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Abstract

Spatial manipulation of suspended cells based on their properties is an essential part of
numerous microfluidic assays. To further read and analyze the manipulation result, a
microscopy system is typically required, which, however, increases the cost and reduces the
portability of the entire system. As an alternative, a network of integrated Coulter sensors,
distributed over a microfluidic chip, provide rapid and reliable detection of spatially-
manipulated cells. Code-multiplexing of distributed Coulter sensors enables simplification of
such integration by offloading the hardware complexity into advanced signal processing
techniques that are needed to interpret the coded sensor outputs. In this work, we combine
code-multiplexed Coulter sensor networks with an error-correction technique, a strategy
typically used in telecommunication systems for controlling errors in data over unreliable
communication channels. Specifically, we include redundancy in the physical sensor design to
alleviate the ambiguity in the signal-decoding process, so that interfering sensor signals due to
coincidently-detected cells can be resolved reliably. The presented sensor technology not only
tracks the spatiotemporal state of cells under test but also measures their sizes and flow
speeds. To demonstrate the sensor concept experimentally, we fabricated a microfluidic device
with 10 distributed Coulter sensors designed to produce distinct signal waveforms and
performed experiments with suspended human cancer cells to characterize the performance of
the sensor platform.
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1. Introduction

Microfluidic devices offer exciting opportunities for analysis of biological samples at the cellular
level by employing microscale phenomena that cannot often be recapitulated on the
macroscale. From an operational perspective, a microfluidic platform is unique in that it can (1)
bring together various force fields (e.g., mechanical, chemical, or electrical) within the same
device and use them to implement complex discrimination criteria and (2) deterministically
screen cell populations against those established criteria in a controlled microenvironment (Du
et al., 2006; Huang et al., 2002; Nam et al., 2011; Sollier et al., 2009; Yamada et al., 2004; Zhu et



al., 2012). As such, microfluidic systems are not only sought after as experimental platforms for
basic research (Sun et al., 2018; Zhang and Tadigadapa, 2004) but also employed as clinical
microdevices for extracting detrimental cells out of complex matrices such as blood (Chu et al.,
2019; Geislinger and Franke, 2013; Hoshino et al., 2011; Sarioglu et al., 2015).

While highly effective in manipulating cells, microfluidic devices lack a native sensing scheme
and hence often act as upstream sample preparation elements prior to quantitative
measurements, typically performed with a laboratory instrument such as a flow cytometer
(Robert et al., 2011), an optical microscope (Hsu et al., 2008; Korny et al., 2011), or a mass
spectrometer (Mellors et al., 2010). This disconnection between microfluidic manipulations and
guantitative measurements is an important factor hampering the widespread adoption of these
potentially revolutionary tools as quantitative assays outside of academic research laboratories,
for example, in resource-limited or in point-of-care settings, where they can be truly
transformative in healthcare delivery.

Cells can be probed by a variety of sensing modalities (Altintas et al., 2018; Liao et al., 2018;
Prathap et al., 2019). Among these modalities, electrical detection of cells through impedance
modulations across an aperture offers a robust, label-free, and high-throughput method that
also forms the basis of widely used Coulter counters (Coulter, 1956; Coumans et al., 2014; Pal
et al., 2014). In fact, Coulter counters are routinely used in applications ranging from
hematology (Chhabra, 2018) to monitoring of water resources for pathogens (Zhe et al., 2007).
Equally important is that similar electrical sensors can easily be implemented in microfluidic
channels through the use of microelectrodes to create microfluidic devices with integrated
electrical sensing (Errico et al., 2017). However, microfluidic devices employing electrical
sensors are limited to counting, sizing, or measuring electrical properties (e.g., impedance
spectroscopy (lliescu et al., 2007)) of cells and cannot measure other cell properties that cannot
be probed electrically.

We have introduced an electrical biosensor, Microfluidic CODES (Liu et al., 2016; Liu et al.,
2017; Wang et al., 2017), that can transduce spatial manipulation of cells on a microfluidic
device into an electrical signal in order to infer a variety of properties of a cell from its motion
within the device. The Microfluidic CODES spreads a single Coulter counter across a whole
microfluidic device by micropatterning its electrodes to create multiple measurement nodes,
where the distinct electrode patterns produce location-specific signature electrical waveforms.
By identifying these signature waveforms from individual measurement nodes through
computational analysis of the output signal (Liu et al., 2018; Wang et al., 2019), one can
electrically track the motion of cells within the device in lieu of imaging for cytometric analysis.
Therefore, Microfluidic CODES not only provides a quantitative electronic output to plastic lab-
on-a-chip devices while retaining their simplicity and frugality but also transforms Coulter
sensing from a technique that is limited to sizing and counting of cells to a platform biosensor
technology to analyze cells with respect to any parameter that can be used to differentially
manipulate cells on a microfluidic device such as cell surface expression (Civelekoglu et al.,
2019), mechanical properties (Asmare et al., 2019), and immunophenotype (Liu et al., 2019).



In this paper, we introduce a bioelectronic sensor network that combines the code-multiplexed
read-out of the Microfluidic CODES and a microelectrode layout with built-in error correction
for distributed Coulter sensing in microfluidic devices. We specifically introduce redundancy
into the on-chip electrical sensor network and use it for error correction to minimize ambiguity
in data processing. The built-in error correction allows us to relax design constraints on
location-specific Coulter signatures, allowing the use of uncomplicated electrode patterns
producing non-orthogonal sensor waveforms, while still ensuring reliable recovery of
information through computation. Combined with machine learning algorithms, our approach
allows us to account for not only device-to-device variations due to noise in the manufacturing
of chips but also changes in device operation due to sample heterogeneity. We demonstrate
the sensor operation in a prototype microfluidic device by processing a suspension of human
tumor cells and validate the accuracy of our device through comparisons with high-speed
microscopy.
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Fig. 1. Sensor operation principle. (a) A network of Coulter sensors with distinct electrode patterns
distributed at strategic locations on a microfluidic device. Within each individual sensor, an error-
correction section was patterned beside a coding section to provide error-mitigating information. (b)
Conceptual code-multiplexed sensor network signals. Each cell produces a single electrical pulse (i.e.,
the error correction signal) (top plot) and a corresponding code signal composed of a multitude of
pulses (middle plot). Because the code signals consume more bandwidth, they interfere in the output
signal (bottom plot). (c) A block diagram explaining the demultiplexing of interfering sensor code
signals with the help of extra information provided by the error-correction signal (e.g., number of cells
detected, relative timing, and size). First, error-correction signals were analyzed, and sizes and speeds
of detected cells were estimated. Based on the information acquired from the error-correction signals,
interfering code signals were demultiplexed, and sensor identities (locations) of detected cells were
determined.



2. Sensor Operation Principle

Our approach is based on a code-multiplexed network of Coulter sensors created by
micromachined surface electrodes for distributed electrical sensing of cells flowing in channels
across a microfluidic chip. In the sensor network, each sensor is encoded with a distinct digital
code (signature), and based on which, surface electrodes are micropatterned to create distinct
spatial arrangements of interdigitated electrode fingers at different locations on the
microfluidic device (Fig. 1a). Therefore, when activated, different sensors generate distinct
sensor waveforms, indicating cell presence in specific nodes on the microfluidic chip. Because
all coded sensors share the same electrical output, we can demultiplex the information from
the whole network by recognizing individual signature waveforms in the output signal. This
analysis further allows us to extract the flow path of individual cells, which could further be
used to infer the properties of cells, depending on which criteria was used to fractionate cells
on the microfluidic device.

An important feature of the microfluidic sensor network technology introduced in this work is
that it uses unipolar non-orthogonal digital codes to increase the multiplexing capacity. In a
conventional code-division-multiple-access (CDMA) system, codes are specially designed to be
orthogonal to each other (Dinan and Jabbari, 1998), ensuring minimal cross-correlations among
different codes in the network, so that signals from different sources, encoded with these
mutually-orthogonal codes, can be differentiated with the minimum crosstalk using matched
filtering (Ulukus and Yates, 2004). For our technique, employing orthogonal codes (Gold
sequences (Gold, 1967)) to encode Coulter sensors at different locations introduces challenges
in scaling the sensor network. Specifically, larger sensor networks require encoding different
sensors with longer orthogonal waveforms, leading to (1) more complex electrode layout and
(2) more sensor interference due to coincident cells (Liu et al., 2018). Alternatively, more
information can be packed into a waveform for a given signal duration (i.e., bandwidth) if non-
orthogonal waveforms are used. However, the disadvantage of using non-orthogonal
waveforms compared to orthogonal ones is the additional ambiguity in the decoding process.
Specifically, the interference between sensors in the network from coincident cells causes
output signals to be underdetermined for decoding due to the non-optimized crosstalk
between non-orthogonal sensor waveforms.

To alleviate the ambiguity in the decoding of the interfering non-orthogonal waveforms from
sensors, we integrate redundancy in our sensor design for error correction/mitigation, which is
a technique commonly used in digital data compression/transmission (Hamming, 1950).
Specifically, in our design, each sensor in the network shares an extra detector with a dedicated
output in addition to the code-generating electrodes micromachined to produce distinct
electrical waveforms linked to specific locations on the microfluidic chip. This extra detector is a
conventional Coulter sensor and generates single-bit pulse signals (error-correction signals) that
contain information on count, size, and flow speed of cells detected in a given time window
(Fig. 1b). In the decoding process, this extra information is then used to prevent the
misinterpretation of the code-multiplexed signal by eliminating erroneous outcomes that
conflict with the error-correction signal (Fig. 1c). Because of its smaller footprint, the error-
correction sensor is less prone to sensor interference from coincident cells and effectively sets



the multiplexing capacity of the code-multiplexed sensor network. Importantly, our approach
decouples sensor network multiplexing capacity from the code complexity and allows the use
of smaller sensors that lead to less coincidence while ensuring reliable recovery of information
in the presence of interference.
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Fig. 2. Design and layout of the microfluidic device integrated with coded Coulter sensor network. (a)
A photomicrograph image of a 10-sensor microfluidic sensor network, in which a glass substrate
patterned with Au electrodes was aligned and bonded with a PDMS layer with microfluidic channels.
(b) A close-up view of sensor 6 and 7, which were micropatterned to generate codes of “10011” and
“11110”, respectively. (c) A photo of the complete microfluidic device used for our experiments.

3. Microfluidic Device Design and Fabrication

For experimental testing of our sensors, we designed and fabricated an analytical microfluidic
device integrated with a network of 10 code-multiplexed Coulter sensors (Fig. 2a). Without loss
of generality, these 10 coded sensors were placed in close proximity so that all could fit in the
field-of-view of a microscope. As such, the cell-sensor interaction could be visually observed as
the ground truth for assessing the electrical system performance in this study. In practice,
individual coded sensors could be positioned freely on the microfluidic by micromachining the
metal film accordingly as demanded by the application at hand. In our sensor network, three
coplanar electrodes, a common electrode, two sensing electrodes (an error-correction



electrode and a coding electrode) were micropatterned to form an error-correction section and
a coding section for each sensor. In the designed layout, the common electrode was used to
drive the entire sensor network with a voltage source, and the error-correction and the coding
electrodes were used to measure the cell-induced impedance changes in the network by
measuring changes in the electrical current flow.

While the minimum binary code length needed to distinguish 10 sensors was 4 bits, as 23 < 10 <
2% we chose to encode each sensor in the network with 5-bit binary codes. This is because
longer codes carried more information and could be identified with less ambiguity in the
decoding process. On the other hand, sensor codes could not be extended excessively as
decoding longer codes would lead to higher device complexity, more sensor interference, and
additional computation time.

To implement these codes in the device, common and coding electrode traces were routed
along opposite sides of a microfluidic channel and wherever a positive bit (“1”) was needed,
two 10 um-wide electrode fingers, one from each trace, were extended into the microfluidic
channel such that there was 10 um gap between the two electrode fingers. Likewise, the
absence of an electrode finger pair was interpreted as a negative bit (“0”), effectively creating
sensors with assigned unipolar digital codes (Fig. 2b). Once interdigitated electrode patterns
were aligned with microfluidic channels, the electrical current flow was confined to sections of
the electrolyte-filled microfluidic channels that fell in between oppositely-charged electrodes.
Therefore, it was only when cells occupied these electrically-active locations, that the electrical
impedance was modulated, and the sensor output signal was produced.

In operation, cells flowing in microfluidic channels sequentially occupied electrically-active
regions, producing a unipolar pulse sequence based on the underlying electrode pattern at that
location. We specifically designed the electrode layout to generate isolated bit pulses in the
code signals. First, we set the distance between adjacent electrode pairs, i.e., bits, to be larger
than but close to the average cell diameter. This is because an excessively large gap would
lower sensitivity and produce a less pronounced bit pulse. Second, we designed the neighboring
fingers of adjacent electrode pairs to have the same polarity, i.e., both to be common or
sensing electrodes. This layout ensured no electric field was present in between signal-
generating electrode pairs. In addition, we designed the microfluidic channel height to be close
to the average cell diameter to maximize sensitivity and also minimize variations in the cell-to-
electrode distance. Nevertheless, this constraint could be relaxed to accommodate cell
populations with large variations in size either by designing a higher microfluidic channel as
small cells occupying a fraction of the channel height could still be detected (Liu et al., 2018), or
by vertically focusing cells to the floor of the microfluidic channel (Tasaddugq et al., 2017), which
would guarantee high sensitivity and also minimize undesired variations the in the cell-to-
electrode distance.
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Fig. 3. Sensor network data acquisition and testing sensor operation with cells flowing in the
microfluidic device. (a) A schematic showing the experimental setup for driving the sensor network
and acquiring sensor signals. (b) Recorded individual sensor signals generated by cells flowing in the
microfluidic channels. Both error-correction signal (red) and the corresponding code signal (blue) are
shown for every sensor in the network. The code (i.e., the sensor identity) could be determined from
the number and timing of pulses in the recorded signal. (c) A recorded sensor network output signal
where sensor code signals interfered due to multiple cells coincidentally detected by different sensors
in the network.

We fabricated our microfluidic device out of a polydimethylsiloxane (PDMS) layer patterned
with microfluidic channels and a glass substrate layer patterned with surface electrodes. We
patterned the PDMS layer using soft lithography. To create the mold, 15 pm-thick SU-8
photoresist (SU8-2015, MicroChem) was coated on a four-inch silicon wafer, and the
photoresist was then patterned using conventional photolithography. The finished mold was
then coated with PDMS prepolymer and cross-linker pre-mixed at a 10:1 ratio. The polymer film
was degassed in vacuum and then cured in an oven at 65 °C for four hours. Cured PDMS was
peeled off from the mold and cut into the final shape. We fabricated surface electrodes using a
lift-off process. We coated a four-inch borosilicate glass wafer with 1.2 um -thick negative
photoresist (NR9-1500PY, Futurrex) and exposed the photoresist using photolithography to
define the layout of the sensor network. Then we deposited 100 nm-thick Cr/Au film stack using
e-beam evaporation. The underlying photoresist was etched in acetone. The finished wafer was
diced into chips using a wafer saw. To create the final device, both the PDMS layer and the glass
substrate were first surface-activated in an oxygen plasma and then aligned and bonded under
a microscope (Fig. 2c). Copper wires were soldered to the electrode contact pads for the
electrical read-out from the chip.



4. Sensor Testing and Data Acquisition

To test our sensors, we used human ovarian cancer cells (HeyA8) in suspension as a biological
sample. Cells were grown in RPMI 1640 (Mediatech; Cellgro, Herndon, VA) with 10% fetal
bovine serum (FBS; Seradigm, Radnor, PA). Cultures reaching >80% confluence were trypsinized
and then resuspended in phosphate buffered saline (PBS). The cell suspension was then driven
through the device by a syringe pump (Harvard 2000, Harvard apparatus) at a constant flow
rate (500 uL/h).

To acquire the sensor response to cells flowing in the microfluidic channels, we excited the
sensor network with an AC signal and measured the resulting current amplitude with a lock-in
amplifier (HF2LI, Zurich Instruments) (Fig. 3a). The sensor network was excited from the
common electrode with a 2-Vpp, 500-kHz sinusoid signal with a function generator. The
excitation frequency was specifically chosen to (1) bypass the double-layer capacitance at the
electrode-electrolyte interface, which was dominant at the low-frequency band and (2) prevent
the Maxwell-Wagner dispersion at the high-frequency band (Valero et al., 2010). Electrical
current signals from the error-correction and the coding electrodes were each converted into
voltage signals using a transimpedance amplifier, and the signal amplitudes were measured by
the two-channel lock-in amplifier. Signal amplitude information was then sampled at 50 kHz
into the computer through a data acquisition board (PCle-6361, National Instruments). It should
also be noted that the sensor network could be driven at multiple frequencies simultaneously.
This multi-frequency approach would then allow simultaneous measurements of cell size,
speed, location along with dielectric properties (i.e., frequency response).

5. Results

5.1 Characterization of the Sensor Network

To characterize our sensor network, we analyzed error-correction and code signals from all
sensors in the network (Fig. 3b). As expected, both signals were synchronized with the code
signal pulses lagging the error-correction pulses with a delay that depended on the cell flow
speed. Moreover, amplitudes of individual pulses increased with the size of the detected cell as
the change in the impedance was proportional to the displaced volume of the electrolyte,
according to the Coulter principle (DeBlois and Bean, 1970). Sensor code signals corresponding
to detections of single cells were isolated from each other in the recorded output waveform
and could directly be recognized as they closely matched the digital codes used to encode each
sensor (Fig. 3b). For samples with high cell density, multiple cells coincidentally detected by the
sensor network led to interferences of sensor waveforms and required further analysis to
recover sensor identities, as will be explained later (Fig. 3c).

We also characterized the sensor code waveforms in terms of their uniformity. By comparing
sensor code signals obtained from hundreds of cells for each sensor, we found that the
amplitudes of pulses produced by the same cell varied from one bit to another (Fig. 4a). To
investigate the signal variation across the sensor network, we fabricated microfluidic devices
with a serpentine microfluidic channel (Fig. S1a), where a cell sequentially interacted with all
the sensors in the network and allowed direct comparisons between waveforms from different



sensors in response to the same cell (Fig. S1b). By averaging normalized amplitudes for each bit
in those recorded code signals, we were able to determine bit amplitude variation patterns
across the sensor network (Fig. 4a, 4b). Furthermore, we observed these bit amplitude
variation patterns to change in different devices with identical electrode patterns, a result we
considered to be due to fabrication-related differences (Fig. S1c). On the other hand, the
relative amplitudes of bits within a code signal were observed to not change significantly for
different cells detected by the same sensor. For all sensors in the network, we measured the
standard deviations for the relative amplitude of individual bits in normalized signals between
different events (Fig. 4c) and concluded that the mean normalized amplitudes of bits for the
sensor network could be used to construct a template library from recorded data to
accommodate device- and sample-specific variations.
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Fig. 4. Analysis of code-multiplexed sensor signals. (a) An eye-diagram showing the signals
corresponding to the sensor designed to produce the code “10011”. Code waveforms for > 50 cells
were normalized in amplitude and time and overlaid to demonstrate the code pattern integrity. We
created a template signal for each sensor by averaging the signals from multiple cells. (b) A heat map
showing the mean bit peak amplitudes in normalized code signals for all sensors in the network. All
signals were acquired from cells sequentially interacting with every sensor in the network for direct
comparison. (c) Measured mean and standard deviation of normalized bit amplitudes in sensor
waveforms.
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Fig. 5. Analysis of the error-correction signal for estimating cell flow speed. (a) A schematic showing
the employed machine learning technique, where the cell flow speed was calculated from K most
similar error-correction pulse profiles found in the training data. (b) Representation of the error-
correction signal with four extracted features: the peak amplitude, and the pulse widths at %, %, and
% of the peak amplitude (xi, X2, x3, and x4). The cell travel time from the error-correction section to the
coding section of the sensor (Y), was chosen as the property to be predicted and used to calculate the
flow speed of the cell. (c) Automatic identification and aggregation of sensor signals from the raw
sensor output to construct the training dataset. (d) Model performance in cell flow speed predictions
as a function of the number of nearest neighbors (K) utilized in calculations (n=50). In-sample and out-
of-sample error rates indicate the performance on the training data itself and a testing dataset,
respectively. (e) Mean in-sample and out-of-sample error rates. K=5 yielded the lowest out-of-sample
error and was chosen as the optimal value. (f) A representative error-correction pulse overlaid with its
five nearest neighbors identified by our model.

5.2 Analysis of the Error-correction Data

We analyzed the error-correction pulses to estimate the arrival time, size, and flow speed of
cells. Among these parameters, the arrival time information was readily accessible as an error-
correction pulse was produced each time a cell was detected by our sensor network. The cell
size was estimated from the peak amplitude of the error-correction pulse according to the
Coulter principle. We calibrated the electrical data through linear regression of the cubic root of
the error-correction pulse amplitude versus the cell radius measured by high-speed microscopy
(Fig. S2). Estimation of the cell flow speed was achieved by analyzing the full profile of the
error-correcting pulse as described below since the pulse duration could not directly be
attributed to cell flow speed and was also affected by the cell size and the electrode geometry.
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We developed a machine learning-based model to predict the cell flow speed from the profile
of the error-correction pulse. Our model employed the K-nearest neighbors (K-NN) algorithm
(Bezdek et al., 1986), which searched the training data set for the K most similar (i.e., minimum
Euclidean distance) instances and averaged their values to make a prediction (Fig. 5a). To
represent the error-correction pulse profile, we extracted four features (X1, X2, X3, and Xa
representing the peak amplitude and the pulse width at %, %5, and % of the peak amplitude,
respectively) (Fig. 5b). We chose the cell travel time from the error-correction section to the
coding section (Y) as the property to be estimated. Combining the predicted cell travel time
with known sensor dimensions, we could calculate the cell flow speed (60 um / Y) and estimate
the duration of the code waveform (4*Y) (Fig. 5b).

To test the accuracy of the K-NN model, we trained our machine-learning algorithm, evaluated
its error rate under varying parameters, and optimized computational design based on
characterization results. To train our model, we constructed a dataset with >1000 sensor
waveforms, which was aggregated by automatically screening the raw sensor network data and
identifying timeframes with sensor activity (Fig. 5c). For each cell detected, we directly
extracted four features from the error-correction pulse (X1 to X4) and recorded the
corresponding travel time (Y). To evaluate the performance of our K-NN model, we used the
two-fold cross-validation (Burman, 1989). Briefly, we first randomly split the dataset into two
equal halves. Then we evaluated the model by training the model on one half and testing on
the same half (i.e., in-sample testing) and also by training the model on one half while testing
on the other half (i.e., out-of-sample testing). In this process, each signal in the testing subset
was treated as a new instance, and the cell travel time (Y) was predicted by searching and
averaging the K nearest neighbors in the training subset. An overall error rate was calculated
from the average deviation of the prediction from the actual value. This process was performed
for K values ranging from 1 to 20 and repeated for 50 times for statistical power (Fig. 5d). We
found that lower K values made the model with high-variance and more noise-prone (i.e.,
overfitting), while increasing the K value excessively made the model biased and prevented it
from catching subtle differences (i.e., underfitting). The optimal value of K was determined as
five, which yielded the minimum average out-of-sample error rate (10.5%) (Fig. 5e). When
tested, the optimized algorithm was able to find five error-correction pulses that matched well
in profile to the sensor data and averaged cell speed values associated with these pulses to
predict cell flow speed (Fig. 5f).

5.3 Analysis of Coded Sensor Data

We analyzed the coded sensor data to recover signals from individual sensors in the network
based on the template libraries and information acquired from the analysis of the error-
correction signal. In this decoding process, for each error-correction pulse, we first generated
10 signature waveforms accounting for all sensor codes in the network (Fig. 6). When
generating these candidate signals, (1) the peak amplitudes were determined based on the cell
size estimated from the error-correction pulse and also on the previously generated template
library (Section 5.1), which provided the ratios between amplitudes of different pulses in the
candidate waveform, (2) the candidate waveform duration and the delay between signals were
set based on the estimated cell flow speed (Section 5.2). Computer-generated waveforms were
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then compared with the actual signal, and the one yielding the minimum mean square error
(MMSE) was identified as a match to determine the sensor identity. This analysis scheme was
also successful in decoding interfering sensor signals due to coincident cells. To decode
interfering code signals, error-correction pulses were first used to determine the number, sizes,
and flow speeds of coincident cells (Fig. 6a), and 10N different signal combinations (Fig. 6b)
were evaluated to find the matching combination with MMSE (Fig. 6b), where N was the
number of cells coincidently detected in a given time interval.

Besides interfering code waveforms, we observed cases, where error-correction pulses from
different sensors also interfered (Fig. S3a). In these cases, high cell density in the suspension led
to multiple cells coincidentally interacting with error-correction electrodes despite their
significantly smaller footprint than coding electrodes. To recover data in those instances, we
first deconvolved interfering error-correction pulses. First, a peak-search algorithm was used to
determine the number of contained individual pulses in the error-correction signal. Second, a
curve-fitting algorithm was used to fit the interfering error-correction signal with a certain
number of individual Gaussian-shaped pulses with different amplitudes and durations (Fig.
S3b). Gaussian-shaped pulses were specifically chosen in this fitting process because the profile
of a resistive pulse followed a Gaussian profile (Zhou et al., 2018). Estimated error-correction
pulses were then analyzed individually according to the decoding process explained earlier to
estimate cell size and speed (Fig. $S3c), and based on these parameters, the corresponding code
signal was estimated (Fig. S3d).

5.4 Testing of Sensor Network Accuracy

To evaluate the accuracy of our sensor network, we compared the results from the decoded
electrical data stream to the simultaneously recorded microscope images, regarded as the
ground truth, and calculated error rate in our measurements. In order to capture fast-flowing
cells, images were acquired by employing an optical microscope equipped with a high-speed
camera (Phantom v7.3, Vision Research) set to record cell flow across the whole sensor
network at 1000 frames per second.

To automatically analyze the electrical data from the sensor network, we implemented our
decoding algorithm in MATLAB. To perform the decoding of sensor waveforms on a continuous
data stream, we combined the MMSE fitting (Section 5.3) with a moving-window approach.
Briefly, we processed the output signal three error-correction pulses at a time. Once the
decoding of a timeframe was completed, the window was shifted by one error-correction pulse,
and the process was iterated until the whole data stream was decoded. The computational
complexity of this process scaled as O((N-M+1)*10M), where 10 is the number of code-
multiplexed sensors, N is the total number of cells detected in the time interval, and M is the
number of cells analyzed at a time within the moving window, respectively.
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Fig. 6. Decoding of interfering sensor signals due to coincidentally detected cells. (a) A recorded error-
correction signal and the corresponding code signal. The error correction signal clearly indicated the
detection of three cells. (b) For each error correction pulse, 10 candidate code signals were digitally
generated based on the estimated cell flow speed and the preconstructed waveform templates. Given
three cells were detected, 10° possible signal combinations were constructed. (c) The recorded code
signal overlaid with the reconstructed waveform yielding the minimum mean square error. The
solution showed the three cells were detected by sensors 8, 6, and 8.
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Fig. 7. Testing of the sensor network cell tracking accuracy. (a) A section of a recorded output signal
that contains data from 10 cells detected by the sensor network in a 70-ms time interval. (b) Plots
showing the iterative decoding of the sensor waveform through a sliding window, which screened
three error-correction pulses at a time. Each subplot shows the transient state of the fit at that
iteration of the decoding process. At the end of the decoding process, the fitting code signals provided
the identity of sensors detecting the cells and the timing of these events. (c) Frames sampled from the
high-speed microscope footage of the cells simultaneously-recorded with electrical data. The data
from the images matched the results from the sensor network.
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A direct comparison of processed sensor signal blocks with corresponding microscope images
showed successful tracking of cells over the sensor network (Fig. 7). We investigated step-by-
step decoding of a 70 ms-long time interval that contained data from 10 cells (Fig. 7a) as an
example to illustrate coherence between electrical and visual data. Starting with the first
window containing the first three error-correction pulses and sliding one pulse at a time, we
were able to find a closely-matching estimation with the recorded experimental signal (Fig. 7b).
Both sensor identities and the sequence of cell flow obtained from the decoded data agreed
with the high-speed microscopy data (Fig. 7c).
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Fig. 8. Benchmarking sensor network results against microscopy. (a) A histogram of the electrical and
image-based measurements of cell size in populations sampled from the same culture (n=915). (b) A
histogram showing the cell flow speed estimated by the sensor network and the measurement of cell
speed by high-speed microscopy video footage (n=820). (c) Frequency of cells detected by each sensor
in the network according to our electrical data (top plot) vs. the ground truth obtained by high-speed
microscopy (bottom plot) (n=1304).

To quantitively characterize the sensor network performance, we compared cell speed and
sensor identity measurements from the electrical waveform and the associated high-speed
video footage corresponding to >1200 cells. Due to the limited resolution of high-speed videos,
we performed image-based cell size measurements with the Image) software on still, high-
resolution microscope images of a surrogate cell population sampled from the same tissue
culture (Fig 8). Optically-measured cell size distribution closely matched with that acquired
from our sensor network (Fig 8a), with the Kullback—Leibler (KL) divergence between these two
distributions calculated to be 0.044. Besides the errors introduced by the computational
decoding process, the small divergence between the prediction and the ground truth came
from the fact that the cells analyzed by the sensor platform and microscope were not the same
population. Optically-measured cell flow speed distribution matched well with that acquired
from the sensor platform, especially for flow speeds between 20 and 70 mm/s. (Fig 8b). Higher
KL divergence (0.435) was mainly due to the mismatch in the lower end of the cell flow speed.
Loss of accuracy with lower cell speed was due to the training dataset lacking cells with lower
flow speeds, which could be improved by expanding the dataset to include a wider range of cell
flow speeds. As for the accuracy of predicting sensor identity (i.e., spatial information), the
success rate was measured as 90.07%, demonstrating cells could accurately be tracked with the
on-chip sensor network (Fig 8c).
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6. Conclusion

A multitude of integrated Counter counters, when each designed to produce a distinct sensor
waveform, can simply be distributed across a microfluidic platform to provide spatiotemporal
information from processed cells. Such information provides Coulter counters with the ability
to analyze cell populations by monitoring cells’ responses to various stimuli on the device
besides their conventional use for sizing and counting cells. On the other hand, accessing
information from all Coulter sensors in a scalable manner requires reliable demultiplexing
strategies so that individual sensor data can be recovered with minimal loss. By introducing
error-correction electrodes into coded Coulter sensors, we created a multiplexed sensor
network, in which location-specific Coulter signatures could be realized with uncomplicated
electrode patterns with relaxed design constraints. Testing the performance of the developed
sensor network through direct comparisons with high-speed microscopy data showed that
tumor cells could accurately be tracked on a microfluidic device in an integrated fashion. The
ability to monitor cell motion with integrated on-chip sensors with minimal hardware overhead
has the potential to enable quantitative cell/particle manipulation-based assays that can be
deployed at the point-of-care.
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