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This article presents I/O-efficient algorithms for topologically sorting a directed acyclic graph and for the
more general problem identifying and topologically sorting the strongly connected components of a directed
graph G = (V,E). Both algorithms are randomized and have I/O-costs O(sort(E) - poly(log V)), with high
probability, where sort(E) = O(% log /g (E/B)) is the I/O cost of sorting an |E|-element array on a machine
with size-B blocks and size-M cache/internal memory. These are the first algorithms for these problems that
do notincur atleast one I/O per vertex, and as such these are the first I/O-efficient algorithms for sparse graphs.
By applying the technique of time-forward processing, these algorithms also imply I/O-efficient algorithms
for most problems on directed acyclic graphs, such as shortest paths, as well as the single-source reachability
problem on arbitrary directed graphs.
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1 INTRODUCTION

Ullman and Yannakakis [25] and Chiang et al. [10] initiated the study of graph algorithms in the
I/O model [2] over 20 years ago. Despite decades of research and many efficient algorithms for
undirected graphs, there are essentially no I/O-efficient algorithms known for even the most basic
problems on sparse directed graphs. Perhaps the most coveted is an algorithm for topologically
sorting a directed acyclic graph (DAG). A topological sort of a DAG G = (V,E) is an ordering
of the vertices such that for every edge (u,v) € E, u precedes v in the ordering.

This article presents the first algorithm for topologically sorting a DAG that is I/O efficient even
for sparse graphs. Not only is topologically sorting a fundamental problem on DAGs, but it is
also a key subroutine in another general I/O-efficient technique known as time-forward process-
ing [4, 10]. Due to the lack of a good general-purpose algorithm for topological sort, time-forward
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processing has only generated provably good results for restricted graph classes such as planar
graphs [7, 17, 19].

1.1 The I/O Model and Common Subroutines

The I/O model [2], also called the external-memory model or disk-access-machine model, is a
standard theoretical model for understanding the performance of algorithms on large datasets by
capturing some notion of locality. The I/O model [2] is a two-level memory hierarchy comprising
a size-M cache (also called internal memory) and an external memory of unbounded size. All
data, both in cache and in external memory, is organized in size-B chunks called blocks, so the
cache consists of M/B > 1 blocks. Computation may only occur on data residing in the cache,
meaning that data must be transferred from the external memory to cache when needed. These
data transfers are performed at the granularity of blocks; each block transfer is called an I/0. The
cost of an algorithm in the I/O model, often called the I/O cost, is the number of I/Os performed.
Computation itself is free.

The following are common examples of bounds in the I/O model. Iterating over a size-N array
in order (assuming N > M) has I/O cost scan(N) = O(N/B). Sorting [2] a size-N array has I/O
cost sort(N) = @(% log,,,5(N/B)). A key separation between the RAM model and the I/O model
is the difference in cost between models for permuting. In the RAM model, permuting an array
is as cheap as scanning. In the I/O model, for most settings of machine parameters permuting is
generally as expensive as sorting. Specifically, permuting has I/O cost ©(min {N, sort(N)}) [2],
which for typical values resolves to the sort bound. (The N term corresponds to foregoing an I/O-
efficient algorithm entirely—simply run the RAM algorithm and pay an I/O for every operation.)
The cost of sorting thus often serves as a lower bound on the I/O cost for problems that can be
solved in linear time in the RAM model. Many basic graph problems on sparse graphs (directed
or undirected), including topological sort, have Q(sort(V)) lower bounds in the I/O model [10].

Topological sort. There are two classic linear-time algorithms for topological sort in the RAM
model, either repeatedly peeling off the vertices with in-degree 0, or performing a depth-first
search and outputting the vertices in reverse order of finish time [14]. The best I/O algorithms
known are based on the depth-first search approach, for which there are two algorithms. Neither is
efficient for sparse graphs. Chiang et al. [10] provide an algorithm with I/O cost O(V +sort(E)+ %),
and Buchsbaum et al. [9] give an algorithm with I/O cost O((V + %) log(V/B)). Both of these bounds
include at least a cost of |V|, indicating that the algorithm may have to perform a random access
or I/O for each vertex. For sparse graphs, notably |E| = ©(V), both of these algorithms are worse

than simply running an ordinary RAM DFS and paying an I/O for every operation.

Time-forward processing. Time-forward processing, originally described by Chiang et al. [10], is
a technique that allows for efficient evaluation of circuit-like problems on DAGs. Each vertex (or
edge) starts with some value w(v) or w(u, v). The goal is to compute some label L(v) on each vertex,
where L(v) depends only on the initial values w and the labels {L(u)|(u,v) € E} on v’s immediate
predecessors. If the graph is topologically sorted, and certain technical restrictions are met on the
function being computed, then the DAG circuit evaluation can be performed in O(sort(E)) I/Os by
time-forward processing [4, 10]. The first solution [10] has additional restrictions on the relative
size of the cache, but Arge’s [4] solution removes those restrictions by solving the problem with
an I/O-efficient priority queue called a Buffer Tree.

One challenging aspect about graph problems in the I/O model is that vertices cannot generally
be processed one by one without sacrificing I/O efficiency. Instead, vertices must be processed
(roughly speaking) in parallel by applying various sort and scan steps. Time-forward processing is
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useful in part because it simulates the effect of processing vertices one by one. Thus, information
can propagate arbitrarily far in the graph, provided that the graph is topologically sorted.

1.2 Results

This article gives the following results, all having I/O cost O(sort(E) -log” V), with high probability,
on a graph G = (V, E). For conciseness, we assume throughout that |E| = Q(V).

— (Sections 3 and 4) A randomized algorithm for topologically sorting a DAG.

— (Section 5) A randomized algorithm for identifying and topologically sorting the strongly
connected components (SCCs). Although this result subsumes topologically sorting a
DAG, the algorithm includes additional complications and is thus presented separately.

— Using the topological sort algorithm coupled with time-forward processing [4, 10] yields
efficient solutions to other problems on DAGs, such as shortest paths, with the same I/O
cost.

— Again applying time-forward processing [4, 10], the SCC algorithm implies a solution to the
single-source reachability problem on directed graphs. Specifically, given a directed graph
(not necessarily acyclic) and source vertex s, the set of vertices reachable from s can be be
identified in O(sort(E) - log® V) I/Os, with high probability.

1.3 Overview of the Approach

The general approach adopted here for a topological sort, loosely based on the ITERTS algorithm
described by Ajwani et al. [3], is as follows. Initially assign each vertex v a label L(v). Those labels
induce an ordering over vertices. (For both our algorithm and ITERTS, the labels correspond to a
permutation of vertices, but in principle there could be ties.) Adopting the terminology from [3],
an edge (u,v) is satisfied if L(u) < L(v) and violated otherwise. The goal is to adjust labels over
time such that eventually all edges are satisfied.

To understand what makes the problem difficult, consider the following naive realization of the
general strategy. Use L;(v) to denote the label of v in round i. Initially assign all vertices v the label
Lo(v) = 0. In each round i, update every vertex v’s label to L;(v) = max {L;—1(u) + 1|(u,v) € E}.
(This type of update can be implemented by standard techniques, obtaining the updated label for all
vertices via a constant number of sorts.) Although v’s label increases to ensure that L; (v) > L;_;(u),
the edge (u, v) only becomes satisfied if L;(v) > L;(u); if u’s label also increases during this round,
then the edge may not be satisfied. In fact, with this algorithm the edge (u, v) would only become
satisfied during the round ¢ for £ equal to the length of the longest path to u. The end result is an
algorithm with O(V - sort(E)) worst-case I/O cost. Granted, this realization is particularly naive, but
it seems difficult to beat. Indeed, ITERTS [3], which applies heuristics to achieve good performance
in practice, encounters this bottleneck.

Note that it is trivial to satisfy roughly half the edges immediately by randomly permuting all
the vertices and labeling vertices by their rank in the permutation. The challenge is in improving
the labeling beyond that point.

1.3.1 Algorithm Overview. An issue with the naive algorithm is that, in some sense, its label
updates are too aggressive. Perhaps counter-intuitively, directly ensuring that L;(v) > L;_;(u) for
all edges does not seem to lead to efficient algorithms. Instead, our algorithm temporarily gives up
on satisfying certain edges, which makes it easier to satisfy the other edges.

Our algorithm (described more fully in Section 3) performs the following type of recursive par-
titioning of the graph, somewhat inspired by [12]. Each vertex chooses a random priority value.
That priority is propagated some (random) distance forward in the graph. Each vertex adopts the
highest priority it has seen, with potentially many vertices adopting the same priority. (This step
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is performed in a way that ensures that the endpoints of already-satisfied edges remain in priority
order.) Next, vertices are collected into groups where all vertices in the group have equal priority.
The groups are ordered in increasing order of priority, and finally the algorithm recurses on the
vertex-induced subgraphs for each group.

The analysis considers any particular violated edge (u,v). The main claim is that in one full
execution of this recursive algorithm, (u, v) has at least a constant probability of becoming satisfied.
Repeating the recursive algorithm a logarithmic number of times gives the high-probability result
for all edges.

The proof itself is counter-intuitive but also simple in hindsight. Consider a particular violated
edge (u, v). Initially, both u and v are in the same recursive subproblem. Ties on priority are good
in the sense that they keep u and v in the same recursive subproblem. Eventually, at some re-
cursive step, u and v adopt different priorities and are placed in different recursive subproblems,
which fixes the status of (u,v) for the remainder of the execution; the edge becomes satisfied if
u’s subproblem is ordered before v’s, and the edge is said to be broken if v’s subproblem is or-
dered before u’s. The two key components of the analysis are the following: (1) at each level of
recursion, the probability that the edge becomes broken is proportional to 1/K, where K is the
number of distances selected from, and (2) after enough levels of recursion, the edge is very likely
to cross subproblem boundaries. By selecting distances randomly from a large-enough range, the
probability of an edge becoming broken is low enough that the edge is likely to cross subproblem
boundaries before it has too many chances of becoming broken. If the edge crosses subproblem
boundaries but is not broken, then it must be satisfied.

Extension to strongly connected components. The extended algorithm propagates priorities both
backwards and forwards, contracting groups of vertices reached in both directions. The analysis
follows a similar framework, but the presence of cycles complicates various aspects of the algo-
rithm and analysis.

Roadmap. The remainder of the article is organized as follows. Section 2 presents some related
work on I/O-efficient graph algorithms as well as non-I/O algorithms that use similar techniques.
Section 3 presents the algorithm for topological sort, and Section 4 analyzes that algorithm. Sec-
tion 5 gives the algorithm for strongly connected components and its analysis.

2 RELATED WORK

There is a large body of work, e.g., [1, 5, 6, 9-11, 18, 20-23] on graph algorithms in the I/O model.
See [26] or [27] for good surveys on the topic. For undirected graphs, many problems can be solved
in O(sort(E)) I/Os. (In fact, for dense graphs the logarithmic term in the sort bound can be im-
proved slightly through sparsification [15].) For example, connectivity problems such as connected
components, minimum spanning forest, biconnectivity, and so on, can all be solved in O(sort(E))
I/Os [10], with high probability. If randomization is not allowed, there are several deterministic
algorithms [1, 5, 10, 18, 23], which tend to be at worst logarithmic factors from the sort bound.

The directed analog of the connectivity problems are the reachability problems such as single-
source reachability, topological sort, and strongly connected components. The best known bounds
for these problems are significantly worse than for their undirected counterparts. Specifically, all
of the best existing algorithms [9, 10] have a |V| term in their I/O cost, which is not I/O efficient
in general. If the graphs are restricted to be planar graphs, however, many of these problems and
more can be solved in O(sort(E)) I/Os [5, 8, 19].

Due to the lack of provably efficient algorithms for topological sort, some research has focused
on engineering practically efficient algorithms [3, 28]. For example, Ajwani et al. [3] use an iterative
approach that follows the same general strategy as our algorithm.
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ALGORITHM 1: I/O-Efficient Topological Sort

1: function ToroLoGICALSORT(G = (V, E))
2: repeat until the vertices V are topologically sorted
3: RecurTS(G, 1, |V],0)

4: function REcURTS(G, i, j, depth) > Reorders the subarray Vi .. j] of vertices
5: G =G[i..j]

6: if depth > A or i = j then return

7: dmax = (A — depth) - K

8: dmin = dmax — K

9: Choose d uniformly at random from [dpin, dmax)

10: Choose a uniformly random permutation of priorities {p(v)}

11: For all v, compute [(v) = max {p(u) : u <4 v in G’}

12: Sort vertices V[i. . j] lexicographically by (I(v), index(v))

13: Partition V[i..j] into maximal groups [i1,j1], [iz,j2], .- -, [it,j¢] of a single label (i, =
jr—l + 1)

14: foreachr=1tot

15: REcURTS(G, iy, jr, depth + 1)

Related work beyond I/O algorithms. In the RAM model, SCCs can be identified in linear time [14,
24] by performing depth-first search.

Our algorithm shares some similarities with other topological-sort or SCC algorithms that per-
form recursive decompositions of the graph [12, 13, 16] instead of depth-first search. Coppersmith
et al. [13] describe a randomized divide-and-conquer algorithm for computing the strongly con-
nected components that runs in O(ElogV) expected time in the RAM model. Cohen et al. [12]
use a labeling scheme, which has a similar recursive structure, to solve an incremental topological
sort where edges are added to the graph over time. Fineman’s [16] parallel algorithm, which also
starts from similar ideas, solves the static reachability problems with O(E - poly(log V)) work and
O(V?/3 . poly(log V)) span/depth, with high probability.

The recursive structure of our topological-sort algorithm is most similar to that of Cohen
et al. [12] in that the subproblems are defined by performing forward searches from each vertex.
Like Fineman’s algorithm [16] but unlike the others, our algorithm performs the label propaga-
tion/graph search to a bounded distance, but the specific notions of distance are different. Many
of the specific details, such as how distances are chosen, also resemble features in Fineman’s algo-
rithm [16]. This fact should not be surprising given that there are relationships between parallel
algorithms and I/O algorithms (see, e.g., [10] for discussion).

Though there are some similarities in the details between the parallel algorithm [16] and the I/O
algorithm presented herein, these similarities are somewhat superficial; the primary challenges
in each setting are actually quite different. Notably, our I/O-efficient algorithm leverages time-
forward processing, which is not efficient in the parallel model. In contrast, the parallel algorithm
strongly exploits random accesses, which are not efficient in the I/O model.

3 TOPOLOGICAL SORT ALGORITHM

This section describes the algorithm for topologically sorting a directed acyclic graph G = (V, E).
The algorithm is analyzed in Section 4.

The graph is initially provided with the vertices in arbitrary order. As is typical for I/O algo-
rithms, the graph representation is an array V of vertices and an array E of edges. The records
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of vertices and edges are as follows. Each vertex is represented by a unique ID, and each edge is
represented by the IDs of its endpoints. Because the algorithm will sort the edge array many times,
there need not be any assumption on the initial ordering or grouping of edges.

The goal of the algorithm is to gradually reorder vertices such that all edges are eventually
satisfied, defined next. For each vertex, index(v) denotes the index of v in the vertex array, i.e.,
v = V[i] means index(v) = i.

Definition 3.1. An edge (u,v) € E is satisfied if the index(u) < index(v) in the current vertex
ordering. Otherwise, (u, v) is violated.

The algorithm is designed to ensure that once an edge becomes satisfied, it remains satisfied for
the rest of the execution.

Algorithm 1 presents a high-level description of the algorithm, ignoring the low-level details
necessary to transform the algorithm to an I/O-efficient realization. The main algorithm topolog-
ically sorts the graph by performing a sequence of executions of a recursive algorithm, called
RecURTS. The goal with each execution of the recursive algorithm is to reorder vertices to satisfy
some, ideally a constant fraction, of the violated edges. The main algorithm terminates when all
edges have been satisfied, i.e., when the vertices in V are in topological-sort order. Section 3.1
describes RECURTS in more detail, and Section 3.2 briefly describes how to make ReEcurTS I/O
efficient.

3.1 The Recursive Algorithm

At a high level, the recursive algorithm chooses random priorities for each vertex, propagates the
priorities some distance in the graph, reorders vertices according to the highest priority observed,
and finally recurses on subgraphs induced by vertices of the same priority. Before describing the
algorithm in more detail, we first clarify the notion of distance adopted by the algorithm.

Distances. All distances discussed in this article are with respect to the number of violated edges,
i.e., interpreting violated edges as having weight 1 and satisfied edges as having weight 0. If there
exists a path from u to v that includes at most d violated edges, then we say u can reach v at
distance d, denoted u <; v. We also say that u is a d-hop predecessor of v.

The relation <, is the standard notion of reachability, and when the vertices are in topological-
sort order < and <, are equivalent. Note that unlike <., when d is a finite fixed distance <; is
not transitive; however, x <4, y and y <4, z implies x <44, z.

Vertex-induced subgraphs. Each recursive call operates on a contiguous subarray of vertices and
the subgraph induced by those vertices. We use G[i . . j] to denote the vertex-induced subgraph of
G, induced by vertices in V[i. . j].

Global parameters. The algorithm is parameterized by K and A. The value A specifies the maxi-
mum recursion depth, which will be discussed at the end of this subsection. The value K specifies
the number of possible distances from which to select a random distance. There is a tradeoff here.
Choosing larger K decreases the probability of an edge becoming broken, thereby increasing the
number of edges that become satisfied. On the other hand, larger K also leads to higher I/O cost.
A good value is selected in Section 4.

The algorithm. For now, ignore the recursion depth, A, and the specific range of distances. The
algorithm RECURTS(G, i, j, depth) operates on the induced subgraph G[i..j] as follows. Choose
a distance d uniformly at random from a contiguous range of K possible distances. Assign each
vertex v a distinct random priority p(v). For each v, let [(v) denote the highest priority from among
v’s d-hop predecessors, i.e., [(v) = max {p(u) : u <4 vin G[i..j]}. Sort the vertices by I(v) using
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Fig. 1. An example of a single level of recursion for Algorithm 1, with d = 2. Each of the three subfigures
shows two equivalent images of the same graph, with the bottom image displaying the current vertex or-
dering from left to right. Vertices are labeled alphabetically by their initial ordering. Solid arrows represent
satisfied edges (i.e., those edges directed to the right in the vertex-ordered graph) and dashed arrows rep-
resent violated edges (those edges directed to the left). The number over each vertex is either its random
priority (in (a)) or its label (in (b) and (c)).

a stable sort. This is the only place in the algorithm where vertices are reordered and edges may
become satisfied. At this point, vertices with the same label [ are grouped together into contiguous
subarrays, and the groups are sorted by label. Finally, recurse on each group.

Figure 1 illustrates an example of a single level of recursion. In the figure, the distance used
is d = 2. The three subfigures illustrate (Figure 1(a)) the initial graph and vertex ordering,
(Figure 1(b)) the labels assigned to vertices after propagating priorities to a distance of d = 2, and
(Figure 1(c)) the new ordering on vertices and the recursive subproblems. After reordering vertices
here according to label, two previously violated edges, namely, (D, C) and (J, I), become satisfied.
Notice that only some of the edges crossing subproblem boundaries transition from violated to
satisfied, and no edges change from satisfied to violated.

Distance ranges and maximum recursion depth. One component of the analysis (Section 4) is
that the number of d-hop predecessors of v decreases with each level of recursion. This progress
argument, however, is with respect to the specific distance, and it seems difficult to argue anything
about the number of d’-hop predecessors for d’ > d. On the other hand, to argue that edges are
unlikely to be broken, distances need to be selected randomly from K possibilities. To reconcile
these two issues, the range of distances depends on the level of recursion, decreasing with each
level. Moreover, since distances should always be positive, the distance used at recursion depth 0
places a limit on the number of levels of recursion that the algorithm can support.
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Putting these ideas together, we have the following. If a call is made with recursion depth
depth > A, then the algorithm simply returns. Otherwise, the distance d is selected uniformly
at random from the range [dmin, dmax), where dmin = dmax — K and dpax = (A — depth) - K.

3.2 Achieving I/O Efficiency

This section describes how to make REcURTS I/O efficient, all of which is fairly straightforward.
We first describe the implementation with respect to the initial call to RECURTS on the entire graph.
We later describe how to implement the recursion.

Each vertex and edge record is augmented with a constant amount of additional information, so
that the total space of the vertex and edge arrays is still O(V) and O(E), respectively. The standard
technique for transferring information along edges is by performing sorts and scans of the vertex
and edge arrays. These sorts should be viewed as transient, unlike the sort explicitly given in
Algorithm 1 whose goal is to produce the topological sort.

First, tag each vertex v with its index index(v), which can be achieved by a single scan (i.e.,
iterating in order) of the vertex array. Next, tag each edge by the indices of its endpoints. This
edge-tagging step can be accomplished by sorting both the vertex array by vertex ID and sorting
the edge array by the ID of one endpoint. Then, perform simultaneous scans of the vertex array
and edge array, synchronizing the scans on ID, and copying the index of the vertex to the edges
with matching endpoint ID. To store the index of the other endpoint, sort by the other endpoint.
The cost of these steps is ©(sort(V') + sort(E)) for sorting the arrays and O(scan(V) + scan(E)) for
iterating over them. The sort bound dominates.

To assign a permutation of priorities, simply select random numbers in the range 1,2, ..., |V|°
for each vertex, where ¢ > 2 is a constant that controls failure probability. Sort the vertices by
priority and perform a scan to verify that all priorities are distinct. Repeat this process until the
priorities are distinct.

Propagating priorities. The most difficult aspect is implementing the label [(v) = max{p(u) :
u =<4 v}. This is achieved incrementally through a sequence of propagation steps. Initially, set
I(v) = p(v) and perform an update called satisfied-edge propagation. Next, perform d rounds,
each including violated-edge propagation followed by satisfied-edge propagation. There are thus
2d + 1 propagation steps in total.

Before describing how to implement the two types of propagation steps, let us first discuss
the goal of each type of update. Let [(v) and I’(v) denote v’s labels at the start and end, re-
spectively, of a single propagation step (satisfied or violated). The goal of satisfied-edge propa-
gation is to update the label to I'(v) = max{l(u) : u < v}, i.e., propagate the label arbitrarily
far but along satisfied edges only. The goal of violated-edge propagation is to update the label
to I'(v) = max {l(v), max {l(u) : (u,v) € E}}, i.e., propagate the label along a single hop that is
allowed to be violated.

We now argue that the sequence of propagation steps gives each vertex the intended label.

LEMMA 3.2. Afterd + 1 satisfied-edge propagation steps interleaved with d violated-edge propaga-
tion steps, we have [(v) = max {p(u) : u <4 v} forallv € V.

Proor. The proof is by induction on d. The base case is d = 0, meaning that we are considering
the result of the first satisfied-edge propagation. Initially, [(u) = p(u) for allu € V. The propagation
step then updates the labels to I’(v) = max {{(u) : u <o v} = max {p(u) : u < v}, which satisfies
the claim for d = 0.

For the inductive step, assume that [(x) = max {p(u) : u <4-; x} for all x € V after the first
d — 1 rounds, and consider the effect of performing one more round consisting of a violated-edge

ACM Transactions on Algorithms, Vol. 18, No. 1, Article 5. Publication date: January 2022.



1/0O-Efficient Algorithms for Topological Sort and Related Problems 5:9

propagation step followed by a satisfied-edge propagation step. The violated-edge propagation
updates the labels to I’(y) = max {I(x) : (x,y) € E}. By the inductive assumption on [(x), this
reduces to I’(y) = max{p(u) : u <4_1 x, (x,y) € E}. The subsequent satisfied-edge propagation
step updates the labels once more to I”’(v) = max {l'(y) : y <o v}, which when substituting in
U'(y) gives I (v) = max {p(u) : u <4-1 x, (x,y) € E,y <o v}. Observing that any path containing d
violated hops can be broken down into a path of d — 1 violated hops followed by a single violated
edge followed by a satisfied path, as in the preceding expression, completes the proof. O

Implementing satisfied-edge propagation. The satisfied edges Esq can be identified by scanning
through the edge set and identifying those edges (u, v) with index(u) < index(v). Note that when
V is sorted by index, the graph Gy, = (V, Esq) is topologically sorted, which is important as we
shall apply time-forward processing.

In more detail, performing the update I’(v) = max {I/(u) : u <o v in G} is equivalent to comput-
ing I’(v) = max {l(u) : u < v in Gy} The following is a simple sequential algorithm for comput-
ing the updated label with regard to Gy,;. Consider the vertices v in G4 in topological-sort order;
update v’s label to max {I(v), max {{(u) : (u,v) € Es}}, i.e,, the maximum of its old value and the
value on all immediate predecessors. This local-update rule is exactly the kind that can be imple-
mented I/O-efficiently using time-forward processing [4, 10], assuming G, is topologically sorted.

Time-forward processing. This section describes the algorithm for time-forward processing from
[4, 10]. The algorithm takes as input a DAG with the vertices in topologically sorted order. We
assume the edges are given in a list in no particular order to start. Each vertex v also has a priority
p(v). The goal is to compute f(v) for each vertex where f(v) = max(p(v), f(u)) for each (u,v)
in E, where f(u) is defined recursively. We use an external memory priority queue, which has
amortized cost O(1/Blog,,, 5 N/B) I/Os for insert, delete, and extract min [4].

The vertices are processed in topological order. To process a vertex v, first compute f(v), which
will be described later. Then for each outgoing edge from v, (v, w) € E, insert (v, w) with key w,
i.e., the position of w in topologically sorted order, into the priority queue augmented with f(v).
Notice that each edge is inserted into the priority queue once, and each vertex has an element in
the priority queue for each incoming edge it has. To compute f(v), we must extract min once for
each incoming edge that v has. Then set f(v) to be the maximum of all f(w) augmented to each
incoming edge (w, v), and p(v).

The edges are inserted in topological order of the source vertex. By sorting the edge list by source
vertex, this allows for one scan of the edge list to insert all the edges into the priority queue. The
number of inserts to the priority queue is the number of edges O(E). The number of extract mins
is also the number of edges O(E). In total, this is O(E/Blog,,, 5 E/B) 1/Os.

Implementing violated-edge propagation. This step can be accomplished by sorting and scan-
ning. In particular, first sort the edges (u,v) by index(u) so that all outgoing edges for a par-
ticular vertex u are consecutive. Then scan through the vertices and edges simultaneously, syn-
chronizing on the vertex index. Attach to the edge (u,v) the priority I(u,v) = I[(u). Next,
sort the edges (u,v) by index(v). Now the incoming edges for each vertex v are consecutive.
Finally, scan through the edges and vertices simultaneously, and for each v update I’'(v) =
max {I(v), max {{(u) : (u,v) € E}}.

Implementing the recursion. To slightly simplify the analysis of the I/O cost, it is convenient to
reason about the algorithm as performing the recursion level by level.! That is, do not actually

IThe issue is that there are no bounds on the relative sizes of a problem and its recursive subproblems—a graph that fits
in cache may be partitioned into subgraphs that are much smaller than a block. If considering each recursive subproblem
one at a time, the analysis would have to be careful about the accounting of these small subproblems.
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make multiple recursive calls. Instead, perform the algorithm as described for the entire level at
once. The only additional bookkeeping necessary is to delimit the boundaries between each re-
cursive subproblem in the vertex array. Each level of recursion can then be implemented by first
scanning through the vertex array and tagging each vertex with a subproblem ID (increasing by
one when crossing each subproblem boundary) and similarly tagging the edges with the subprob-
lem IDs of its endpoints. All edges whose endpoints have different subproblems should be ignored
in all steps. Whenever sorting vertices by label or priority, the subproblem ID should also be taken
into account as the most significant feature in the sort. (That is, sort lexicographically by subprob-
lem ID, then label/priority.) The other details are unchanged.

We can now analyze the I/O cost of the recursive algorithm. Assuming a minimum constant size
on the cache is necessary to implement a constant number of synchronized scans in O(scan(N))
I/Os. There are also similar cache-size assumptions in time-forward processing [4] (which are
not highlighted in those theorem statements) that would carry over to this setting. The following
theorem comes from Theorem 3 and Section 4.1 in [4].

THEOREM 3.3 (FrROM [4]). There exists a constant § such that if there is a cache with at least 6
blocks, then given a DAG in topologically sorted order, time-forward processing can be performed in
O(sort(E)) I/Os.

LEMMA 3.4. There exists a constant § such that the following holds: if the cache contains at least
& blocks, then a single execution of RECURTS has I/O cost O(KA2sort(E)), with high probability. The
K > 1 and A > 1 here are the global parameters of the algorithm.

Proor. Each of the A levels of recursion performs d rounds of label propagation, where d is at
most AK. Each round of label propagation can be implemented in O(sort(E)) I/Os. All other steps of
the algorithm can also be accomplished in a constant number of scans and sorts, except assigning
priorities performs a single attempt with high probability. (The failure probability depends on the
range of priorities.) The cost of each level of the A levels of recursion is thus O(KAsort(E)). O

4 TOPOLOGICAL SORT ANALYSIS

The section analyzes the topological-sort algorithm given in Section 3. The goal is to show that,
with high probability, the main algorithm completes after O(log V) executions of RECURTS. The
key component toward achieving this goal is to show that in each execution, each violated edge
has a constant probability of becoming satisfied. The bulk of this section is devoted to proving this
claim. Given the claim, it is simple to show that O(log V) executions suffice.

Consider any violated edge (u,v) and an execution of RECURTS. The most important point of
the execution is the moment, if any, that u and v receive different priorities and are hence placed
in different recursive subproblems. This step is the only time during the execution that the relative
order of u and v may change. If u is ordered before v, then the edge becomes satisfied. If u remains
ordered after v, however, then the edge (u,v) cannot become satisfied for the remainder of the
execution (i.e., until the next execution of RECURTS.) The following definition captures this bad
outcome:

Definition 4.1. An edge (u,v) is broken if (i) index(v) < index(u), ie., v precedes u in the
ordering of vertices, and (ii) u and v are in different recursive subproblems.

In Figure 1(c), the broken edges are (L, F), (I, H), (O, A), and (O, N).

As outlined in Section 1.3.1, our analysis consists of two main components. First, we argue that,
for large enough K, an edge (u,v) has at most constant probability of becoming broken during
an execution of RECURTS. Second, we argue that for large enough A, the execution is likely to
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terminate with u and v in different subproblems. If u and v are in different subproblems, and the
edge is not broken, then it must be satisfied. The remainder of the section focuses on proving each
of these claims.

Predecessors. Throughout the analysis, it is useful to refer to the set of predecessors of a partic-
ular vertex. Let G = (V,E) be a graph, let v € V be a vertex in the graph, and let d be a distance.
We define the d-hop predecessors of v, denoted by A(G, v, d), as A(G,v,d) = {x : x <4 v in G}.

4.1 Bounding the Probability of an Edge Becoming Broken

We argue that in any level of recursion, a particular violated edge (u,v) has probability at most
O(log V/K) of becoming broken. Taking a union bound across all A levels of recursion gives a
probability of at most O(Alog V/K) that the edge becomes broken across the entire execution of
RECURTS. Setting K = Q(AlogV) and tuning constants appropriately, the probability that (u, v)
becomes broken is upper bounded by a constant.

We begin by considering how an edge can become broken. The following lemma implies that
an edge (u, v) can become broken only if u’s highest-priority d-hop predecessor is located exactly
d violated hops away.

LEMMA 4.2. Consider a call RECURTS(G, i, j, depth). Let G’ = G[i . . j] denote the induced subgraph,
let (u,v) be an edge in G’, and let d be the random distance chosen. Finally, let x denote the vertex in
A(G’,u,d) with the highest priority p(x). If x € A(G’,u,d — 1), then l(u) < I(v).

Proor. Suppose x € A(G’,u,d — 1). Then we have x <41 u and u <y v, giving x <y 0. It
follows that I(v) > p(x). Moreover, since x is the vertex with highest priority among u’s d-hop

predecessors, I[(u) = p(x). We thus have [(v) > p(x) = [(u). O

We next bound the probability that an edge (u,v) becomes broken in a particular recursive
call. Consider the random process as follows. First choose a random distance. Then identify which
vertex, from among the d-hop predecessors, has highest priority. Specifically, determine if the
highest-priority predecessor is also a (d — 1)-hop predecessor; if so, by the previous lemma the
edge does not break. The probability of the edge breaking thus depends on the relative sizes of
the A(G’,u,d) and A(G’,u,d — 1). The main idea is therefore to characterize distances by relative
neighborhood sizes.

The argument is roughly as follows, but the following lemma provides a tighter bound. A dis-
tance d is “bad” if at least a 1/ log V-fraction of the d-hop predecessors are at distance exactly d, i.e.,
not also (d — 1)-hop predecessors. If a bad distance is selected, the probability of the edge breaking
may be high. Fortunately, due to the expansion implied by bad distances, there cannot be too many
bad distances—specifically only O(log? V) of them. If a good distance is selected, the probability
that the edge breaks is at most O(1/log V). Putting these together, the probability that the edge
breaks is O(log? V/K + 1/1log V). The next lemma improves this to O(log V/K) by more carefully
accounting for how bad each distance is.

LEMMA 4.3. Consider a call REcURTS(G, i, j, depth). Let G’ = G[i .. j] denote the induced subgraph
and let (u,v) be a violated edge in G’. Then the probability that the edge becomes broken during this
call is at most 1g(|V])/K.

Proor. Let B denote the event that the edge (u,v) is broken. Let d denote the random dis-
tance chosen, and let x be the vertex in A(G’, u, d) with highest priority. By Lemma 4.2, Pr[ B] <
Pr[x ¢ A(G’,u,d — 1) ], so it suffices to bound the latter.
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For each possible d in [dpin — 1, dmay), let s = |A(G’, u, d)| denote the number of d-hop prede-
cessors of u in G’. Define y; = s4_1/s4 to be the fraction of of «’s d-hop predecessors that are also
(d — 1)-hop predecessors.

Let E4 denote the event that distance d is chosen. Once d is fixed, we trivially have Pr [ B|E; ] <
1 — y4. Since the distance is chosen uniformly at random from K possibilities, we have

Amax—1 Amax—1
Pr(B]= ) (Pr[BIEs]-Pr[Es]) < ) (1-ya)/K.
d=dpin d=dpin

The vertex u is a d-hop predecessor of itself, and at most every vertex is a d-hop predecessor
ofu,so 1 < sg < |V|. We therefore have |V| > sq_ 1 > sq_ —1/Sd-1 = HZZ‘Z‘;i(l/yd). By
monotonicity of the lg function, lg(|V]) > ZZ‘:‘;‘; lg(1/yq). Finally, y4 € (0, 1], and for this range
g(1/ya) > 1 - ya. We therefore have Ig(|V]) > Y51 (1 - ya).

Substituting back for the probability of B, we have

dmax—1
mzax: Ig(IV1)
Pr[B]SI_(d_d_(l_yd)ST' O

4.2 Bounding the Probability that An Edge Crosses Subproblems

The second key component of the analysis is to argue that at the end of an execution, the edge
(u, v) is likely to cross subproblem boundaries. To achieve this goal, we argue that with each level
of recursion, v is likely to lose a constant fraction of its nearby predecessors. Thus, with Q(log V)
levels of recursion, it is very likely that v has no predecessors. If v has no predecessors, then u
must be in a different subproblem.

Definitions. More formally, consider the calls RECURTS(G, i, j, £) arising during the execution of
the recursive algorithm, where ¢ here denotes level or depth of the recursion. If v € G [i. . j], we
call G = G [i..j] the level- graph of v. Notice that v belongs to at most one subproblem at
each level of recursion. If v does not belong to any level-¢ subproblems (i.e., if the base case was
reached early), then G, is the empty graph. Thus, v has a corresponding sequence G%, G}, ..., G2
of level-0, 1, ..., A graphs, where G° 2 G,IJ 22 Gﬁ.

For this subsection, the important feature is the number of nearby, proper predecessors v has
at each level of recursion. A vertex x is a level-( active predecessor of vif x # vand x <4 v

in Gf;, where dpax = K(A — £) is the maximum distance for this level of recursion. Notice that v is
not an active predecessor of itself.

Reducing the number of active predecessors. We start with a simple observation, captured by the
first lemma: no new relationships are created between vertices as the algorithm recurses. Thus, we
need not worry about the set of active predecessors growing—the only challenge is to show that
a significant fraction of the predecessors are likely to be knocked out.

LEMMA 4.4. Consider any vertex v and its level-(€ — 1) and level-(£) subgraphs G5 and G,
respectively. For any vertex x and distance d, if x £4 v in G5!, then x £4 v in G,

Proor. At first glance, this statement sounds obvious given that edges are never created. There
is, however, one concern—satisfying edges can decrease distances between vertices. Since the rel-
ative order of vertices only changes when those vertices are placed in different recursive subprob-
lems, an edge can only be satisfied in G/, if it is already satisfied in G O

ACM Transactions on Algorithms, Vol. 18, No. 1, Article 5. Publication date: January 2022.



1/0O-Efficient Algorithms for Topological Sort and Related Problems 5:13

We are now ready to argue that the number of active predecessors is likely to decrease at each
level of recursion. This proof leverages only the random priorities—the fact that distances are
chosen randomly is not important. The proof (notably the second claim therein) lifts some ideas
from [16, Lemma 3.4].

LEMMA 4.5. Consider any vertex v and level { of recursion. Let & and a’ denote the number of
level-€ and level-(€ + 1), respectively, active predecessors of v. ThenPr[a’ < (3/4)a] = 1/3.

Proor. If ¢ = 0, the claim is trivial. Otherwise, consider the level-¢ call to RECURTS on graph
G!. Let d be the distance selected (which need not be random for the purpose of the proof). Let
Ag = A(GY,v,d)\ {v} denote the set of d-hop predecessors of v in G, excluding v itself, and
let ay = |Ag4|. Notice by Lemma 4.4 and the decreasing distance ranges, the level-(¢ + 1) active
predecessors are a subset of A;. Moreover, Ay is a subset of the level-¢ active predecessors. It is
thus sufficient to argue that with probability at least 1/3, at most 3a;/4 < 3a/4 of the vertices in
Ay are also in G5,

Let x be a random variable denoting the highest-priority vertex in Az U {v}. For any other vertex
y € Ay, we say that x knocks out y if x £; y. The remainder of the proof amounts to proving the
following two claims: (1) If x knocks out y, then y ¢ G4, and (2) with probability at least 1/3, x
knocks out at least a;/4 vertices from Ag.

Claim 1. Recall that x is the highest-priority vertex from A; U {v}. Thus, v inherits the label
l(v) = p(x), which defines its subproblem. If x Z; y, then I(y) # p(x), and y is in a different
subproblem from v.

Claim 2. Because the graph is acyclic, for any pair x # y of vertices, at least one of the following
must be true: x £; y or y £4 x. Moreover, for all y € Ay, y <4 v by definition, so v £4 y. Thus,
the total number of pairs x € A; U {v} and y # x € Ay for which x knocks out y must be at
least (“zd) +ag = ag(ag + 1)/2. Because x is selected from ay + 1 choices, the expected number
of vertices knocked out by x is at least az/2. By Markov’s inequality, the probability that at least
(3/4)ay vertices are not knocked out is therefore at most 2/3. O

Lemma 4.5 indicates that with each level of recursion, the number of active predecessors is likely
to decrease by a constant factor. The following lemma says that after enough levels of recursion, v
is likely to have no remaining active predecessors. The implication is that all of its incoming edges
cross subproblem boundaries.

LEmMA 4.6. Consider any vertex v and a complete execution of the recursive algorithm. With prob-
ability at least 1 — 81g |V| /A, v has no active predecessors at the A-th level of recursion.

Proor. Let X; be a random variable denoting the number of levels ¢ for which the number of
active predecessors of v falls in the range [(3/4)/*?, (3/4)7) - |V|, for integer j. When j > log, /5 VI,
the high end of the range is strictly less than 1/ |V| - |[V| = 1, meaning that v has no active prede-
cessors remaining. Let X = ), j<log, 5V X;. If X < A, then at or before the A-th level of recursion,
v has no active predecessors. Our goal is thus to argue that this event is likely to occur.

Lemma 4.5 implies that the number of rounds necessary to get a (3/4) reduction is at most
three in expectation. Thus, E[X;] < E[X;|X; > 1] < 3. By linearity of expectation, E[X] <

3log,5(1V]) < 81g(IV]). By Markov’s inequality, Pr [ X > 1] < 81g(IV])/(4). O

4.3 Edges are Likely to Become Satisfied

Thus far, we have argued that edges are unlikely to become broken at any particular level of
recursion, and that edges are likely to cross subproblem boundaries by the time the recursive
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algorithm terminates. This section combines those pieces to conclude that in a single execution of
the recursive algorithm, a violated edge is likely to become satisfied.

Before getting to the main claim, we first observe that satisfied edges stay satisfied. This fact is
important both to argue that a violated edge is likely to become satisfied in a single execution, and
to argue that multiple executions lead to monotonic progress.

LEMMA 4.7. Consider an execution of the recursive algorithm REcURTS. If an edge (u, v) is satisfied
at the {-th level of recursion, then it is satisfied at all subsequent levels of recursion.

Proor. Proof by induction on the level of recursion. Consider the call at the ¢th level of recur-
sion, and suppose that the edge (u, v) is satisfied at the start of the call. The goal is to show that it
remains satisfied in the next recursive subproblem. Note that if (u, v) is satisfied at the start of the
call, then u < v in the current graph. Let [(u) be the final label on vertex u, and let x be the vertex
such that I(u) = p(x). Then x <4 u, which coupled with u <y v implies that x <4 v. It follows
that [(v) > I(u). If [(v) = I(u), then u and v maintain their current ordering. If I(v) > I(u), then v
is placed in an even later subproblem. Either way, (u, v) remains satisfied. ]

LEMMA 4.8. Let (u,v) be any edge, and consider a complete execution of RECURTS with parameters
A >321gV and K > 4A1gV. If (u, v) is violated initially, then with probability at least 1/2, (u,v)
is satisfied at the end of the execution. If (u, v) is satisfied initially, then with probability 1 it is still
satisfied at the end.

Proor. By Lemma 4.7, a satisfied edge always remains satisfied. The remainder focuses on the
case that (u, v) is initially violated.

Let A be the event that (u, v) is violated at the end of the execution. Let B be the event that the
edge breaks at some level of recursion, and let C be the event that the two endpoints u and v are
in the same level-A subproblem. If neither B nor C occurs, then the edge crosses properly ordered
subproblems and the edge is satisfied. We thus have Pr[A] < Pr[B] + Pr[C] by a union bound.

By Lemma 4.6, Pr[C] < 81gV/A < 1/4 for the specified choice of 1. By Lemma 4.3, the proba-
bility of breaking at any individual level is at most lg V/K. Taking a union bound across 1 levels,
we have Pr[B] < AlgV/K < 1/4 for the specified choice of K. Adding these together gives total
failure probability of at most 1/2. ]

4.4 Bounds on the Main Algorithm

Finally, we analyze the main algorithm, which repeatedly executes RECURTS until the graph is
topologically sorted.

THEOREM 4.9. Let G = (V,E) be any directed acyclic graph, and choose A > 321gV and K >
4)A1g V. Then for any ¢ > 0, with failure probability at most 1/ |V |, the graph is topologically sorted
after at most [(c + 2) 1g V' iterations of the recursive algorithm.

Proor. Consider any initially violated edge (u,v). By Lemma 4.8, each execution of RECURTS
satisfies the edge with probability at least 1/2. Moreover, if the edge is satisfied in any iteration, it
remains satisfied for all subsequent iterations. The probability that the edge is still violated after
[(c + 2) lg V] iterations is therefore at most (1/2)(¢*?1eV = 1/|V|**2, Taking a union bound across
less than |V|? possible edges completes the proof. |

THEOREM 4.10. For any directed acyclic graph G = (V, E), there exist settings of K and A such that
the algorithm topologically sorts the graph in O(sort(E) - log® V') I/Os, with high probability.

PrOOF. From Lemma 3.4, a single execution of RECURTS has I/O cost O(KA? - sort(E)), with
high probability. Theorem 4.9 states that O(log V) executions suffice, with high probability, for
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ALGORITHM 2: Conceptual Algorithm for Strongly Connected Components

1: function SCC(G = (V,E))

2 H = (Vy,Eg), where Vi = V and Ey = E initially
3 repeat until H is topologically sorted
4
5

RecurSCC(H, 1, |V, 0)
Perform contraction step and update H

6: function RECurSCC(H, i, j, depth) > Reorders the subarray Vy[i. . j] of vertices
7: H’' =HI[i..j]

8: if depth > A or i = j then return

9: dmax = (A — depth) - K and dpin = dmax — K

10: Choose d uniformly at random from [dmin, dmax)
11 Choose a uniformly random permutation of priorities {p(v)}
12: For all v, compute f(v) = max {p(u) : u <4 vin H'}
13: For all v, compute b(v) = max {p(w) : v <4 win H'}
14: for each v € Vy[i..j]
—-b(v) if b(v) > f(v) (backward search dominates)
15: l(v) = {=b(v) +1/2 ifb(v) = f(v) (strongly connected)
f() if b(v) < f(v) (forward search dominates)
16: Sort vertices Vy[i . . j] lexicographically by (I(v), index(v))
17: Partition Vy[i..j] into maximal groups [iy, j1], [iz, 2], - -, [ir,j¢] of a single label (i, =
jr—l + 1)
18: forr=1tot
19: if f(Vg[i,]) = b(Vy[i,]) then > do not recurse on strongly connected groups
20: mark the vertices in the group for contraction
21: else RecurSCC(H, iy, jr, depth + 1)

A = 0(logV) and K = ©(AlogV) = O(log? V). Multiplying the O(log V) executions by the cost
per execution gives the theorem. O

5 STRONGLY CONNECTED COMPONENTS

This section describes our algorithm for strongly connected components. Given a graph G = (V, E),
vertices u,v € V are strongly connected if there exist directed paths both from u to v and from
v to u. A strongly connected component is a maximal set of vertices such that every pair of
vertices therein is strongly connected. The condensation H of a graph G is the DAG of strongly
connected components, i.e., the graph formed if each strongly connected component is contracted.
The goal is to identify for each vertex the strongly connected component to which it belongs and
to topologically sort the condensation.

At a high level, the main intent of the algorithm is similar to Algorithm 1—reorder vertices to
satisfy more edges. But it would, of course, be impossible to simultaneously satisfy all edges on
a cycle. Our algorithm for strongly connected components therefore performs a little extra work
to identify strongly connected vertices, notably those falling on short cycles, and contracts them
into a single supervertex. The graph is thus gradually transformed into its condensation; with each
iteration, the number of violated edges may reduce both by removing contracted edges from the
graph and by reordering any remaining supervertices.
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Aside from the contraction, component maintenance, and extra bookkeeping, the main differ-
ence between the algorithms for topological sort and strongly connected components is that the
former propagates priorities in only the forward direction, whereas the latter propagates priorities
both forwards and backwards. This two-directional propagation facilitates the discovery of cycles.

5.1 Algorithm

Algorithm 2 presents a conceptual version of the algorithm for topologically sorting the conden-
sation H of the graph G = (V,E). Section 5.2 provides implementation details for mapping this
algorithm to the I/O model.

The algorithm maintains three types of information: (1) a mapping from vertices in the original
graph to (partial) components, where each partial component is a subset of vertices in a strongly
connected component; (2) a graph H = (Vi, Eg) on the partial components, corresponding to the
graph formed by contracting each partial component in G; and (3) an ordering of the vertices Vg
in the component graph. As the algorithm progresses, components are merged together through
contraction steps. When the algorithm terminates, H is the condensation, and the vertex ordering
represents a topological sort of the condensation.

As before, the top-level algorithm consists of multiple iterations. But now each iteration con-
sists of not only an execution of RECURSCC, but also a contraction step following the execution.
Each execution of REcURSCC is analogous to RECURTS, except that some vertices are flagged for
contraction. Specifically, the output of RECURSCC is an updated ordering of the vertices Vy in the
component graph H as before, but unlike RECURTS some contiguous sets of vertices are flagged
for contraction. Any initially satisfied edges between unflagged vertices remain satisfied, as before,
and ideally some violated edges become satisfied. During the contraction step, sets of vertices iden-
tified as being strongly connected are contracted, removing any edges between them.

The Recursive Subroutine

The recursive subroutine RECURSCC is parameterized by global values A and K, denoting the max-
imum recursion depth and range of distances to choose from, respectively. RECURSCC takes as
input an induced subgraph H[i . . j] of the graph on partial components, and the current recursion
depth depth.

ReCURSCC proceeds as follows. Much of the algorithm is similar to RECURTS of Section 3. Firstly,
check if the recursion depth is exceeded (i.e., depth > A), and if so simply return. Otherwise, choose
a distance d uniformly at random from the range [dmin, dmax), Where diin = dmax—K. As in Section 3,
the offset for the range is chosen according to the recursion depth, with dp.,x = (1 — depth) - K.

Next, assign a uniformly random permutation of priorities p(v) to each vertex. Unlike RECURTS,
RECURSCC propagates the priorities in both the forward direction and the backward direction.
Specifically, define f(v) = max {p(u) : u <4 v} and b(v) = max {p(w) : v <4 w}. Assign a label
[(v) to each vertex v based on the results of the forward and backward searches. There are three
cases. If the priority from the forward search dominates, i.e., f(v) > b(v), then I[(v) = f(v) as in
ReCURTS. If the priority from the backward search dominates, i.e., b(v) > f(v), then I(v) = —b(v).
These two cases are symmetric—vertices dominated by larger priorities in the forward direction are
pushed later in the ordering, and vertices dominated by larger priorities in the backward direction
are pushed earlier in the ordering. The third case is if the priorities are equal in both directions. In
this case, set [(v) = —b(v) + 1/2.

Finally, sort the vertices by I(v), with ties broken according to the current ordering. After sorting,
partition the vertices into groups of vertices having the same label, as in RECURTS. Recurse on those
groups with integer labels, i.e., f (v) # b(v). The groups with non-integer labels are instead flagged
for contraction.
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Note that the specific choice of label —b(v) + 1/2 for the third case is not particularly important.
The only truly important aspect is that —b(v) < I(v) < f(v) to ensure that satisfied edges remain
satisfied. In fact, the ordering across groups of vertices that fall in this third case, for different
priorities, does not matter. It is, however, easier to implement the subsequent contraction if each
such group of vertices is contiguous. To achieve that, we include the dominating priority in the
label, e.g., choosing [(v) = —b(v) + 1/2; many other choices would also suffice.

The main theorem, proved in Section 5.4, is the following.

THEOREM 5.1. Let G = (V,E) be any directed graph. There exist settings of constants c¢; and c;
such that for A > ¢11gV and K > cy;A1g V, the following holds. For any ¢ > 0, with failure probability
at most 1/V¢, the algorithm terminates within [(c + 2) g V'] iterations of the main loop.

5.2 1/O-Efficient Details

This section provides details on making the algorithm I/O efficient. The original vertices of graph
G are stored in an array V. A second array Vg stores the vertices of graph H. Each vertex in
H corresponds to a partial component in G that has been contracted, identified by the ID of a
representative vertex. The edges between components are stored in an array Ep, with each edge
storing the component IDs of its endpoints.

All vertex records u € V for the original graph are tagged with the ID c(u) of their component’s
representative, which corresponds to the ID of a vertex in V. For convenience, the vertex records
v € Vy are also tagged with c(v). Initially, c(u) = u for allu € V, and Vi = V. In general, between
iterations, c(v) = vifand only if v € Vi;. When the algorithm terminates, the vertices representing
each strongly connected component are topologically ordered in Vy, and for each vertex u € V,
c(u) specifies the representative of u’s strongly connected component.

The details for the recursive algorithm are similar to those for RECURTS in Section 3.2. There
are minor differences in that the priorities must be propagated in two directions, now computing
b(v) in addition to the f(v) already computed in RECURTS. But steps for b(v) are symmetric, i.e.,
operating on the transpose graph, which can be computed in O(sort(E)) 1/Os.

The only significant difference is implementing the main loop, namely, in the contraction step.

Contraction. By design, when RECURSCC returns, groups of vertices that are to be contracted
are contiguous in the vertex array V. When a group is flagged for contraction, the boundaries of
the group should also be marked.

The first step of the contraction is to update c(v) for all vertices v € Vi to be contracted. Specif-
ically, the first vertex x (in array order) in each group is the representative for the group. All other
vertices in the group update c¢(u) = x. This step can be accomplished by a scan of the array V.

The next step is to update the components for vertices stored in V. Specifically, each vertex u € V
has some component ID c¢(u) = v, where v € V. The goal is to update c¢(u) = c(v). To do so, sort
V by component IDs c(u) and sort Vi by vertex IDs v. Thus, both V and Vi are sorted according to
their original components. Moreover, the vertices v € Vi already know their new component c(v).
Next, perform synchronized scans of V and Vy, and for each vertex u € V, update c(u) = c(v).

Any vertices in V with ¢(v) # v can now be removed from V. This step can be accomplished
with a scan. At this point, all vertices have the correct component IDs, and only representatives
are stored in V.

The final step is to update the edges Ep. Specifically, any edge (u,v) should be updated to
reflect the component IDs of its endpoints, i.e., (c(u), c(v)). To do so, sort V by ID, and sort the
edges (u,v) € Eg by the ID of u. Next, perform synchronized scans of Ey and V, updating u to
c(u) for each edge (u,v). Then sort the edges by the ID of the other endpoint v and perform a
similar update. Finally, self-loops can be removed by scanning through all the edges one last time
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and checking for any edges of the form (u, u). Optionally, duplicate edges can also be removed by
sorting the edges one last time (by both endpoints) and scanning through to remove duplicates.

5.3 1/0 Complexity of Strongly Connected Components

Assuming Theorem 5.1, we now bound the I/O cost of the algorithm.

LEMMA 5.2. A single execution of RECURSCC has I/O cost O(KA?sort(E)) I/Os, with high probability.

Proor. Proof is identical to the proof of Lemma 3.4, except that the specific constants change
because priorities must be propagated in two directions. ]

THEOREM 5.3. For any directed graph G = (V,E), there exist settings of K and A such that the
algorithm topologically sorts the condensation of the graph in O(sort(E) - log® V) I/Os, with high
probability.

PrOOF. Theorem 5.1 states that for A = @(log V) and K = ®(A?log V), after O(log V) executions
of RECURSCC, the algorithm is successful with high probability. From Lemma 5.2, the cost of each
execution of RECURSCC is O(KA?sort(E)). The cost of each contraction step is O(sort(E)), which
is dominated by the cost of executing the recursive algorithm. Therefore the total I/O cost of the
full algorithm is O(sort(E) - log® V). ]

5.4 Strongly Connected Components Analysis

The goal of this section is to prove Theorem 5.1, i.e., that O(log V) executions of the main loop
suffice, with high probability. The analysis follows a similar structure to the analysis of topologi-
cal sort in Section 4. The main goal is to show that any violated edge (u,v) € Egy has a constant
probability of either becoming satisfied in an execution of RECURSCC or being contracted away
thereafter. Since any cycle in the graph must have at least one violated edge, satisfying all re-
maining edges implies that all cycles have been contracted, and the condensation of the graph is
topologically sorted. Given that claim, it is easy to show that O(log V) iterations suffice.

As before, the analysis consists of two main components applied to graph H. A minor difference
is that groups of vertices to be contracted are technically not part of a recursive subproblem. Insofar
as definitions are concerned (e.g., being broken), when we say “subproblem” we mean each group
of vertices produced by the partitioning step in the algorithm, either corresponding to a group to
be contracted or a recursive call.

The first component of the analysis is to show that an edge is unlikely to break. This component
is largely similar to the corresponding component in Section 4, except that edges may break due
to searches in either direction. Note that, conveniently, edges within a group to be contracted are
never broken as these edges do not cross subproblem boundaries.

The goal of the second component is now to show that for any edge (u,v) € Ep, the execution
of REcURSCC is likely to end either with u and v in different subproblems, or with u and v marked
for contraction with each other. If the edge is not broken, and u and v are in different subproblems,
then the edge becomes satisfied. If u and v are contracted, then the edge is removed from the graph
entirely because the contraction step removes self-loops.

Successors. The main differences in the analysis arise from the fact that priorities are propa-
gated in two directions. It is thus no longer sufficient to focus just on the d-hop predecessors. We
must also consider the successors. We define the d-hop successors of v, denoted by D(G, v, d), as
D(G,v,d) = {x : v <4 x in G}.

The presence of backward propagation impacts that analysis in various places, most of which
are minor. The most difficult is in arguing progress with respect to the number of nearby vertices.
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Rather than argue progress on just the number of nearby (active) predecessors, Lemma 5.8 argues
progress on both nearby predecessors and successors.

5.4.1 Bounding the Probability of an Edge Becoming Broken. The following lemmas are analo-
gous to Lemmas 4.2 and 4.3. Notably, an edge cannot be broken unless either its d-hop predecessor
or successor is exactly d hops away, which is unlikely to occur.

LEmMMA 5.4. Consider call RecurRSCC(H, i, j, depth). Let H' = H[i .. j] denote the induced subgraph,
let (u,v) be an edge in G’, and let d be the random distance chosen. Let x denote the vertex with highest
priority in the set A(H ,u,d). If x € A(H',u,d — 1), then f(u) < f(v). Similarly, let y denote the
vertex with highest priority in the set D(H',v,d). Ify € D(H’,v,d — 1), then b(v) < b(u).

Proor. Suppose x € A(H’,u,d — 1). Then we have x <;_; u and u <; v, giving x <4 0. It
follows that f(v) > p(x). Moreover, since x has the highest priority among u’s d-hop predecessors,
f(u) = p(x). We thus have f(v) > p(x) = f(u).

Suppose y € D(H’,v,d — 1). Then we have u <; v and v <4_; y, giving u <4 y. It follows that
b(u) = p(y). Moreover, since y has the highest priority among v’s d-hop predecessors, b(v) = p(y).
We thus have b(u) > p(y) = b(v). O

LEmMA 5.5. Consider call REcurRSCC(H, i, j, depth). Let H' = G[i . . j] denote the induced subgraph
and let (u, v) be a violated edge in H'. Then, the probability that the edge becomes broken during this
call is at most 21g(|V|)/K.

Proor. The violated edge (u,v) becomes broken if and only if I(u) > [(v), in which case v is
ordered before u, and u and v are placed into different subproblems. We have I(u) > [(v) only
if f(u) > f(v) or b(v) > b(u). The probability that f(u) > f(v) is the same as the proof of
Lemma 4.3, but this time using Lemma 5.4. The case that b(v) > b(u) is symmetric, which gives
the total probability of (u, v) becoming broken during this call to be 21g(|V])/K. O

5.4.2 Bounding the Probability that An Edge Crosses Subproblems. The analysis here is analo-
gous to Section 4.2. The main difference is that here we consider the number of active vertices in
both directions, not just predecessors. For this section, we adopt the same notion of level-¢ graphs
as in Section 4.2, except applied to the contracted graph H instead of the original graph G. Note
that H! is the empty graph if v is no longer part of a recursive subproblem, which can now also
occur if v is marked for contraction before the ¢-th level of recursion.

This first lemma says that vertices do not get closer together, i.e., no new relationships are
created, when recursing. Consequently, it is sufficient to argue that a constant fraction of related
vertices are likely to be knocked out.

LEMMA 5.6. Consider any vertex v and its level-({ — 1) and level-(£) subgraphs HS™! and HY,
respectively. For any vertex x and distance d, if x #4 v in H.™}, then x £4 v in H. Similarly, if
v £q4 x inH.™, thenv £4 x in H..

Proor. The distances in the graph can only decrease if edges become satisfied, new edges are
incorporated, or if vertices are contracted. None of these occurs within the scope of recursive
subproblems—the relative ordering within each subproblem is unchanged, and contraction only
occurs between iterations. O

The remainder of the section focuses on the number of active vertices, except we now consider
both predecessors and successors.
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Definition 5.7. A vertex x is a level- active successor of v if x # v and v <4 x in HY,
where di.x = K(A — £) is the maximum distance for this level of recursion. Notice this definition
is symmetric to the level-£ active predecessors of v and similarly, v is not an active successor of
itself.

Consider any edge (u, v) that is violated at the start of the recursive algorithm. Observe that if
v has no level-¢ active predecessors, then either (u, v) falls within a group marked for contraction,
or (u,v) crosses a subproblem boundary.

The analysis differs here from topological sort because the subproblem derives from both prede-
cessors and successors. In particular, the label [(v), for a vertex v, is based on whether the forwards
or backwards search dominates. Our claim here is that the sum of the number of active predeces-
sors and active successors decreases by a constant factor in each level of recursion with constant
probability.

LEmMMA 5.8. Consider any vertex v and level € of recursion. Let A and A’ be the set of level-C and
level-(€ + 1), respectively, active predecessors of v. Let D and D’ be the set of level-C and level-(€ + 1),
respectively, active successors of v. Letn = |AU D|, andn’ = |A’ UD’|. ThenPr [’ < (7/8)n] = 1/6.

Proor. Consider the level-¢ call to RECURSCC on graph H. Let d be the distance selected. Let
Ay = A(HL,v,d)\ (v} be the set of d-hop predecessors of v in H!, excluding v itself, and let
ag = |Aql. Similarly, let Dy = D(HY, v,d)\ {v} be v’s d-hop successors. Let ry = |Ag U Dy| be the
total number of d-hop related vertices, in both directions, excluding v. For the remainder of the
proof, assume without loss of generality (by symmetry) that |A4| > |Dy|, and hence ag > rq/2.

Since d < dyax, we have A; € Aand Dy C D and hence ry < 1. By Lemma 5.6 and the fact
that distances decrease with each level of recursion, A” € A; and D’ C Dy. It suffices to show
that, with probability at least 1/6, at least ayz/4 of the vertices in A, are not in Hf;“. Assuming this
outcome occurs, we have ' = |[A’UD’| < [AgUDy| —ag/4 =rqg —aq/4 < (7/8)rg < (7/8)n as
desired.

Let x be a random variable denoting the vertex in A; U Dy U {v} with highest priority. Consider
the random process as follows: first toss a weighted coin to determine if x is in Ay U {v} or Dg\Ay,
then select a vertex uniformly at random from the appropriate set. Since |A4| > |Dy4|, the former
occurs with probability at least 1/2. The remainder of the proof thus conditions on the assumption
that x € Ay U {v}, with the final success probability multiplied by 1/2.

The remainder of the proof is similar in setup to Lemma 4.5, but the knocks-out relation and
specific cases are more complicated. We say that x knocks out y if x £; y or if both x <5 y
and y <4 x. Once more, it suffices to prove the following two claims: (1) If x knocks out y, then
yé Hfj“, and (2) with probability at least 1/3, x knocks out at least a,4/4 vertices from Ay.

Claim 1. We start by noting that by assumptions on choice of x, f(v) = p(x). Moreover, since
p(x) is the highest priority v observes in either direction, b(v) < p(x). A necessary condition for
y € H ' is thus that f(y) = p(x) and b(y) < p(x). If b(y) = f(y) = p(x), however, then y is
marked for contraction and not part of H.™'. So y € H/*! also requires b(y) < p(x).

By definition, if x knocks out y, then either x £; y, or both x <; y and y <4 x. If x £4 y, then
f(y) # p(x), implying that y ¢ H*! as discussed above. Suppose instead that x <4 y and y <4 x.
Then f(y) > p(x) and b(y) > p(x). Again, this implies that y ¢ H.*! because b(y) £ p(x).

Claim 2. If x £4 y, then x knocks out y; likewise if y £4 x, then y knocks out x. If x <4 y and
Yy =<4 x, then x and y knock out each other. Therefore, either x knocks out y, y knocks out x, or
both. Moreover, x = v knocks out every vertex as in this case f(v) = b(v) = p(v), and hence H.*!
is the empty graph. The total number of pairs x € Ay U v and (y # x) € Ay for which x knocks
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out y is at least (“2‘1) +ag = aq(ag + 1)/2. The rest of the claim is the same as Lemma 4.5, which
completes the proof. O

The preceding lemma indicates that each level of recursion is likely to reduce the total number
of active vertices by a constant factor. The following lemma applies this lemma across A levels
of recursion to conclude that v is likely to be in its own subproblem, or marked for contraction,
before the recursion bottoms out.

LEMMA 5.9. Consider any vertex v and a complete execution of the recursive algorithm. With prob-
ability at least 1-321g |V'| /A, v has no active predecessors at the A-th level of recursion.

Proor. Let X; be a random variable denoting the number of levels ¢ for which the number of
active predecessors and active successors of v falls in the range [(7/8)/*!, (7/8)/) - |V, for integer j.
When j > logg,; [V, the high end of the range is strictly less than 1/ [V| - |[V] = 1, meaning that v
has no active predecessors or active successors remaining. Let X = }, j<logy; IV X;. If X < A, then
at or before the the A-th level of recursion, v has no active predecessors. Our goal is thus to argue
that this event is likely to occur. Lemma 5.8 says that the number of rounds necessary to get a (7/8)
reduction is at most six in expectation. Thus, E[X;] < E[X||X; > 1] < 6. By linearity of expectation,

E[X] < 6logg;(IV]) < 321g(IV]). By Markov’s inequality, Pr [ X > A] < 321g(|V[)/(A). O

5.4.3 Edges are Likely to Become Satisfied. We have argued that in each execution of the re-
cursive algorithm, a particular edge (u,v) is unlikely to become broken, and moreover that v is
likely to either be in its own subproblem or marked for contraction. The implication is that if both
favorable outcomes occur, the edge (u, v) either crosses subproblem boundaries and becomes sat-
isfied, or both u and v are contracted with each other and the edge disappears. Completing this
argument again requires monotonic progress on satisfied edges. The following lemma says that
satisfied edges never become violated later.

LEmMMA 5.10. Consider an execution of the recursive algorithm RECURSCC. If an edge (u,v) is sat-
isfied at the {-th level of recursion, then it remains satisfied at all subsequent levels of recursion.

Proor. Proof by induction on the level of recursion. Consider the call at the £-th level of re-
cursion, and suppose that the edge (u, v) is satisfied at the start of the call. The goal is to show
that it remains satisfied in the next recursive subproblem. Note that once u and v fall in different
subproblems (or the same subproblem marked for contraction), their relative order never changes.

We first claim that if I[(v) > [(u) and u and v are in the same subproblem, then (u, v) remains
satisfied at the next level of recursion. To see that, if [(v) > I(u), then sorting by label keeps the
edge satisfied. If [(v) = [(u) but (u, v) is satisfied initially, then index(v) > index(u). Thus, breaking
ties by index keeps the edge satisfied. The remainder of the proof thus focuses on showing that
I(v) = I(u).

Since (u,v) is satisfied, u <y v. More importantly, for all x, x <4 u implies x <; v. Similarly,
v <4 x implies u <y x. It follows that

f(u) £ f(v) and b(u) > b(v). (1)
To show [(v) > I(u), we consider several cases.
Case 1: f(u) > b(u). Then I(u) = f(u). We have f(v) > f(u) > b(u) > b(v), where the first and

last inequality follow Equation (1) and the middle one is by assumption. Both vertices are assigned

their forwards label, and f(v) > f(u), implying I(v) > I(u).

Case 2: f(u) = b(u). Then u is assigned label I(u) = —b(u) + 1/2. Similarly to the first case, we
have f(v) > f(u) = b(u) = b(v), implying f(v) > b(v). If f(v) > b(v), then I(v) = f(v), which
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is nonnegative and hence larger than [(u) = —b(u) + 1/2.If f(v) = b(v), then I(v) = —b(v) + 1/2.
Since b(u) > b(v), [(v) = =b(v) + 1/2 > —b(u) + 1/2 = l(u).

Case 3: f(u) < b(u). Then l(u) = =b(u). If f(v) > b(v), then [(v) = f(v) > =b(u) = I(u),
so l(v) > l(u). If f(v) = b(v), then I(v) = —b(v) + 1/2. Since b(u) > b(v) from Equation (1),
—b(v) > —b(u), implying l(v) = =b(v) + 1/2 > —=b(u) = l(u). If f(v) < b(v), then I(v) = —b(v).
Since b(u) > b(v), I(v) = I(u). |

LEMMA 5.11. Let (u,v) be any edge, and consider a complete execution of RECURSCC followed by
the contraction step with parameters A > 1281gV and K > 8A1gV. If (u,v) is violated initially, then
with probability at least 1/2, (u,v) is not violated at the end (either because it is satisfied or removed
from the graph). If (u, v) is not violated initially, then with probability 1 it is also not violated at the
end.

Proor. By Lemma 5.10, a satisfied edge always remains satisfied. It may, however, be removed
from the graph in the contraction step. Nevertheless, it can never become violated. The remainder
instead focuses on the case that an edge (u, v) is initially violated.

Let A be the event that (u, v) is violated at the end of the execution. Let B be the event that the
edge breaks at some level of recursion, and let C be the event that the two endpoints u and v are
in the same level-A subproblem. If neither B nor C occurs, then either the edge crosses properly
ordered subproblems at some level, or u and v are marked for contraction. In either case, (u, v) is
not violated anymore. We thus have Pr[A] < Pr[B] + Pr[C] by a union bound.

By Lemma 5.9, Pr[C] < 32lgV/A < 1/4 for the specified choice of A. By Lemma 5.5, the
probability of breaking at any individual level is at most 21g V/K. Taking a union bound across
A levels, we have Pr[B] < 2A1gV/K < 1/4 for the specified choice of K. Adding these together
gives total failure probability of at most 1/2. O

5.4.4  Bounds on the Main Algorithm.

LEMMA 5.12. Only vertices that are strongly connected are contracted.

Proor. Given vertices u and v that are contracted, we will show that u and v are strongly
connected. Since u and v are contracted, it must be the case that f(u) = b(u) = f(v) = b(v). There
must be some vertex x such that p(x) = f(u). It could be the case that either u or v is vertex x.
Since p(x) = f(u) = b(u) = f(v) = b(v), x <4 u, x <4 v,u <4 x, and v <4 x. Therefore, x is
strongly connected to both u and v, which implies that u and v are strongly connected. O

We next prove Theorem 5.1, which states that the algorithm topologically sorts the condensation
of the graph after [(c + 2) lg V] executions with failure probability at most 1/V°¢, for any ¢ > 0.

Proor oF THEOREM 5.1. By Lemma 5.12, the algorithm never performs any erroneous contrac-
tions. If the algorithm terminates, it must therefore be the case that the graph is topologically
sorted, which is only possible if there are no cycles, i.e., if all strongly connected components have
been contracted.

Lemma 5.10 says that violated edges are never introduced. Moreover, by Lemma 5.11, each vio-
lated edge has a constant probability of being removed or becoming satisfied. The rest of the proof
is the same as Theorem 4.9.

6 CONCLUSIONS

This article has presented the first algorithm for topological sort and related problems that is I/O
efficient even for sparse graphs.

ACM Transactions on Algorithms, Vol. 18, No. 1, Article 5. Publication date: January 2022.



1/0O-Efficient Algorithms for Topological Sort and Related Problems 5:23

The main question remaining is whether the algorithm can be improved to achieve an I/O cost
O(sort(E) - log* V), for x < 5. One of the logarithmic factors arises from the fact that the number
of distances K is large (i.e., K = ©(log? V)). Another arises from the fact that distance ranges do
not overlap at each level of recursion. We suspect that at least one of these logarithmic factors can
be removed, yielding x = 4 or potentially even x = 3. Achieving x < 3, however, seems difficult.
Inherent in the approach are at least two logarithmic factors: the number of iterations and the
number of levels of recursion. Moreover, reducing the number of distances to K = O(1), which
would be necessary to get x < 3, would require some significant new ideas.

Another interesting question is whether randomization is necessary for these problems. Ran-
domization plays a key role in our algorithm, but there may be alternative approaches.
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