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Abstract—The patient-physician relationship is an integral
part of primary care visits. To build a better relationship,
understanding the communication between patient and physician
is the key. This study focused on analyzing the gaze, one of
the most important non-verbal behaviors found to influence
patient outcomes. Gaze analysis often needs a manual rating
process which might be time-consuming, costly, and unreliable.
This research aimed to support automated analysis of physician-
patient interaction using a deep convolutional neural network
with transfer learning to a build robust model for physician gaze
prediction. Utilizing only 3 minutes of 15 videos capturing 3
physicians interacting with different patients in a clinical setting,
the model achieved over 98% accuracy for train, test, and valida-
tion sets. By visualizing the convolutional layers and comparing
sample frames from different interactions, results highlighted
several patterns shared across frames predicted correctly from
both seen and unseen video sequences. The proposed work has
the potential to informed the future design of technologies used
to capture the clinical interaction and provide real-time feedback
for physicians, which will contribute to the improvement of care
quality.

Index Terms—primary care visits, deep learning, automatic
labeling, physician gaze

I. INTRODUCTION

Primary care is an essential part of an effective health

care system that emphasizes continuous and preventive care.

Effective patient-centered communication is integral to the

patient-provider relationship and has been identified as a

dimension of physician competency. This research will aim

to support automated analysis of primary care visits and can

facilitate feedback and reflection systems that help support

effective communication, reduce stress and improve the quality

of care. This study utilized video/image processing and built

convolutional neural network models to recognize patterns of

human interactions during primary care visits. By leveraging

a large existing dataset of recorded interactions, the research

focused on developing methods to help build an automatic

annotation tool to extract more information about eye-gaze.

A significant body of research of physician behavior analysis

depended on an intensive manual annotation process of human

coders who rated or annotated live, videotaped or audio clips

of interactions based on prescribed methodologies [1]. The

practice of manual rating systems is often time-consuming,

labor intensive, context dependent and highly subjective to the

biases of human annotations [2], [3].The lack of consensus

of what to measure and conflicting findings for non-verbal

behavior increased the difficulties in quantifying how physi-

cian behaviors enhance patient outcomes such as satisfaction

and adherence [1]. An effective automated annotation sys-

tem which provides interaction feedback quickly and reliably

may provide more consistent and instructive measurement of

physician-patient interactions.

II. RELATED WORK

It is widely accepted that effective interpersonal commu-

nication between the physician and patient is essential for

patient outcome, such as understanding recommendations for

treatment, adherence to therapy, and health outcomes [4], [5].

Most tools evaluating clinician-patient communication were

based on verbal cues such as the process analysis system,

the verbal response mode, or the Roter Interaction Analysis

System (RIAS) but the evaluation of nonverbal interaction

has been comparatively less frequent in the literature [6].

However, nonverbal behavior, consisting of three components:

the face (e.g. gazing, and smiling), the body (e.g. posture and

body orientation), and gesturing (e.g. thumbs up, scratching

and clenching) [3], plays an important role in interpersonal

judgment which is crucial in physician-patient communication

[6]. Eye gaze has been one of the most important cues

among all non-verbal behaviors. One study found that the

absence of smiling and lack of eye contact were associated

with a decrease in physical and cognitive functioning of the
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patients [4]. Other research revealed that there was a positive

correlation between the eye contact, length of the visit and

the patient’s perception on clinician empathy [7]. More eye

contact with the patient and less gaze at the chart, close

proximity, and forward leaning of the physician improved

positive patient outcomes such as patient self-disclosure [8].

Therefore, it is important to provide tools to evaluate the non-

verbal characteristics of physician-patient communication. The

existing tools [9], [10] are relying mainly on human coding

to evaluate nonverbal communication in a medical encounter

which has been considered as a time-consuming process [2].

From human coding studies that produced evaluation of the

reliability of the human coders, the inter-rater correlations

ranged between 0.53 and 0.96 for non-verbal activities [2],

[7], [10]–[12]. A study also showed that expert annotators

on average had higher inter-annotator agreement compared

with non-expert annotators evaluated with kappa statistics

between the annotations on certain concepts that might not

have a clearly defined annotation rule such as aesthetic, quality

[13], which was similar to the case in evaluating non-verbal

interactions. Also, the study pointed out that annotations

based on a majority vote of repeated annotations was able to

smooth the noise of human judgement. Thus, it is important

to provide automatic annotation tools that can learn from the

expert annotation and provide faster, cheaper and more reliable

annotations. An increasing number of studies have been using

application of machine learning to reduce the burden and

reliance on human raters. However, only 8.7% of the studies

were related to evaluation of interpersonal and communication

skills of the physician, according to a systematic review [14].

A logistic regression classifier was used to predict mutual

followership based on the synchrony calculated by optical flow

in a simulated medical setting [2]. Built on the methodology

of Hart et al. [2], previous work of Gustein, Montague, Furst

and Raicu provided physician gaze predictions based upon

engineered numerical features obtained from optical flow and

body position with an Adaboost algorithm [15]. In previous

studies, the classification accuracy on six interactions across

three physicians ranged from 80% to 93% on randomly se-

lected test sets. The study proposed utilized the same dataset as

the previous study [15] and expanded the dataset by analyzing

more interactions for each doctor. There were some limita-

tions of the previous work coming from the dataset and the

algorithm. The patient-center videos and doctor-center videos

analyzed might provide missing values for body positioning

and optical flow measurements due to camera angle issues.

The most common issue would be the physician might not

be captured by the camera in the patient-center video. The

proportion of frames with missing values can range from 0%

to 76.24%, which might indicate the model cannot predict

over 70% of the frames in extreme cases. This might affect

the robustness of the model [15] for unseen videos. In this

study, to enhance the robustness and analyze the interactions

that had missing values for the previous methodology, only

doctor-centered videos which focused upon the physician’s

face and had reliable camera settings were analyzed with a

convolutional neural network. This study also aimed to predict

across different interactions and different doctors using only

50% of the video length and providing reliable predictions for

unseen sequences. Human activity recognition in video has

been explored by various studies using two different methods:

handcrafted features (i.e., feature extraction from body and

motions) and deep learning learned feature representation [16].

The review pointed out that the deep learning-based solution

provided more robust feature extraction and classification in

video and benefited real-life applications. Most of the literature

used spatiotemporal features to train the network while few

used raw video frames as input. A large number of tech-

niques and neural network architectures have been designed

and tested on action recognition and human interaction, but

they mainly focused on a particular application domain with

different activities (e.g. boxing, brushing teeth in UCF 101)

per video. Preliminary experiments for the proposed study

using complex two-stream models [17] built on one of the

largest action recognition dataset UCF-101 [18] showed mod-

els designed for categorizing video of human daily tasks were

not applicable to the unique primary care visits dataset and

prediction of eye gaze. Thus, the study proposed a model using

simple architecture with a small dataset obtained from real

clinical setting to provide insights in this particular domain.

III. METHODOLOGY

A. Data

The research analyzed videos from a dataset that contained

raw versions of the videos of clinical interactions of 10

physicians and 101 patients. Fig. 1 shows an example of

an interaction captured from the different views (physician-

centered, patient-centered, wide-frame, and multi-channel).

The 101 videos of clinical interactions had variations in

lighting, camera placement and number of people presented

in a certain camera view. For each interaction, three cameras

with different focuses were set: one lens with patient’s chair at

the centered (Patient-centered), one lens capturing the face of

physician (Physician-centered) and one wide-view lens (Wide-

frame). The Multi-channel video was a collection of three

videos. Manual annotations encoding physician and patient

gaze were obtained using the Noldus Observer XT software

[19].

For the visit recordings, human annotations providing in-

formation regarding the relative start and stop time for the

physician gaze were used to generate ground truth. The start

time and stop time were transformed into frame-by-frame label

representations for the classification algorithm. Videos were

chosen based on following principles and findings. First, the

physician was required to be present in front of the camera

throughout the entire chosen sequence to provide valid frames

for the algorithm. Also, preliminary analysis showed that

videos with doctors close to the camera and showing most

of the face at the center of the camera were optimal for the

analysis. So interactions with sequences satisfying the optimal

settings were chosen from three doctors and each contained

five interactions. Only Physician-centered videos of the chosen
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Fig. 1. Sample Frames of Patient-centered videos, Physician-centered videos,
Wide-frame videos, and Multi-channel videos.

interactions were analyzed. Due to the fact that different

interactions might have variation in the total visit length and

different duration of the video available for analysis, the du-

ration analyzed for each interaction was set to be six minutes.

Six minutes was considered to be representative of the non-

verbal behaviors during the longer length of the clinical visits

based on research findings [20]. Each of the six minutes of

the fifteen videos was analyzed from the moment when the

physician was present in the Physician-centered video and

having interactions with the patient and up to the moment

before the start of the physical exam or reaching the desired

duration of time. Equal number of frames were extracted from

the video at a rate of 29.97 frames per second and aligned

with the transformed frame by frame annotation using Avid

Media Composer and a preprocessing pipeline built using

Python. After mapping the annotations to the frame level,

a human annotator confirmed the frame labels for physician

gaze for the sequence of interest. The frame label was Patient

if the physician was looking at the patient confirmed by

both annotation decision made by annotators observing Multi-

channel videos and an additional human annotator. Similarly,

the frame label was Other if the physician was not considered

to be looking at the patient.

B. Deep Learning for Gaze Classification

As defined by [21], the concept of transfer learning consists

of two components: domain (a feature space X and a marginal

probability distribution P(x)) and task ( a label space Y and an

objective predictive function f(·)). Given a source domain DS

and task TS , transfer learning helps to improve the learning of

f(·) in target domain DT using the knowledge learned from

DS and TS , where DS �= DT , or TS �= TT . With limited

sample size of the dataset in this study, transfer learning

using a pre-trained model built on much larger datasets with

different but related domains and tasks was applied. From

preliminary experimental results, VGG-16 proposed by Visual

Geometry Group (VGG) [22] performed better and extracted

more representative feature vectors for this particular task in

this special domain compared to other popular pre-trained

models for computer vision tasks such as AlexNet [23],

Inception V3 [24] and ResNet50 [25]. VGG-16 utilized 13

convolutional layers and 3 fully connected layers. In this study,

the model was trained using extracted features of VGG-16

pre-trained on ImageNet with all blocks frozen and fine-tuned

3,149,825 parameters of an added Global Max Pooling layer,

a Dropout layer, and 5 fully connected layers as shown in

Fig. 2.

Fig. 2. Model Architecture (first five blocks are frozen layers from VGG-16
architecture (Blue Color), last two blocks are added layers).

The network weights are optimized using the Adam [26]

algorithm which is a stochastic gradient descent method with

adaptive estimator of lower-order moments with adaptive

learning rate. The model was trained to predict binary class

label: Patient (the physician was gazing patient) and Other (the

physician was gazing elsewhere) at the frame level. Individual

Frame extracted from the videos provided information and

descriptions about scenes as well as objects. The first three

minutes were used for building the model and the remaining

three minutes were held out to test the validity of the model for

unseen video sequences as shown in Fig. 3. The performance

of the model was validated against human annotations.

Fig. 3. Experiment Design.

C. Model Building

The first 3 minutes of duration of interests (3-minute Se-

quence) were used for model building processing. By stratified

sampling, 70% of the frames were utilized for training and

testing with 67%-33% split while 30% of the frames were

used as a validation set for model evaluation. Selected frames

were resized to 224x224x3 to be the same as the default input

shape for the VGG-16 architecture.

D. Independent Hold-out Set

The remaining 3 minutes of duration for each interaction

(Next 3-minute Sequence) were held out as independent hold-
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out set for unseen video sequence. It was different from the

validation set for model building because it was sampled and

evaluated sequentially in time while the validation set was

obtained from stratified sampling which might include frames

from different time periods of the interaction.

E. Visualization

The study utilized Gradient-weighted Class Activation Map-

ping (Grad-CAM) [27]to visualize the class discriminative

localization map of the last convolutional layer using heatmap

visualization, which helped with identifying model bias or data

bias in the training set. Grad-CAM can highlight important

image regions for prediction.

IV. RESULTS

By stratified sampling based on the class distribution of

each interaction, the class distribution of the final train, test

and validation were shown in Table I.

TABLE I
CLASS DISTRIBUTION OF TRAIN, TEST AND VALIDATION

Train Test Validation
Patient 19246 9490 12320
Other 18674 9200 11950

The accuracy of the training was 98.73% (loss: 0.0354), and

98.36% (loss: 0.0559) for test set and 98.31% (loss: 0.0591)

for validation set. Table II summarized the model performance

in validation set using misclassification matrix and perfor-

mance metrics including accuracy, sensitivity, precision and F1

score. Fig. 4 showed fast speed of convergence and comparable

performance on both train and test sets.

TABLE II
MISCLASSIFICATION MATRIX AND MODEL PERFORMANCE EVALUATION

FOR VALIDATION SET

Misclassification Matrix (Validation)
Predicted Classes

Total
Observed Classes Other (0) Patient (1)

Other (0) 11749 201 11950
Patient (1) 210 12110 12320

Total 11959 12311 24270
Model Performance Evaluation (Validation)

Accuracy Sensitivity Precision F1 Score
98.31% 98.30% 98.37% 98.33%

Fig. 4. Model Performance (Training Accuracy (left) and Loss(right)).

For independent hold out sets, the final model was used

to predict each frame of the unseen data sequentially. The

class distribution of each interaction, percentage of Patient

labels among all labels (Pct Dist.) and model performance

metrics were shown in Table III. For 9 of the 15 interactions,

the accuracy achieved over 90%. Results of sensitivity and

precision were also quite high. For doctor 1 interaction 2, the

accuracy was 97.83%, with 97.83% sensitivity and 98.73%

precision, which was considered to be the set with the best

performance. However, for doctor 3 interaction 3, the model

performed worst compared to all other interactions for accu-

racy and sensitivity but good in precision. The frame level

inspection of this particular interaction has been provided in

the discussion section.

TABLE III
CLASS DISTRIBUTION, PERCENTAGE OF PATIENT LABELS AND MODEL

PERFORMANCE METRICS FOR INDEPENDENT HOLDOUT SET .

Interactions
Class Dist. Model Performance Metrics

Patient% Accuracy Sensitivity Precision
Doc1 – 1 42.96% 91.99% 84.85% 96.04%
Doc1 – 2 63.30% 97.83% 97.83% 98.73%
Doc1 – 3 35.58% 84.02% 94.27% 70.64%
Doc1 – 4 62.58% 72.61% 97.10% 70.38%
Doc1 – 5 94.96% 96.11% 99.98% 96.08%
Doc2 – 1 81.48% 96.40% 98.41% 97.21%
Doc2 – 2 48.73% 93.73% 99.47% 88.97%
Doc2 – 3 19.66% 80.59% 92.36% 50.33%
Doc2 – 4 38.25% 92.19% 95.98% 85.42%
Doc2 – 5 31.26% 90.14% 90.93% 80.18%
Doc3 – 1 29.33% 95.07% 92.92% 90.52%
Doc3 – 2 80.34% 91.32% 96.98% 92.58%
Doc3 – 3 71.18% 40.55% 18.21% 91.37%
Doc3 – 4 50.57% 83.22% 90.94% 79.03%
Doc3 – 5 48.49% 74.78% 76.14% 73.01%

Discussion From the model performance of the train, test

and validation sets, with 98.31% accuracy in validation set,

the model was considered to be robust to predict randomly

sampled frames with labels. The independent hold out sets

were intended to test the robustness when using the model

for the unseen sequence for different interactions of different

doctors, which was a unique contribution of the study. 80%

of the interactions achieved over 80% accuracy while 75%

of those interactions had accuracy higher than 90%, which

indicated that the model might be comparable with human

annotators for certain interactions. However, for doctor 3 inter-

action 3 (Doc3-3), with different results compared to all other

interactions, might indicate a weakness of the model or the

technology design in collecting the video data for the task of

interests. Sample frames of train and independent hold out sets

for Doc3-3 and doctor 1 interaction 2 (Doc1-2) were visualized

and compared using the Grad-CAM technique. Doc1-2 was

selected due to the high performance in all metrics. Four

correctly classified frames of Doc1-2 of the training set and

independent hold-out set for both class labels were shown in

Fig. 5. The highlighted areas (considered important regions by

the convolutional neural network) were mostly in the facial

regions of the doctor such as the forehead, eyes and chin.
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In this interaction, the camera captured all the regions of the

face and the angle was consistent for the whole duration of

interests.

Fig. 5. Sample Frames of Doc1-2, (a) train set (true label is Other), (b)
train set (true label is Patient), (c) and (d) for independent hold out set, (i)
indicates original images, (ii) indicates map generated by Grad-CAM, (iii)
indicates output of overlaying the map with the original image.

Four correctly classified frames of Doc3-3 from the training

set and independent hold-out set for both class labels were

shown in Fig. 6. Compared to the original frames of the

previous doctor, more variability of the face orientation was

observed. Also, the doctor might be too close or too far to the

camera so that it cannot capture the full facial region. These

differences between training and hold out set might bring

bias, which might explain why the model cannot generalize

well for the unseen sequence of this doctor. Different areas

were highlighted such as the neck of the doctor and the collar

of his shirt, which might not be informative for all different

variations.

To further understand the model performance of Doc3-3,

four frames were selected with different face orientations and

different parts of the facial region presented in the camera with

true label Patient from independent hold out set, as shown in

Fig. 7. The four frames were chosen to see the variation of

frames and difference in predictions in the hold-out set. The

results of the frame of full face and profile face with no eyes

informed that the model focused too much on the neck and

collar. Body posture and face orientation also seemed to be

influential. The frames included in the training set were quite

different than those of independent hold-out set in terms of

body posture, proximity to the camera and presence of eyes

or the entire face region, which might introduce bias in the

training. For example, from the observation of the raw data, the

face of the physician might not be captured in the later stage

of an interaction in the hold-out set, which was not learned by

the model from the training set. For a profile face with most

of the important facial region presented, the model was able

to predict correctly.

Fig. 6. Sample Frames of Doc3-3, (a) train set (true label is Other), (b)
train set (true label is Patient), (c) and (d) for independent hold out set, (i)
indicates original images, (ii) indicates map generated by Grad-CAM, (iii)
indicates output of overlaying the map with the original image.

Fig. 7. Selected Frames of Doc3-3 from independent hold out set, (e) indicates
a frame with full facial region, (f) indicates a frame with profile face, (g)
indicates a frame with no eyes and profile face, (h) indicates no face presented,
(i) indicates original images, (ii) indicates map generated by Grad-CAM, (iii)
indicates output of overlaying the map with the original image.

From the observation and discussion above, careful plan-

ning of camera setting and video-recoding methods would

be needed to gather data for gaze prediction using the pro-

posed model in the future. The camera set for capturing the

Physician-center video were placed with fixed camera angle

on the physician’s desk differently for each interaction, which

might bring dataset bias based on the limited nature of the

dataset used to train and evaluate the model. This might

lead to false conclusions based on data collection [28]. More

specifically, it brought sample selection bias which was due

to differences between training and test collections related

to how images were acquired [28]. The finding above might

contribute to better technology design for data collection for
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this particular gazing prediction task. A study [29] suggested

that multiple cameras hooked to walls or side of the desks

with remote control that can adjust the cameras’ angle in

real-time in order to have a rich collection of video data. In

future work, detailed technology design suitable for improving

the data collection will be provided with more evidence and

findings discovered from experiments with more interactions.

The findings of this research will assist in developing user-

centered design methods including workflow and thematic

analysis of both patients and care providers.

V. CONCLUSION

Incorporating deep learning techniques can help make ac-

curate prediction of physician gaze annotations. This study

applied transfer learning to gaze prediction in the clinical

setting to assist the human annotation process in this field.

By learning from the failed cases, the findings also might

help with future design of the data collection technology for

an automatic annotation process. With only videos from one

camera angle and 50% of the frames annotated, the model can

simplify the process and reduce the annotation time for human

coders significantly. By extending the prediction to more

labels including chart, computer and keyboard, the additional

information gathered will further develop the prediction into

more meaningful prediction of eye-contact and turn-taking

in the future. More generally, automated gaze prediction can

assist in studying the performance aspects of physician-patient

interactions. Future work includes mapping gazing information

to patient ratings, outcomes of physician behaviors as well

as measures of physician burnout, which will enhance the

understanding of the effects of electronic health records and

computers on the physician behavior and further inform the

design of the technologies in the clinical context to improve the

quality of clinical encounters and reduce physician burnout.
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