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The development and application of nonlinear optical (NLO) microscopy methods in biomedical research has
experienced rapid growth over the past three decades. Despite the compelling power of these methods, optical scat-
tering limits their practical use in biological tissues. This tutorial offers a model-based approach illustrating how
analytical methods from classical electromagnetism can be employed to comprehensively model NLO microscopy
in scattering media. In Part I, we quantitatively model focused beam propagation in non-scattering and scattering
media from the lens to focal volume. In Part II, we model signal generation, radiation, and far-field detection.
Moreover, we detail modeling approaches for major optical microscopy modalities including classical fluorescence,
multi-photon fluorescence, second harmonic generation, and coherent anti-Stokes Raman microscopy. © 2023

Optica Publishing Group
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1. INTRODUCTION

Both deterministic and stochastic approaches have been taken to
model the processes involved in optical microscopy of scattering
media. One class of approaches considers the medium to consist
of randomly distributed scatterers and applies a stochastic model
to simulate electromagnetic beam propagation in the scattering
media [1-4]. Another class of approaches utilizes a 3D Green’s
function with a series of convolutions to calculate forward and
backward scattered fields [5—7]. While such approaches may
provide qualitative agreement with experimental observations,
they are unable to properly quantify field characteristics for spe-
cific scattering configurations. In contrast to these approaches,
the finite difference time domain (FDTD) method has been
successfully used to model the propagation of tightly focused
beams in scattering media for specific scattering configurations
[8—10]. However, FDTD approaches require special techniques
to define optical sources that possess spatially varying intensity
distributions. Moreover, FDTD methods demand significant
computational resources in terms of memory and run time,
which scale with the total volume of the system considered
[10-13].

In this two-part tutorial, we show how existing analytic
electromagnetic techniques can be synthesized into a unified,
comprehensive, modeling framework for nonlinear optical
(NLO) microscopy in scattering media. One of the advan-
tages of the approach presented in these tutorials is that the
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computational cost does not depend on the volume of the com-
putational domain as in FDTD, but rather on the number of
scatterers and number of locations where we compute the field.

This is Part II of the tutorial. In Part I [14], we formulated
the mathematical representation of the incident beam, and
presented several electromagnetic methods to propagate
focused fields from the lens to the focal volume. The proc-
esses discussed in Part I [14] are included in the dotted gray
boxes in Fig. 1. We presented three solutions to propagate focal
fields in non-scattering media based on the Debye—Wolf inte-
gral (DWI), Kirchhoff’s vector integral (KVI) theorem, and
Huygens—Fresnel principle (HFP). To propagate focused fields
in scattering media, we considered the computationally efficient
HEFP solution because the DWT solution [15] is less flexible in
a densely scattering medium, and the KVI solution is compu-
tationally expensive due to partial derivative calculations. We
elucidated the HFP solution and included a step-by-step guide
to calculating scattered fields in the focal volume and limited
our scope to spherical scatterers. Since Part II uses some of the
equations of Part I [14], readers are advised to read it before
proceeding.

In Part II, we determine with high spatial resolution the
electric field distribution proximal to the focal volume, use those
results to compute the induced NLO polarization within the
sample, and describe the subsequent radiation that propagates
into the far field. Each element of the process is considered,
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Basic microscopy system (red dashed box). The processes involved in the dotted gray boxes are discussed in Part I [14] of this tutorial. The
number in front of the process indicates the related sections in this tutorial.

beginning with sampling of the electric field near the focal vol-
ume followed by signal generation within, and radiation from,
the focal volume, and concluding with far-field detection in the
microscope system as shown in Fig. 1. Note that even though
the excitation pulses used in NLO microscopy are broadband,
for the purpose of modeling propagation effects, we maintain a
monochromatic description.

The structure of Part II is as follows: in Section 2, we show
how to calculate the electric field distribution near the focal
volume, and in Section 3, we use these results to compute the
distribution of the resulting induced nonlinear polarization
within the sample. In Section 4, we treat signal radiation from
the focal volume that propagates in the direction of the detector.
In Section 5, we describe a method to display far-field data
and continuous propagation of NLO signals in a 4 f system.
Finally, in Section 6, we provide case studies that illustrate
results obtained at each stage of this process for second har-
monic generation (SHG) and two-photon excitation (TPE)
microscopy.

2. FOCAL SAMPLING

In Parc I [14], we outlined methods to compute the electric field
distribution E(p) (Fig. 1) generated by focused beam propa-
gation in non-scattering and scattering media. The Cartesian
components of E(p) are represented by E.(p), £,(p), and
E.(p), and the origin of the Cartesian coordinate system is
placed at the focal point. Proper sampler placement is critical
to adequately resolve the electric field distribution within the
focal volume. Here, we outline two sampling configurations
that we employ to record the electric field distribution within
the focal volume. These field distributions, in turn, serve as an
input to calculate the subsequent radiation/emission from the
focal volume.

A. Cuboidal Grid Sampler

Accurate determination of the NLO signals generated in the
focal region requires adequate sampling of the field within a
finite volume surrounding the focal point. To accomplish this,
we can define a volumetric grid sampler composed of cuboidal-
shaped voxels. A volumetric grid is a 3D grid of values organized

2=z Az Z'=z+Az

0
2
-4
z=0
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Fig.2. Intensity maps captured with a (a) cuboidal grid sampler and
(b) flat sampler with a circular aperture. Size of the cuboidal volume
is 4 um x 4 pm X 6 pm. Only selected slices and lines are shown
for clarity (not to scale). If a solution from the KVI is considered in
continuous signal propagation in Section 5.B, additional sampling
locations are required at 2 = z — Az and 2 = z + Az to compute the
partial derivatives.

into rows, columns, and depth stacks. Each node of the grid
sampler represents a field collection point as shown in Fig. 2(a).
The computational cost scales linearly with the number of
voxels and is independent of their size. Therefore, for a fixed
volume, the computational cost scales with (1/AR)?, where
AR is the desired voxel resolution.

B. Planar Sampler Perpendicular to the Optical Axis

For microscopy systems with continuous signal propagation,
conservation of energy demands that the total energy passing
through any plane perpendicular to the optical axis remains
constant. To compute the field distribution within the focal
plane, we can consider a sampler plane oriented perpendicular
to the optical axis and intersecting at any desired z location in
the vicinity of the focal point. Such a plane, possessing a fully
open aperture, would capture the complete energy content
of the incident beam. Practically, it is more feasible to capture
the field within a finite region surrounding the focal point. In
this case, we utilize a plane grid sampler in the form of a finite
circular aperture [Fig. 2(b)]. If one intends to use a solution
from the KVI to propagate fields in non-scattering media
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discussed in Section 5.B, two additional parallel plane samplers
at 2 =z— Az and 2 =z + Az will be necessary to obtain
partial derivatives.

3. SIGNAL GENERATION

Once we have obtained the total electrical field distribution
within the focal volume, we are in a position to compute the
generation of any linear or nonlinear signal of interest. In this
section, we outline the approaches we utilize to calculate the
generation of linear and nonlinear signals most frequently
encountered in biological microscopy.

After the focal fields are captured with a cuboidal grid sam-
pler, we can determine the signal generation efficiency at a given
grid location of a voxel. For instance, for conventional fluores-
cence and multi-photon microscopy, we assign a fluorescence
signal generation efficiency (<1) to each grid location. For the
other microscopy techniques in this section, we assign nonlinear
susceptibility tensors to each voxel. The second-order nonlin-
ear susceptibility is a tensor of rank 3, with 27 elements. The
third-order nonlinear susceptibility is a tensor of rank 4, with 81
elements. More information regarding nonlinear susceptibility
tensors can be found in [16-19].

A. Conventional Fluorescence Microscopy and
Multi-Photon Microscopy

In single-photon and muld-photon excitation microscopy,
a fluorescent molecule is excited, after which it radiates as a
harmonically oscillating electric dipole. This radiation occurs
incoherently relative to other radiating dipoles. We formulate
the magnitude of the dipole moment [p(p)| and its excitation
and emission unit vectors (P, P.,,) separately. p., and p_
are the randomly oriented dipole moment unit vectors of the
excitation and emission dipoles, respectively.

To describe the excitation of the molecular dipole, we con-
sider four relevant cases as depicted in Fig. 3. The unit vector of
the polarized excitation electric field at the molecules is given by
E(p)/|E(p)|. Cases I and III consider a molecular structure with
an isotropic polarizability [20,21]. In these cases, the molecular
dipole is driven with the full amplitude of the excitation field,
and the direction of the excited dipole p__always coincides with
the direction of E(p). Cases II and IV describe molecules with
a transition dipole moment directed along a main axis within
the molecule. We may assume a single dipole axis, and thus a
specific direction p__. In these cases, the dipole is excited only by
the component of the electric field parallel to the dipole moment
[20,21].

In general, a randomly oriented dipole moment unit vector
can be expressed as

C0S ¢y sin O
f)ex/em = | singysinfy, |, (1)
cos 0,4,

where p,_ Jem TEPIESENLS either p_ or p,. . Angles ¢4, and 6,4, can
be obtained by randomly sampling the surface of the unit sphere
using the following expressions [22]:
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Fig. 3.  Excitation electric field unit vector E(p)/|E(p)|, dipole

moment unit vector of excited dipole p_, and dipole moment unit
vector of emission dipole p, in cases I-IV.

¢dp =2mné,
0.4, = arccos(2§ — 1), (2

where € is a uniformly distributed random number in the
range [0,1].

In multi-photon microscopy, the magnitude of the driven
dipole moment is proportional to the intensity to the power 2V,
where NV is the order of the multi-photon process. N =1 thus
represents conventional fluorescence microscopy. The dipole
moment |p¥(p)| ofa molecule at point p can now be written as

£, v | nlE())?
|P (p)|_{77|E(p)f’€X|2

Case I and III @)
CaseITand IV,

where 1 represents the signal generation efficiency (<1).
Similarly, we can write the relationship for TPE (N'=2) and
three-photon excitation (N = 3) microscopy as

me, i _ | nlE)*Y Case I and I1I
Ip (p)|_{n|E(p)~f>ex|2N Casellandly. P

Once the molecule is excited with a probability proportional
to the polarization amplitudes of Egs. (3) and (4), the molecule
may radiate through the process of fluorescence. Fluorescence
emission can also be modeled with a radiating dipole model,
albeit that the wavelength of emission differs from that of the
excitation field. For single-photon excitation, the emission
wavelength is longer than the excitation wavelength, whereas
for multi-photon excitation, the emission wavelength is shorter
than the excitation wavelength.

In addition, the dipole axis for the radiating molecule, p,,_,
need not be identical to p_ . If the molecule is fixed on the time
scale of the fluorescence lifetime 7, we may assume that p__ has
a fixed orientation (cases III and IV). However, for fluorescent
probes that freely diffuse through the aqueous phase, the mol-
ecule typically displays orientational motion on the time scale
of 7. This effectively decouples the dipole orientation for exci-
tation and emission, and we may assume that p__ is randomly
oriented (cases I and II) and apply Eq. (1) to find its orientation
[21,23] asshown in Fig. 3.
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B. Second Harmonic Generation

SHG is commonly used to image biological structures that are
non-centrosymmetric, including collagen, microtubules, and
myosin [24]. Second harmonic signals are generated when two
photons of the same frequency w interact with a material pos-
sessing a non-vanishing second-order nonlinear susceptibility.
In such a material, the photons can combine to generate a single
photon at double the optical frequency of the incident photons
(2w or half the wavelength). The nonlinear polarization density
PZSHG (p) generated by the electric field distribution within the
focal volume for SHG can be computed using

P (p) =20 Y Xyr(0) Eon(P) Ewn(p), ()

where/, m, n=xoryorz. Xl(;i’l (p) is the spatial distribution of
the second-order nonlinear susceptibility tensor within the sam-
ple [19]. E, »(p) and E, ,(p) are electric field components
at location p. & is the vacuum permittivity. SHG is a coherent
technique, which means that there is a phase relation between
the molecular dipoles that radiate at 2w in the focal volume.

C. Third Harmonic Generation

Third harmonic generation (THG) is used to image biological
interfaces formed between structures with different (non-
resonant) third-order susceptibilities [25]. Strong THG signals
are obtained from structures such as cell organelles, red or white
blood cells, lipid droplets, adipose tissue, myelinated axons, etc
[26]. In THG, three photons of the same frequency w interact
within a material with a finite third-order susceptibility and gen-
erate a single photon at 3w. The nonlinear polarization density
PITHG (p) generated by the electric field distribution within the
focal volume for THG oscillates at 3w and can be obtained using

PMS(0) =0 D" XjngP) Ewn(P) Eurn(p) Eor g (),

m,n,q
(6)

3) (p) is the spatial distribu-

where /, m, n, ¢ = x or y or z. Xl(mnq
tion of the third-order nonlinear susceptibility tensor within the
sample. Like SHG, THG is a coherent technique.

D. Second-Order Sum-Frequency Generation

Second-order sum-frequency (SFG) is a coherent technique
that uses an excitation field of frequency wjg in the mid-infrared
range to drive infrared-active modes in the sample. A second
probe field of frequency wpg in the visible or near-infrared range
is used to generate an upconverted signal at wir + wpr. SFG
microscopy allows imaging with vibrational spectroscopic con-
trast of biological samples. SFG depends on the second-order
nonlinear susceptibility, and its polarization density is given as

PFC(p) =280 ) xum(P) Ep(p) EXN(p),  (7)

m,n

where E'R(p) are the electric field components of the mid-
infrared beam, and ETR(p) are the electric field components of
the probe beam.
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E. Coherent Anti-Stokes Raman Scattering

Coherent anti-Stokes Raman scattering (CARS) microscopy is
useful for generating images of biological samples with contrast
based on Raman-active molecular vibrations [27]. Among other
applications, CARS is a popular tool for visualizing lipids in
cells and tissues [28,29]. Dual-color CARS uses two excitation
fields, called pump (at frequency wp) and Stokes (at frequency
ws) to drive a Raman-active mode at wp — ws. The CARS signal
derives from the third-order nonlinear susceptibility of the
sample and produces a polarization in the sample that oscillates
at2wp — ws. The CARS polarization density is given as [30]

PSS () =50 ) x4, (0) En(p) EN(0) [ES(0)]", (8)

m,n,q

where [EqS (p)]* is the complex conjugate of the Stokes field. To
compute PARS we first propagate the monochromatic pump
and Stokes fields independently to find the focal fields. We then
take the productin Eq. (8) to determine the polarization density
in focus.

The polarization density expressed in Egs. (5)—(8) can be
written as P(p) = N p(p), where N is the molecular number
density, and p(p) is nonlinearly driven molecular polarization
ordipole moment.

4. SIGNAL RADIATION

For all the nonlinear signals considered in Section 3, we can
apply the dipole radiation equation (DRE) [31] to propagate
the generated signal toward the far field. We consider each node
within our cuboidal grid to radiate as a single dipole.

We can express the radiation emitted by a single dipole
located at p as [31-33]

/6,2
{? x (& x p(p)) — [3%(t - p(p)) — p(p)]
TTE)

B(r) =~

1 i 1 R
x (162|R|2 _W)} [Rj “PUHRD.
9

where Risavector from p tor,, and t is its unit vector. p(p) rep-
resents the molecular polarization or dipole momentat p.

We consider the use of a lens to collect the far-field signal,
which we represent as a spherical reference surface with a focal
length f5. The collector location at the spherical reference sur-
face r, can be expressed as (— f; sin 6, cos @, — f sin 6, sin ¢,,
/2 cos 0,). The azimuthal angle ¢, is measured relative to the
+x axis in the counterclockwise direction, and the polar angle 6,
is defined with respect to the 4z axis.

We consider two categories of signal radiation: incoherent
and coherent. We apply incoherent radiation for techniques
such as conventional fluorescence microscopy and multi-
photon fluorescence microscopy where the dipole phases are
uncorrelated. For all other microscopy techniques discussed in
Section 3, we apply coherent radiation.
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Fig.4. Signal propagation from a cuboidal grid to the spherical ref-
erence surface of the far-field collector.

A. Signal Radiation in Non-scattering Media

We now apply the DRE to model signal radiation from the focal
region to the far field as shown in Fig. 4. For far-field detection, it
can be simplified because |R| 3> 1/4. The resultis that the signal
collected by the spherical reference surface from a single dipole
located at p can be expressed as [20,34,35]

2
— i G xp)] 7 pGERD. (10

ErSC . — —
(r:)|1pp o

where p=p(p) =[px. py. ps]". Superscript “rsc” denotes
“reference surface collection” by the collection lens, and sub-
script 1DP denotes one dipole. The unit vector of |R], t is
given by

Tx (xc —x)/IR|
f7=|7 |=|0c—»/IRI |, (11)
7z (2. — 2)/IR|
where
R =[(e =2+ 0 — P+ G~ 2], (12)

Applying vector identity —fx (X p)=p —£(r-p) in
Eq. (10), we can write the electric field at the collector location
r. from the jthdipoleat p as

2

rsc ~n 1 .
E (rc)|j=m[Pj_rj(rj'P]’)]m exp(ik|R[;), (13)

wheret - p=7,p. +7,py +7:p..

1. Coherent Radiation

In coherent radiation, electric fields are superposed to com-
pute the final electric field at the collector. When we expand
Eq. (13) forall dipoles in volume V, the electric field at r, can be
expressed as

k . n 1 ,
E™(r,) = p— //./; [p —1(r- p)] m exp(ik|R])dV.
(14)
To compute the above integral, we apply Simpson’s 1/3 rule fora
3D volume (Appendix A) as follows:

kZ v px - fx(f : P) W
E() = =D | oy =H(E-p) | B explkIRI)),
0 Jj=1 Pz_rz(r'P) . 7

J
(15)
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where 7, represents all radiating nodes, and j represents the
jth dipole at the cuboidal nodes 72, 7, g. All t components in
the matrix are from node 2, 7, 4. |R| j provides the distance
from (x,,, ¥, z,4) tO I, and all unit vector components in the
matrix should be computed as emanating from 7, 7, g to r..
The coherent intensity can then be expressed as

I () o [E™(x,) 2. (16)

2. Incoherent Radiation

For the case of incoherent radiation, we can disregard electric
field interference and consider intensity contributions from
individual dipoles collected at r,. In the case of a single dipole,
we can use and write the intensity at the collector location r, as

2
Il o [E@l | (17)

When we consider the contribution from all dipoles in volume
V, incoherent intensity is formulated as

e [
V

To calculate the integral above, we apply Simpson’s 1/3 rule fora
3D volume (Appendix A). In the case of multiple random dipole
orientations, the orientationally averaged incoherent intensity
can be expressed as

55 (r) o <Z

v

2
E*(x,)| j’ av. (18)

2
()] | W> (19)

Similar to Eq. (15), v represents the cuboid node , 7, 4. R,
provides the distance from (x,,,, y,,, z,) tor,.

B. Radiation of Signals in Scattering Media

We next discuss the case where scatterers are present in the
volume between the focal volume and the far-field collector.
Note that this section employs equations in Part I and readers
are advised to read Section 5 of Part I [14] before proceeding,.
Consider a scatterer located at Q (x,, 4, 24) as shown in Fig. 5.
We can use the DRE to determine the incident electric field on
the scatterer from a dipole located at p as [8,23,34,30]

EP o
? = e {? x (£ x p(p) = [3E(E - p(p)) — p(p)]

Sl QELERENLE | BRI
PIRE FR]) | R PR

(20)
where |R| is the distance from p to Q, and the unit vector ris
. f x (x; —x)/IR|
B =5 | = Gs-/R | 21
75 (z; —2)/IR|

The unit vector t represents the propagation direction, 6. We
can find the 6 and ¢ angles of the propagation vector as
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Fig. 5.  Signal propagation from a cuboidal node to the far-field

spherical reference surface in a scattering medium.

6 = arccos (rz),

¢ = arctan (;—y> . (22)

To apply Eq. (63) in Part I [14] for calculating the scattered
fields, we first cast the electric field in terms of parallel and per-
pendicular components. In the far zone, the electric field lies in a
plane perpendicular to t. We can define unit vectors m? and n’
thatare perpendicular to tas

m’ | [cosOcos¢p cosfsing —sinf
|:ﬁqj|_|: —sin¢ cos ¢ 0 j| (23)

The orthogonal electric field components on the plane perpen-
dicular to t from the jth dipole can be written as

in

Ein ~q x
A -

Ein | n ¥
L1 J Ein

z dj
where[Ein, Ein Fin]T g givenin Eq. (20).
X }/ zZ A

We next assume that a field collector or a second scatterer is

located at r, = (x;, y., 2z.). The components of the unit vector
u’ aregiven by

(xe = x4)/IR]
W17 =| 0e—y/IR] |, (25)
(zc — 24)/IR(]

where |R;| is the distance from Q to r,. Note that [E‘i‘", E'f]
in Eq. (24) is analogous to [Eliln, Ei‘] in Eq. (63) in Part I [14].
Furthermore, the [m?, #?] unit vectors in Eq. (23) are analo-
gous to the [m?, n’] unitvectors in Eq. (60) in Part L. Also, @’ in
Eq. (25) isanalogous toa’ in Eq. (62) in Part I [14].

We can follow Egs. (73)—(75) in Part I [14] for multiple
scattering and write the scattered field of a radiating dipole in the
presence of multiple scatterers as follows:

Ersc, S(rc) |] — ErSC, S(l‘f) |] + Ersc, S(r[) |] . (26)

pri sec

Using the notation in Part I [14], E;Cl *(r.) and EZS *(r,) can be

expressed as

nScat s T . Ein
s z .
E;S:i,b([‘.)b = E [ 5 ] [M CXp(lkﬂ’q) Sq][qup] [ in}
q:l a q EL ]

(27)

2> 2>
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and

5>

s

B>

nScat nScat 5 :| T

()= Y Z[

[der exp(ikd,) S,}
q=1 | r(#q)=1

r

. ) Ein
(22 ([ e, |21 [£2] )
(28)

respectively. To determine m’ and n’, we use the relationships
expressed in Eq. (64) in Parc I [14].

The total electric field at the collector is given by the superpo-
sition of the non-scattered field [Eq. (13)] and the scattered field
[Eq. C6)]:

() =B ) + Bl (29)

Rigorous computation of the scattered field for non-spherical
scatterers is beyond the scope of this tutorial. The consideration
of non-spherical scatterers introduces off-diagonal elements of
the scattering matrix shown in Part I, Eq. (65). Moreover, the
elements of the scattering matrix become functions of both polar
and azimuthal angles, as opposed to the polar angle only for the
case of spherical scatterers. The introduction of azimuthal angle
variation also complicates the axis rotations necessary for the
scattering field calculations. Nevertheless, in principle, these can
all be accommodated within our framework, but will require
additional computation of the scattering matrix elements. Here,
we have limited our consideration to spherical scatterers and
apply a formulation of Mie theory that was derived for incident
plane waves to obtain the scattering matrix elements [14].

When considering dipole radiation that is incident on a
stationary scatterer located in the far zone, we approximate the
incident field as a plane wavelet. In the case of large spherical
scatterers, the beam incident upon the scatterer may deviate
significantly from a plane wave. In such instances, the general-
ized Lorenz—Mie theory (GLMT) [37,38] should be applied to
accurately model the effects of wave curvature on the scattered
field. While the treatment of GLMT is outside the scope of
the current work and requies a more expensive computation of
the distance-dependent elements in the scattering matrix, our
framework can accommodate the use of GMLT if the scattering
matrix elements are computed.

1. Coherent Radlation

In the case of coherent radiation, the total field is found from
the coherent addition of the contributions from all individual
dipoles in volume V. We may thus write

E*S “'(r, ) =/// E*(r)|; + B (x0)];dV
%4

zf// Ese nSJrS(l‘[)l]-dV. (30)
14

To evaluate the integral, we can apply Simpson’s 1/3 rule to
evaluate the integral over the 3D grid volume (Appendix A) and
write the integrand in the form of [ £, (r.), E, (r.), E.(r.)] T for
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the non-scattering field and [ £} (r,), E} (r.), E3(x.)] T for the
scattered field. Now, Eq. (30) can be expressed as

ny Ex(rc) + E;(I})
E&C tot(rc) — Z E}/ (r,) + E} (r,) VV] (31)
T | B+ B

or

n | E,.(x;) ny | EL(r;)
() =Y | Eyr) | Wi+ Y | Ejx) | W
Tl ], T F A
(32)
where j represents the jth radiating dipole at cuboidal node
m, n, q. W; is the Simpson’s weight at node 7n4q (Appendix A).
For the case of coherent radiation, we can compute the non-
scattered and scattered fields either together or separately and
superpose them at the end. Finally, the intensity at the spherical
reference surface following collimation can be expressed as

[rsc, tot (rc) x |Ersc, tot (I‘[) |2 . (33)

coh

An example for the case of coherent radiation in a scattering
medium is given in Fig. 6, where we have considered a simple

scattering configuration and separately applied the method pre-
sented in Egs. (26)—(32) and the FDTD method. The objective

(a) (b)
z z
Z=7um*i1§§£552>
. °
(I) Z =4um o
°

z=0 —@27 Dipoles

No scatterers Scat. size: 0.5 ym

4 1 1

. 0.8 0.9
(ii) 06

. 0.8
Eqgs. (26)-(32) 0.4 0.7
0.2 0.6
-4 0 0.5

4 1 1
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
-4 0.5 0.5

4 10% 10%
. 5% 5%
(iv)
) 0 0
Difference
5% 5%
4 0% -10%
-4 4 -4 4

(iii)
FDTD

y (um)

Scat. size: 0.75 pm

1.2 )
)
0.4 )
0
12
08
04
0
10% 10% 10%
5% 5% 5%
0 0 0
5% 5% 5%
-10% -10% 10%

-4 4 -4 4 -4 4

Vol. 40, No. 5/ May 2023 / Journal of the Optical Society of America A 889

of this example is to compare methods for various scatterer sizes
and to show the potential limitations of applying Mie theory to
the simulation of dipole radiation incident on large spherical
scatterers. The simulated configuration contains 27 x-polarized
dipoles spaced 50 nm apart in both horizontal and vertical direc-
tions. The center dipole is located at the origin. Three scatterers
are placed between the dipole assembly and the collector. Four
different scatterer sizes are considered for this analysis.

We place an array of nodes with 50 nm spacing in the x-y
plane located at z= 7 pum to collect the coherent intensity.
By selecting a location proximal to the focal plane to obtain
the electric field, we can ignore the near- to far-field (NTFF)
transformation [39,40], which is necessary to obtain far-field
results using FDTD. In this way, we avoid the effect of extrane-
ous factors that may influence FDTD accuracy. The differences
between the two computational methods are calculated by
direct subtraction of the FDTD results from the results obtained
using Eq. (32) and normalized by the maximum FDTD inten-
sity. It is evident from Fig. 6 that the prediction provided by
Egs. (26)—(32) shows good agreement with the FDTD results
for smaller scatterers, but gradually deviates for larger scatterers.
Note that the FDTD data cannot be assumed as the absolute
reference because it may suffer from discretization errors and
unavoidable reflections from the perfectly matched layer (PML)
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Fig.6. Comparison of the coherent intensity collected using the electric field computed in Eq. (32) and FDTD in a medium with spherical scat-
terers of different sizes. (i) Schematic (not to scale). Total field radiation predicted by (ii) the method in Egs. (26)—(32) and (iii) FDTD. (iv) Intensity
difference between two methods as a percentage of maximum FDTD intensity; 27 dipoles are placed within the focal volume. The central dipole is
placed at the origin, and each row and each column contain three dipoles. The dipoles are spaced 50 nm apart horizontally and vertically. (a) The case
of no scatterers is provided as a reference. Scatterer sizes are (b) 0.5 pm, (c) 0.75 pm, (d) 1 pm, and (e) 1.25 pm. Scatterer locations in (b)—(e) are
(=0.5 pm, 1 um, 3 pum), (—1.5 um, —1 pm, 4 um) and (2 um, 1 pm, 5 pm). A circular x-y plane collector is placed at z =7 pm to collect fields.
The relative refractive index of all scatterers is 1.2, and the wavelength of the incident beam is 800 nm.
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boundary condition. On the other hand, the Mie solution for
light scattering that is considered here is derived for an incident
plane wave. For larger scatterers located close to the source, this
assumption no longer holds. These factors may account for the
more pronounced differences that we observe when examining
larger scatterers.

The results of Fig. 6 allow calculation of the normalized
integrated intensity in the detector plane. Such a calculation
using either FDTD simulations or Egs. (26)—(32) reveals that
scattering can produce increases in the integrated intensity. Note
that both our results and FDTD simulations predict similar
spatial variations in the coherent intensity. For larger scatterers,
high-intensity spots are observed in the detector plane. When
the scatterers are placed at specific locations very close to a large
number of closely packed sources, they may function as focusing
lenses, and thus concentrate intensity in certain regions [41].

2. Incoherent Radiation

When we consider radiation from 4 single dipole, the scattered
and non-scattered fields are still combined coherently at the
detector. But as mentioned before, the electric field interference
is ignored among dipoles in the case of incoherent radiation. We
can consider all dipoles in volume V" and express the intensity at
the detector as

2
oo [[[ | @+ Eew) [ av
14

o [f[ =) [av
«[f[ 1. -

where /]; is the intensity at the detector contributed by radia-
tion from the jth dipole. After applying Simpson’s 1/3 rule for
integration over the 3D grid volume (Appendix A) and consid-
ering multiple dipole orientations in the simulation, the average
incoherent intensity can be expressed as

I ) o <Z 1; W> : (35)
j=1

5. FAR-FIELD DETECTION AND CONTINUOUS
PROPAGATION

In Section 4, we used a condenser lens represented by a spherical
reference surface for collecting far-field data. In some micros-
copy designs, the detection module incorporates a 4 f* system
[42] to produce an image of the focal region onto the detector.
We refer to light propagation through such an optical relay
system as continuous propagation of the far-field signal. In this
section, we discuss tools that can be used to describe the con-
tinuous propagation ina4 f system, i.e., light propagation from
the spherical reference surface to the location of the detector.
In addition, we also highlight methods that can be used for
properly displaying the far-field data on a spherical collection
surface in ways that facilitate their interpretation.
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Fig. 7. (¢, 0) mesh and far-field radiation. (a) ¢ mesh and (b) 6
mesh. (0, ¢) mesh maps on to a hemispherical reference surface for
(c) forward collection and (d) epi-collection. The spacings between
two consecutive ¢ values and 6 values are ¢; and 6;, respectively. For
full hemispherical collection, 6, in (c) and (d) is 90°.

A. Displaying Far-Field Data on a Spherical
Reference Surface

As mentioned before, the location r, at the spherical refer-
ence surface is given by (— f3 sin 6, cos ¢,, — f> sin 6, sin ¢,,
/2 cos0,). We first discuss how these angle-dependent collec-
tion points can be distributed on the spherical reference surface
to display the data in different formats.

When comparing the far-field collected signal with the
incident field, it is convenient to choose uniformly distributed
points on the spherical reference surface [43] that are rotated
by 180° relative to the optical axis. The use of a uniform point
distribution on the spherical surface enables comparison of the
input and output fields. Displaying electric field components
or intensity data at the surface in some existing approaches may
require a representation of the spherical reference surface with
triangular elements. Here, we discuss some alternate approaches
to display the data.

We can display the directional dependence of far-field radi-
ation by constructing a (¢, 6) mesh of distributed points at
the spherical reference surface. To do so, we need to consider
the azimuthal angle (¢) in the range from 0° to 360° (2m)
and the polar angle (f) in the range from 0° to 6y, where
Omax = sin '(NA /7). We then choose the ¢ mesh to con-
tain repeated rows of gradually increasing ¢ values as shown in
Fig. 7(a), and the 6 mesh to contain repeated columns of gradu-
ally increasing 6 values as shown in Fig. 7(b). Now, each pixel
location of a (¢, 8) mesh contains a ¢ value from the ¢» mesh and
a 0 value from the 6 mesh. These (¢, 6) mesh values are used in
r, to capture the far-field data. In the case of mapping the field
in the epi-propagating radiation, f in r, should be replaced
with — f. Figures 7(c) and 7(d) show the (8, ¢) distributed
points on the forward hemispherical reference surface and the
epi-hemispherical reference surface.

In another approach, the far-field information is displayed
following refraction at the collection lens, as shown in Fig. 8(a).
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(xf, y¢) has a corresponding (¢, 6.). (c) Part of a 4 f system and
(d) signal propagation from the focal plane to the spherical reference
surface (lens).

The electric field output E°*(x £, y #) can be measured using
a rectangular x-y plane detector placed perpendicular to the
optical axis. To plot the data without interpolation, the rectan-
gular x-y plane detector contains uniformly distributed rows
and columns in the detector plane. However, when considering
the point distribution at the spherical reference surface as either
uniformly distributed on the spherical surface or the previously
presented (¢, 0) assignment, the mapped data locations at the
x-y plane detector will not lie on a uniformly distributed grid.
In this case, data interpolation is required to display 2D data,
and the interpolation may obscure important details of the
spatially varying fields. Alternatively, we can define uniformly
distributed x-y coordinates on the plane detector and map them
back to a location r, on the spherical reference surface with a
corresponding (¢, 0) location. Figure 8(b) provides a graphical
representation of the lens as a spherical reference surface and the
detectorasan x-y plane detector.

Regardless of the distribution of r, locations used on the
spherical reference surface, the output electric field E°**(x £, y )
detected on the x-y plane detector can be related to the electric
far field on the reference sphere E*(6,, ¢.) using the following
transformation [34,35,44]:

Nm 1 1
noue 2(0,) ‘

L;I : Rc : Ersc(em ¢c),
(36)

where 7, and 7., are the refractive indices of the medium

Eout (xf, _yf) —

reverses the

before and after the lens, respectively. | /-~
out c
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radiometric effect provided in Eq. (7) of Parc I [14]. The matrix
R, provides rotation around the z axis, and I, provides rotation
around the axis perpendicular to the meridional plane. The
transpose of R, gives R, We can write R, and L' as

cos@p, sing, 0
R,=| —sin¢, cos ¢, 0 (37)
0 0 1

and

cosf, 0 sinf,
]L[_l = 0 1 0 . (38)

—sin 6, 0 cos 0,

Note that' E®(x ¢, y ¢) is rotated by 180° relative to the inci-
dent field, E™(x r, y ). If we wish to rotate the detected field to
match the orientation of the incident field, we can apply the fol-
lowing coordinate transformation:

RG] e
el =0 =]l ]
where  (x%V, y%¥) are the new coordinates, so that
E™" (", y ™) represents the rotated electric field.

Note that the R7!' - L' - R, transformation in Eq. (36) is
not required for plotting intensities. We can write an expression

for the intensity at the x-y plane detector as

2
1°“t<xf,yf>=”—m( )r“(ef,m, (40)

Nout

a(0.:)

where 1°°(0,, ¢.) is provided by the expressions in Eq. (16),
(19), (33), 0r (35).

B. Continuous Propagation

So far, the focal fields calculated in Part I [14] have been applied
to generate linear or NLO signals from objects in the focal
volume. Instead of detecting the field with a planar sampler
after the collection lens, we may consider an additional 4 f
relay system that projects the field onto a detector. The con-
tinuous propagation of E**(xz, ys) through such a system
can be described using different approaches. Here, we provide a
description based on the current framework, which proceeds in
two steps.

First, E®(x 7, y r) is propagated towards a focal plane sam-
pler containing a circular aperture [Fig. 8(c)]. Second, the field
that reaches the sampler [Fig. 8(d)] is propagated towards the
far-field lens. For the first step, we can use one of the three solu-
tion integrals we have presented in Section 4 of Part I [14]. For
the second step, we can consider an electromagnetic propaga-
tion method such as KVI or HFP. Since a KVI-based solution
requires calculation of partial derivatives, we utilize the HFP-
based solution. Similar to obtaining the integral solutions in
Secion 4 of Part 1 [14], we can follow Egs. (26) and (27) in Part I
[14] to define the electric field beyond the focal plane as

o _ —_z/e 14 cos B L .
=5 [[ B0 (—2 )|R| exp(i£IR) d4,
(41)
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where A is the circular aperture, r is the unit vector of R, and
B is the angle between @ and r. The superscript rsf denotes the
spherical reference surface of the lens. We can apply Simpson’s
1/3 rule (Appendix A) or another method for the evaluation of
the 2D integral and write the electric far field as

- ‘k l mn Wmn .
E¥(r)) = 2—Z > Ep,,) (%) 2 xXp(ikRy)
'7T mn

(42)
The accuracy of the far-field data depends on the size of the
focal plane aperture. A bigger aperture provides better accuracy
because it considers a larger area of the electric field distribu-
tion passing through the focal plane. In an ideal case using a
fully open aperture at the focal plane, the far-field signal is the
inverted image of the incident beam when Herschel’s condition

[a(6) = 1)]issatisfied.

6. CASE STUDY

In previous sections, we have presented methods for simulating
field propagation and signal generation as relevant to micros-
copy experiments in scattering and non-scattering media. To
illustrate the utility of these methods, we present a case study to
examine and compare the effects of scattering on TPE and SHG
microscopy.

A. Effect of Scatterers on the Excitation Field

The first step of the process is to model the excitation field.
We consider an x-polarized incident beam with A = 800 nm.
The focal length and NA of the lens are 1000 pm and 0.866,
respectively. The refractive index of the medium is 1.333.

To analyze the focal field, we place a 3 pm x 3 um x 9 um
cuboid grid detector with cubic voxels of 50 nm centered
within the focal volume. The focal point is considered the
origin and has a node. In this example, the scattering medium

- Mg 8
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z=-4.5um z=-45pum

zZ=4.5pum

Tutorial

consists of six spherical scatterers at fixed locations: (—2 pm,
—1 pum, =5 um), (1.5 pm, 1 pm, —4 wm), (0.5 wm, —1 pum,
—3um), 2 wm, 1 um, 5 um), (—1.5 um, —1 pm, 4 pum),
and (—0.5um, 1 um, 3 wm). Three scatterer diameters are
considered: 0.5 um, 0.75 wm, and 1 wm. The refractive index
of the scatterers is chosen to be 1.49 providing a relative refrac-
tive index of 1.12. In this study, we consider three scenarios:
(i) scatterers placed “upstream” from the focal plane, (ii) scat-
terers placed beyond the focal plane, and (iii) scatterers placed
on both sides of the focal plane. Examination of these scenarios
allows the evaluation of the effect of the scatterer location on the
focal fields and the collected far-field signal.

We utilize our computational framework based on Mie
scattering and apply Eq. (77) in Part I [14] to determine the exci-
tation field. Figure 9 shows the excitation amplitude obtained
for three scenarios with three different scatterer sizes. Only a
few selected slices are shown in the figure for clarity. The results
are normalized relative to the maximum amplitude in a non-
scattering medium. To better reveal the effect of scatterers on the
electric field distribution in the focal plane, in Fig. 10, we display
the percent amplitude difference relative to the unscattered case
and apply Eq. (B2) in Appendix B to obtain the phase difference
at the focal plane relative to the non-scattering case. As shown
in Fig. 10(i), for scatterers placed prior to the focal plane, the
amplitude and phase distortion increases with the scatterer size.
By contrast, as shown in Fig. 10(ii), scatterers placed beyond the
focal field, provide minimal amplitude distortion in the focal
plane. This is due to the low amplitude of the backscattered field
for Mie scatterers. Note that when scatterers are small, the over-
all scattered field amplitude is weak, even though the portion
that is backscattered is larger as compared to larger scatterers.
In contrast, for large scatterers, even when the amplitude of the
overall scattered field is strong, the relative amount of backward
scattered light is smaller than for small scatterers. When scatter-
ers are placed on both sides of the focal plane, the amplitude and

BF D

z=-4.5um z=0

z=4.5pm

Fig.9. Nine different simulations illustrating the excitation amplitude (log, ;) at the focal volume in a medium with different sizes of spherical scat-
terers at different locations using Eq. (77) in Part I [14]. (i) Scatterers are placed prior (“upstream”) to the focal plane; (ii) scatterers are placed beyond
(“downstream”) the focal plane; (iii) scatterers are placed both prior to and beyond the focal plane. The scatterer sizes in each column are: (a) 0.5 pm,
(b) 0.75 pm, and (c) 1 pm. x-y plane slices are shown at z = —4.5 pm, —3 pm, —1.5 um, 0, 1.5 pm, 3 pm, and 4.5 pm. The scatterer locations are:
(=2 pm, —1 um, —5 pum), (1.5 wm, 1 wm, —4 um), (0.5 wm, —1 wm, —3 pwm), (2 wm, 1 pm, 5 wm), (—1.5 wm, —1 wm, 4 wm), and (—0.5 pm,
1 um, 3 m). Some scatterers are not visible because they are hidden behind adjacent slices.
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Fig. 10.  Percentage of amplitude difference relative to the maxi-

mum amplitude in the non-scattering case (% Amp. Diff.) and phase
difference (Ph. Diff.) at the focal plane (z=0) in a medium with
spherical scatterers. Sizes of the scatterers are (a) 0.5 pm, (b) 0.75 pum,
and (c) 1 pm. (i) Scatterers are placed prior to the focal plane; (ii) scat-
terers are placed beyond the focal plane; (iii) scatterers are placed on
each side of the focal plane.

phase distortions at the focal plane are governed primarily by the
scatterers placed “upstream” from the focal plane.

B. Signal Generation for TPE and SHG Microscopy

With the focal field defined, we are now in a position to calculate
the NLO signal. To do this, we first define an object polarized by
the focal field.

For the TPE fluorescence simulation, we consider a 1 pm
diameter spherical fluorescent particle, positioned at the origin
of the focal volume. For simplicity, we assume that the refractive
index of the fluorescence particle is the same as the surrounding
medium to avoid the effect of scattering by the fluorescent parti-
cle. The excitation amplitude at the particle in a non-scattering
medium is shown in Fig. 11(a). The excitation field drives
molecular dipoles within the spherical fluorescence particle,
which subsequently radiate incoherently. We apply Egs. (1)—(4)
to compute them for cases I and III. While the excitation wave-
length is setat 800 nm, the emission wavelength is assumed to be
A =500 nm. The 1 um diameter spherical fluorescence particle
is represented by 50 nm x 50 nm x 50 nm voxels with each
node representing a radiating dipole.
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Fig. 11. TPE and SHG excitation and far-field radiation. Left:
excitation amplitude (log,,) at the focal volume for x-polarized inci-
dent light. Middle: far-field radiation profiles in TPE microscopy
(case T with 15 random orientations of p_ and case III) (forward
only) and SHG (forward and epi). Right: far-field x—y profile after
the collection lens with NA = 0.866. (i) 1 pm spherical fluorescence
particle; (i) 3 um X 3 pm X 1 um slab centered at the focal point
(not to scale). The number above the plot represents the normalized
integrated intensity.

For the SHG simulation, we consider a 3 um x 3 um X
1 um slab possessing a non-vanishing second-order nonlinear
susceptibility that mimics the properties of collagen fibrils
aligned in the x-y plane. The second-order nonlinear suscep-
tibility tensor elements of the slab are chosen as x2 =1 and
X,fyzy) =x2 = Xy()f},) =x2 = )(y(yzx) =x2=0.536 [45]. The
excitation amplitude at the slab in a non-scattering medium is
shown in Fig. 11(b). We apply Eq. (5) to compute the nonlin-
ear polarization density. Similar to TPE microscopy, the slab
volume is represented by 50 nm x 50 nm X 50 nm voxels, and
each node represents a radiating dipole. The SHG emission
wavelength is 400 nm.

We use the same source objects for the simulation in a scat-
tering medium. Similar to the non-scattering case, we apply
Egs. (1)—(4) to compute the dipole moment and the nonlinear
polarization density, followed by Eq. (35) to calculate the inco-
herent radiation in TPE microscopy and Eq. (33) to compute
the coherentradiation in SHG microscopy.

C. Far-Field TPE and SHG Signals

To visualize the far-field emission, we utilize the techniques
discussed in Section 5. We place a full hemispherical (6, ¢)
collector with 6,,,,, = 90° and radius /' (=1000 pm) to visualize
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Fig. 12.  Forward detected TPE signal (case I with 15 random
orientations of p_ ) and SHG signal in the far field. (i) Scatterers are
placed prior to the focal plane; (ii) scatterers are placed beyond the
focal plane; (iii) scatterers are placed both prior to and beyond the focal
plane. Scatterer diameters are (a) 0.5 pm, (b) 0.75 pm, and (c) 1 pm.
The number above each plot represents the integrated intensity relative
to the forward non-scattering integrated intensity.

the entire radiation pattern in the forward hemisphere. This
provides full visualization of the far-field radiation profile for
both NLO modalities. We can also place a collection lens with
NA =0.866 and an x-y plane detector to display the signal
following capture and collimation with a lens. We consider
Herschel’s condition (2 (6,) = 1).

After signal generation, the NLO signal propagates in a non-
scattering medium and reaches the x-y plane detector. Figure 11
depicts the far-field radiation profile and the x-y plane detector
signal. In TPE microscopy, the molecules in cases I and III are
excited with the full amplitude of the excitation field because p,
aligns with the excitation field as shown in Fig. 3. Case I provides
an isotropic radiation profile in the far field for randomized p, .
In contrast, case III provides a Hertzian dipole type radiation
profile in the far field because p,, is fixed. In SHG, the radiation
profile depends not only on the polarization of the excitation
field but also on the nonlinear susceptibility tensor and the
excited volume of the object. As we expected, the epi-detected
radiation amplitude is heavily attenuated.
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Fig. 13.  Epi-detected TPE signal (case I with 15 random orienta-
tions of p_ ) and SHG signal in the far field. (i) Scatterers are placed
prior to the focal plane; (ii) scatterers are placed beyond the focal plane;
(iii) scatterers are placed both prior to and beyond the focal plane.
Scatterer diameters are (a) 0.5 wm, (b) 0.75 wm, and (c) 1 um. The
number above each plot represents the integrated intensity relative to
the forward non-scattering integrated intensity.

Figure 12 shows the signals at the forward x-y plane detector
for various scattering scenarios in TPE (case I) and SHG micros-
copy, while Fig. 13 depicts the corresponding signals at the epi
x-y plane detector. The results are normalized by the maximum
amplitude in a non-scattering medium. For easy comparison,
the SHG results are shown under the TPE results in Figs. 12
and 13. Recall that the size of the fluorescence object used in
TPEisal pm sphere, and the size of the object used in SHG is a
3um X 3 um x 1 pmslab.

In the first case (i), scatterers are placed prior to the focal
plane, in which case they distort the excitation field (Figs. 9
and 10). Even though Fig. 10 shows only the percentage of
amplitude change at the focal plane, it highlights the effect of
scatterers on the amplitude and phase of the excitation field. In
both TPE and SHG microscopy, the excitation fields are attenu-
ated, and the degree of attenuation increases with scatterer
size. In TPE, the forward radiation profile is no different from
isotropic radiation because the attenuated signal incoherently
radiates in a non-scattering medium. In contrast, the SHG
forward signals in a non-scattering medium give rise to different



Tutorial

spatial patterns because the generated signals are radiated coher-
ently, and they depend on both the amplitude and phase of the
excitation field.

The intensity of the maxima increases with the scatterer size.
We also observe shadows of the scatterers in the far-field spatial
profiles. For epi-SHG radiation, we also observe the effect of
scattering on the heavily attenuated signal.

In the second case (ii), scatterers are placed beyond the focal
plane. In this case, the excitation field is minimally distorted.
This case bears a similarity to the epi-radiation signal in the
first case. The excitation field is attenuated by scatterers, and
the generated signal radiates in a scattering medium, giving
rise to significant distortion of the radiated field. Note that
interference-like spatial features are more prominent in the
far-field SHG profiles compared to the TPE profiles. In epi-TPE
radiation, the scatterers placed beyond the focal plane have no
significant effect in the far field.

In the third case (iii), scatterers are placed on each side of
the focal plane, in which case the results are very similar to the
second case in forward radiation and to the first case in epi-
radiation, because the scatterers beyond the focal plane have a
dominanteffect in the far field.

In conclusion, when scatterers are placed prior to the focal
plane, the excitation field is distorted. As a result, SHG and TPE
signals are attenuated. When scatterers are placed beyond the
focal plane, the spatial profile of the generated signal is affected.
When scatterers are placed both upstream and downstream
relative to the focal plane, both the excitation field and the
generated signal are affected. This case study illustrates that
the information provided through this framework is useful for
understanding the effect of scattering on microscopy signals.

D. Focus Beam Distortions

To illustrate the utility of the electromagnetic field propaga-
tion methods developed in this tutorial, we consider a sample
configuration of three cells as was considered in [10].

In that work, 3D FDTD simulations were performed on cells
represented by nuclei and a large number of small organelles.
Each cell was represented by a cuboid with a major diameter of
15 wm and minor diameter of 13 wm. Nuclei and half of the
organelles were represented by ellipsoids. The major and minor
diameters of the ellipsoidal nuclei were considered as 6 pm
and 5 pm, respectively. The major and minor diameters of the
ellipsoidal organelles were considered as 1.5 pum and 0.5 pm,
respectively. The rest of the organelles were represented by
spheres with a diameter of 0.5 pm. The locations of all cellular
components were chosen randomly.

We simulate a similar scenario involving three cells placed
along the optical axis. We represent the nucleus as a spherical
scatterer with a diameter of 5 pm and other organelles in a cell
as a mixture of a total of 99 spherical scatterers with diameters
of 0.5 pm, 1 pm, and 1.5 pm. Thus the three cells were repre-
sented using a total of 300 spherical scatterers. We assume that
the center of each nucleus is in the x-z plane and place the organ-
elles at random locations within the cell. The refractive indices
of the nuclei and organelles are 1.4 and 1.38, respectively. The
medium is matched to that of cytoplasm (z = 1.36 [46]), and
thelens NA is 0.68 for n = 1.36. The wavelength and filling fac-

tor [47] of the x-polarized Gaussian incident beam are 800 nm
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Fig. 14. Intensity (log,,) distribution in x—z plane (y = 0) in the

focal volume. Intensity in (a) non scattering medium and (b) a medium
with three cuboidal cells that contain 300 spherical scatterers. White
lines show the approximate boundaries of each cuboidal cell. Black
circles represent the nuclei and organelles present at y = 0 slice. Other
organelles in the volume are not shown.

and 0.55, respectively. The results are shown in Fig. 14. Because
the additional terms used in Gaussian source implementation
and positions of the nuclei and organelles in the prior work are
unknown to us, and the ellipsoids are approximated by spheres,
this result does not provide an exact match with that provided in
[10]. Nonetheless, there is a good qualitative agreement between
the methods. Importantly, the HFP-based simulation can be
completed in a small fraction of the time required to perform the
FDTD simulation.

7. CONCLUSION

In Part I of the tutorial [14], we provided a framework that
utilizes existing analytical electromagnetic field propagation
methods to comprehensively model optical microscopy in
scattering samples with fixed scatterer configurations. In Part
IT, we discussed methods for mapping light distributions near
focus, presented signal generation within, and radiation from,
the focal volume, and concluded with far-field detection in the
microscope system.

Our case studies illustrate the usefulness of the information
that can be provided through this framework for understanding
the effect of scattering on microscopy signals. Moreover, the case
studies show how this comprehensive framework can be utilized
as a foundation in laser scanning microscopy. The integrated
intensity of the far-field signal given in case studies represents
the intensity of the signal detected with the laser placed at a fixed
location within the 3D sample. By moving the source and lens
laterally and performing simulations at each location, one can
obtain the signal intensities required to generate a full 2D image.
By setting various z depths, one can generate 3D volumetric
renderings.

This comprehensive framework serves as a stepping stone
toward understanding factors that control the degradation of
image resolution and penetration depth within scattering media
in optical microscopy.
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Fig.15. w?2P and w?P 2D arrays with 1D Simpson’s weights.

APPENDIX A: SIMPSON’S 1/3 RULE FOR
NUMERICAL INTEGRATION

Simpson’s 1/3 rule is based on the use of a quadratic polynomial
to approximate the function over the range of the integral.
The 1D function g (x) is

XM /}X
/ glx)dx = S leb)+ 4g (x2) + 2¢ (x3) + 4g (x4)

1

+ oo+ 2g (xp—2) + 4g (xpr—1) + g ()]
b M
- ?X mX::l Wy, g(xm)

= W, g(xn),
’ (A1)

where M is the number of partitions between x; and xa7. w,,
represents 1D Simpson’s weights. 5, = (xpr — x1) /(M — 1),
and W, = h,w,,/3.

The 2D function g (x, y) is

IN XM }]xby M N 2D 2D
/ / g(x,y)dxdy=§gzzwm W, & s J)

71 X1

(A2)

where N is the number of partitions between y; and yp.

w2P and w2P are 2D arrays that represent 1D Simpson’s

weights as shown in Fig. 15. 4, = (yy — y1)/(N — 1), and
Won=h.h, w2P w2 /9.
The 3D functiong(x, y, 2) is

2Q [IN XM
/ / / g(x,y,2)dxdy dz
zZ1 J1 X1

M N
- /;_X%y% Z Z Z wy? wyP wZDg(xm, Ins Zg)

m=1 n=1 g=1

= Z Wmnqg(xmv Ins Zq)’ (A3)

m,n,q

Tutorial

where Q is the number of partitions between z; and zq.
w3P, w3, and w?P are 3D arrays that represent Simpson’s

1D weights. It is achieved by creating an M x N x Q data

cube and assigning 1D array values similar to Fig. 15. 4, =
(zq —21)/(Q—1),and Wy,y = b by by w3P szwf]D/27.

APPENDIX B: COMPLEX VECTOR PROPERTIES
TO COMPUTE PHASE ANGLE

It is customary to display the phase of individual components
when a complex electric field is represented by its Cartesian
components. The phase of the individual components may not
correctly represent the actual phase of the complex electric field.
Here, we show how we apply complex vector properties [48] to
compute the phase angle of a complex electric field.

Let us assume that E is a complex electric field with phase
angle o, and S is a reference electric field with phase angle 8. We
can write the following complex vector relationship [48]:

ES* = |E| exp(ict) |S| exp(—iB)
= |E||S] exp(i(ax — B))
= |E||S]| exp(iv/)

= |E||S|(cos ¥ + 7 sin ), (B1)

where 8" is a conjugate of S. ¥ = a — B gives the phase angle of
Erelative to S. ¥ can be calculated as

L (ELS, — ELSD) + (ELS) — E}S) + (ELS, — ELSY)
(E;S,+ E1S) + (E;S, + E1SH) + (B, S, + EiS})’
(B2)
where B= (E] +i E)i+ (E] +iEDj+ (E, + i EDk, and
S= (S, +iSi+ (S +iS)j+ (S +iShk. Superscripts 7
and 7 are used to represent real and imaginary, respectively.

When § is set to be a non-complex electric field, 8 becomes
zero, and ¢ provides the phase of E.

Y =tan
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