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Abstract—The widespread adoption of electronic health records
within clinical settings has renewed interest in understanding
physician-patient interactions. Previous work analyzing clinical
interactions has mostly coupled patient surveys with manually
annotated video interactions provided by human coders.
Physician gaze is among the components of the non-verbal
interaction which has been found to impact patient outcomes.
The work described in this paper illustrates an automated
system for video labeling of patient-physician interactions and
shows that image features (such as areas and positioning of
physicians’ hands) can provide important visual aids for
learning physician gaze with over 90% accuracy. While our
approach focuses on physician gaze, it can be extended to
capture other clinical human-human and human-technology
interactions as well as connect these interactions to patient
ratings of clinical interactions.

Keywords—Clinical Interaction, Automatic Labeling, Physician
Gaze

1. INTRODUCTION

Widespread adoption of electronic health record (EHR)
systems in clinical settings has affected the dynamic between
clinicians and patients. Research findings have shown that
EHR usage can facilitate the flow of accessible, accurate
information to patients and physicians, improve decision-
making and medication management, and lead to overall
improvements in health-care quality [1]. However, the
presence of the EHR in the room can also influence cognitive
functioning [2] and alter the ability of the physician and
patient to communicate on an emotional level [1]. This
technological upending of the physician-patient relationship
— in both positive and negative ways — has challenged long-
held doctrines regarding clinical interactions and accentuated
the need for a more robust understanding of the physician-
patient exchange.

The physician-patient interaction can be categorized as
both verbal and non-verbal [3]. Verbal interactions can be
classified into three subcategories: rapport development, data
gathering, and patient education [4]. Beck et al. [4] reviewed
14 verbal interaction studies and found negative patient
outcomes including long-term health, adherence,
satisfaction, and compression — to be correlated with 14
physician verbal behaviors. These verbal behaviors included
high rates of biomedical questioning and low rates of
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physician feedback to patient information. In their analysis of
follow up oncology visits, Eide et al. [5] found that informal
talk  during the |Thistory taking phase (rapport
development/data gathering) of the interaction was
associated with higher patient satisfaction ratings. The
authors also determined a trend of patient dissatisfaction to
be present when physicians communicated in a psychosocial
manner (e.g. providing reassurance of general progress)
during the physical examination.

Voice characteristics account for pitch, loudness, tempo,
and modulation and have been used in several studies. Little
et. al [6] considered 275 videotaped consultations from 25
general practice physicians. The results of their regression
indicated that among other characteristics, tone of speech,
physical contact, and gestures (such as head movement) have
statistically significant impacts upon patient ratings of
satisfaction.

According to Mast & Cousin [3], non-verbal exchanges
contain three components: facial expression (e.g. eyebrow
raising, gazing, and smiling), body posture (e.g. positioning
of arms and legs), and hand gesturing (e.g. scratching, thumbs
up, hand clenching). Beck et al. [4] determined that positive
patient outcomes are associated with less mutual gaze,
physician arm symmetry, body orientation, and uncrossed
legs and arms. Bensing et al. [7] established that general
practitioners with higher levels of patient-directed gaze
proved to be more adept at identifying signs of patient
emotional distress. Gorawara-Bhat et al. [8] focused upon
elderly patients in a study comparing clinical exchanges with
high levels versus low levels of eye-contact and clinical
exchanges. Their research found minimal changes in patient-
understanding and adherence between divergent eye-contact
scenarios. Ishikawa et al. [9] analyzed 89 video recordings of
doctor-simulated interactions by post-clerkship medical
students to assess the connection between specific physician
non-verbal behaviors such as eye contact, head movement,
and body lean with patient evaluations of interactions. Their
findings showed correlations between positive patient ratings
and clinicians facing the patient directly, limiting
unnecessary movements, nodding when listening, gazing at
the patient equally when speaking and listening, matching the
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verbal speed and volume of the patient, and modulating vocal
tone and intonation.

The task of linking annotations of non-verbal behavior
to video data has relied upon the standard mechanism of
using human coders to label the data. This process is time-
consuming, labor intensive, and highly context dependent [3,
10, 11]. Conflicting findings and the lack of consensus
regarding what to measure also make it difficult to quantify
and generalize the relationships between physician behaviors
and patient outcomes such as satisfaction, understanding, and
adherence [4].

Recent advances in human activity recognition indicate
it is possible to recognize human interaction behavior via
automated processes [12, 13]. Hart et al. [11] used staged
medical interactions to analyze simulated clinical
interactions (i.e. the actor portraying the medical practitioner
would alternate between playing the part of an engaged
physician and of a disconnected physician) and measured the
kinetic energy outputted across two regions of interest
(provider and patient) in the image data. The results showed
that an increased level of motion synchrony and energy
followership between the ‘practitioner’ and ‘patient’
correspond to the physician’s staged active engagement with
the patient. In this paper we present an application of
automating the process of clinical interaction analysis via the
extraction of torso and hand features to predict the object of
physician gaze throughout specified sequences of interest.

II. METHODOLOGY

The purpose of this study was to evaluate the efficacy of
an automated methodology for labeling video data from
naturalistic, non-simulated clinical settings with nonverbal
patient-physician interactions. A diagram of the methodology
presented in this study is shown in Fig. 1.

Extract physician
hands and torso
from each frame

Calculate size and
positioning features

Use Markov Chains

3 S Fit classification
to fill in predictions

models for
physician gaze

for poorly
segmented frames

Fig. 1., Diagram of Methodology for Extracting Features from Selected
Frames of Physician-Patient Interactions

Using single-view video data, we extracted visual cues (e.g.
physician hand position and size) to learn physician gaze
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characteristics. Outcomes are presented from two phases of
analysis. The first phase of classification was based upon the
automatically extracted input features in frames for which the
segmentation algorithm correctly identified the number of
hands in Patient-Centered frames. The second phase of
analysis used these predictions to produce frame-by-frame
predictions for missing data — those frames for which the
segmentation algorithm did not correctly identify the number
of hands in the Patient-Centered frames. The remainder of
this section includes a description of the video data, human
annotations, the hand/torso feature extraction, and the two
phases of the classification approach.

A. Video Data

There were 101 patients participating in this study,
which was performed through the University of Wisconsin-
Madison. The 101 clinical interactions were highly inter-
dynamic, meaning that the settings from one interaction to
another — in the form of factors such as lighting, camera
placement, and number of people — fluctuated. For each
clinical interaction, three video cameras — one lens centered
upon the patient’s chair (encoded as Patient-Centered), one
wide-view lens (encoded as Wide-frame), and one lens
focused upon the doctor’s face (encoded as Doctor-Centered)
— temporally captured the visual components of each
interaction. All three videos were synchronized and
combined to form a single multichannel video. In order to
focus upon those videos which recorded the presence of the
physician’s hands, this methodology was focused upon the
data in the Patient-Centered videos.

The typical clinical environment included chairs, a
computer, and a desk. The standard clinical interaction
consisted of a single doctor and a single patient, with the
doctor assumed to be situated to the left of the patient in the
scene space of the Patient-Centered videos. The videos were
recorded at a rate 0f 29.97 frames per second, and we focused
our analysis upon 10,745 frames of size 480 by 720 for each
interaction in order to focus upon those durations in which
the doctor was in the vicinity of his or her desk.

B. Human Annotations

The manual annotations encoded  physician
communication, physician gaze, and patient gaze and were
obtained using the Noldus Observer XT software [14]. Start
and stop times as well as duration were recorded for each
form of physician and patient behavior. Given that the
computer vision and machine learning algorithms were
applied on a frame-to-frame basis, the original annotations
were mapped to each frame. An additional human annotator
confirmed the frame labels for physician gaze after the
annotations were mapped to frames. If the physician was
deemed to be looking at the patient in a frame, that frame was
labeled Patient. If the physician was deemed to not be
looking at the patient in a frame, that frame was labeled
Other. The additional annotator also encoded the number of
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hands in each frame to be used as reference truths for
validating the hand detection and recognition algorithms. A
snippet of original manual annotations for physician
communication, physician gaze, and patient gaze are shown
in the visualization in Fig. 2.
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Fig. 2., Original Annotation Data Visualization Representation: 00:00:32—
00:00:42 (seconds), Interaction 001

C. Hand/Torso Feature Extraction

The raw videos were acquired using the Red Green Blue
(RGB) color space. Given that the RGB space provided
insufficient contrast to discriminate between pixels in regions
with human skin tone and pixels in regions without human
skin tone, we converted the video data from each interaction
to the Hue Saturation Intensity (HSI) space. Then, a
combination of thresholding approaches for the HSI and
RGB channels were used to segment the skin pixels from the
rest of the pixels. As a post-processing step, we applied a
Gaussian filter to smooth the edges of the regions [15].

Once the hands were segmented based upon skin pixel
data thresholding, we used domain knowledge regarding
physician and patient positioning in our clinical setting
(physician sits at computer on the left side of the frame and
patient sits on the right side of the frame in the vicinity of the
desk) to focus on sub-regions of the frames and differentiate
between the physician and patient hands. The parameters for
HSI thresholding and subregion search-spacing were
adjusted for each patient to account for positioning and
lighting changes. Furthermore, the candidate physician hands
were the two largest connected components of the segmented
image.

The methodology for segmenting the physician torso
was conceptually similar to the segmentation of physician
hands, although the entire image search space was used and
a separate combination of HSI and RGB channels were
employed for the purpose of thresholding. The largest
connected component (smoothed and augmented using a
Gaussian filter) was classified as physician torso [16]. The
candidate physician hands were confirmed as hands if the
segmented hand was connected to the connected component
representing the smoothed and augmented physician torso.
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For each interaction, unique hyper-parameters were used for
the search space and HSI and RGB channels in order to
account for changes in lighting, pixel intensities, and camera
positioning between interactions. The segmented hands were
further described using 16 automatically extracted variables,
15 of which are listed in Table 1.

The variable Numbers of Hands Detected is not listed in
Table 1 because it can be inferred from the other variables. X
and Y are the pixel coordinates representing the hand or torso
regions. Three high-level features (Number of Hands
Detected, Left Hand Present, Right Hand Present) were then
extracted from each frame and used to build what we defined
as Count-Based Features (CBF) models. These three high-
level features were also included with the remaining 13 low-
level hand and torso features to build what we named Al/
Features (AIIF) models.

TABLE 1: EXTRACTED VARIABLES FOR HAND AND TORSO
CHARACTERIZATION

Video Patient-Centered
Body Part Left Hand Right Hand Torso
Hand v v
X Mean v v v
Y Mean v v N4
Min (X) v
Min (Y) N4
Max (X) N4
Max (Y) v
Area N4 v v

D. Gaze classification

To map image features automatically extracted using
computer vision techniques to annotations capturing
physician behavior, we divided the classification process into
two phases.

In Phase 1, we individually fitted and validated a simple
classifier — decision trees (DT) [17] — and a more advanced
classifier — AdaBoost (AB) [18] — for each of the patient-
physician interactions. The hyper-parameters of the decision
tree and AdaBoost classifiers were tuned accordingly for
each physician. Those frames in each interaction for which
the number of hands identified by the feature extraction
system did not match the number of hands encoded by the
human annotator were not classified in Phase 1. We present
the classification performances regarding physician gaze in
terms of sensitivity and precision for the classification of
gazing at the patient and of the accuracy upon the testing and
validation sets within the interaction upon which each
classifier was trained.

In Phase 2 of the classification, for the optimal classifier
from Phase 1, we performed predictions of physician gaze on
a frame-by-frame basis based upon the mode of the predicted
labels for each frame in the testing and validation sets.
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Probabilities for each prediction were derived from the
homogeneity rates of the predicted labels (e.g. four frame
predictions of physician gazing at chart and one prediction of
physician gazing at patient resulted in a final frame prediction
of chart with 80% probability). The temporal automated
labels and probabilities were then augmented using localized
first order Markov Chains [19] to predict physician gaze
labels for frames in each interaction which did not experience
the accurate segmentation of hands in the computer vision
feature extraction phase. For any label in the dataset, if the
probability of the label failed to meet the 70% probability
threshold, physician gaze either remained unlabeled or was
changed to unlabeled for the frame. The Markov Chains
transition matrix was derived from a maximum of the
previous 50 frames, and the maximum number of consecutive
filled in values was set to 51.

III. RESULTS

We present our preliminary results for two physicians and
three patients for each physician, resulting in a total of 6
interactions. The first phase of the process of classifying
physician gaze in terms of either gaze to the Patient or Other
was applied to those frames, from a set of 10,745 frames in
each interaction, for which the number of components
registered as hands by segmentation algorithm matched the
number of hands registered by a human coder. The
distributions of physician gaze labels — in terms of Patient
and Other — are shown for the matching frames for each of
the six interactions in Table 2. To achieve class balance, each
interaction’s model was fitted with an equal number of Other
labeled frames and Patient labeled frames. For each
interaction, the validation data consisted of a random subset
of 20% of the frames from the balanced data together with
those frames which were originally removed from the model
fitting process for the purpose of achieving class balance. The
remaining 80% of the data consisted of training and test data.
The algorithms were run 40 times upon the training, test, and
validation data, with the training and test data being split
randomly for each iteration according to a 66%:34% ratio.
Physician 1 is associated with Interaction 1, Interaction 2,
and Interaction 59, while Physician 2 is associated with
Interaction 65, Interaction 68, and Interaction 71. The listing
Int in Tables 2—11 is an abbreviation for Interaction.

TABLE 2: COMBINED MANUAL LABELS FOR PHYSICIAN GAZE

Label Int1 Int 2 Int 59 Int 65 Int 68 Int 71
Patient 4473 4759 4405 2488 6416 2509
Other 6272 5986 6340 8257 4329 8236

Table 3 lists the number of frames in each interaction for
which the number of hands identified by the feature
extraction system matched the number of hands manually
encoded by the human annotator.
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TABLE 3: NUMBER OF FRAME LABELS AND PERCENTAGE OF
FRAME LABELS OUT OF 10,745 TOTAL LABELS WITH
SEGMENTATIONS CORRECTLY CALCULATING NUMBER OF
PHYSICIAN’S HANDS

Label Int1 Int 2 Int 59 Int 65 Int 68 Int 71
Patient 1970 4210 3252 707 3043 2168
Other 5805 5245 4272 1221 2304 7222

Total 7775 9455 7524 1928 5347 9390

(72%) | (88%) | (70%) (18%) (50%) (87%)

The frames represented in Table 3 (frames with accurate hand
segmentations) were the frames upon which the findings
from Tables 4 — 10 were derived. Table 4 presents the results
of the mean training accuracy (40 iterations) for the
classification of physician gaze on each training set. Tables 5
— 10 present the mean accuracy, sensitivity, and precision (40
iterations) for the classification of physician gaze on the test
and validation sets within the interaction that each
classification algorithm was trained upon. The results are
compared across the CBF Models and the AIIF Models. For
the interactions involving Physician 1, with regard to both DT
and AB for the CBF Model and the AIIF Model, the minimum
leaf size was set to 8 and a maximum of 64 splits were
allowed; 50 decision trees were determined as the optimal
number of DTs for the AdaBoost (AB) classifier. For the
interactions involving Physician 2, with regard to both DT
and AB for the CBF Model and the AlIF Model, the minimum
leaf size was set to 8 and a maximum number of splits to 16;
25 decision trees were determined to be the optimal number
of trees for the AdaBoost classifier.

TABLE 4 MEAN TRAINING ACCURACY (ACC): PHYSICIAN GAZE

CLASSIFIERS
Classifier Int1 Int2 | Int59 | Int65 | Int 68 | Int71
CBF DT 71% 64% 59% 60% 66% 51%
AllF DT 89% 89% 88% 79% 84% 80%
CBF AB 72% 64% 59% 60% 66% 51%
AllF AB 100% | 100% | 100% | 100% 95% 90%
TABLE 5 MEAN TEST ACCURACY (ACC): PHYSICIAN GAZE
CLASSIFIERS
Classifier Int1 Int 2 Int59 | Int 65 | Int68 | Int 71
CBF DT 71% 64% 58% 60% 66% 50%
AllF DT 86% 88% 86% 75% 83% 79%
CBF AB 72% 64% 58% 60% 66% 50%
AllF AB 93% 95% 96% 79% 88% 84%
TABLE 6: MEAN TEST SENSITIVITY: PHYSICIAN GAZE AT
PATIENT
Classifier Int1 Int2 | Int59 | Int65 | Int68 | Int 71
CBF DT 49% 95% 45% 22% 79% 62%
AlIF DT 81% 84% 85% 81% 79% 83%
CBF AB 48% 95% 45% 22% 79% 62%
AllF AB 92% 94% 96% 80% 86% 86%
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TABLE 7: MEAN TEST PRECISION: PHYSICIAN GAZE AT

TABLE 11: COMBINED VALIDATION AND TEST

PATIENT PREDICTIONS: NUMBER OF FRAME-BY-FRAME
Classifier Int 1 mt2 | Int59 | Int65 | Int68 | Int 71 PHYSICIAN GAZE PREDICTIONS AND PERCENTAGE OF
CBF DT 90% 58% 68% 92% 63% 63% PREDICTIONS OUT OF 10,745 TOTAL LABELS
AllF DT 90% 91% 86% 74% 86% 76%
CBF AB 91% | 58% | 68% | 92% | 63% | 68% AlIF_AB AlIF_AB + Markov
AlIF AB 94% 96% 96% 79% 91% 82%
TABLE 8: MEAN VALIDATION ACCURACY (ACC): PHYSICIAN Int Correct Pred | Total Pred | Correct Pred | Total Pred
GAZE It 1 7,375 7,775 9,472 9986
Classifier | Int1 | Int2 | Int59 | Int65 | Int68 | Int71 (69%) (72%) (88%) (93%)
CBF DT 90% | 53% | 65% | 85% | 73% | 41% Int 2 9,455 9,090 9,601 9987
AIIFDT | 90% | 89% | 86% | 71% | 81% | 75% (88%) (85%) (89%) (93%)
CBF AB 91% 53% 65% 85% 73% 41% Int 59 7,299 7,524 10,254 10571
AlIF AB 94% | 95% | 97% | 78% | 88% | 82% (68%) (70%) (95%) (98%)
1,546 1,928 6,421 8008
TABLE 9: MEAN VALIDATION SENSITIVITY: PHYSICIAN GAZE Int 65 (14%) (18%) (60%) (75%)
AT PATIENT
Int 68 4,784 5,347 7,558 8448
Classifier | Int1 | Int2 | Int59 | Int65 | Int68 | Int71 (45%) (50%) (70%) (79%)
CBF DT 51% 95% 47% 22% 80% 61% 7,792 9,390 8,676 10456
AIFDT | 79% | 83% | 85% | 79% | 78% | 82% Int 71 (73%) (87%) (81%) (97%)
CBF AB 50% | 95% | 47% | 22% | 80% | 61% ] ] ) ) —
AlIF AB 92% 93% 95% 79% 86% 4% For the interactions involving Physician 2, the
application of Markov Chains to fill in missing values from
TABLE 10: MEAN VALIDATION PRECISION: PHYSICIAN GAZE the AlIF AB predictions produced an average of 2,844
ATPATIENT additional accurate predictions. The mean percentage of
Classifier | Int1 | Int2 | Int59 | Int65 | Int68 | Int71 frames (out of 10,745) accurately predicted for the three
CBF DT 46% | 40% | 45% | 64% | 82% | 42% interactions involving Physician 2 before filling in missing
AlIF DT 48% | 81% | 72% | 37% | 94% | 21% values was 43.81%. After filling in missing values via the
CBF AB 48% | 40% | 45% | 64% | 82% | 42% application of Markov Chains, the mean percentage of frames
AlIFAB | 60% | 92% | 93% | 42% | 97% | 27% (out of 10,745) accurately predicted for the three interactions

For five of the six interactions, AlIlF AB achieved the
highest accuracy and sensitivity scores on testing and
validation (at or exceeding 82%). Regarding Int 65 with
Physician 2, for which AlIF AB model did not achieve the
best accuracy and sensitivity scores on testing and validation,
an analysis of the results showed that the feature extraction
phase itself performed poorly. Int 71 with Physician 2 also
had low performance in terms of precision on the validation
data. Table 11 summarizes the effect of the Markov Chains
on the performance of AllF AB predictions for each
interaction made on a frame by frame basis and the
subsequent performance metrics. The percentages listed in
Table 11 refer to the efficacy of the algorithm across the
complete sequence of 10,745 frames. The listing Pred in
Table 11 is an abbreviation for Prediction.

For the interactions involving Physician 1, the
application of Markov Chains to fill in missing values from
the AlIF AB predictions produced an average of 1,733
additional accurate predictions. The mean percentage of
frames (out of 10,745) accurately predicted for the three
interactions involving Physician 1 before filling in missing
values was 74.85%. After filling in missing values via the
application of Markov Chains, the mean percentage of frames
(out of 10,745) accurately predicted for the three interactions
involving Physician 1 increased to 90.98%.

661

involving Physician 2 increased to 70.28%.

IV. CONCLUSION

Our results demonstrate that a combination of machine
learning techniques can be applied to image features
automatically extracted from single-view video data to learn
physician behavior such as gazing at a patient in a clinical
setting. These preliminary results create the premises for
exploring new computer vision algorithms to encode single-
view video data for automatically capturing human-human
interaction and human-machine interaction.

As shown by the results for some physician-patient video
data interactions, the segmentation and feature extraction
steps need to be refined further to take into account their
sensitivity to changes in lighting and patient-physician
positioning, as well as variations among interactions within
the same physician data. We will be exploring the utility of
the YOLO (You Only Look Once) [20] algorithm to improve
the robustness of our segmentation approach as well as
optical flow [21] to complement the feature measurements
for approximating the physician-patient position and body
movement across multiple physician-patient interactions.

Furthermore, based on the research of Schneider et al.
[22] — whose findings determined that HIV infected patients
who provided higher ratings in the form of overall
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satisfaction, willingness to recommend a physician, and
physician trust were more likely to adhere to medication
plans — in the long run we will also look into mapping
positioning information and energy flows to patient ratings
and outcomes. In the long term, we expect that the
applications of these techniques will enhance the
understanding of the effects of different forms of EHRs on
the physician-patient relationships, and further inform the
design of more efficient, effective EHRs to enhance the
quality of the physician-patient interaction. Ultimately, the
proposed work has the potential to inform and aid the design
oftechnologies for capturing interactions from video data and
providing real-time feedback to physicians in clinical
settings.
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