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Abstract—The widespread adoption of electronic health records 
within clinical settings has renewed interest in understanding 
physician-patient interactions. Previous work analyzing clinical 
interactions has mostly coupled patient surveys with manually 
annotated video interactions provided by human coders.
Physician gaze is among the components of the non-verbal 
interaction which has been found to impact patient outcomes.
The work described in this paper illustrates an automated 
system for video labeling of patient-physician interactions and 
shows that image features (such as areas and positioning of 
physicians’ hands) can provide important visual aids for 
learning physician gaze with over 90% accuracy. While our 
approach focuses on physician gaze, it can be extended to 
capture other clinical human-human and human-technology 
interactions as well as connect these interactions to patient 
ratings of clinical interactions.

Keywords—Clinical Interaction, Automatic Labeling, Physician 
Gaze

I. INTRODUCTION

Widespread adoption of electronic health record (EHR) 
systems in clinical settings has affected the dynamic between 
clinicians and patients. Research findings have shown that 
EHR usage can facilitate the flow of accessible, accurate 
information to patients and physicians, improve decision-
making and medication management, and lead to overall 
improvements in health-care quality [1]. However, the 
presence of the EHR in the room can also influence cognitive 
functioning [2] and alter the ability of the physician and 
patient to communicate on an emotional level [1]. This 
technological upending of the physician-patient relationship 
– in both positive and negative ways – has challenged long-
held doctrines regarding clinical interactions and accentuated 
the need for a more robust understanding of the physician-
patient exchange.

The physician-patient interaction can be categorized as 
both verbal and non-verbal [3]. Verbal interactions can be
classified into three subcategories: rapport development, data 
gathering, and patient education [4]. Beck et al. [4] reviewed 
14 verbal interaction studies and found negative patient 
outcomes – including long-term health, adherence,
satisfaction, and compression – to be correlated with 14 
physician verbal behaviors. These verbal behaviors included 
high rates of biomedical questioning and low rates of 

physician feedback to patient information. In their analysis of 
follow up oncology visits, Eide et al. [5] found that informal 
talk during the history taking phase (rapport 
development/data gathering) of the interaction was 
associated with higher patient satisfaction ratings. The 
authors also determined a trend of patient dissatisfaction to 
be present when physicians communicated in a psychosocial 
manner (e.g. providing reassurance of general progress) 
during the physical examination.

Voice characteristics account for pitch, loudness, tempo, 
and modulation and have been used in several studies. Little 
et. al [6] considered 275 videotaped consultations from 25 
general practice physicians. The results of their regression 
indicated that among other characteristics, tone of speech, 
physical contact, and gestures (such as head movement) have 
statistically significant impacts upon patient ratings of 
satisfaction.

According to Mast & Cousin [3], non-verbal exchanges 
contain three components: facial expression (e.g. eyebrow 
raising, gazing, and smiling), body posture (e.g. positioning 
of arms and legs), and hand gesturing (e.g. scratching, thumbs 
up, hand clenching). Beck et al. [4] determined that positive 
patient outcomes are associated with less mutual gaze, 
physician arm symmetry, body orientation, and uncrossed 
legs and arms. Bensing et al. [7] established that general 
practitioners with higher levels of patient-directed gaze
proved to be more adept at identifying signs of patient 
emotional distress. Gorawara-Bhat et al. [8] focused upon 
elderly patients in a study comparing clinical exchanges with 
high levels versus low levels of eye-contact and clinical 
exchanges. Their research found minimal changes in patient-
understanding and adherence between divergent eye-contact 
scenarios. Ishikawa et al. [9] analyzed 89 video recordings of 
doctor-simulated interactions by post-clerkship medical 
students to assess the connection between specific physician 
non-verbal behaviors such as eye contact, head movement, 
and body lean with patient evaluations of interactions. Their 
findings showed correlations between positive patient ratings 
and clinicians facing the patient directly, limiting 
unnecessary movements, nodding when listening, gazing at 
the patient equally when speaking and listening, matching the 
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verbal speed and volume of the patient, and modulating vocal 
tone and intonation. 

The task of linking annotations of non-verbal behavior 
to video data has relied upon the standard mechanism of 
using human coders to label the data. This process is time-
consuming, labor intensive, and highly context dependent [3,
10, 11]. Conflicting findings and the lack of consensus 
regarding what to measure also make it difficult to quantify 
and generalize the relationships between physician behaviors 
and patient outcomes such as satisfaction, understanding, and 
adherence [4].

Recent advances in human activity recognition indicate 
it is possible to recognize human interaction behavior via 
automated processes [12, 13]. Hart et al. [11] used staged 
medical interactions to analyze simulated clinical 
interactions (i.e. the actor portraying the medical practitioner 
would alternate between playing the part of an engaged 
physician and of a disconnected physician) and measured the 
kinetic energy outputted across two regions of interest 
(provider and patient) in the image data. The results showed 
that an increased level of motion synchrony and energy 
followership between the ‘practitioner’ and ‘patient’ 
correspond to the physician’s staged active engagement with 
the patient. In this paper we present an application of 
automating the process of clinical interaction analysis via the 
extraction of torso and hand features to predict the object of 
physician gaze throughout specified sequences of interest. 

II. METHODOLOGY

The purpose of this study was to evaluate the efficacy of 
an automated methodology for labeling video data from 
naturalistic, non-simulated clinical settings with nonverbal 
patient-physician interactions. A diagram of the methodology 
presented in this study is shown in Fig. 1.

Fig. 1., Diagram of Methodology for Extracting Features from Selected  
Frames of Physician-Patient Interactions

Using single-view video data, we extracted visual cues (e.g. 
physician hand position and size) to learn physician gaze 

characteristics. Outcomes are presented from two phases of 
analysis. The first phase of classification was based upon the 
automatically extracted input features in frames for which the 
segmentation algorithm correctly identified the number of 
hands in Patient-Centered frames. The second phase of 
analysis used these predictions to produce frame-by-frame 
predictions for missing data – those frames for which the 
segmentation algorithm did not correctly identify the number 
of hands in the Patient-Centered frames. The remainder of 
this section includes a description of the video data, human 
annotations, the hand/torso feature extraction, and the two 
phases of the classification approach.

A. Video Data
There were 101 patients participating in this study, 

which was performed through the University of Wisconsin-
Madison. The 101 clinical interactions were highly inter-
dynamic, meaning that the settings from one interaction to 
another – in the form of factors such as lighting, camera 
placement, and number of people – fluctuated. For each 
clinical interaction, three video cameras – one lens centered 
upon the patient’s chair (encoded as Patient-Centered), one 
wide-view lens (encoded as Wide-frame), and one lens 
focused upon the doctor’s face (encoded as Doctor-Centered) 
– temporally captured the visual components of each 
interaction. All three videos were synchronized and 
combined to form a single multichannel video. In order to 
focus upon those videos which recorded the presence of the 
physician’s hands, this methodology was focused upon the 
data in the Patient-Centered videos.

The typical clinical environment included chairs, a 
computer, and a desk. The standard clinical interaction 
consisted of a single doctor and a single patient, with the 
doctor assumed to be situated to the left of the patient in the 
scene space of the Patient-Centered videos. The videos were 
recorded at a rate of 29.97 frames per second, and we focused 
our analysis upon 10,745 frames of size 480 by 720 for each 
interaction in order to focus upon those durations in which 
the doctor was in the vicinity of his or her desk.

B. Human Annotations
The manual annotations encoded physician 

communication, physician gaze, and patient gaze and were 
obtained using the Noldus Observer XT software [14]. Start 
and stop times as well as duration were recorded for each 
form of physician and patient behavior. Given that the 
computer vision and machine learning algorithms were 
applied on a frame-to-frame basis, the original annotations 
were mapped to each frame. An additional human annotator 
confirmed the frame labels for physician gaze after the 
annotations were mapped to frames. If the physician was 
deemed to be looking at the patient in a frame, that frame was 
labeled Patient. If the physician was deemed to not be 
looking at the patient in a frame, that frame was labeled 
Other. The additional annotator also encoded the number of 
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hands in each frame to be used as reference truths for 
validating the hand detection and recognition algorithms. A
snippet of original manual annotations for physician 
communication, physician gaze, and patient gaze are shown 
in the visualization in Fig. 2.

Fig. 2., Original Annotation Data Visualization Representation: 00:00:32–
00:00:42 (seconds), Interaction 001

C. Hand/Torso Feature Extraction

The raw videos were acquired using the Red Green Blue 
(RGB) color space. Given that the RGB space provided 
insufficient contrast to discriminate between pixels in regions 
with human skin tone and pixels in regions without human 
skin tone, we converted the video data from each interaction
to the Hue Saturation Intensity (HSI) space. Then, a
combination of thresholding approaches for the HSI and 
RGB channels were used to segment the skin pixels from the 
rest of the pixels. As a post-processing step, we applied a 
Gaussian filter to smooth the edges of the regions [15].

Once the hands were segmented based upon skin pixel 
data thresholding, we used domain knowledge regarding 
physician and patient positioning in our clinical setting 
(physician sits at computer on the left side of the frame and 
patient sits on the right side of the frame in the vicinity of the 
desk) to focus on sub-regions of the frames and differentiate 
between the physician and patient hands. The parameters for 
HSI thresholding and subregion search-spacing were 
adjusted for each patient to account for positioning and 
lighting changes. Furthermore, the candidate physician hands 
were the two largest connected components of the segmented 
image. 

The methodology for segmenting the physician torso 
was conceptually similar to the segmentation of physician 
hands, although the entire image search space was used and 
a separate combination of HSI and RGB channels were 
employed for the purpose of thresholding. The largest 
connected component (smoothed and augmented using a
Gaussian filter) was classified as physician torso [16]. The 
candidate physician hands were confirmed as hands if the 
segmented hand was connected to the connected component 
representing the smoothed and augmented physician torso.

For each interaction, unique hyper-parameters were used for 
the search space and HSI and RGB channels in order to 
account for changes in lighting, pixel intensities, and camera 
positioning between interactions. The segmented hands were 
further described using 16 automatically extracted variables,
15 of which are listed in Table 1.

The variable Numbers of Hands Detected is not listed in 
Table 1 because it can be inferred from the other variables. X 
and Y are the pixel coordinates representing the hand or torso 
regions. Three high-level features (Number of Hands 
Detected, Left Hand Present, Right Hand Present) were then 
extracted from each frame and used to build what we defined 
as Count-Based Features (CBF) models. These three high-
level features were also included with the remaining 13 low-
level hand and torso features to build what we named All 
Features (AllF) models.

TABLE 1: EXTRACTED VARIABLES FOR HAND AND TORSO 
CHARACTERIZATION

Video Patient-Centered
Body Part Left Hand Right Hand Torso

Hand ✔✔ ✔✔
X Mean ✔✔ ✔✔ ✔✔
Y Mean ✔✔ ✔✔ ✔✔
Min (X) ✔✔
Min (Y) ✔✔
Max (X) ✔✔
Max (Y) ✔✔

Area ✔✔ ✔✔ ✔✔
D. Gaze classification 

To map image features automatically extracted using
computer vision techniques to annotations capturing 
physician behavior, we divided the classification process into 
two phases. 

In Phase 1, we individually fitted and validated a simple 
classifier – decision trees (DT) [17] – and a more advanced 
classifier – AdaBoost (AB) [18] – for each of the patient-
physician interactions. The hyper-parameters of the decision 
tree and AdaBoost classifiers were tuned accordingly for 
each physician. Those frames in each interaction for which 
the number of hands identified by the feature extraction 
system did not match the number of hands encoded by the 
human annotator were not classified in Phase 1. We present
the classification performances regarding physician gaze in 
terms of sensitivity and precision for the classification of 
gazing at the patient and of the accuracy upon the testing and 
validation sets within the interaction upon which each 
classifier was trained.

In Phase 2 of the classification, for the optimal classifier
from Phase 1, we performed predictions of physician gaze on 
a frame-by-frame basis based upon the mode of the predicted 
labels for each frame in the testing and validation sets. 
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Probabilities for each prediction were derived from the
homogeneity rates of the predicted labels (e.g. four frame 
predictions of physician gazing at chart and one prediction of 
physician gazing at patient resulted in a final frame prediction 
of chart with 80% probability). The temporal automated 
labels and probabilities were then augmented using localized 
first order Markov Chains [19] to predict physician gaze 
labels for frames in each interaction which did not experience 
the accurate segmentation of hands in the computer vision 
feature extraction phase. For any label in the dataset, if the 
probability of the label failed to meet the 70% probability 
threshold, physician gaze either remained unlabeled or was 
changed to unlabeled for the frame. The Markov Chains 
transition matrix was derived from a maximum of the 
previous 50 frames, and the maximum number of consecutive 
filled in values was set to 51. 

III. RESULTS
We present our preliminary results for two physicians and 
three patients for each physician, resulting in a total of 6 
interactions. The first phase of the process of classifying 
physician gaze in terms of either gaze to the Patient or Other 
was applied to those frames, from a set of 10,745 frames in 
each interaction, for which the number of components 
registered as hands by segmentation algorithm matched the 
number of hands registered by a human coder. The
distributions of physician gaze labels – in terms of Patient 
and Other – are shown for the matching frames for each of 
the six interactions in Table 2. To achieve class balance, each 
interaction’s model was fitted with an equal number of Other 
labeled frames and Patient labeled frames. For each 
interaction, the validation data consisted of a random subset 
of 20% of the frames from the balanced data together with 
those frames which were originally removed from the model 
fitting process for the purpose of achieving class balance. The 
remaining 80% of the data consisted of training and test data. 
The algorithms were run 40 times upon the training, test, and 
validation data, with the training and test data being split 
randomly for each iteration according to a 66%:34% ratio.
Physician 1 is associated with Interaction 1, Interaction 2,
and Interaction 59, while Physician 2 is associated with 
Interaction 65, Interaction 68, and Interaction 71. The listing 
Int in Tables 2–11 is an abbreviation for Interaction.

TABLE 2: COMBINED MANUAL LABELS FOR PHYSICIAN GAZE

Label Int 1 Int 2 Int 59 Int 65 Int 68 Int 71

Patient 4473 4759 4405 2488 6416 2509

Other 6272 5986 6340 8257 4329 8236

Table 3 lists the number of frames in each interaction for 
which the number of hands identified by the feature 
extraction system matched the number of hands manually 
encoded by the human annotator.

TABLE 3: NUMBER OF FRAME LABELS AND PERCENTAGE OF 
FRAME LABELS OUT OF 10,745 TOTAL LABELS WITH 

SEGMENTATIONS CORRECTLY CALCULATING NUMBER OF 
PHYSICIAN’S HANDS 

Label Int 1 Int 2 Int 59 Int 65 Int 68 Int 71

Patient 1970 4210 3252 707 3043 2168

Other 5805 5245 4272 1221 2304 7222

Total 7775 
(72%)

9455 
(88%)

7524 
(70%)

1928 
(18%)

5347 
(50%)

9390 
(87%)

The frames represented in Table 3 (frames with accurate hand 
segmentations) were the frames upon which the findings 
from Tables 4 – 10 were derived. Table 4 presents the results 
of the mean training accuracy (40 iterations) for the 
classification of physician gaze on each training set. Tables 5
– 10 present the mean accuracy, sensitivity, and precision (40 
iterations) for the classification of physician gaze on the test 
and validation sets within the interaction that each 
classification algorithm was trained upon. The results are
compared across the CBF Models and the AllF Models. For 
the interactions involving Physician 1, with regard to both DT 
and AB for the CBF Model and the AllF Model, the minimum 
leaf size was set to 8 and a maximum of 64 splits were 
allowed; 50 decision trees were determined as the optimal 
number of DTs for the AdaBoost (AB) classifier. For the 
interactions involving Physician 2, with regard to both DT 
and AB for the CBF Model and the AllF Model, the minimum 
leaf size was set to 8 and a maximum number of splits to 16; 
25 decision trees were determined to be the optimal number 
of trees for the AdaBoost classifier.

TABLE 4 MEAN TRAINING ACCURACY (ACC): PHYSICIAN GAZE 
CLASSIFIERS

Classifier Int 1 Int 2 Int 59 Int 65 Int 68 Int 71
CBF DT 71% 64% 59% 60% 66% 51%
AllF DT 89% 89% 88% 79% 84% 80%
CBF AB 72% 64% 59% 60% 66% 51%
AllF AB 100% 100% 100% 100% 95% 90%

TABLE 5 MEAN TEST ACCURACY (ACC): PHYSICIAN GAZE
CLASSIFIERS

Classifier Int 1 Int 2 Int 59 Int 65 Int 68 Int 71
CBF DT 71% 64% 58% 60% 66% 50%
AllF DT 86% 88% 86% 75% 83% 79%
CBF AB 72% 64% 58% 60% 66% 50%
AllF AB 93% 95% 96% 79% 88% 84%

TABLE 6: MEAN TEST SENSITIVITY: PHYSICIAN GAZE AT 
PATIENT 

Classifier Int 1 Int 2 Int 59 Int 65 Int 68 Int 71
CBF DT 49% 95% 45% 22% 79% 62%
AllF DT 81% 84% 85% 81% 79% 83%
CBF AB 48% 95% 45% 22% 79% 62%
AllF AB 92% 94% 96% 80% 86% 86%
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TABLE 7:  MEAN TEST PRECISION: PHYSICIAN GAZE AT 
PATIENT

Classifier Int 1 Int 2 Int 59 Int 65 Int 68 Int 71
CBF DT 90% 58% 68% 92% 63% 68%
AllF DT 90% 91% 86% 74% 86% 76%
CBF AB 91% 58% 68% 92% 63% 68%
AllF AB 94% 96% 96% 79% 91% 82%

TABLE 8: MEAN VALIDATION ACCURACY (ACC): PHYSICIAN 
GAZE 

Classifier Int 1 Int 2 Int 59 Int 65 Int 68 Int 71
CBF DT 90% 53% 65% 85% 73% 41%
AllF DT 90% 89% 86% 71% 81% 75%
CBF AB 91% 53% 65% 85% 73% 41%
AllF AB 94% 95% 97% 78% 88% 82%

TABLE 9: MEAN VALIDATION SENSITIVITY: PHYSICIAN GAZE 
AT PATIENT 

Classifier Int 1 Int 2 Int 59 Int 65 Int 68 Int 71
CBF DT 51% 95% 47% 22% 80% 61%
AllF DT 79% 83% 85% 79% 78% 82%
CBF AB 50% 95% 47% 22% 80% 61%
AllF AB 92% 93% 95% 79% 86% 84%

TABLE 10:  MEAN VALIDATION PRECISION: PHYSICIAN GAZE 
AT PATIENT

Classifier Int 1 Int 2 Int 59 Int 65 Int 68 Int 71
CBF DT 46% 40% 45% 64% 82% 42%
AllF DT 48% 81% 72% 37% 94% 21%
CBF AB 48% 40% 45% 64% 82% 42%
AllF AB 60% 92% 93% 42% 97% 27%

For five of the six interactions, AllF AB achieved the 
highest accuracy and sensitivity scores on testing and 
validation (at or exceeding 82%). Regarding Int 65 with 
Physician 2, for which AllF AB model did not achieve the 
best accuracy and sensitivity scores on testing and validation,
an analysis of the results showed that the feature extraction
phase itself performed poorly. Int 71 with Physician 2 also 
had low performance in terms of precision on the validation 
data. Table 11 summarizes the effect of the Markov Chains 
on the performance of AllF AB predictions for each 
interaction made on a frame by frame basis and the 
subsequent performance metrics. The percentages listed in 
Table 11 refer to the efficacy of the algorithm across the 
complete sequence of 10,745 frames. The listing Pred in 
Table 11 is an abbreviation for Prediction.

For the interactions involving Physician 1, the 
application of Markov Chains to fill in missing values from 
the AllF AB predictions produced an average of 1,733 
additional accurate predictions. The mean percentage of 
frames (out of 10,745) accurately predicted for the three 
interactions involving Physician 1 before filling in missing 
values was 74.85%. After filling in missing values via the 
application of Markov Chains, the mean percentage of frames 
(out of 10,745) accurately predicted for the three interactions 
involving Physician 1 increased to 90.98%.

TABLE 11: COMBINED VALIDATION AND TEST 
PREDICTIONS: NUMBER OF FRAME-BY-FRAME 

PHYSICIAN GAZE PREDICTIONS AND PERCENTAGE OF 
PREDICTIONS OUT OF 10,745 TOTAL LABELS

For the interactions involving Physician 2, the 
application of Markov Chains to fill in missing values from 
the AllF AB predictions produced an average of 2,844 
additional accurate predictions. The mean percentage of 
frames (out of 10,745) accurately predicted for the three 
interactions involving Physician 2 before filling in missing 
values was 43.81%. After filling in missing values via the 
application of Markov Chains, the mean percentage of frames 
(out of 10,745) accurately predicted for the three interactions 
involving Physician 2 increased to 70.28%.

IV. CONCLUSION
Our results demonstrate that a combination of machine 

learning techniques can be applied to image features 
automatically extracted from single-view video data to learn 
physician behavior such as gazing at a patient in a clinical 
setting. These preliminary results create the premises for 
exploring new computer vision algorithms to encode single-
view video data for automatically capturing human-human 
interaction and human-machine interaction.

As shown by the results for some physician-patient video 
data interactions, the segmentation and feature extraction 
steps need to be refined further to take into account their 
sensitivity to changes in lighting and patient-physician 
positioning, as well as variations among interactions within 
the same physician data. We will be exploring the utility of 
the YOLO (You Only Look Once) [20] algorithm to improve 
the robustness of our segmentation approach as well as
optical flow [21] to complement the feature measurements 
for approximating the physician-patient position and body 
movement across multiple physician-patient interactions. 

Furthermore, based on the research of Schneider et al.
[22] – whose findings determined that HIV infected patients
who provided higher ratings in the form of overall 

AllF_AB AllF_AB + Markov

Int Correct Pred Total Pred Correct Pred Total Pred

Int 1 7,375 
(69%)

7,775  
(72%)

9,472 
(88%)

9986 
(93%)

Int 2 9,455 
(88%)

9,090 
(85%)

9,601 
(89%)

9987 
(93%)

Int 59 7,299 
(68%)

7,524 
(70%)

10,254 
(95%)

10571 
(98%)

Int 65 1,546 
(14%)

1,928 
(18%)

6,421 
(60%)

8008 
(75%)

Int 68 4,784 
(45%)

5,347 
(50%) 

7,558 
(70%)

8448 
(79%)

Int 71 7,792 
(73%)

9,390 
(87%)

8,676 
(81%)

10456 
(97%)
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satisfaction, willingness to recommend a physician, and 
physician trust were more likely to adhere to medication 
plans – in the long run we will also look into mapping 
positioning information and energy flows to patient ratings 
and outcomes. In the long term, we expect that the 
applications of these techniques will enhance the 
understanding of the effects of different forms of EHRs on 
the physician-patient relationships, and further inform the 
design of more efficient, effective EHRs to enhance the 
quality of the physician-patient interaction. Ultimately, the 
proposed work has the potential to inform and aid the design 
of technologies for capturing interactions from video data and 
providing real-time feedback to physicians in clinical 
settings. 
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