2020 IEEE 20th International Conference on Biolnformatics and BioEngineering (BIBE)

Robust Physician Gaze Prediction Using a Deep
Learning Approach

Tianyi Tan
College of Computing and Digital Media
DePaul University
Chicago, USA
ttan6 @mail.depaul.edu

Jacob Furst
College of Computing and Digital Media
DePaul University
Chicago, USA
jfurst@cdm.depaul.edu

Abstract—The patient-physician relationship is an integral
part of primary care visits. To build a better relationship,
understanding the communication between patient and physician
is the key. This study focused on analyzing the gaze, one of
the most important non-verbal behaviors found to influence
patient outcomes. Gaze analysis often needs a manual rating
process which might be time-consuming, costly, and unreliable.
This research aimed to support automated analysis of physician-
patient interaction using a deep convolutional neural network
with transfer learning to a build robust model for physician gaze
prediction. Utilizing only 3 minutes of 15 videos capturing 3
physicians interacting with different patients in a clinical setting,
the model achieved over 98% accuracy for train, test, and valida-
tion sets. By visualizing the convolutional layers and comparing
sample frames from different interactions, results highlighted
several patterns shared across frames predicted correctly from
both seen and unseen video sequences. The proposed work has
the potential to informed the future design of technologies used
to capture the clinical interaction and provide real-time feedback
for physicians, which will contribute to the improvement of care
quality.

Index Terms—primary care visits, deep learning, automatic
labeling, physician gaze

I. INTRODUCTION

Primary care is an essential part of an effective health
care system that emphasizes continuous and preventive care.
Effective patient-centered communication is integral to the
patient-provider relationship and has been identified as a
dimension of physician competency. This research will aim
to support automated analysis of primary care visits and can
facilitate feedback and reflection systems that help support
effective communication, reduce stress and improve the quality
of care. This study utilized video/image processing and built
convolutional neural network models to recognize patterns of
human interactions during primary care visits. By leveraging
a large existing dataset of recorded interactions, the research
focused on developing methods to help build an automatic
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annotation tool to extract more information about eye-gaze.
A significant body of research of physician behavior analysis
depended on an intensive manual annotation process of human
coders who rated or annotated live, videotaped or audio clips
of interactions based on prescribed methodologies [1]. The
practice of manual rating systems is often time-consuming,
labor intensive, context dependent and highly subjective to the
biases of human annotations [2], [3].The lack of consensus
of what to measure and conflicting findings for non-verbal
behavior increased the difficulties in quantifying how physi-
cian behaviors enhance patient outcomes such as satisfaction
and adherence [1]. An effective automated annotation sys-
tem which provides interaction feedback quickly and reliably
may provide more consistent and instructive measurement of
physician-patient interactions.

II. RELATED WORK

It is widely accepted that effective interpersonal commu-
nication between the physician and patient is essential for
patient outcome, such as understanding recommendations for
treatment, adherence to therapy, and health outcomes [4], [5].
Most tools evaluating clinician-patient communication were
based on verbal cues such as the process analysis system,
the verbal response mode, or the Roter Interaction Analysis
System (RIAS) but the evaluation of nonverbal interaction
has been comparatively less frequent in the literature [6].
However, nonverbal behavior, consisting of three components:
the face (e.g. gazing, and smiling), the body (e.g. posture and
body orientation), and gesturing (e.g. thumbs up, scratching
and clenching) [3], plays an important role in interpersonal
judgment which is crucial in physician-patient communication
[6]. Eye gaze has been one of the most important cues
among all non-verbal behaviors. One study found that the
absence of smiling and lack of eye contact were associated
with a decrease in physical and cognitive functioning of the
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patients [4]. Other research revealed that there was a positive
correlation between the eye contact, length of the visit and
the patient’s perception on clinician empathy [7]. More eye
contact with the patient and less gaze at the chart, close
proximity, and forward leaning of the physician improved
positive patient outcomes such as patient self-disclosure [8].
Therefore, it is important to provide tools to evaluate the non-
verbal characteristics of physician-patient communication. The
existing tools [9], [10] are relying mainly on human coding
to evaluate nonverbal communication in a medical encounter
which has been considered as a time-consuming process [2].
From human coding studies that produced evaluation of the
reliability of the human coders, the inter-rater correlations
ranged between 0.53 and 0.96 for non-verbal activities [2],
[7], [10]-[12]. A study also showed that expert annotators
on average had higher inter-annotator agreement compared
with non-expert annotators evaluated with kappa statistics
between the annotations on certain concepts that might not
have a clearly defined annotation rule such as aesthetic, quality
[13], which was similar to the case in evaluating non-verbal
interactions. Also, the study pointed out that annotations
based on a majority vote of repeated annotations was able to
smooth the noise of human judgement. Thus, it is important
to provide automatic annotation tools that can learn from the
expert annotation and provide faster, cheaper and more reliable
annotations. An increasing number of studies have been using
application of machine learning to reduce the burden and
reliance on human raters. However, only 8.7% of the studies
were related to evaluation of interpersonal and communication
skills of the physician, according to a systematic review [14].
A logistic regression classifier was used to predict mutual
followership based on the synchrony calculated by optical flow
in a simulated medical setting [2]. Built on the methodology
of Hart et al. [2], previous work of Gustein, Montague, Furst
and Raicu provided physician gaze predictions based upon
engineered numerical features obtained from optical flow and
body position with an Adaboost algorithm [15]. In previous
studies, the classification accuracy on six interactions across
three physicians ranged from 80% to 93% on randomly se-
lected test sets. The study proposed utilized the same dataset as
the previous study [15] and expanded the dataset by analyzing
more interactions for each doctor. There were some limita-
tions of the previous work coming from the dataset and the
algorithm. The patient-center videos and doctor-center videos
analyzed might provide missing values for body positioning
and optical flow measurements due to camera angle issues.
The most common issue would be the physician might not
be captured by the camera in the patient-center video. The
proportion of frames with missing values can range from 0%
to 76.24%, which might indicate the model cannot predict
over 70% of the frames in extreme cases. This might affect
the robustness of the model [15] for unseen videos. In this
study, to enhance the robustness and analyze the interactions
that had missing values for the previous methodology, only
doctor-centered videos which focused upon the physician’s
face and had reliable camera settings were analyzed with a
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convolutional neural network. This study also aimed to predict
across different interactions and different doctors using only
50% of the video length and providing reliable predictions for
unseen sequences. Human activity recognition in video has
been explored by various studies using two different methods:
handcrafted features (i.e., feature extraction from body and
motions) and deep learning learned feature representation [16].
The review pointed out that the deep learning-based solution
provided more robust feature extraction and classification in
video and benefited real-life applications. Most of the literature
used spatiotemporal features to train the network while few
used raw video frames as input. A large number of tech-
niques and neural network architectures have been designed
and tested on action recognition and human interaction, but
they mainly focused on a particular application domain with
different activities (e.g. boxing, brushing teeth in UCF 101)
per video. Preliminary experiments for the proposed study
using complex two-stream models [17] built on one of the
largest action recognition dataset UCF-101 [18] showed mod-
els designed for categorizing video of human daily tasks were
not applicable to the unique primary care visits dataset and
prediction of eye gaze. Thus, the study proposed a model using
simple architecture with a small dataset obtained from real
clinical setting to provide insights in this particular domain.

III. METHODOLOGY
A. Data

The research analyzed videos from a dataset that contained
raw versions of the videos of clinical interactions of 10
physicians and 101 patients. Fig. 1 shows an example of
an interaction captured from the different views (physician-
centered, patient-centered, wide-frame, and multi-channel).
The 101 videos of clinical interactions had variations in
lighting, camera placement and number of people presented
in a certain camera view. For each interaction, three cameras
with different focuses were set: one lens with patient’s chair at
the centered (Patient-centered), one lens capturing the face of
physician (Physician-centered) and one wide-view lens (Wide-
frame). The Multi-channel video was a collection of three
videos. Manual annotations encoding physician and patient
gaze were obtained using the Noldus Observer XT software
[19].

For the visit recordings, human annotations providing in-
formation regarding the relative start and stop time for the
physician gaze were used to generate ground truth. The start
time and stop time were transformed into frame-by-frame label
representations for the classification algorithm. Videos were
chosen based on following principles and findings. First, the
physician was required to be present in front of the camera
throughout the entire chosen sequence to provide valid frames
for the algorithm. Also, preliminary analysis showed that
videos with doctors close to the camera and showing most
of the face at the center of the camera were optimal for the
analysis. So interactions with sequences satisfying the optimal
settings were chosen from three doctors and each contained
five interactions. Only Physician-centered videos of the chosen
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Fig. 1. Sample Frames of Patient-centered videos, Physician-centered videos,
Wide-frame videos, and Multi-channel videos.

interactions were analyzed. Due to the fact that different
interactions might have variation in the total visit length and
different duration of the video available for analysis, the du-
ration analyzed for each interaction was set to be six minutes.
Six minutes was considered to be representative of the non-
verbal behaviors during the longer length of the clinical visits
based on research findings [20]. Each of the six minutes of
the fifteen videos was analyzed from the moment when the
physician was present in the Physician-centered video and
having interactions with the patient and up to the moment
before the start of the physical exam or reaching the desired
duration of time. Equal number of frames were extracted from
the video at a rate of 29.97 frames per second and aligned
with the transformed frame by frame annotation using Avid
Media Composer and a preprocessing pipeline built using
Python. After mapping the annotations to the frame level,
a human annotator confirmed the frame labels for physician
gaze for the sequence of interest. The frame label was Patient
if the physician was looking at the patient confirmed by
both annotation decision made by annotators observing Multi-
channel videos and an additional human annotator. Similarly,
the frame label was Other if the physician was not considered
to be looking at the patient.

B. Deep Learning for Gaze Classification

As defined by [21], the concept of transfer learning consists
of two components: domain (a feature space X and a marginal
probability distribution P(x)) and task ( a label space Y and an
objective predictive function f(-)). Given a source domain Dg
and task T, transfer learning helps to improve the learning of
f(-) in target domain D7 using the knowledge learned from
Dg and Ts, where Dg # Dy, or Ts # Tp. With limited
sample size of the dataset in this study, transfer learning
using a pre-trained model built on much larger datasets with
different but related domains and tasks was applied. From
preliminary experimental results, VGG-16 proposed by Visual
Geometry Group (VGG) [22] performed better and extracted
more representative feature vectors for this particular task in
this special domain compared to other popular pre-trained
models for computer vision tasks such as AlexNet [23],
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Inception V3 [24] and ResNet50 [25]. VGG-16 utilized 13
convolutional layers and 3 fully connected layers. In this study,
the model was trained using extracted features of VGG-16
pre-trained on ImageNet with all blocks frozen and fine-tuned
3,149,825 parameters of an added Global Max Pooling layer,
a Dropout layer, and 5 fully connected layers as shown in
Fig. 2.
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Fig. 2. Model Architecture (first five blocks are frozen layers from VGG-16
architecture (Blue Color), last two blocks are added layers).

The network weights are optimized using the Adam [26]
algorithm which is a stochastic gradient descent method with
adaptive estimator of lower-order moments with adaptive
learning rate. The model was trained to predict binary class
label: Patient (the physician was gazing patient) and Other (the
physician was gazing elsewhere) at the frame level. Individual
Frame extracted from the videos provided information and
descriptions about scenes as well as objects. The first three
minutes were used for building the model and the remaining
three minutes were held out to test the validity of the model for
unseen video sequences as shown in Fig. 3. The performance
of the model was validated against human annotations.

Train, Test, Validation Independent Hold-out
= |1 biaraction N seaune () Y Next 3-minute Sequence(1-1)
Evaluate - ’
\nteraction Next 3-minute Sequence(1-2)
J 12 3-minute Sequence (1-2) K
o Evaluate
- Interaction 3-minute Sequence (1-5) [ — Next 3-minute Sequence(1-5)
1-5
~ Interaction
- Evaluate
3-minute Sequence (3-5) Next 3-minute Sequence(3-5)

Fig. 3. Experiment Design.

C. Model Building

The first 3 minutes of duration of interests (3-minute Se-
quence) were used for model building processing. By stratified
sampling, 70% of the frames were utilized for training and
testing with 67%-33% split while 30% of the frames were
used as a validation set for model evaluation. Selected frames
were resized to 224x224x3 to be the same as the default input
shape for the VGG-16 architecture.

D. Independent Hold-out Set

The remaining 3 minutes of duration for each interaction
(Next 3-minute Sequence) were held out as independent hold-
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out set for unseen video sequence. It was different from the For independent hold out sets, the final model was used
validation set for model building because it was sampled and  to predict each frame of the unseen data sequentially. The
evaluated sequentially in time while the validation set was  class distribution of each interaction, percentage of Patient
obtained from stratified sampling which might include frames  labels among all labels (Pct Dist.) and model performance

from different time periods of the interaction. metrics were shown in Table III. For 9 of the 15 interactions,
the accuracy achieved over 90%. Results of sensitivity and
E. Visualization precision were also quite high. For doctor 1 interaction 2, the

accuracy was 97.83%, with 97.83% sensitivity and 98.73%
precision, which was considered to be the set with the best
performance. However, for doctor 3 interaction 3, the model
performed worst compared to all other interactions for accu-
racy and sensitivity but good in precision. The frame level
inspection of this particular interaction has been provided in
the discussion section.

The study utilized Gradient-weighted Class Activation Map-
ping (Grad-CAM) [27]to visualize the class discriminative
localization map of the last convolutional layer using heatmap
visualization, which helped with identifying model bias or data
bias in the training set. Grad-CAM can highlight important
image regions for prediction.

IV. RESULTS
. . o TABLE III
By stratified sampling based on the class distribution of CLASS DISTRIBUTION, PERCENTAGE OF PATIENT LABELS AND MODEL

each interaction, the class distribution of the final train, test PERFORMANCE METRICS FOR INDEPENDENT HOLDOUT SET .

and validation were shown in Table I. [ ClhssDist Miodel Performance Metrics
Patient% Accuracy | Sensitivity | Precision
TABLE I Docl -1 42.96% 91.99% 84.85% 96.04%
CLASS DISTRIBUTION OF TRAIN, TEST AND VALIDATION Docl -2 63.30% 97.83% 97.83% 98.73%
Docl -3 35.58% 84.02% 94.27% 70.64%
Train Test Validation Docl - 4 62.58% 72.61% 97.10% 70.38%
Patient 19246 | 9490 12320 Docl - 5 94.96% 96.11% 99.98% 96.08%
Other 18674 | 9200 11950 Doc2 - 1 81.48% 96.40% 98.41% 97.21%
Doc2 -2 48.73% 93.73% 99.47% 88.97%
. Doc2 - 3 19.66% 80.59% 92.36% 50.33%
The accuracy of the training was 98.73% (loss: 0.0354), and Doc2 — 4 38.25% 92.19% 05.98% 85.42%
98.36% (loss: 0.0559) for test set and 98.31% (loss: 0.0591) Doc2 -5 31.26% 90.14% 90.93% 80.18%
: : : Doc3 -1 29.33% 95.07% 92.92% 90.52%
for val.ldatllon set. Taple II s'urnrna.rlzed. the mod.el performance Bocs—3 0317 5137 e 05T T
in validation set using misclassification matrix and perfor- Doc3 =3 1 18% 20.55% 1821% 9M137%
mance metrics including accuracy, sensitivity, precision and F1 Doc3 - 4 50.57% 83.22% 90.94% 79.03%
score. Fig. 4 showed fast speed of convergence and comparable Doc3 - 5 48.49% 74.78% 76.14% 73.01%

performance on both train and test sets.
Discussion From the model performance of the train, test

TABLE 11 and validation sets, with 98.31% accuracy in validation set,

MISCLASSIFICATION MATFR(;;‘ éiflm(;ﬁf; g:;u: ORMANCE EVALUATION  the model was considered to be robust to predict randomly

sampled frames with labels. The independent hold out sets

Misclassification Matrix (Validation) were intended to test the robustness when using the model

S (T Otlia rre‘(i(l)c)ted %ﬁf;ii‘ @ Totl for the unseen sequence for different interactions of different

Other (0) 11749 201 11950 doctors, which was a unique contribution of the study. 80%

Patient (1) 210 12110 12320 of the interactions achieved over 80% accuracy while 75%

Tl(\)gldel Performalnlc?:s}gvaluatio;2(3\/1a11idation)24270 of those interactions had accuracy higher than 90%, which

Accuracy Sensitivity | Precision | FI Score indicated that the model might be comparable with human

9831% 98.30% 98.37% 038.33% annotators for certain interactions. However, for doctor 3 inter-

action 3 (Doc3-3), with different results compared to all other

interactions, might indicate a weakness of the model or the

technology design in collecting the video data for the task of

Model Accuracy 02 Model Loss interests. Sample frames of train and independent hold out sets

08 f " = for Doc3-3 and doctor 1 interaction 2 (Doc1-2) were visualized

o (" and compared using the Grad-CAM technique. Docl-2 was

fis g \ selected due to the high performance in all metrics. Four

. onr T\ correctly classified frames of Docl-2 of the training set and

— B0 s R independent hold-out set for both class labels were shown in

R e e W 5 e e @ Fig. 5. The highlighted areas (considered important regions by

the convolutional neural network) were mostly in the facial

Fig. 4. Model Performance (Training Accuracy (left) and Loss(right)). regions of the doctor such as the forehead, eyes and chin.
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In this interaction, the camera captured all the regions of the
face and the angle was consistent for the whole duration of
interests.

Fig. 5. Sample Frames of Docl-2, (a) train set (true label is Other), (b)
train set (true label is Patient), (c) and (d) for independent hold out set, (i)
indicates original images, (ii) indicates map generated by Grad-CAM, (iii)
indicates output of overlaying the map with the original image.

Four correctly classified frames of Doc3-3 from the training
set and independent hold-out set for both class labels were
shown in Fig. 6. Compared to the original frames of the
previous doctor, more variability of the face orientation was
observed. Also, the doctor might be too close or too far to the
camera so that it cannot capture the full facial region. These
differences between training and hold out set might bring
bias, which might explain why the model cannot generalize
well for the unseen sequence of this doctor. Different areas
were highlighted such as the neck of the doctor and the collar
of his shirt, which might not be informative for all different
variations.

To further understand the model performance of Doc3-3,
four frames were selected with different face orientations and
different parts of the facial region presented in the camera with
true label Patient from independent hold out set, as shown in
Fig. 7. The four frames were chosen to see the variation of
frames and difference in predictions in the hold-out set. The
results of the frame of full face and profile face with no eyes
informed that the model focused too much on the neck and
collar. Body posture and face orientation also seemed to be
influential. The frames included in the training set were quite
different than those of independent hold-out set in terms of
body posture, proximity to the camera and presence of eyes
or the entire face region, which might introduce bias in the
training. For example, from the observation of the raw data, the
face of the physician might not be captured in the later stage
of an interaction in the hold-out set, which was not learned by
the model from the training set. For a profile face with most
of the important facial region presented, the model was able
to predict correctly.

997

Indepenident
Hold Qut

True: Patient
Pred: Patient

Dog3-3-(a)(i) ¥

Doc3-3-(a)-(i) Doc3-3-(b)-(i)) Doc3-3-{c)-(i) Doc3-3-(d)ii)

v
Y

/

LY

!

Fig. 6. Sample Frames of Doc3-3, (a) train set (true label is Other), (b)
train set (true label is Patient), (c) and (d) for independent hold out set, (i)
indicates original images, (ii) indicates map generated by Grad-CAM, (iii)
indicates output of overlaying the map with the original image.

Doc3-3-{a)-(ii) Doc3-3-{b)-(ii) Doc3-3-(0)-{i) Doc3-3-(d)-(ii)

Profile Face
(no eyes)
True: Patient
Pred: Other

Full Fage Profile Face
True: Patient

Pred: Patient

ﬁi‘-ﬁ-(ﬂ-(i)

Doc3-3+(e)-()

Docd-3~(e)-(i) Doc3-3-(1(i) Doc3-3-(g)-{il)

4

Doc3-3-{e)-{iii) Doc3-3-(f)-{iii)

Fig. 7. Selected Frames of Doc3-3 from independent hold out set, (e) indicates
a frame with full facial region, (f) indicates a frame with profile face, (g)
indicates a frame with no eyes and profile face, (h) indicates no face presented,
(i) indicates original images, (ii) indicates map generated by Grad-CAM, (iii)
indicates output of overlaying the map with the original image.

From the observation and discussion above, careful plan-
ning of camera setting and video-recoding methods would
be needed to gather data for gaze prediction using the pro-
posed model in the future. The camera set for capturing the
Physician-center video were placed with fixed camera angle
on the physician’s desk differently for each interaction, which
might bring dataset bias based on the limited nature of the
dataset used to train and evaluate the model. This might
lead to false conclusions based on data collection [28]. More
specifically, it brought sample selection bias which was due
to differences between training and test collections related
to how images were acquired [28]. The finding above might
contribute to better technology design for data collection for
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this particular gazing prediction task. A study [29] suggested
that multiple cameras hooked to walls or side of the desks
with remote control that can adjust the cameras’ angle in
real-time in order to have a rich collection of video data. In
future work, detailed technology design suitable for improving
the data collection will be provided with more evidence and
findings discovered from experiments with more interactions.
The findings of this research will assist in developing user-
centered design methods including workflow and thematic
analysis of both patients and care providers.

V. CONCLUSION

Incorporating deep learning techniques can help make ac-
curate prediction of physician gaze annotations. This study
applied transfer learning to gaze prediction in the clinical
setting to assist the human annotation process in this field.
By learning from the failed cases, the findings also might
help with future design of the data collection technology for
an automatic annotation process. With only videos from one
camera angle and 50% of the frames annotated, the model can
simplify the process and reduce the annotation time for human
coders significantly. By extending the prediction to more
labels including chart, computer and keyboard, the additional
information gathered will further develop the prediction into
more meaningful prediction of eye-contact and turn-taking
in the future. More generally, automated gaze prediction can
assist in studying the performance aspects of physician-patient
interactions. Future work includes mapping gazing information
to patient ratings, outcomes of physician behaviors as well
as measures of physician burnout, which will enhance the
understanding of the effects of electronic health records and
computers on the physician behavior and further inform the
design of the technologies in the clinical context to improve the
quality of clinical encounters and reduce physician burnout.
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