 
hours. Then, the cured PDMS was peeled off from the mold and punched using a biopsy punch 
to create the fluidic inlet and outlet. Finally, to form the device, the glass substrate and PDMS 
layer were activated in an oxygen plasma, aligned, and bonded.35  
 
Sensors were tested using human breast cancer cells (MDA-MB-231). The cells were cultured in 
culture media (Mediatech; Cellgro, Herndon, VA) supplemented with 10% fetal bovine serum 
(FBS; Seradigm, Radnor, PA) and maintained in 5% CO2 atmosphere at 37 °C in an incubator. 
The cells were harvested once they reached >80% confluence by treating with trypsin, pelleting 
by centrifugation, and resuspending in phosphate buffered saline (PBS) with gentle pipetting. 
The cell suspension was driven through the microfluidic device with a programmable pressure 
pump (MFCS-EZ, Fluigent). The sensors were excited with a 460 kHz sine wave (2 Vpp) applied to 
the common electrode (Figure 2b). The excitation frequency was specifically chosen to (1) 
bypass the double-layer capacitance at the electrode-electrolyte interface, which was dominant 
at the low-frequency band and (2) prevent the Maxwell-Wagner dispersion at the high-
frequency band.36 Two electrical current signals were acquired from the positive and negative 
electrodes, converted into voltage signals through transimpedance amplifiers and combined 
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with a differential amplifier. A lock-in amplifier (HF2LI, Zurich Instruments) was used to 
demodulate the differential signal and measured the electrical current amplitude.  The final 
output signal was sampled into a computer through a data acquisition (DAQ) device (PCIe-6361, 
National Instruments) at a sampling rate of 57 kHz. Signature waveforms corresponding to 
different locations on the chip were experimentally confirmed to match with the corresponding 
binary code sequences (Figure 2c). 

 

Figure 3: Real-time sensor waveform identification. (a) A flow diagram illustrating the environment 
implemented for real-time sensor waveform identification and extraction. (b) An illustration of the 
process of identifying a sensor waveform. For each data block, containing 50 sample points, the variance 
is calculated to determine whether the data block belongs to a sensor waveform or not. (c) Multiple 
sensor waveforms are successfully identified from an experimental data stream. 
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2.3 Design of the signal processing unit 
2.3.1 Real-time signal processing environment 
We developed a real-time signal processing environment that could continuously acquire, 
identify, and extract sensor waveforms corresponding to individual cell events (Figure 3a). 
Because cells randomly interacted with sensors at different locations, the sensor waveforms 
asynchronously appeared in the data stream (Figure 3c). To make the information available to 
the controller in a timely fashion, we continuously screened short blocks (50 samples) from the 
data stream to catch potential sensor activity. For each data block (iteration), we first 
calculated signal power (i.e., variance) and compared it with a predefined threshold value 
(variance of the baseline noise) to determine whether the signal in the current data block 
originated from a triggered sensor or was simply noise. If it were scored as sensor data, these 
samples would be temporarily stored in a buffer. Next, by comparing the current data block’s 
signal variance with that of the previous data block, we determined if the data block 
corresponded to either beginning or ending of a sensor waveform. If the data block was 
identified as an ending block, all the data blocks stored in the buffer were combined and 
marked as a complete sensor waveform to be identified, followed by clearing the buffer for the 
next sensor waveform (Figure 3b). 
 
We implemented the continuous data acquisition in LabVIEW, and the PyDAQmx package37 was 
used as a software interface between the data acquisition board and Python, a programming 
language commonly employed for machine learning-based data analysis.38 An off-line 
simulation of the signal extraction scheme demonstrated that sensor waveforms with varying 
amplitudes and durations were successfully identified from a recorded sensor data stream 
(Figure 3c). It should be noted that some of these extracted sensor waveforms were individual 
ones induced by a single cell, and some were interfering ones induced by coincident cells 
interacting with one or multiple sensors simultaneously. The pattern of individual sensor 
waveforms closely followed the binary code sequences used to encode each sensor so that they 
could readily be recognized, while interfering sensor waveforms required specific algorithms to 
demultiplex and interpret the cell information. 
 
2.3.2 Deep learning-based data interpretation 
The data interpretation block was designed based on the deep neural network (DNN),39 which is 
a machine learning model commonly used for signal processing.40-42 Specifically, our model was 
based on the convolutional neural network (ConvNet),43,44 a type of deep neural network that is 
particularly well suited for processing data with a spatial or temporal dependency, such as 
images, videos, and speech signals. In the case of processing our sensor network data, the 
extracted sensor waveforms contained one or multiple signature waveforms, and each 
signature waveform had a specific pattern (spatial dependency). Therefore, we analogized our 
data interpretation process as an object detection process in 1-dimension, where each 
signature waveform was an object, and the entire extracted sensor waveform was the 
background image. The goal of the data interpretation block was to identify and recognize all 
the signature waveforms from an extracted sensor waveform, even when multiple signature 
waveforms interfered with each other due to coincidentally detected cells. 
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Figure 4: Implementation of the deep learning-based sensor waveform interpretation. (a) A workflow 
showing the decoding process of the 2-stage ConvNet model. Given an input sensor waveform, the first 
stage ConvNet (RPN) predicts the number of contained signature waveforms (cells) and fits a bounding 
box for each of them. The second stage ConvNet (SCN) predicts the sensor identity of each identified 
signature waveform. (b) The structure of the ConvNet model. The RPN and SCN share the same structure 
for feature extraction and have different output layers. (c) ConvNet decoding process for a representative 
3-cell interfering sensor waveform from the validation dataset. (I). Three signature waveforms (cells) (II) 
and three bounding boxes (III) are identified and estimated by the PRN. Extracted and normalized 
signature waveforms (IV) are interpreted by the SCN for sensor identity prediction (V). (d) Validation of 
the ConvNet model through the test dataset with simultaneously acquired high-speed microscopy 
images. The predicted cell properties (from the ConvNet model) are compared with actual ones (from 
microscopy images) in terms of distributions of (I) cell radius, (II) cell flow speed, and (III) sensor identity. 
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We implemented a 2-stage ConvNet structure to interpret extracted sensor waveforms (Figure 
4a). Given an input sensor waveform, the first stage, named region proposal network (RPN), 
predicted the number of signature waveforms contained in that waveform (e.g., 1 if isolated 
signature waveform or >1 if the sensor waveform resulted from the interference of multiple 
signature waveforms) and proposed a bounding box on each individual signature waveform. 
Each identified signature waveform was then extracted and fed into the second stage, named 
sensor classification network (SCN), for a further sensor identity (location) classification. 
Combining the predictions from two stages, the property and behavior of detected cells were 
estimated. First, the number of identified signature waveforms indicated the number of 
detected cells. Second, the height of the bounding box represented the amplitude of the 
signature waveform, which, based on the Coulter principle45,46 was proportional to the size 
(volume) of the detected cell. Third, the width of the bounding box represented the duration of 
the signature waveform, which represented the time the cell spent passing through the entire 
sensing region of the corresponding sensor (cell residence time). This could be further used to 
calculate the speed of the cell. Fourth, the predicted sensor identity provided the location 
information of the cell as sensors were distributed at different locations on the microfluidic 
sensor platform. All of this information provided an on-demand snapshot of the state of cell 
manipulation within the microfluidic device. 
 
In our ConvNet model, the RPN and the SCN shared the same structure for feature extraction, 
while each had a distinct output layer (Figure 4b). Specifically, each ConvNet contained four 
convolutional layers, each of which was followed by a ReLU layer for a non-linear activation. 
After the second and fourth convolutional layers, a max-pooling layer was placed to down-
sample the feature map. Two dense (fully-connected) layers were placed after the second max-
pooling layer (right before the output layer). The output layer of the RPN had two groups of 
nodes, where the first group predicted the number of contained signature waveforms in the 
input sensor waveform, and the second group fitted a bounding box for each identified 
signature waveform. The output layer of the SCN had eight nodes, each representing one of the 
eight distributed Coulter sensors on the microfluidic device. A more detailed illustration of the 
ConvNet model can be found elsewhere.43   
 
To train our model, we built a dataset of 1,000,000 training sensor waveforms. In the training 
dataset, each sensor was uniformly represented by an approximately equal number of 
waveforms. Among those sensor waveforms, 1/3 were non-interfering sensor waveforms, 1/3 
were 2-cell interfering sensor waveforms, and 1/3 were 3-cell interfering sensor waveforms. To 
increase the number of waveforms available for constructing the training dataset, we employed 
a data augmentation process. Briefly, each interfering training waveform was manually 
combined from randomly-scaled non-interfering sensor waveforms. A detailed illustration of 
this data augmentation process can be found elsewhere.43   
 
After training both ConvNets for 50 epochs (Figure S1), we first generated a validation dataset. 
The validation dataset was digitally constructed with the interfering sensor waveforms 
manually composed by combining labeled but unseen non-interfering sensor waveforms 
recorded from previous experiments. Therefore, for each waveform in the validation dataset, 
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we knew the ground truth in terms of the number of coincident cells, dimensions of the 
bounding boxes, and sensor identities. Using the generated validation dataset, we then 
investigated the decoding process and evaluated the performance of ConvNets (Figure 4c). For 
each sensor waveform (Figure 4c, I), the RPN predicted the number of signature waveforms 
(cells) producing the observed signal with a confidence level (Figure 4c, II) and marked 
individual signature waveforms making up the signal with bounding boxes (Figure 4c, III). Once 
the signature waveforms within the bounding boxes were extracted and normalized (Figure 4c, 
IV), the SCN made a sensor identity prediction on each identified signature waveform and 
reported the confidence level for each prediction (Figure 4c, V). By processing all waveforms in 
the validation dataset, we calculated the accuracy of our ConvNets in recognizing sensor 
waveforms (Figure S2). 
 
Next, we constructed a test dataset, which contained signals as recorded from processed cells 
on the device. For the signals in the test dataset, we simultaneously recorded high-speed 
microscopy images of interaction of cells with the sensors. We then processed recorded images 
to extract information as the ground truth and compared the ConvNets-predicted 
measurements with image-based data to assess accuracy in terms of predicting cell size, speed, 
and sensor identity (Figure 4d). 
 
2.4 Design of the feedback control unit  
2.4.1 Design of the feedback control system 
To demonstrate closed-loop control of cell manipulation in the microfluidic device, we 
developed a feedback control system that regulated cell flow speed based on measurements on 
processed cells. Besides the fact that cell flow speed is of practical importance for a variety of 
cell manipulation/sorting applications in microfluidic devices,47 it has a simple dependence on 
the driving pressure, making it an ideal parameter for proof-of-concept demonstration of 
closed-loop control. The designed feedback control system could be abstracted into a plant and 
a feedback controller (Figure 5a). The plant consisted of the programmable pressure pump, the 
sensing unit, and the signal processing unit producing a measured process variable,	𝑦(𝑡), which 
was the variable to be controlled in the system. The goal of the feedback control system was to 
regulate the control input (the pump pressure), so that the process variable could approach the 
setpoint, 𝑟(𝑡), as the target value of the process variable. This was achieved by the system 
continuously calculating an error value,	𝑒(𝑡), as a difference between the instantaneous 
process variable and the setpoint and the feedback controller attempting to minimize the error 
by generating an appropriate adjustment value, 𝑢(𝑡), to update the control input in the plant. 
 
The core part of our feedback control system was the feedback controller, which determined 
the parameters adjusting the control input given a specific error value. For our study, we 
implemented a proportional-integral (PI) controller, which adjusted the control input based on 
a weighted sum of present and past error values.48  As such, the adjustment value to the 
pressure pump was computed by 

𝑢(𝑡) = 	𝐾𝑒(𝑡) +	
𝐾
𝑇!
- 𝑒(𝜏)𝑑𝜏
"!

#
 

where 𝐾 was the feedback gain, and  𝑇!  was the integration period.  
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To regulate the cell flow speed in a feedback control loop, we chose the measured time that a 
cell interacted with a sensor (cell residence time) as the process variable. The cell residence 
time was inversely proportional to the cell flow speed, which had a linear relationship with the 
driving pressure (Figure S3). Therefore, the cell residence time had a non-linear but monotonic 
relation with the driving pressure and hence could be adjusted by updating the pressure pump 
settings (Figure 5b). Each time a cell (i.e., event) was detected, our system measured the cell 
residence time, compared it with the setpoint, and calculated an error value, based on which, 
the PI controller produced an updated setting for the programmable pressure pump.  
 
 
 
 

Figure 5: Design and characterization of the feedback control system. (a) A block diagram showing the 
proportional-integral (PI) controller in the microfluidic feedback control system. The cell residence time 
is selected as the process variable. (b)The monotonic relation between the pump pressure and the cell 
residence time. (c) Step response of the feedback control system given different combinations of feedback 
gain (K) and averaging window size (W), in which K1 = 0.05, K2 = 0.10, K3 = 0.15, and W1 = 5, W2 = 10, W3 
= 15. 
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2.4.2 Step response of the feedback control system  
To characterize our feedback control system, we processed a model biological sample with a 
density of 0.5 x 106 cells/ml. We first measured the step response of the system. In these 
measurements, we set the setpoint for cell residence time at 10 ms, corresponding to a 
pressure of 95 mbar. Then we abruptly changed the setpoint from 10 ms to 30 ms and 
monitored changes in the process variable as it converged to the new setpoint (Figure 5c). We 
analyzed the effects of the feedback gain (𝐾) and the averaging window size (𝑊), which set the 
number of earlier cell measurements considered when calculating the instantaneous cell 
residence time. Specifically, we set 𝐾 as 0.05, 0.10 or 0.15 and 𝑊 as 5, 10 or 15 and tested their 
combinations. For each parameter combination, we evaluated the step response against 
multiple metrics: First, we measured the rise time, defined as the number of events required 
for the cell residence time to rise from 10% to 90% of the setpoint, indicating how fast the 
system responded to a change in the setpoint. Second, we measured the settling time from the 
number of events required for the cell residence time to enter and stay within a certain error 
band (15%) around the setpoint, indicating how fast the system converged. Note that because 
our measurements were only updated when a cell was detected by the sensor network, we 
chose our unit of progress as the cell detection events rather than the actual time commonly 
used in these analyses. Finally, we analyzed the response in its overshoot from how much the 
cell residence time exceeded the new setpoint before convergence, representing the maximum 
swing of the control system.    
 
Analysis of step responses from different feedback controller clearly showed the effect of 
varying feedback parameters. Increasing the feedback gain resulted in a faster response due to 
a higher sensitivity to the error value but also led to larger swings and a less stable system. With 
a higher 𝐾, the rise time decreased, the overshoot increased, and the settling time increased 
(Table 1), an expected response from a PI controller.48 Varying the 𝑊, on the other hand, acted 
as a noise filter for cell residence time measurements. Because cell flow speed within a 
microfluidic device had an intrinsic variance due to Poiseuille flow profile49 within channels or 
non-uniform hydraulic resistance across the device, averaging measurements over multiple 
cells reduced noise in calculated error values. This resulted in a smoother response but 
increased the time to convergence (Figure 5c). 
 

 
 
 
 

𝐾 Rise time (events) Overshoot (ms) Settling time (events) 
0.05 55 3.4 73 
0.10 31 13.3 171 
0.15 18 23.1 188 

Table 1: The effect of the feedback gain (K) on the rise time, overshoot, and settling time of the system 
for W = 15. 
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2.4.3 Tracking of dynamic setpoints 
Next, we tested our system’s ability to follow a varying setpoint for the process variable. A 
dynamic setpoint for a process variable could be helpful in practice for applications where 
sweeping operational settings of a microfluidic device could enable a parametric analysis on a 
sample.50-52 In characterizing our system for dynamic setpoints, we chose a 𝐾 of 0.1 and a 𝑊 of 
5 to build the feedback controller. We programmed the setpoint to vary with a controlled 
pattern and monitored how well the instantaneous cell residence time in the microfluidic 
device followed the programmed function (Figure 6). We first ramped the cell residence time 
from 10 ms to 30 ms and found that the system was able to track the setpoint successfully 
(Figure 6a). Next, we modulated the setpoint sinusoidally, and the system was able to respond 
with a small but noticeable delay (Figure 6b). Finally, we modulated the setpoint in the form of 
a square wave. While we clearly observed the feedback delay and ringing on both rising and 
falling edges, the system recovered in between and was able to track the setpoint successfully 
(Figure 6c).  
 
 

 

Figure 6: Characterizing the feedback control system by tracking dynamic setpoints in terms of (a) ramp, 
(b) sine, and (c) square wave. In each case, the cell residence time closed tracks the dynamic setpoint, 
demonstrating the high accuracy and fast converging speed of the feedback control system.  
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Figure 7: Characterizing the feedback control system under an external perturbation. (a) Left column: 
System performance under continuous perturbations. (I) The perturbing pressure is introduced from the 
outlet of the sensor platform and is designed to be a step function with five different values (0, 50, 100, 
150, 200 mbar) in nine time periods. (II) The target cell residence time is set to be a constant value at 9 
ms. Under the perturbation, the instantaneous cell residence time is maintained around the target, with 
an abrupt rise and drop when the perturbing pressure changes. (III) The driving pressure is regulated and 
following the expected value, balancing the perturbation. Right column: A zoomed-in view of the system 
performance under a perturbation. (IV) The perturbing pressure changes from 100 mbar to 150 mbar at 
event 450. (V) The cell residence time jumps from 9 ms to 16 ms as the instant decrease of the net forward 
pressure at event 450. Then the cell residence time recovers to 9 ms within 30 events as a result of the 
feedback control. (VI) The driving pressure is regulated from 200 mbar to 250 mbar to compensate the 
pressure introduced from the perturbing pump, maintaining a constant net forward pressure (100 mbar), 
so that the cell residence time can recover. (b) Cell residence time in terms of different locations (sensor 
identities). Cells at different locations are regulated to have the same cell residence time. (c) System 
validation under perturbing pressures ranging from 50 to 250 mbar with 10 repetitive experiments at 
each pressure. (I) The maximum deviation of the cell residence time (ms) away from the setpoint. (II) The 
number of events required for the cell residence time to recover to and be stable around the setpoint 
after the perturbation. 
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2.4.4 Feedback control under perturbation 
To investigate the feedback response under external perturbations, we added another pressure 
pump (perturbing pump) to the system and monitored the response of the perturbed system. 
The perturbing pump was connected to the outlet of the microfluidic device to perturb cell flow 
speed by countering the driving pressure pump connected to the inlet, and the feedback 
system was engaged to keep the cells flowing at the same speed irrespective of the external 
perturbation by adjusting the driving pressure. Initially, the net forward pressure was set at 100 
mbar with a 200-mbar driving pressure and a 100-mbar perturbing pressure and this condition 
produced a ~9-ms cell residence time. Sensor and control parameters were chosen as 𝐾 = 0.1 
and 𝑊 = 10. Later, we modified the perturbing pressure in 50 mbar steps between 0-200 mbar 
(Figure 7a, I, IV). Despite such a perturbation, the measured instantaneous cell residence time 
remained at 9 ms, which was the setpoint for our feedback controller (Figure 7a, II, V). 
Transient ringing in the measured cell residence time coincided with the changes in the 
perturbation signal as anticipated and was quenched after a few events. The asymmetric 
ringing of the instantaneous cell residence time at the rising and falling edges of the perturbing 
pressure was expected due to the non-linear dependence between the cell residence time and 
the driving pressure (Figure 5b). Finally, comparing the feedback-controlled driving pressure 
with the perturbing pressure showed that the driving pressure was adjusted to balance the 
perturbing pressure changes (Figure 7a, III, VI), maintaining a constant net forward pressure. It 
should be noted that all the automatic adjustments to the driving pressure pump were made 
based on the aggregate cell residence time data collected from the network of distributed 
electrical sensors (Figure 7b) without prior knowledge on the perturbation. Taken together, 
these results showed the ability of the feedback system to successfully adapt to the changing 
perturbation.  
 
To independently validate the effectiveness of the feedback control in maintaining the cell flow 
speed within the microfluidic device, we directly measured the flow speed of cells with high-
speed microscopy while the device was under perturbation. Cells were randomly sampled for 
imaging throughout the experiments, and the measurements were compared against the 
setpoint flow speed (obtained by converting the target cell residence time) (Table 2). The 
microscopically-measured cell flow speed (n=10) at different time periods (Figure 7a, I) was 
found to have an average <3.5% deviation from the setpoint flow speed of 35.12 𝜇𝑚/𝑠 with a 
1.39 𝜇𝑚/𝑠 standard deviation among the measured cell flow speeds. These results proved the 
ability of the developed feedback-controlled system to maintain a process variable based on 
direct measurements on cell state under a continuous perturbation. 
 

Time period 1 2 3 4 5 6 7 8 9 
Cell flow speed (µm/s) 34.50 34.05 33.15 33.60 32.26 35.84 35.84 36.29 35.39 

Accuracy (%) 98.2 97.0 94.4 95.7 91.9 97.9 97.9 96.7 99.2 

 

Table 2: Optically measured cell flow speeds (𝜇𝑚/𝑠) at nine different time periods during the perturbation 
experiment closely match the expected cell flow speed (35.12	𝜇𝑚/𝑠). 
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We further validated the performance of the system under different perturbing pressures 
(Figure 7c). Initially, the driving pressure was set to 300 mbar, and the perturbing pressure was 
set to 0 mbar. Then we changed the perturbing pressure with five different values (50, 100, 
150, 200, 250 mbar) and observed the response of the system. We characterized the system 
regarding two parameters: (1) the maximum deviation represented the maximum distance (ms) 
between the instantaneous cell residence time and the setpoint (Figure 7c, I); (2) the recovery 
time (events) represented the number of events required for the instantaneous cell residence 
time to recover to and be stable around the setpoint (Figure 7c, II). With perturbing pressures 
ranging from 50 to 250 mbar, the system could successfully recover to the setpoint with 
increasing maximum deviation and recovery time. As for the breakdown of the feedback loop, 
our system required a new event (i.e., detection of a cell) to update its settings. If the cell flow 
were to stop indefinitely before any new measurements, the loop would break.  
 
3. Discussion 
We demonstrated a microfluidic system in which the spatiotemporal state of each manipulated 
cell was continuously monitored with a built-in electrical sensor network, not only as a means 
for quantitative analysis but also to control and adapt the device operation based on these 
measurements on the sample under test. Importantly, monitoring of cells within the 
microfluidic device through electrical signals from the sensor network did not have the 
redundancy of imaging and hence required less computational resources, which enabled us to 
implement real-time closed-loop control on process variables. Finally, the fact that 
measurements for closed-loop control could be performed solely using sensors within the 
microfluidic device eliminated the need for external instruments such as a microscope or high-
speed cameras and demonstrated the feasibility of creating adaptive lab-on-a-chip devices that 
could be operated outside of research laboratories. 
 
Existing feedback-controlled microfluidic systems either utilize isolated sensors that directly 
measure a process variable such as pH, temperature, or impedance or utilize arrays of discrete 
sensors with dedicated readouts for spatial information. In contrast, we could set our feedback 
loop on multi-dimensional spatiotemporal data from cells within the device while still acting on 
a one-dimensional electrical waveform. This aspect makes our approach advantageous for 
implementing adaptive yet low-cost microfluidic cell-based assays. Additionally, we could 
extract, through computation, cell information including size, speed, and location, any 
combination of which could be further used as the process variable of the feedback system. 
When combined with differential manipulation of cells, such spatiotemporal data can be linked 
to cell biochemical/biophysical properties, further expanding the choice of process variables for 
the feedback loop. 
 
In terms of electrically tracking cells over the microfluidic device, our deep learning-based 
demultiplexing scheme offers several advantages over traditional demultiplexing techniques 
used in code division multiple access (CDMA) telecommunication networks. Traditional 
approaches employed for demultiplexing coded electrical signals rely on the correlation of the 
signal with a set of template waveforms to identify specific patterns. While computationally 
inexpensive, correlation-based demultiplexing requires a special code-set with individual codes 
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being mutually orthogonal with each other, effectively constraining the design of sensors in the 
network. In contrast, deep learning-based analysis of the output signal allowed us to identify 
differentiating features between individual sensor waveforms irrespective of the degree of 
correlation between them and utilize these differences to rapidly decode the output signal. 
Besides increased flexibility in design, the ability to train the ConvNets with actual waveforms 
from sensors rather than relying on model-based templates of ideal square waveforms 
increases the sensitivity of deep learning-based demultiplexing. It should also be noted that, 
even though the deep learning model introduced in this work was designed to interpret 
waveforms from coincidental detection of up to 3 cells, waveforms due to more coincident cells 
could be resolved, albeit with less accuracy, by modifying the training dataset and the structure 
of the ConvNets. 
 
The ability to continuously and quantitatively assess manipulation of cells or other particles in a 
microfluidic device in real-time through built-in sensors and to change the state of the device in 
response presents exciting opportunities for cell-based microfluidic assays. While this work 
demonstrated the regulation of cell flow speed under perturbation as a proof of principle, the 
cell spatiotemporal data generated by networked sensors contained a wealth of information 
about the sample under test and could be fully utilized to command a variety of actuators 
internally or externally.50-56 From the operational point of view, the applications could range 
from controlling valves to redirect flows based on the instantaneous distribution of cells on the 
device to the detection of clogged channels or malfunctioning devices. Furthermore, 
microfluidic systems coupled with different types of stimuli ranging from chemicals to physical 
transducers could either be automatically tuned to achieve a desired sample response or 
alternatively be employed to perform automated experiments by sweeping different 
parameters in a closed-loop setting to extract multi-parametric information from the sample 
under test. 
 
4. Conclusion 
Microfluidics offers cell manipulation capabilities that could not be matched by batch 
processing and hence is of great interest to create cell-based biomedical assays with high 
sensitivity and specificity. When coupled with integrated sensors to quantitatively track cell 
manipulation and software to interpret cell data in real-time, microfluidic devices can be 
transformed into adaptive platforms, where various process parameters can be regulated 
through feedback control. In contrast to passive devices often built and tested under controlled 
conditions with well-characterized samples, adaptive microfluidic systems will not only be less 
prone to artifacts due to sample heterogeneity, an important requirement for practical utility 
and translation, but also offer new capabilities for performing experiments/measurements 
under closed-loop controlled stimuli for basic research. 
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