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Abstract 
Spatial manipulation of suspended cells based on their properties is an essential part of 
numerous microfluidic assays. To further read and analyze the manipulation result, a 
microscopy system is typically required, which, however, increases the cost and reduces the 
portability of the entire system. As an alternative, a network of integrated Coulter sensors, 
distributed over a microfluidic chip, provide rapid and reliable detection of spatially-
manipulated cells. Code-multiplexing of distributed Coulter sensors enables simplification of 
such integration by offloading the hardware complexity into advanced signal processing 
techniques that are needed to interpret the coded sensor outputs. In this work, we combine 
code-multiplexed Coulter sensor networks with an error-correction technique, a strategy 
typically used in telecommunication systems for controlling errors in data over unreliable 
communication channels. Specifically, we include redundancy in the physical sensor design to 
alleviate the ambiguity in the signal-decoding process, so that interfering sensor signals due to 
coincidently-detected cells can be resolved reliably. The presented sensor technology not only 
tracks the spatiotemporal state of cells under test but also measures their sizes and flow 
speeds. To demonstrate the sensor concept experimentally, we fabricated a microfluidic device 
with 10 distributed Coulter sensors designed to produce distinct signal waveforms and 
performed experiments with suspended human cancer cells to characterize the performance of 
the sensor platform. 
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1. Introduction 
Microfluidic devices offer exciting opportunities for analysis of biological samples at the cellular 
level by employing microscale phenomena that cannot often be recapitulated on the 
macroscale. From an operational perspective, a microfluidic platform is unique in that it can (1) 
bring together various force fields (e.g., mechanical, chemical, or electrical) within the same 
device and use them to implement complex discrimination criteria and (2) deterministically 
screen cell populations against those established criteria in a controlled microenvironment (Du 
et al., 2006; Huang et al., 2002; Nam et al., 2011; Sollier et al., 2009; Yamada et al., 2004; Zhu et 
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al., 2012). As such, microfluidic systems are not only sought after as experimental platforms for 
basic research (Sun et al., 2018; Zhang and Tadigadapa, 2004) but also employed as clinical 
microdevices for extracting detrimental cells out of complex matrices such as blood (Chu et al., 
2019; Geislinger and Franke, 2013; Hoshino et al., 2011; Sarioglu et al., 2015). 
 
While highly effective in manipulating cells, microfluidic devices lack a native sensing scheme 
and hence often act as upstream sample preparation elements prior to quantitative 
measurements, typically performed with a laboratory instrument such as a flow cytometer 
(Robert et al., 2011), an optical microscope (Hsu et al., 2008; Korny et al., 2011), or a mass 
spectrometer (Mellors et al., 2010). This disconnection between microfluidic manipulations and 
quantitative measurements is an important factor hampering the widespread adoption of these 
potentially revolutionary tools as quantitative assays outside of academic research laboratories, 
for example, in resource-limited or in point-of-care settings, where they can be truly 
transformative in healthcare delivery. 
 
Cells can be probed by a variety of sensing modalities (Altintas et al., 2018; Liao et al., 2018; 
Prathap et al., 2019). Among these modalities, electrical detection of cells through impedance 
modulations across an aperture offers a robust, label-free, and high-throughput method that 
also forms the basis of widely used Coulter counters (Coulter, 1956; Coumans et al., 2014; Pal 
et al., 2014). In fact, Coulter counters are routinely used in applications ranging from 
hematology (Chhabra, 2018) to monitoring of water resources for pathogens (Zhe et al., 2007). 
Equally important is that similar electrical sensors can easily be implemented in microfluidic 
channels through the use of microelectrodes to create microfluidic devices with integrated 
electrical sensing (Errico et al., 2017). However, microfluidic devices employing electrical 
sensors are limited to counting, sizing, or measuring electrical properties (e.g., impedance 
spectroscopy (Iliescu et al., 2007)) of cells and cannot measure other cell properties that cannot 
be probed electrically. 
 
We have introduced an electrical biosensor, Microfluidic CODES (Liu et al., 2016; Liu et al., 
2017; Wang et al., 2017), that can transduce spatial manipulation of cells on a microfluidic 
device into an electrical signal in order to infer a variety of properties of a cell from its motion 
within the device. The Microfluidic CODES spreads a single Coulter counter across a whole 
microfluidic device by micropatterning its electrodes to create multiple measurement nodes, 
where the distinct electrode patterns produce location-specific signature electrical waveforms. 
By identifying these signature waveforms from individual measurement nodes through 
computational analysis of the output signal (Liu et al., 2018; Wang et al., 2019), one can 
electrically track the motion of cells within the device in lieu of imaging for cytometric analysis. 
Therefore, Microfluidic CODES not only provides a quantitative electronic output to plastic lab-
on-a-chip devices while retaining their simplicity and frugality but also transforms Coulter 
sensing from a technique that is limited to sizing and counting of cells to a platform biosensor 
technology to analyze cells with respect to any parameter that can be used to differentially 
manipulate cells on a microfluidic device such as cell surface expression (Civelekoglu et al., 
2019), mechanical properties (Asmare et al., 2019), and immunophenotype (Liu et al., 2019). 
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In this paper, we introduce a bioelectronic sensor network that combines the code-multiplexed 
read-out of the Microfluidic CODES and a microelectrode layout with built-in error correction 
for distributed Coulter sensing in microfluidic devices. We specifically introduce redundancy 
into the on-chip electrical sensor network and use it for error correction to minimize ambiguity 
in data processing. The built-in error correction allows us to relax design constraints on 
location-specific Coulter signatures, allowing the use of uncomplicated electrode patterns 
producing non-orthogonal sensor waveforms, while still ensuring reliable recovery of 
information through computation. Combined with machine learning algorithms, our approach 
allows us to account for not only device-to-device variations due to noise in the manufacturing 
of chips but also changes in device operation due to sample heterogeneity. We demonstrate 
the sensor operation in a prototype microfluidic device by processing a suspension of human 
tumor cells and validate the accuracy of our device through comparisons with high-speed 
microscopy. 

 

Fig. 1. Sensor operation principle. (a) A network of Coulter sensors with distinct electrode patterns 
distributed at strategic locations on a microfluidic device. Within each individual sensor, an error-
correction section was patterned beside a coding section to provide error-mitigating information. (b) 
Conceptual code-multiplexed sensor network signals. Each cell produces a single electrical pulse (i.e., 
the error correction signal) (top plot) and a corresponding code signal composed of a multitude of 
pulses (middle plot). Because the code signals consume more bandwidth, they interfere in the output 
signal (bottom plot). (c) A block diagram explaining the demultiplexing of interfering sensor code 
signals with the help of extra information provided by the error-correction signal (e.g., number of cells 
detected, relative timing, and size). First, error-correction signals were analyzed, and sizes and speeds 
of detected cells were estimated. Based on the information acquired from the error-correction signals, 
interfering code signals were demultiplexed, and sensor identities (locations) of detected cells were 
determined. 
 



 4 

2. Sensor Operation Principle 
Our approach is based on a code-multiplexed network of Coulter sensors created by 
micromachined surface electrodes for distributed electrical sensing of cells flowing in channels 
across a microfluidic chip. In the sensor network, each sensor is encoded with a distinct digital 
code (signature), and based on which, surface electrodes are micropatterned to create distinct 
spatial arrangements of interdigitated electrode fingers at different locations on the 
microfluidic device (Fig. 1a). Therefore, when activated, different sensors generate distinct 
sensor waveforms, indicating cell presence in specific nodes on the microfluidic chip. Because 
all coded sensors share the same electrical output, we can demultiplex the information from 
the whole network by recognizing individual signature waveforms in the output signal. This 
analysis further allows us to extract the flow path of individual cells, which could further be 
used to infer the properties of cells, depending on which criteria was used to fractionate cells 
on the microfluidic device.  
 
An important feature of the microfluidic sensor network technology introduced in this work is 
that it uses unipolar non-orthogonal digital codes to increase the multiplexing capacity. In a 
conventional code-division-multiple-access (CDMA) system, codes are specially designed to be 
orthogonal to each other (Dinan and Jabbari, 1998), ensuring minimal cross-correlations among 
different codes in the network, so that signals from different sources, encoded with these 
mutually-orthogonal codes, can be differentiated with the minimum crosstalk using matched 
filtering (Ulukus and Yates, 2004). For our technique, employing orthogonal codes (Gold 
sequences (Gold, 1967)) to encode Coulter sensors at different locations introduces challenges 
in scaling the sensor network. Specifically, larger sensor networks require encoding different 
sensors with longer orthogonal waveforms, leading to (1) more complex electrode layout and 
(2) more sensor interference due to coincident cells (Liu et al., 2018). Alternatively, more 
information can be packed into a waveform for a given signal duration (i.e., bandwidth) if non-
orthogonal waveforms are used. However, the disadvantage of using non-orthogonal 
waveforms compared to orthogonal ones is the additional ambiguity in the decoding process. 
Specifically, the interference between sensors in the network from coincident cells causes 
output signals to be underdetermined for decoding due to the non-optimized crosstalk 
between non-orthogonal sensor waveforms. 
 
To alleviate the ambiguity in the decoding of the interfering non-orthogonal waveforms from 
sensors, we integrate redundancy in our sensor design for error correction/mitigation, which is 
a technique commonly used in digital data compression/transmission (Hamming, 1950). 
Specifically, in our design, each sensor in the network shares an extra detector with a dedicated 
output in addition to the code-generating electrodes micromachined to produce distinct 
electrical waveforms linked to specific locations on the microfluidic chip. This extra detector is a 
conventional Coulter sensor and generates single-bit pulse signals (error-correction signals) that 
contain information on count, size, and flow speed of cells detected in a given time window 
(Fig. 1b).  In the decoding process, this extra information is then used to prevent the 
misinterpretation of the code-multiplexed signal by eliminating erroneous outcomes that 
conflict with the error-correction signal (Fig. 1c). Because of its smaller footprint, the error-
correction sensor is less prone to sensor interference from coincident cells and effectively sets 



 5 

the multiplexing capacity of the code-multiplexed sensor network. Importantly, our approach 
decouples sensor network multiplexing capacity from the code complexity and allows the use 
of smaller sensors that lead to less coincidence while ensuring reliable recovery of information 
in the presence of interference.  

3. Microfluidic Device Design and Fabrication 
For experimental testing of our sensors, we designed and fabricated an analytical microfluidic 
device integrated with a network of 10 code-multiplexed Coulter sensors (Fig. 2a). Without loss 
of generality, these 10 coded sensors were placed in close proximity so that all could fit in the 
field-of-view of a microscope. As such, the cell-sensor interaction could be visually observed as 
the ground truth for assessing the electrical system performance in this study. In practice, 
individual coded sensors could be positioned freely on the microfluidic by micromachining the 
metal film accordingly as demanded by the application at hand. In our sensor network, three 
coplanar electrodes, a common electrode, two sensing electrodes (an error-correction 

Fig. 2. Design and layout of the microfluidic device integrated with coded Coulter sensor network. (a) 
A photomicrograph image of a 10-sensor microfluidic sensor network, in which a glass substrate 
patterned with Au electrodes was aligned and bonded with a PDMS layer with microfluidic channels. 
(b) A close-up view of sensor 6 and 7, which were micropatterned to generate codes of “10011” and 
“11110”, respectively. (c) A photo of the complete microfluidic device used for our experiments. 
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electrode and a coding electrode) were micropatterned to form an error-correction section and 
a coding section for each sensor. In the designed layout, the common electrode was used to 
drive the entire sensor network with a voltage source, and the error-correction and the coding 
electrodes were used to measure the cell-induced impedance changes in the network by 
measuring changes in the electrical current flow.  
 
While the minimum binary code length needed to distinguish 10 sensors was 4 bits, as 23 < 10 < 
24, we chose to encode each sensor in the network with 5-bit binary codes. This is because 
longer codes carried more information and could be identified with less ambiguity in the 
decoding process. On the other hand, sensor codes could not be extended excessively as 
decoding longer codes would lead to higher device complexity, more sensor interference, and 
additional computation time. 
 
To implement these codes in the device, common and coding electrode traces were routed 
along opposite sides of a microfluidic channel and wherever a positive bit (“1”) was needed, 
two 10 μm-wide electrode fingers, one from each trace, were extended into the microfluidic 
channel such that there was 10 μm gap between the two electrode fingers. Likewise, the 
absence of an electrode finger pair was interpreted as a negative bit (“0”), effectively creating 
sensors with assigned unipolar digital codes (Fig. 2b). Once interdigitated electrode patterns 
were aligned with microfluidic channels, the electrical current flow was confined to sections of 
the electrolyte-filled microfluidic channels that fell in between oppositely-charged electrodes. 
Therefore, it was only when cells occupied these electrically-active locations, that the electrical 
impedance was modulated, and the sensor output signal was produced.  
 
In operation, cells flowing in microfluidic channels sequentially occupied electrically-active 
regions, producing a unipolar pulse sequence based on the underlying electrode pattern at that 
location. We specifically designed the electrode layout to generate isolated bit pulses in the 
code signals. First, we set the distance between adjacent electrode pairs, i.e., bits, to be larger 
than but close to the average cell diameter. This is because an excessively large gap would 
lower sensitivity and produce a less pronounced bit pulse. Second, we designed the neighboring 
fingers of adjacent electrode pairs to have the same polarity, i.e., both to be common or 
sensing electrodes. This layout ensured no electric field was present in between signal-
generating electrode pairs. In addition, we designed the microfluidic channel height to be close 
to the average cell diameter to maximize sensitivity and also minimize variations in the cell-to-
electrode distance. Nevertheless, this constraint could be relaxed to accommodate cell 
populations with large variations in size either by designing a higher microfluidic channel as 
small cells occupying a fraction of the channel height could still be detected (Liu et al., 2018), or 
by vertically focusing cells to the floor of the microfluidic channel (Tasadduq et al., 2017), which 
would guarantee high sensitivity and also minimize undesired variations the in the cell-to-
electrode distance. 
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We fabricated our microfluidic device out of a polydimethylsiloxane (PDMS) layer patterned 
with microfluidic channels and a glass substrate layer patterned with surface electrodes. We 
patterned the PDMS layer using soft lithography. To create the mold, 15 μm-thick SU-8 
photoresist (SU8-2015, MicroChem) was coated on a four-inch silicon wafer, and the 
photoresist was then patterned using conventional photolithography. The finished mold was 
then coated with PDMS prepolymer and cross-linker pre-mixed at a 10:1 ratio. The polymer film 
was degassed in vacuum and then cured in an oven at 65 °C for four hours. Cured PDMS was 
peeled off from the mold and cut into the final shape. We fabricated surface electrodes using a 
lift-off process. We coated a four-inch borosilicate glass wafer with 1.2 μm -thick negative 
photoresist (NR9-1500PY, Futurrex) and exposed the photoresist using photolithography to 
define the layout of the sensor network. Then we deposited 100 nm-thick Cr/Au film stack using 
e-beam evaporation. The underlying photoresist was etched in acetone. The finished wafer was 
diced into chips using a wafer saw. To create the final device, both the PDMS layer and the glass 
substrate were first surface-activated in an oxygen plasma and then aligned and bonded under 
a microscope (Fig. 2c). Copper wires were soldered to the electrode contact pads for the 
electrical read-out from the chip.  

Fig. 3. Sensor network data acquisition and testing sensor operation with cells flowing in the 
microfluidic device. (a) A schematic showing the experimental setup for driving the sensor network 
and acquiring sensor signals. (b) Recorded individual sensor signals generated by cells flowing in the 
microfluidic channels. Both error-correction signal (red) and the corresponding code signal (blue) are 
shown for every sensor in the network. The code (i.e., the sensor identity) could be determined from 
the number and timing of pulses in the recorded signal. (c) A recorded sensor network output signal 
where sensor code signals interfered due to multiple cells coincidentally detected by different sensors 
in the network.  
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4. Sensor Testing and Data Acquisition 
To test our sensors, we used human ovarian cancer cells (HeyA8) in suspension as a biological 
sample. Cells were grown in RPMI 1640 (Mediatech; Cellgro, Herndon, VA) with 10% fetal 
bovine serum (FBS; Seradigm, Radnor, PA). Cultures reaching >80% confluence were trypsinized 
and then resuspended in phosphate buffered saline (PBS). The cell suspension was then driven 
through the device by a syringe pump (Harvard 2000, Harvard apparatus) at a constant flow 
rate (500 μL/h).  
 
To acquire the sensor response to cells flowing in the microfluidic channels, we excited the 
sensor network with an AC signal and measured the resulting current amplitude with a lock-in 
amplifier (HF2LI, Zurich Instruments) (Fig. 3a). The sensor network was excited from the 
common electrode with a 2-Vpp, 500-kHz sinusoid signal with a function generator. The 
excitation frequency was specifically chosen to (1) bypass the double-layer capacitance at the 
electrode-electrolyte interface, which was dominant at the low-frequency band and (2) prevent 
the Maxwell-Wagner dispersion at the high-frequency band (Valero et al., 2010). Electrical 
current signals from the error-correction and the coding electrodes were each converted into 
voltage signals using a transimpedance amplifier, and the signal amplitudes were measured by 
the two-channel lock-in amplifier. Signal amplitude information was then sampled at 50 kHz 
into the computer through a data acquisition board (PCIe-6361, National Instruments). It should 
also be noted that the sensor network could be driven at multiple frequencies simultaneously. 
This multi-frequency approach would then allow simultaneous measurements of cell size, 
speed, location along with dielectric properties (i.e., frequency response). 
 
5. Results 
5.1 Characterization of the Sensor Network 
To characterize our sensor network, we analyzed error-correction and code signals from all 
sensors in the network (Fig. 3b). As expected, both signals were synchronized with the code 
signal pulses lagging the error-correction pulses with a delay that depended on the cell flow 
speed. Moreover, amplitudes of individual pulses increased with the size of the detected cell as 
the change in the impedance was proportional to the displaced volume of the electrolyte, 
according to the Coulter principle (DeBlois and Bean, 1970). Sensor code signals corresponding 
to detections of single cells were isolated from each other in the recorded output waveform 
and could directly be recognized as they closely matched the digital codes used to encode each 
sensor (Fig. 3b). For samples with high cell density, multiple cells coincidentally detected by the 
sensor network led to interferences of sensor waveforms and required further analysis to 
recover sensor identities, as will be explained later (Fig. 3c). 
 
We also characterized the sensor code waveforms in terms of their uniformity. By comparing 
sensor code signals obtained from hundreds of cells for each sensor, we found that the 
amplitudes of pulses produced by the same cell varied from one bit to another (Fig. 4a). To 
investigate the signal variation across the sensor network, we fabricated microfluidic devices 
with a serpentine microfluidic channel (Fig. S1a), where a cell sequentially interacted with all 
the sensors in the network and allowed direct comparisons between waveforms from different 
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sensors in response to the same cell (Fig. S1b). By averaging normalized amplitudes for each bit 
in those recorded code signals, we were able to determine bit amplitude variation patterns 
across the sensor network (Fig. 4a, 4b). Furthermore, we observed these bit amplitude 
variation patterns to change in different devices with identical electrode patterns, a result we 
considered to be due to fabrication-related differences (Fig. S1c). On the other hand, the 
relative amplitudes of bits within a code signal were observed to not change significantly for 
different cells detected by the same sensor. For all sensors in the network, we measured the 
standard deviations for the relative amplitude of individual bits in normalized signals between 
different events (Fig. 4c) and concluded that the mean normalized amplitudes of bits for the 
sensor network could be used to construct a template library from recorded data to 
accommodate device- and sample-specific variations. 
 

 
 

Fig. 4. Analysis of code-multiplexed sensor signals. (a) An eye-diagram showing the signals 
corresponding to the sensor designed to produce the code “10011”. Code waveforms for > 50 cells 
were normalized in amplitude and time and overlaid to demonstrate the code pattern integrity. We 
created a template signal for each sensor by averaging the signals from multiple cells. (b) A heat map 
showing the mean bit peak amplitudes in normalized code signals for all sensors in the network. All 
signals were acquired from cells sequentially interacting with every sensor in the network for direct 
comparison. (c) Measured mean and standard deviation of normalized bit amplitudes in sensor 
waveforms. 
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5.2 Analysis of the Error-correction Data 
We analyzed the error-correction pulses to estimate the arrival time, size, and flow speed of 
cells. Among these parameters, the arrival time information was readily accessible as an error-
correction pulse was produced each time a cell was detected by our sensor network. The cell 
size was estimated from the peak amplitude of the error-correction pulse according to the 
Coulter principle. We calibrated the electrical data through linear regression of the cubic root of 
the error-correction pulse amplitude versus the cell radius measured by high-speed microscopy 
(Fig. S2). Estimation of the cell flow speed was achieved by analyzing the full profile of the 
error-correcting pulse as described below since the pulse duration could not directly be 
attributed to cell flow speed and was also affected by the cell size and the electrode geometry. 
 

Fig. 5. Analysis of the error-correction signal for estimating cell flow speed. (a) A schematic showing 
the employed machine learning technique, where the cell flow speed was calculated from K most 
similar error-correction pulse profiles found in the training data. (b) Representation of the error-
correction signal with four extracted features: the peak amplitude, and the pulse widths at ¾, ½, and 
¼ of the peak amplitude (x1, x2, x3, and x4). The cell travel time from the error-correction section to the 
coding section of the sensor (Y), was chosen as the property to be predicted and used to calculate the 
flow speed of the cell. (c) Automatic identification and aggregation of sensor signals from the raw 
sensor output to construct the training dataset. (d) Model performance in cell flow speed predictions 
as a function of the number of nearest neighbors (K) utilized in calculations (n=50). In-sample and out-
of-sample error rates indicate the performance on the training data itself and a testing dataset, 
respectively. (e) Mean in-sample and out-of-sample error rates. K=5 yielded the lowest out-of-sample 
error and was chosen as the optimal value. (f) A representative error-correction pulse overlaid with its 
five nearest neighbors identified by our model. 
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We developed a machine learning-based model to predict the cell flow speed from the profile 
of the error-correction pulse. Our model employed the K-nearest neighbors (K-NN) algorithm 
(Bezdek et al., 1986), which searched the training data set for the K most similar (i.e., minimum 
Euclidean distance) instances and averaged their values to make a prediction (Fig. 5a). To 
represent the error-correction pulse profile, we extracted four features (X1, X2, X3, and X4 
representing the peak amplitude and the pulse width at ¾, ½, and ¼ of the peak amplitude, 
respectively) (Fig. 5b). We chose the cell travel time from the error-correction section to the 
coding section (Y) as the property to be estimated. Combining the predicted cell travel time 
with known sensor dimensions, we could calculate the cell flow speed (60 μm / Y) and estimate 
the duration of the code waveform (4*Y) (Fig. 5b). 
 
To test the accuracy of the K-NN model, we trained our machine-learning algorithm, evaluated 
its error rate under varying parameters, and optimized computational design based on 
characterization results. To train our model, we constructed a dataset with >1000 sensor 
waveforms, which was aggregated by automatically screening the raw sensor network data and 
identifying timeframes with sensor activity (Fig. 5c). For each cell detected, we directly 
extracted four features from the error-correction pulse (X1 to X4) and recorded the 
corresponding travel time (Y). To evaluate the performance of our K-NN model, we used the 
two-fold cross-validation (Burman, 1989). Briefly, we first randomly split the dataset into two 
equal halves. Then we evaluated the model by training the model on one half and testing on 
the same half (i.e., in-sample testing) and also by training the model on one half while testing 
on the other half (i.e., out-of-sample testing). In this process, each signal in the testing subset 
was treated as a new instance, and the cell travel time (Y) was predicted by searching and 
averaging the K nearest neighbors in the training subset. An overall error rate was calculated 
from the average deviation of the prediction from the actual value. This process was performed 
for K values ranging from 1 to 20 and repeated for 50 times for statistical power (Fig. 5d). We 
found that lower K values made the model with high-variance and more noise-prone (i.e., 
overfitting), while increasing the K value excessively made the model biased and prevented it 
from catching subtle differences (i.e., underfitting). The optimal value of K was determined as 
five, which yielded the minimum average out-of-sample error rate (10.5%) (Fig. 5e). When 
tested, the optimized algorithm was able to find five error-correction pulses that matched well 
in profile to the sensor data and averaged cell speed values associated with these pulses to 
predict cell flow speed (Fig. 5f).   
 
5.3 Analysis of Coded Sensor Data 
We analyzed the coded sensor data to recover signals from individual sensors in the network 
based on the template libraries and information acquired from the analysis of the error-
correction signal. In this decoding process, for each error-correction pulse, we first generated 
10 signature waveforms accounting for all sensor codes in the network (Fig. 6). When 
generating these candidate signals, (1) the peak amplitudes were determined based on the cell 
size estimated from the error-correction pulse and also on the previously generated template 
library (Section 5.1), which provided the ratios between amplitudes of different pulses in the 
candidate waveform, (2) the candidate waveform duration and the delay between signals were 
set based on the estimated cell flow speed (Section 5.2). Computer-generated waveforms were 
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then compared with the actual signal, and the one yielding the minimum mean square error 
(MMSE) was identified as a match to determine the sensor identity. This analysis scheme was 
also successful in decoding interfering sensor signals due to coincident cells. To decode 
interfering code signals, error-correction pulses were first used to determine the number, sizes, 
and flow speeds of coincident cells (Fig. 6a), and 10N different signal combinations (Fig. 6b) 
were evaluated to find the matching combination with MMSE (Fig. 6b), where N was the 
number of cells coincidently detected in a given time interval. 
 
Besides interfering code waveforms, we observed cases, where error-correction pulses from 
different sensors also interfered (Fig. S3a). In these cases, high cell density in the suspension led 
to multiple cells coincidentally interacting with error-correction electrodes despite their 
significantly smaller footprint than coding electrodes. To recover data in those instances, we 
first deconvolved interfering error-correction pulses. First, a peak-search algorithm was used to 
determine the number of contained individual pulses in the error-correction signal. Second, a 
curve-fitting algorithm was used to fit the interfering error-correction signal with a certain 
number of individual Gaussian-shaped pulses with different amplitudes and durations (Fig. 
S3b). Gaussian-shaped pulses were specifically chosen in this fitting process because the profile 
of a resistive pulse followed a Gaussian profile (Zhou et al., 2018). Estimated error-correction 
pulses were then analyzed individually according to the decoding process explained earlier to 
estimate cell size and speed (Fig. S3c), and based on these parameters, the corresponding code 
signal was estimated (Fig. S3d). 
 
5.4 Testing of Sensor Network Accuracy 
To evaluate the accuracy of our sensor network, we compared the results from the decoded 
electrical data stream to the simultaneously recorded microscope images, regarded as the 
ground truth, and calculated error rate in our measurements. In order to capture fast-flowing 
cells, images were acquired by employing an optical microscope equipped with a high-speed 
camera (Phantom v7.3, Vision Research) set to record cell flow across the whole sensor 
network at 1000 frames per second. 
 
To automatically analyze the electrical data from the sensor network, we implemented our 
decoding algorithm in MATLAB. To perform the decoding of sensor waveforms on a continuous 
data stream, we combined the MMSE fitting (Section 5.3) with a moving-window approach. 
Briefly, we processed the output signal three error-correction pulses at a time. Once the 
decoding of a timeframe was completed, the window was shifted by one error-correction pulse, 
and the process was iterated until the whole data stream was decoded. The computational 
complexity of this process scaled as O((N-M+1)*10M), where 10 is the number of code-
multiplexed sensors, N is the total number of cells detected in the time interval, and M is the 
number of cells analyzed at a time within the moving window, respectively. 
 
 
 



 13 

 

Fig. 6. Decoding of interfering sensor signals due to coincidentally detected cells. (a) A recorded error-
correction signal and the corresponding code signal. The error correction signal clearly indicated the 
detection of three cells. (b) For each error correction pulse, 10 candidate code signals were digitally 
generated based on the estimated cell flow speed and the preconstructed waveform templates. Given 
three cells were detected, 103 possible signal combinations were constructed. (c) The recorded code 
signal overlaid with the reconstructed waveform yielding the minimum mean square error. The 
solution showed the three cells were detected by sensors 8, 6, and 8.  
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Fig. 7. Testing of the sensor network cell tracking accuracy. (a) A section of a recorded output signal 
that contains data from 10 cells detected by the sensor network in a 70-ms time interval. (b) Plots 
showing the iterative decoding of the sensor waveform through a sliding window, which screened 
three error-correction pulses at a time. Each subplot shows the transient state of the fit at that 
iteration of the decoding process. At the end of the decoding process, the fitting code signals provided 
the identity of sensors detecting the cells and the timing of these events. (c) Frames sampled from the 
high-speed microscope footage of the cells simultaneously-recorded with electrical data. The data 
from the images matched the results from the sensor network. 
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A direct comparison of processed sensor signal blocks with corresponding microscope images 
showed successful tracking of cells over the sensor network (Fig. 7). We investigated step-by-
step decoding of a 70 ms-long time interval that contained data from 10 cells (Fig. 7a) as an 
example to illustrate coherence between electrical and visual data. Starting with the first 
window containing the first three error-correction pulses and sliding one pulse at a time, we 
were able to find a closely-matching estimation with the recorded experimental signal (Fig. 7b). 
Both sensor identities and the sequence of cell flow obtained from the decoded data agreed 
with the high-speed microscopy data (Fig. 7c).  

To quantitively characterize the sensor network performance, we compared cell speed and 
sensor identity measurements from the electrical waveform and the associated high-speed 
video footage corresponding to >1200 cells. Due to the limited resolution of high-speed videos, 
we performed image-based cell size measurements with the ImageJ software on still, high-
resolution microscope images of a surrogate cell population sampled from the same tissue 
culture (Fig 8). Optically-measured cell size distribution closely matched with that acquired 
from our sensor network (Fig 8a), with the Kullback–Leibler (KL) divergence between these two 
distributions calculated to be 0.044. Besides the errors introduced by the computational 
decoding process, the small divergence between the prediction and the ground truth came 
from the fact that the cells analyzed by the sensor platform and microscope were not the same 
population. Optically-measured cell flow speed distribution matched well with that acquired 
from the sensor platform, especially for flow speeds between 20 and 70 mm/s. (Fig 8b). Higher 
KL divergence (0.435) was mainly due to the mismatch in the lower end of the cell flow speed. 
Loss of accuracy with lower cell speed was due to the training dataset lacking cells with lower 
flow speeds, which could be improved by expanding the dataset to include a wider range of cell 
flow speeds. As for the accuracy of predicting sensor identity (i.e., spatial information), the 
success rate was measured as 90.07%, demonstrating cells could accurately be tracked with the 
on-chip sensor network (Fig 8c). 
 
 

Fig. 8. Benchmarking sensor network results against microscopy. (a) A histogram of the electrical and 
image-based measurements of cell size in populations sampled from the same culture (n=915). (b) A 
histogram showing the cell flow speed estimated by the sensor network and the measurement of cell 
speed by high-speed microscopy video footage (n=820). (c) Frequency of cells detected by each sensor 
in the network according to our electrical data (top plot) vs. the ground truth obtained by high-speed 
microscopy (bottom plot) (n=1304).  
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6. Conclusion 
A multitude of integrated Counter counters, when each designed to produce a distinct sensor 
waveform, can simply be distributed across a microfluidic platform to provide spatiotemporal 
information from processed cells. Such information provides Coulter counters with the ability 
to analyze cell populations by monitoring cells’ responses to various stimuli on the device 
besides their conventional use for sizing and counting cells. On the other hand, accessing 
information from all Coulter sensors in a scalable manner requires reliable demultiplexing 
strategies so that individual sensor data can be recovered with minimal loss. By introducing 
error-correction electrodes into coded Coulter sensors, we created a multiplexed sensor 
network, in which location-specific Coulter signatures could be realized with uncomplicated 
electrode patterns with relaxed design constraints. Testing the performance of the developed 
sensor network through direct comparisons with high-speed microscopy data showed that 
tumor cells could accurately be tracked on a microfluidic device in an integrated fashion. The 
ability to monitor cell motion with integrated on-chip sensors with minimal hardware overhead 
has the potential to enable quantitative cell/particle manipulation-based assays that can be 
deployed at the point-of-care.    
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