

1 **Nanoarchitectonics of a microsphere-based scaffold for modeling**
2 **neurodevelopment and neurological disease**

3 Eric S. Sandhurst^{a,b}, Sharad V. Jaswandkar^c, Krishna Kundu^c, Dinesh R. Katti^c, Kalpana S. Katti^c,
4 Hongli Sun^{a,b#}, Daniel Engebretson^a, Kevin R. Francis^{a,b,d,e*#}

5 ^a Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, USA.

6 ^b BioSystems Networks and Translational Research Center, Brookings, SD, USA.

7 ^c Civil, Construction and Environmental Engineering Department, North Dakota State University,
8 Fargo, ND, USA.

9 ^d Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, USA.

10 ^e Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls,
11 SD, USA.

12

13 * Corresponding author: K. R. F. (kevin.francis@sanfordhealth.org).

14 # Lead Contact: K.R.F. (kevin.francis@sanfordhealth.org)

15 Keywords: three-dimensional, scaffold, differentiation, neurodevelopment, induced pluripotent
16 stem cell

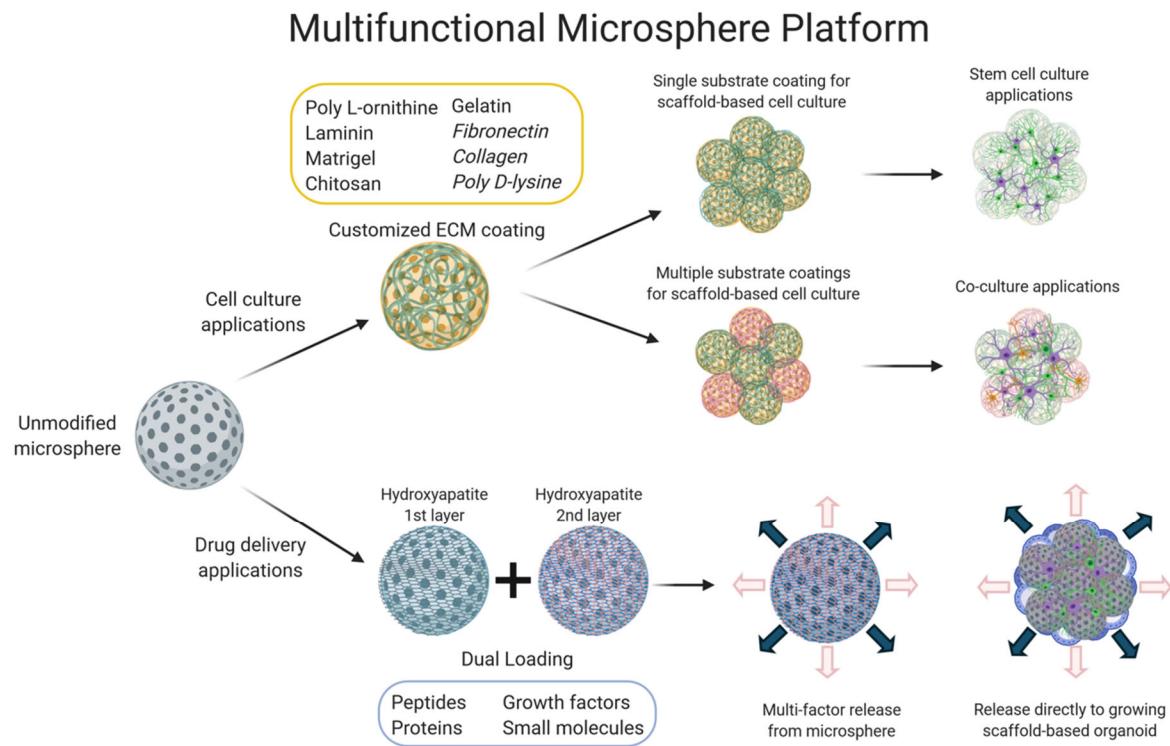
17 **Abstract**

18 Three-dimensional (3D) cellular constructs derived from pluripotent stem cells allow the *ex vivo*
19 study of neurodevelopment and neurological disease within a spatially organized model.
20 However, the robustness and utility of 3D models is impacted by tissue self-organization, size
21 limitations, nutrient supply, and heterogeneity. Herein, we have utilized the principles of
22 nanoarchitectonics to create a multifunctional, polymer/bioceramic composite microsphere
23 system for stem cell culture and differentiation in a chemically defined microenvironment.
24 Microspheres could be customized to produce three-dimensional structures of defined size
25 (ranging from <100 to >350 μ m) with lower mechanical properties compared to thin-film. Further,
26 microspheres softened in solution, approaching more tissue-like mechanical properties with time.
27 Using neural stem cells (NSCs) derived from human induced pluripotent stem cells, microsphere-
28 cultured NSCs were able to utilize multiple substrates to promote cell adhesion and proliferation.
29 Prolonged culture of NSC-bound microspheres in differentiating conditions promoted the
30 formation of both neural and glial cell types from control and patient-derived stem cell models.
31 Human NSCs and differentiated neurons could also be co-cultured with astrocytes and human
32 umbilical vein endothelial cells (HUEVCs), demonstrating possible application for tissue-
33 engineered modeling of development and human disease. We further demonstrate microspheres
34 allow the loading and sustained release of multiple recombinant proteins to support cellular
35 maintenance and differentiation. While previous work has principally utilized self-organizing
36 models or protein-rich hydrogels for 3D neural culture, the three-dimensional matrix presented
37 here represents a chemically defined and robust alternative for the *in vitro* study of
38 neurodevelopment and nervous system disorders.

39 Keywords: microsphere, scaffold, three-dimensional, induced pluripotent, iPSC, NSC

40

41


42

43

44

45

46

48 **Introduction**

49 Disorders affecting the nervous system are one of the leading causes of co-morbidity and death
50 worldwide.^{1, 2} Observing and analyzing disease impacts on the nervous system is inherently
51 challenging within affected individuals. The use of model systems to recapitulate different
52 structures and functions of the nervous tissue under study provides a mechanism to study
53 neurological disease. Many of the insights into neuropathological disease have come from
54 research on post-mortem tissue, traditional two-dimensional (2D) cell culture experiments, and
55 within animal models such as transgenic mice and rats. Despite the availability of genetic and
56 technological tools and a robust foundation of neuroscience research, these model systems each
57 have limitations.³ Studying the pathogenesis of complex diseases has proven to be particularly
58 difficult due to a lack of access to healthy and diseased brain tissue, immature and spatially limited
59 *in vitro* cell culture systems, and animal models that fail to capture the developmental,
60 architectural, and species-specific aspects of the human brain.^{2, 4} Therefore, additional models of
61 the human nervous system are needed to help overcome some of these limitations.

62 Human induced pluripotent stem cells (iPSCs) have created a fundamental shift in how scientists
63 study human disease. By establishing a reliable method for generating individual-specific
64 pluripotent cells, iPSCs represent a robust model system for the study of human disease and may
65 accelerate progress towards revolutionary treatments.⁵ iPSC-derived neural stem cells (NSCs),
66 therefore, are a useful tool to provide insights into the underlying mechanisms of
67 neurodevelopment and neurodegenerative diseases. The use of iPSCs has led to new strategies
68 for therapeutic intervention and increased accuracy for drug discovery.⁶⁻⁹ Although iPSCs
69 represent a revolution in studying development and human disease *in vitro*, researchers have
70 predominantly relied on 2D culture platforms.¹⁰ Since traditional monolayer cultures support only
71 planar cell-cell interaction, this system poorly simulates the natural three-dimensional (3D)
72 microenvironment of the body. The natural interaction and communication between the
73 heterogeneous milieu of cells and the extracellular matrix found within the body is difficult to
74 replicate in 2D culture.¹¹ Certain cellular characteristics, including apicobasal polarity and guided
75 cell migration, cannot be recapitulated in planar culture systems.¹² Spatially complex iPSC models
76 of neurological disease are thus needed.¹³

77 As recent groundbreaking studies have shown, 3D culture of iPSCs more accurately represents
78 the spatial arrangement and temporal development of nervous tissue when compared to 2D
79 models.^{3, 14-16} Research conducted with 3D culture models provides new knowledge of areas that
80 were previously only poorly modeled or inaccessible altogether, such as the cerebral cortex,

81 neocortex, ventral forebrain, ventral telencephalon, cerebellum, midbrain, choroid plexus, and
82 optic cup.¹⁴⁻¹⁹ Although each 3D protocol has advantages and disadvantages, they all utilize the
83 capacity of embryonic stem cells or iPSCs to self-organize, self-assemble, and differentiate within
84 a 3D environment.² Known as spheroids, neurospheres, cellular scaffolds or organoids depending
85 on their complexity and the methods used, these 3D platforms can produce functional, highly-
86 organized populations of cells.^{1, 20, 21} However, 3D models are still limited by experimental
87 heterogeneity, limited control over tissue organization, inadequate diffusion and heterogeneous
88 distribution of macromolecules, and endpoint analyses.^{17, 22-29}

89 To help overcome the limitations of current 3D models, we have developed a microsphere-based
90 scaffold with nanoarchitectural features for iPSC-based neural differentiation^{30, 31}. Using a
91 biomaterial-based microenvironment, we have created an alternative to the undefined
92 components present within other materials-based 3D culture systems. We have defined the
93 mechanical properties of this scaffold, demonstrated the maintenance and lineage differentiation
94 of iPSC-derived NSCs cultured on the scaffold, established a protocol for co-culture of multiple
95 neural and endothelial cell types, and utilized this scaffold for localized cellular delivery of small
96 molecules. This system represents a novel advancement in 3D culture and provides a
97 multifunctional platform for disease modeling, drug screening applications, and developmental
98 studies.

99 **Materials and methods**

100 *Chemicals and reagents*

101 Poly lactic-co-glycolic acid (PLGA; 50:50, 1.15 dL/g) was purchased from Lactel (Birmingham,
102 AL). Gelatin Type A, dichloromethane, poly L-ornithine, molecular grade water, bovine serum
103 albumin (BSA), disodium ethylenediaminetetraacetate (EDTA), and magnesium chloride were
104 purchased from Sigma Aldrich (St. Louis, MO). Low-attachment 24-well plates, sodium chloride,
105 sodium bicarbonate, Tris base, Neurobasal media, and epidermal growth factor were purchased
106 from ThermoFisher Scientific (Carlsbad, CA). B27 supplement with vitamin A, B27 without vitamin
107 A, Accutase and Glutamax were all purchased from Life Technologies (Carlsbad, CA). Basic
108 fibroblast growth factor (bFGF) was purchased from Reprocell (Beltsville, MD). Y27632 ROCK
109 inhibitor was purchased from Reagents Direct (Encinitas, CA). mTeSR1 was purchased from
110 Stem Cell Technologies (Vancouver, BC). DMEM, DMEM-F12, Penicillin/streptomycin, One Shot
111 fetal bovine serum, Trypsin-EDTA, and phosphate buffered saline were purchased from Gibco
112 (Carlsbad, CA). BDNF and GDNF were purchased from Peprotech (Rocky Hill, NJ). Matrigel

113 hESC-Qualified Matrix was purchased from Corning (Glendale, AZ). Laminin was purchased from
114 Invitrogen (Carlsbad, CA). Hydrochloric acid was purchased from Avantor Performance Materials
115 (Center Valley, PA). Polyvinyl alcohol was purchased from PolySciences, Inc. (Warrington, PA).
116 Ethanol, calcium chloride, and sodium phosphate were purchased from Acros Organics (Fair
117 Lawn, NJ). 96-well ultra-low attachment plates were purchased from Nexcelom Bioscience
118 (Lawrence, MA).

119 *Preparation of microspheres*

120 A double emulsion procedure was used to prepare porous microspheres. First, 0.5 g of 50:50,
121 1.15 viscosity PLGA was placed into a glass vial with 15 mL of dichloromethane (DCM). PLGA
122 was dissolved under constant stirring at 700 rpm at 50 °C. Simultaneously, the primary aqueous
123 phase was prepared by dissolving 0.4 g of type A porcine gelatin and 5 mg of polyvinyl alcohol
124 (PVA) in 5 mL of deionized (DI) water in a separate glass vial. A third solution, the secondary
125 aqueous phase, was prepared by dissolving 200 mg of PVA in 200 mL of DI water and cooled to
126 4 °C. The dissolved polymer solution was poured into a 25 mL beaker and placed on a hotplate
127 at 50 °C under the IKA homogenizer (IKA Works, Inc., Wilmington, NC). The aqueous solution
128 was added manually using a 1000 µL pipette and the two solutions were emulsified for 5 min at
129 4000 rpm. The primary emulsion was immediately poured into the secondary aqueous phase and
130 rotated using a magnetic stir plate at 400 rpm for 60 min. After stirring at 400 rpm for 60 min, the
131 contents of the beaker were poured into 1200 mL of fresh DI water and stirred overnight at 300
132 rpm to facilitate DCM evaporation. The supernatant was discarded, the microspheres were rinsed
133 and collected in a 50 mL conical tube, kept at -80 °C for 60 min, and lyophilized for 36 - 48 h.
134 Following lyophilization, microspheres were treated with an ethanolic sodium hydroxide solution
135 at a ratio of 20% 1M NaOH and 80% pure ethanol.³² Microspheres were placed into a 50 mL
136 conical tube and vortexed for 20 - 30 s. Microspheres were rinsed with DI water, collected in a
137 nylon cell strainer, kept at -80 °C freezer for 60 min, and lyophilized for 36 - 48 h.

138 *Hydroxyapatite deposition on microspheres*

139 The mineralization process of PLGA microsphere scaffolds was performed as previously
140 published.³³ Briefly, microspheres were divided into fractions based on diameter (ex: 150 - 300
141 µm) by filtering them through ATSE metal sieves of decreasing size. Hydroxyapatite (HA) was
142 formed on the entire exposed surface of the microsphere structure during two phases of
143 immersion into two solutions known as simulated body fluid (SBF). First, microspheres were
144 immersed into a phase I nucleation solution (P1). For P1, 19.95 g of NaCl, followed by 0.69 g of

145 CaCl₂, 0.45 g of NaHPO₄, 0.88 g of NaHCO₃, and 0.76 g of MgCl₂ were dissolved in 500 mL DI
146 water under stirring conditions. 25 mg of microspheres, with a diameter of 150 - 300 μ m, were
147 placed into a glass vial and 25 mL of P1 nucleation solution was added to the vial. Each vial was
148 placed into an orbital shaker, heated to 37 °C, and set for 100 rpm for 12 h. To verify P1 deposition,
149 a FITC-labeled scrambled peptide (FITC-QEQLERALNSS, Biomatik) was added to the P1 SBF
150 and imaged by confocal microscopy.³⁴

151 After 12 h, microspheres were collected in a nylon cell strainer, kept at -80 °C for 60 min, and
152 lyophilized for 18 - 24 h. Next, a phase II propagation solution (P2) was created by dissolving
153 various salts. First, 0.27 g of CaCl₂, followed by 3.98 g of NaCl, and 0.175 g of NaHPO₄ were
154 dissolved in 497.5 mL of DI water and 2.5 mL of 10M HCl under stirring conditions. Tris buffer
155 was added to achieve a pH of 7.4. P1 microspheres were placed in a new glass vial and 25 mL
156 of P2 propagation solution was added to the vial. Each vial was placed into an orbital shaker,
157 heated to 35 °C, and set for 100 rpm for 12 h. The microspheres were then collected in a nylon
158 cell strainer, kept at -80 °C for 20 min, and lyophilized for 18 - 24 h. To verify P2 deposition, BSA
159 conjugated to AlexaFluor647 (Invitrogen, Carlsbad, CA) was added to P2 SBF and imaged by
160 confocal microscopy.

161 *Poly-L-ornithine (PLO) and laminin coating of 2D and 3D surfaces*

162 0.2% (v/v) PLO diluted in molecular grade water was added to culture surfaces and allowed to
163 conjugate for 12 h in a 37 °C incubator. Dishes were rinsed twice with molecular grade water
164 before a 1% solution (v/v) of natural mouse laminin diluted in PBS was added to each well. Culture
165 dishes were incubated at 37 °C for 12 h and either used immediately or stored at -20 °C.
166 Microspheres were immersed in 0.2% (v/v) PLO and placed in an enclosed orbital shaker
167 maintained at 37 °C and 100 rpm for 12 h. Microspheres were rinsed twice with molecular grade
168 water and placed into a new glass vial, immersed in a 1% solution of natural mouse laminin and
169 placed in an enclosed orbital shaker set for 37 °C and 100 rpm for 12 h. PLO+laminin coated
170 microspheres were kept at 4 °C and used within 12 h.

171 *Ultra-structural characterization of microspheres*

172 A FEI Quanta 450 field-emission scanning electron microscope (SEM) was used to characterize
173 the morphological structures of microsphere samples. Overall microsphere diameter was
174 analyzed using SEM images. Micro CT was performed by ScanCo Associates, (ScanCo μ CT 50,
175 Brüttisellen, Switzerland) to measure local pore diameter. Microsphere porosity was calculated

176 using micro CT imaging, performed by ScanCo Associates. Microsphere porosity was determined
177 using the following equation:

178

$$P_{scaffold} = \frac{V - V_p}{V} \times 100\%$$

179 where $P_{scaffold}$ is the porosity of the microsphere batch, V is the total volume of the microsphere
180 batch, and V_p is the volume of PLGA is equal to the mass divided by the density of PLGA ($\rho = 1.3$
181 g/cm³).

182 *Nanomechanical evaluation of microspheres*

183 To prepare a PLGA film for mechanical testing, 0.5 g of 50:50 PLGA (3.3% (w/v)), 0.75 g of 50:50
184 PLGA (5% (w/v)) and 1 g of 50:50 PLGA (6.6% (w/v)) were each dissolved in 15 mL DCM and
185 poured into a 25 mL glass beaker. Once the solvent evaporated, testing coupons were cut from
186 each film and attached to titanium metal sections (10 mm x 10 mm x 0.25 mm) (Sigma, St. Louis,
187 MO) with 100 μ l Elmer's glue (Westerville, OH). To prepare PLGA microspheres samples for
188 nanomechanical testing, 100 μ l of Minwax polyacrylic (Upper Saddle River, NJ) was first applied
189 to titanium sections using a spin coating system. A Dremel rotary tool (Dremel, Racine, WI) was
190 used at 10,000 rpm for 5s to obtain a uniform polyacrylic layer before adherence of microspheres
191 or films to the substrates is achieved. Samples were allowed to dry completely. Prior to
192 nanoindentation experiments, some samples were rehydrated in neurobasal media for 1d, 2d, or
193 7d. Samples were removed from the aqueous phase and carefully blotted before nanoindentation.

194 A Hysitron Triboindenter (Hysitron Inc., Minneapolis, MN, USA) nanoindenter with a pyramidal
195 Berkovich diamond indenter tip (tip radius of 200 nm) was used to calculate the mechanical
196 properties of three PLGA films (3.3% (w/v), 5% (w/v), 6% (w/v)) and PLGA microspheres (3.3%
197 (w/v) in dry and hydrated states. After calibration with a standard fused quartz reference sample,
198 an indentation depth was set at 1000 nm with a 20 nm/s displacement rate. The elastic modulus
199 and hardness of each sample were measured at room temperature. A displacement depth of 1000
200 nm was selected for all quasistatic nanoindentation experiments, resulting in reliable elastic
201 property measurements free of substrate effects. Average values of elastic modulus and
202 indentation hardness were calculated from the analysis of 30 unique microspheres. The
203 estimation methods for determining elastic modulus (E) and indentation hardness (H_{IT}) were
204 based on Oliver and Pharr's methods.³⁵⁻³⁸ These methods have been applied to make direct
205 nanoindenter-based measurements of elastic and inelastic properties of soft materials such as
206 human cells.^{39, 40}

207 Fourier Transform Infrared Spectroscopy (FTIR) analysis

208 Transmission FTIR spectroscopy studies were performed using samples of polyvinyl alcohol
209 (PVA), gelatin, PLGA, microspheres, microspheres coated with HAP for 12 h, and microspheres
210 coated with HAP for 24 h. Samples were sandwiched between two KBr windows and placed in a
211 universal sample holder. A Thermo Nicolet, Nexus, 870 spectrometer equipped with a KBr beam
212 splitter was used for performing these experiments in the range of 4000 – 960 cm⁻¹. A spectral
213 resolution of 4 cm⁻¹ and 32 scans were used for each sample.

214 *Culture of human iPSCs, NSCs, and neural differentiation*

215 Two control human iPSC lines, NL5 (NCRM-5; kind gift from the iPSC Core Facility, NHLBI,
216 Bethesda, MD) and Scui21 (Scui; kind gift from the NIH Stem Cell Unit, NINDS, Bethesda, MD),
217 and one Smith-Lemli-Opitz syndrome (SLOS) patient-derived iPSC line (CWI 4F2; kind gift from
218 Dr. Forbes Porter, NICHD, Bethesda, MD) were cultured and directed towards NSCs using a
219 rosette-based assay as previously published.^{41, 42} Following their derivation and expansion, NSCs
220 were cultured on PLO+laminin coated 35 mm tissue culture dishes in NSC media (DMEM, 2 mM
221 glutamine, B27 minus vitamin A, 20 ng/mL EGF, 20 ng/mL bFGF, 50 µg/mL Penicillin-
222 streptomycin) supplemented with ROCK inhibitor Y27632 (10 µM). Media was changed every
223 other day. Cells were passaged via incubation with Accutase (Life Technologies, Carlsbad, CA)
224 at 37 °C for 3 - 5 min. Enzymatic reaction was stopped by adding NSC culture media with Y27632,
225 followed by centrifugation at 1,500 rpm. Cells were divided evenly between two new PLO+laminin
226 coated culture dishes (approximately 2.5 – 3 x 10⁶ cells per dish).

227 To induce neural differentiation, NSCs were collected from 35 mm cell expansion dishes as
228 described above. Upon resuspension in NSC media, cells were plated in 24- or 96-well plates
229 coated with PLO+laminin (ThermoFisher Scientific, Waltham, MA) or Lab-Tek Nunc 4-well
230 chamber glass slides coated with PLO + laminin. Cells were maintained in NSC media
231 supplemented with 10% fetal bovine serum (FBS) for 4 days and then changed to neural
232 differentiation media (Neurobasal media, B27 with vitamin A, 10 ng/mL GDNF, 10 ng/mL BDNF,
233 2 mM glutamine, 50 µg/mL penicillin-streptomycin) for the duration of differentiation. For
234 neurosphere culture, NSCs were collected via Accutase and plated at 150,000 cells per well in a
235 96-well, round-bottom ultra-low attachment plate. Neurospheres were maintained in suspension
236 in NSC media supplemented with FBS for 4 days and then changed to NSC differentiation media
237 for the duration of each experiment. For microsphere culture of NSCs, 100 µg of microspheres
238 were added to each round-bottom well of an ultra-low attachment 96-well plate. Upon

239 resuspension in NSC media, 150,000 cells were passively seeded onto the microspheres.
240 Microspheres were cultured in NSC media supplemented with FBS for 4 days and then changed
241 to neural differentiation media for the duration of each experiment. All culture plates and dishes
242 were cultured at 37 °C with 5% CO₂.

243 *Serum impact on NSC microsphere attachment*

244 Microspheres were immersed in 70% ethanol for 60 min on an orbital shaker set at 100 rpm.
245 Microspheres (1 mg) were transferred to flat-bottom, low-attachment 24-well plate before NSCs
246 were seeded onto microspheres (150,000 cells per 1 mg of microspheres per well) in NSC media.
247 Serum supplemented groups received 10% FBS. The cells/scaffolds were cultured in a 24-well
248 plate at 37° C with 5% CO₂.

249 *Evaluation of substrates for NSC microsphere attachment*

250 Microspheres were divided into fractions and sterilized as previously mentioned. Microspheres
251 were coated with PLO + laminin as above. Microspheres receiving Matrigel coating were placed
252 into a sterile glass vial and incubated in either Matrigel for 2 h on an orbital shaker set for 50 rpm
253 at room temperature. Uncoated or substrate coated microspheres were transferred to wells of a
254 24-well plate before NSC control line cells were seeded into the scaffold (150,000 cells per 1 mg
255 of microspheres). Cells/scaffolds were cultured in a 24-well plate at 37 °C with 5% CO₂.

256 *Astrocyte generation from iPSC-derived NSCs*

257 70,000 NSCs were plated onto 35 mm PLO+laminin coated tissue culture dishes and maintained
258 in neural differentiation at 37 °C with 5% CO₂ through d14. On d14, cells were collected via
259 Accutase, transferred to 35 mm tissue culture plates coated with 25 µg/mL poly D-lysine (PDL)
260 (Sigma Aldrich, St. Louis, MO), and media was changed to astrocyte differentiation media
261 (DMEM/F12, 2 mM Glutamine, 10% FBS, and 1% penicillin-streptomycin). Media changes
262 occurred every 48 h through d28. On d28, cells were collected with 0.25% Trypsin-EDTA and
263 transferred to a PDL-coated T25 tissue culture flask for expansion. Astrocytes were expanded
264 and passaged with Trypsin-EDTA for an additional 30 – 45 days as needed prior to use.

265 *Human umbilical vein endothelial cell (HUVEC) microsphere culture*

266 HUVECs obtained from Lonza (Walkersville, MD) were plated on T25 flasks and cultured with
267 Endothelial Basal Medium-2 (cat# 00190860) (Lonza, Walkersville, MD) at 37 °C with 5% CO₂.³⁴
268 HUVECs were harvested from the flask by rinsing with PBS, adding 2 mL of 0.05% Trypsin-EDTA
269 to the flask, and incubating at 37° C for 3-5 min. Cells were centrifuged at 1,500 rpm for 5 min,

270 supernatant was aspirated, and the cell pellet was resuspended in neural differentiation media
271 before adding to microspheres.

272 *Multilineage co-culture using microsphere scaffolds*

273 Microsphere samples were immersed in 70% ethanol for 60 min on an orbital shaker set at 100
274 rpm. Microspheres (100 µg) were added to each well of an ultra-low attachment 96-well plate. On
275 d0, NSCs were collected from 35 mm cell expansion dishes via Accutase as described above.
276 Upon resuspension, NSCs were passively seeded onto 100 µg of microspheres. On d2,
277 astrocytes were passively seeded onto the NSC-only microspheres. On d5, HUVECs were added
278 to each NSC+astrocyte scaffold. All groups were cultured in NSC differentiation media at 37 °C
279 with 5% CO₂.

280 *Immunofluorescent imaging of scaffold cultured cells*

281 The cell lineage of differentiating NSCs was visualized by immunofluorescence using primary and
282 secondary antibodies. Cell-based spheroids and cell-seeded microspheres were fixed in 4%
283 paraformaldehyde for 20 min, rinsed with 1x PBS, and permeabilized with 0.1% TritonX-100 for
284 20 min. Samples were subsequently blocked with 5% bovine serum albumin containing 0.1%
285 TritonX-100 in PBS for 60 min before the following primary antibodies were added: chicken anti-
286 GFAP (Novus Biologicals, NBP1-05198, 1:2000), mouse anti-βIII-Tubulin (Millipore, MAB1637,
287 1:1000), mouse anti-human Nestin (Millipore, MAB5326, 1:2000), mouse anti-MAP2 (Synaptic
288 Systems, 188 011, 1:2000), rabbit anti-Neurofilament, medium chain (Novus Biologicals, NB300-
289 133, 1:2000), rabbit anti-SOX2 (Cell Signaling, 3579S, 1:400), mouse anti-Ki67 (Abcam,
290 ab15580, 1:2000), mouse anti-CD31 (Abcam, ab9498, 1:1000). Samples were incubated with
291 primary antibody at 4 °C overnight. Following overnight incubation, samples were incubated for
292 60 min with the following secondary antibodies diluted in blocking buffer: AlexaFluor 555 rabbit
293 anti-mouse IgG (Life Technologies, A21427), AlexaFluor 555 donkey anti-rabbit IgG (Life
294 Technologies, A31572), AlexaFluor 488 goat anti-mouse IgG (Life Technologies, A11001),
295 AlexaFluor 488 goat anti-rabbit IgG (Life Technologies, A11008), or AlexaFluor 488 goat anti-
296 chicken IgG (Life Technologies, A11039). All secondaries were diluted 1:500. After rinsing,
297 Fluoromount-G with DAPI was added. Samples were imaged using a confocal laser scanning
298 microscope (Olympus Fluoview FV1200, Olympus, Japan).

299 *Hematoxylin and eosin staining of scaffold cultures*

300 Scaffolds were fixed in 10% neutral buffered formalin and processed on a Leica 300 ASP tissue
301 processor. Tissues were embedded in paraffin and serially sectioned at 5 µm thickness. Slides
302 were stained with hematoxylin and eosin on a Sakura Tissue-Tek automated H&E staining
303 instrument. The program runs as follows: de-paraffinize and rehydrate tissue, stain in Gill's III
304 hematoxylin, differentiate with running tap water, blue in ammonia water, counterstain in eosin,
305 and dehydrate and clear. All images were taken on a Nikon NiE microscope using a Nikon DS-
306 Fi2 camera and 20x/0.75 PlanApo λ objective.

307 *Bovine serum albumin (BSA) loading and release from microspheres*

308 Microspheres were coated with HA as discussed above with minor changes. BSA (2.5 mg) was
309 added to 25 mL of SBF in each combination (+P1-P2; -P1+P2; +P1+P2) and incorporated into
310 the HA. When the microspheres were collected after each HA deposition phase, the supernatant
311 was saved to analyze BSA remaining in the solution. Microspheres were also rinsed with 1 mL of
312 DI water and the rinse solution was saved to calculate incorporation efficiency. To measure the
313 amount of BSA incorporated into the HA microspheres, four groups of BSA-loaded microspheres
314 were immersed in 0.5M EDTA solution and vortexed for 1 min and centrifuged at 2,000x G for 2
315 min. Incorporation efficiency was determined by calculating the BSA remaining in the SBF
316 supernatant, the BSA in the rinse solution, and the BSA released from microspheres. To model
317 release, 10 mg of BSA-HA microspheres were added to microcentrifuge vials with 1 mL PBS and
318 placed into an incubating shaker set for 100 rpm and 37 °C. At predetermined time points (30
319 min, 1 h, 2 h, 5 h, 12 h, d1, d2, d3, d7, d10, and d15), 500 µL of PBS eluent was removed and
320 500 µL fresh PBS was added to the tube. Analysis of BSA release was performed using a Pierce™
321 bicinchoninic acid (BCA) protein assay kit (Thermo Fisher, Waltham, MA) per manufacturer's
322 instructions.

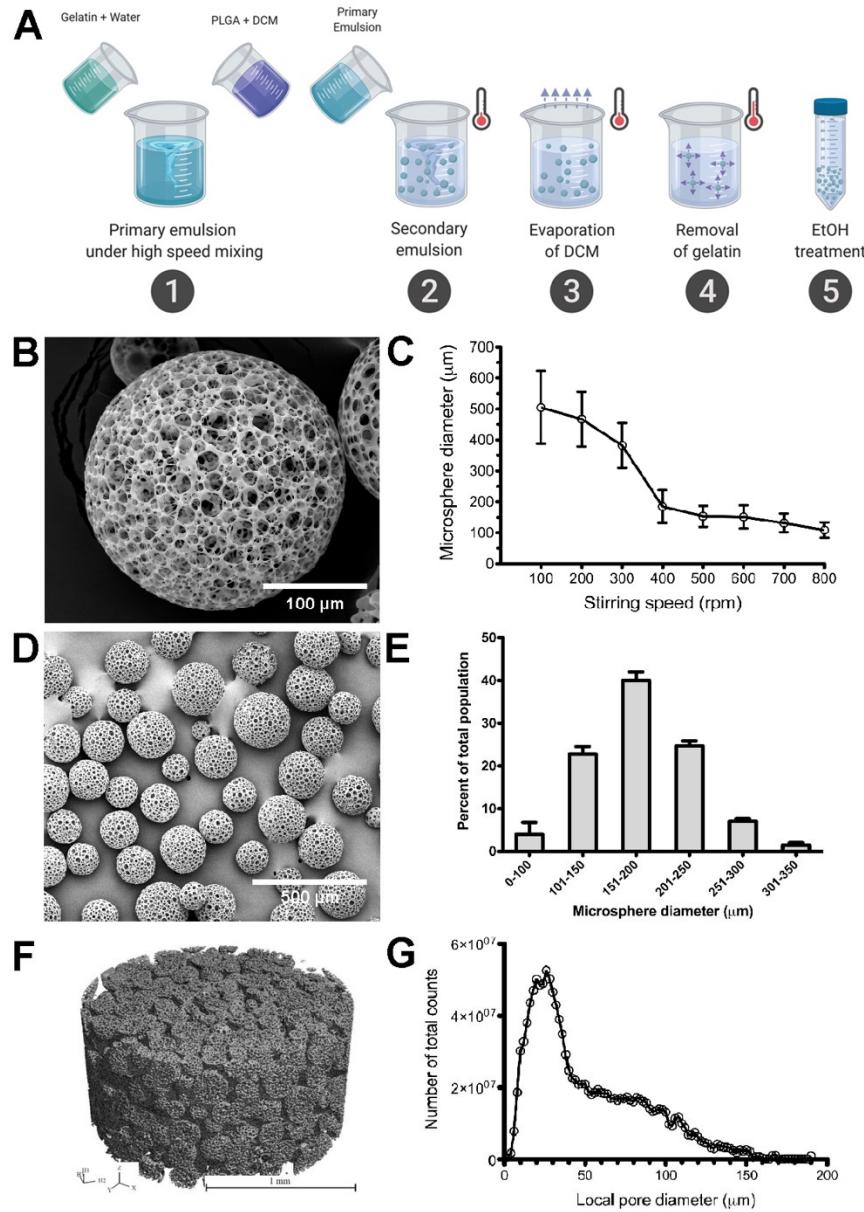
323 *bFGF loading, release, and impact on cell viability*

324 Microspheres were coated with HA as previously discussed. 20 ng/mL bFGF was added to both
325 SBF phases (+P1+P2) and incorporated into the crystal matrix. NSCs were passively seeded onto
326 100 µg of microspheres. Microsphere-based scaffolds were cultured in NSC media for 14 days at
327 37 °C with 5% CO₂. At each time point (d1, d4, d7, and d14), bFGF-HA scaffolds were analyzed
328 by MTS assay to determine the amount of proliferation compared to other 2D and 3D groups.
329 Each group was cultured in triplicate and 50% of the cell culture media was replenished every 48
330 h. Cell viability was quantitatively analyzed using the CellTiter 96 Aqueous One Solution Cell
331 Proliferation Assay (MTS, Promega, USA) according to the manufacturer's instruction. In brief,

332 after culturing for 1, 4, 7, or 14 days in round-bottom, ultra-low attachment 96-wells, the culture
333 medium was removed, fresh medium with 10% MTS solution was then added, and incubated at
334 37 °C with 5% CO₂ in the dark for 1 h. Each biological replicate was analyzed in quadruplicate by
335 removing 100 µL volumes from each well. The absorbance was measured at 490 nm using a
336 microplate reader (Infinite M200, Tecan, USA). Cell viability was expressed as cell number
337 calculated by the slope of a standard curve prepared by culturing NSCs at densities from 50,000
338 - 500,000 on PLO+laminin coated wells of a 24-well plate (data not shown).

339 **Statistical analyses**

340 To determine the statistical significance of observed differences between the study groups, a two-
341 tailed Student's t-test was applied to the control group and each experimental group. A value of
342 p<0.05 was considered to be statistically significant. Values are reported as the mean ± one
343 standard deviation (SD). Microscopic images across treatments were imaged using equivalent
344 laser power and exposure times.


345 **Ethics, human subjects research statement**

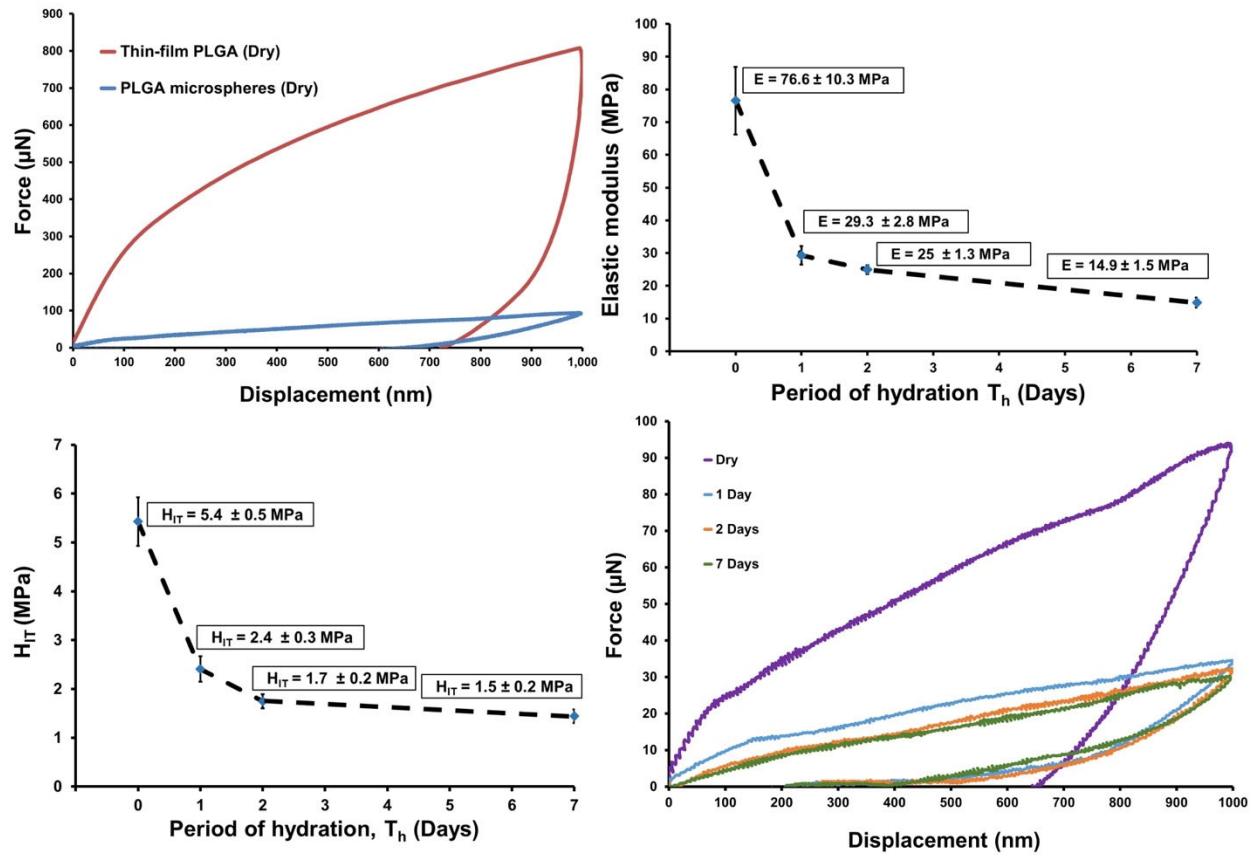
346 All research performed using human cell lines was determined to not constitute human subjects
347 research by the institutional review board of Sanford Research.

348 **Results**

349 **Preparation of a microsphere scaffold for culture of iPSC derivatives is rapid and tunable**

350 To create a scaffold for culture of iPSC derivatives, we utilized a double emulsion and porogen
351 leaching technique to yield a highly uniform poly(lactic-co-glycolic) (PLGA) microsphere matrix
352 with interconnected pores and >88% overall porosity. Gelatin was utilized as the sacrificial
353 porogen to create spherical pores within the PLGA matrix. Through optimization of each step
354 within the preparation process, we have created a stable, consistent microsphere structure
355 (**Figure 1A**). **FTIR analysis of the various materials utilized for microsphere generation and**
356 **coating was performed to verify production material chemistries in comparison to spectra within**
357 **the final microsphere product (Supplemental Figure 1)**. Through variations in the speed of mixing
358 the gelatin/PLGA during the emulsion process, we were able to control microsphere diameter
359 (**Figure 1B,C**). Using a 400 rpm mixing step, microsphere diameter exhibited reduced variability
360 and the majority remained within the 100 – 250 µm range (**Figure 1D,E**). Based upon a mean
361 microsphere diameter achieved, we utilized a 400 rpm mixing speed for all subsequent

362


363 **Figure 1. Preparation and characterization of the microsphere scaffold.** (A) Illustration of the double
 364 emulsion and porogen leaching process used to prepare porous PLGA microspheres; (B) SEM image of
 365 a single porous microsphere (scale bar = 100 μ m); (C) Defined stirring speed during secondary emulsion
 366 dramatically impacted mean microsphere diameter. (n=3 per treatment, each group contained 250
 367 microspheres); (D) SEM Image of a representative batch of microspheres (scale bar = 500 μ m); (E)
 368 Distribution of microsphere size across multiple batch preparations using a stirring speed of 400 rpm (n =
 369 3 biological replicates, each replicate contained 250 microspheres); (F) Micro CT image of internal
 370 microsphere structure (scale bar = 1 mm). (G) Local pore diameter as calculated by micro CT. Error bars
 371 represent \pm standard deviation.

372 microsphere assays. Microspheres were packed into a micro CT chamber with a volume of 3.14
373 mm³ (**Figure 1F**). Analysis revealed a local pore diameter of 50 ± 35 µm, >88% porosity, and an
374 open, interconnected pore structure (**Figure 1G**). The process described in this study optimizes
375 the microsphere porosity, size distribution, and reproducibility for use as a scalable platform for
376 3D cell culture applications.

377 *The mechanical properties of microsphere scaffolds are impacted by hydration*

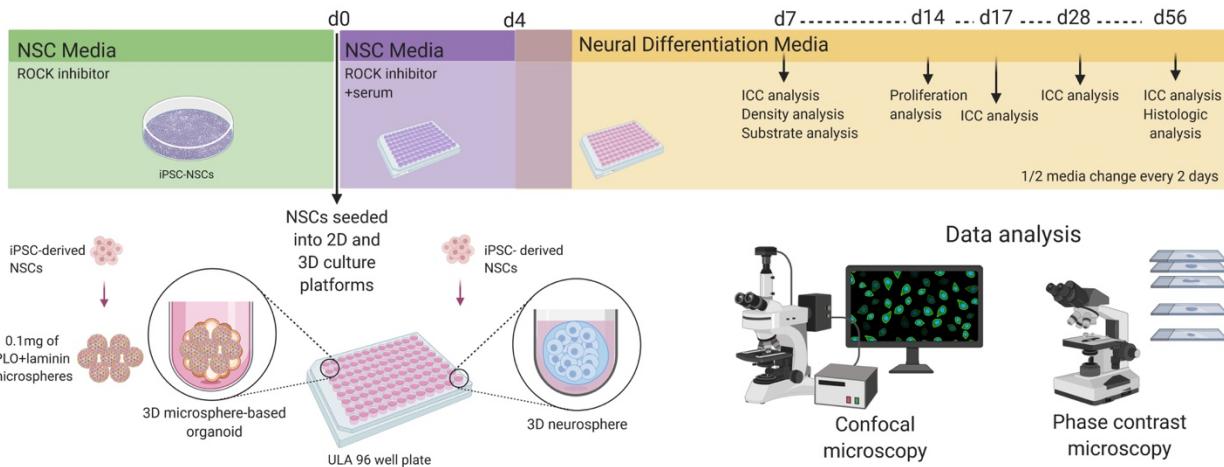
378 Nanoindentation assays were performed to determine the mechanical properties of PLGA
379 samples. The nanomechanical properties of PLGA thin-film (dry state) and microspheres (both
380 dry and hydrated states) were determined as a function of hydration (T_h). The load-displacement
381 response for the PLGA thin-film and microspheres were measured in displacement-controlled
382 loading and unloading mode. We determined the average elastic modulus (E) for non-hydrated
383 PLGA thin-films of 3.3% (w/v), 5% (w/v), or 6.6% (w/v) was E = 1.48, 0.619, and 0.129 GPa,
384 respectively. The indentation hardness (H_{IT}) obtained for these films equated to 34.6 ± 2.4 MPa,
385 15 ± 1.1 MPa, and 6.2 ± 0.4 MPa for 3.3% (w/v), 5% (w/v), and 6.6% (w/v) non-hydrated PLGA
386 films, respectively. By comparison, the elastic modulus and indentation hardness values for non-
387 hydrated PLGA microspheres (3.3% (w/v)) were significantly lower (E = 76.6 ± 10 MPa and H_{IT} =
388 5.4 ± 0.5 MPa, respectively) than non-hydrated thin-film (3.3% (w/v)), demonstrating the
389 mechanical impact of porous architecture (**Figure 2A**). The force-displacement response from
390 PLGA microsphere indentation captures both the microstructural response of the PLGA polymer
391 structure as well as the pore spaces. The highly porous microspheres produced significantly lower
392 mechanical properties compared to the film. The elastic modulus and indentation hardness of the
393 PLGA microspheres (3.3% (w/v)) decreased as hydration increased (**Figure 2B, C**). For hydrated
394 microspheres, a nearly 40% decrease in modulus (**Figure 2B**) was observed after 24 h hydration
395 relative to the dry state (E = 76.6 ± 10 MPa). The modulus dropped to E = 29.3 ± 2.8 MPa, 24.9
396 ± 1.3 MPa and 14.9 ± 1.5 MPa on d1, d2, and d7, respectively. The hardness values also
397 decreased similarly with increased hydration (**Figure 2C**). While H_{IT} = 5.4 ± 0.5 MPa in the dry
398 state, H_{IT} decreased over time with prolonged hydration (H_{IT} = 2.4 ± 0.3 MPa, 1.7 ± 0.1 MPa and
399 1.44 ± 0.2 MPa on d1, d2 and d7, respectively). These data demonstrate our PLGA-based scaffold
400 exhibits mechanical properties that become more tissue-like with incubation in aqueous solutions
401 such as culture media.

402 *Optimization of iPSC-derived NSC scaffold attachment*

403

404 **Figure 2. Hydration of the microsphere scaffold (3.3% (w/v)) shifts load-displacement curves, the**
 405 **elastic modulus, and indentation hardness as a function of time. (A) Load-displacement response for**
 406 **the PLGA thin-film and microspheres in a dry state demonstrates the softening effect of the porous**
 407 **microstructure of microspheres. (B), (C), (D) Deformation response and mechanical properties of the**
 408 **hydrated PLGA microspheres compared to the dry state with degradation. All error bars for elastic modulus**
 409 **measurements (panel B) and indentation hardness (panel C) are represented as ± standard deviation.**

410


411

412

413

414

415

416 **Figure 3. Assay schema for validating the use of a PLGA-based microsphere system for neural cell**
 417 **models.** iPSC-derived NSCs were either cultured in traditional 2D systems, grown as self-aggregating 3D
 418 neurospheres, or seeded onto 3D microsphere based structures. Cultures were then analyzed for various
 419 cellular parameters including attachment, proliferation, differentiation, and co-culture.

420

421

422

423

424

425

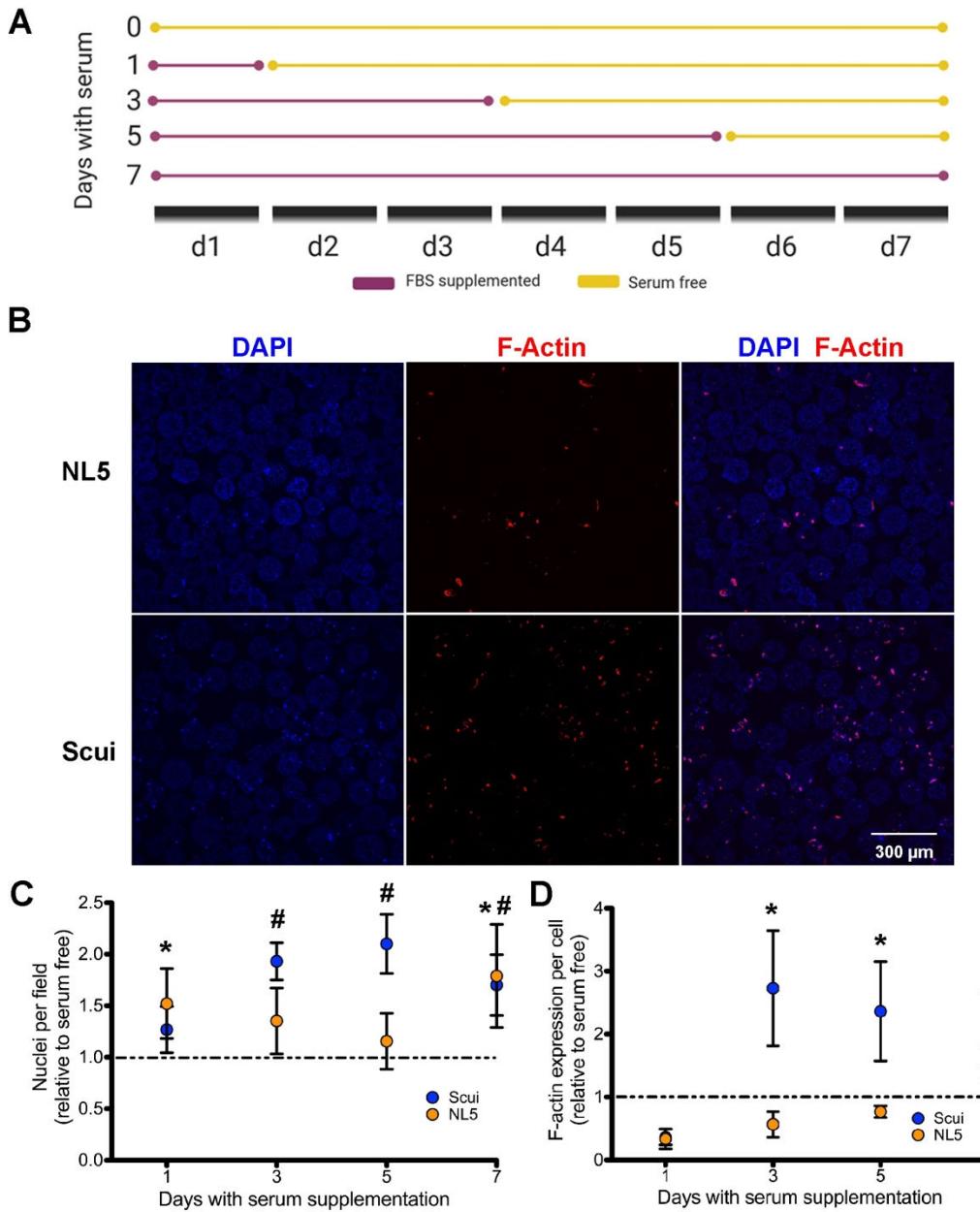
426

427

428

429

430


431

432

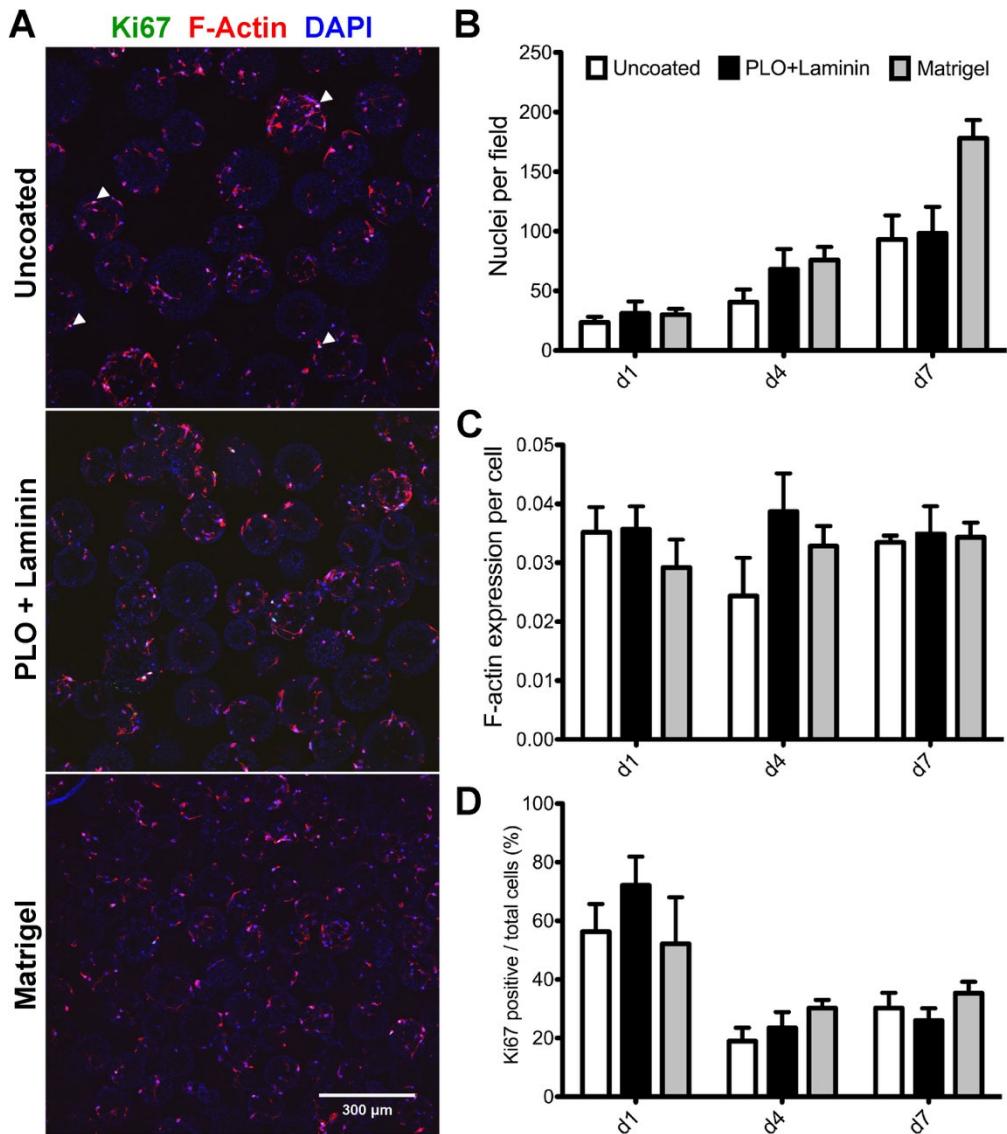
433

434 We next sought to determine whether our newly developed PLGA-based material could function
435 as a cellular scaffold and model for neurodevelopment. Beginning with the addition of iPSC-
436 derived NSCs to the scaffold, we outlined a series of assays to qualify the ability of our PLGA-
437 based material to promote NSC attachment, proliferation, differentiation, and support co-culture
438 studies (**Figure 3**). To first determine the efficiency of iPSC-derived NSC attachment onto our
439 PLGA microsphere surface, NSCs were cultured with unmodified PLGA microspheres in the
440 presence or absence of FBS for 1, 3, 5, or 7 days (**Figure 4A**). The addition of serum has
441 previously been shown to aid in the attachment of neural cell types to culture matrices.⁴³⁻⁴⁷
442 Through balancing the positive impact on NSC attachment while minimizing the influence of FBS
443 on neural differentiation, neural differentiation and tissue modeling could be optimized. NSCs
444 were passively seeded onto unmodified PLGA microspheres in the presence or absence of FBS
445 and cultured for 7 days before being fixed for immunocytochemistry (ICC) (**Figure 4A**). Analysis
446 of two distinct NSC lines revealed that serum supplementation for any length of time increased
447 the number of nuclei per microsphere compared to non-FBS supplemented (**Figure 4B,C**).
448 Additionally, F-actin expression, as a measure of cytoskeleton formation, was increased by NSC
449 serum supplementation (**Figure 4D**). While these data suggest short-term exposure to serum
450 increases NSC microsphere attachment, substrates which avoid the inhibitory effects of serum
451 on neural differentiation may benefit NSC properties.⁴⁸

452 Through serum-free culture of embryoid body-like aggregates with quick reaggregation (SFEbq),
453 *in vitro* neuronal differentiation can be achieved in the absence of extrinsic neural induction
454 factors.^{3, 18, 49, 50} It is also established that growth factor and protein-rich hydrogels such as Matrigel
455 support the development of 3D neural cultures.⁵¹ Since our biomaterial-based methodology
456 supports 3D self-organization and the minimization of undefined factors, we compared the
457 responses of NSCs cultured on uncoated microspheres to microspheres coated with two different
458 neural supportive substrates: PLO+laminin and Matrigel. Confocal microscopy images
459 demonstrated NSCs attached to either uncoated, PLO+laminin-coated, or Matrigel-coated
460 microspheres (**Figure 5A**). NSCs demonstrated an increase in cell number over the measured
461 time course across all conditions (**Figure 5B**). Calculations of F-Actin produced per cell showed
462 a relatively consistent trend over the time course (**Figure 5C**).⁵² While NSCs exhibited 60-70%
463 positivity for the proliferation marker Ki67 across all culture conditions early on (**Figure 5D**), a
464 universal reduction in Ki67⁺ cells was subsequently observed across all conditions, suggesting
465 terminal differentiation has likely begun (**Figure 5D**). These results are consistent with previous
466 *in vitro* 3D culture models demonstrating a reduction in Ki67 expression in the early stages of
467 differentiation.⁵³ Our data demonstrate that cells cultured on uncoated or PLO+laminin coated

468

469 **Figure 4. Serum improves attachment and cytoskeleton production by microsphere-cultured**
470 **NSCs.** (A) Diagram depicting the experimental design for serum supplemented media exposure. (B)


471 Confocal images of NSCs on uncoated microspheres after 7 days of serum supplementation; nuclei

472 identified with DAPI and F-actin filaments labeled with Phalloidin Texas-red (scale bar = 300 μ m). (C)

473 Nuclei counts of NSCs after varying duration of serum supplementation; n = 3 biological replicates per

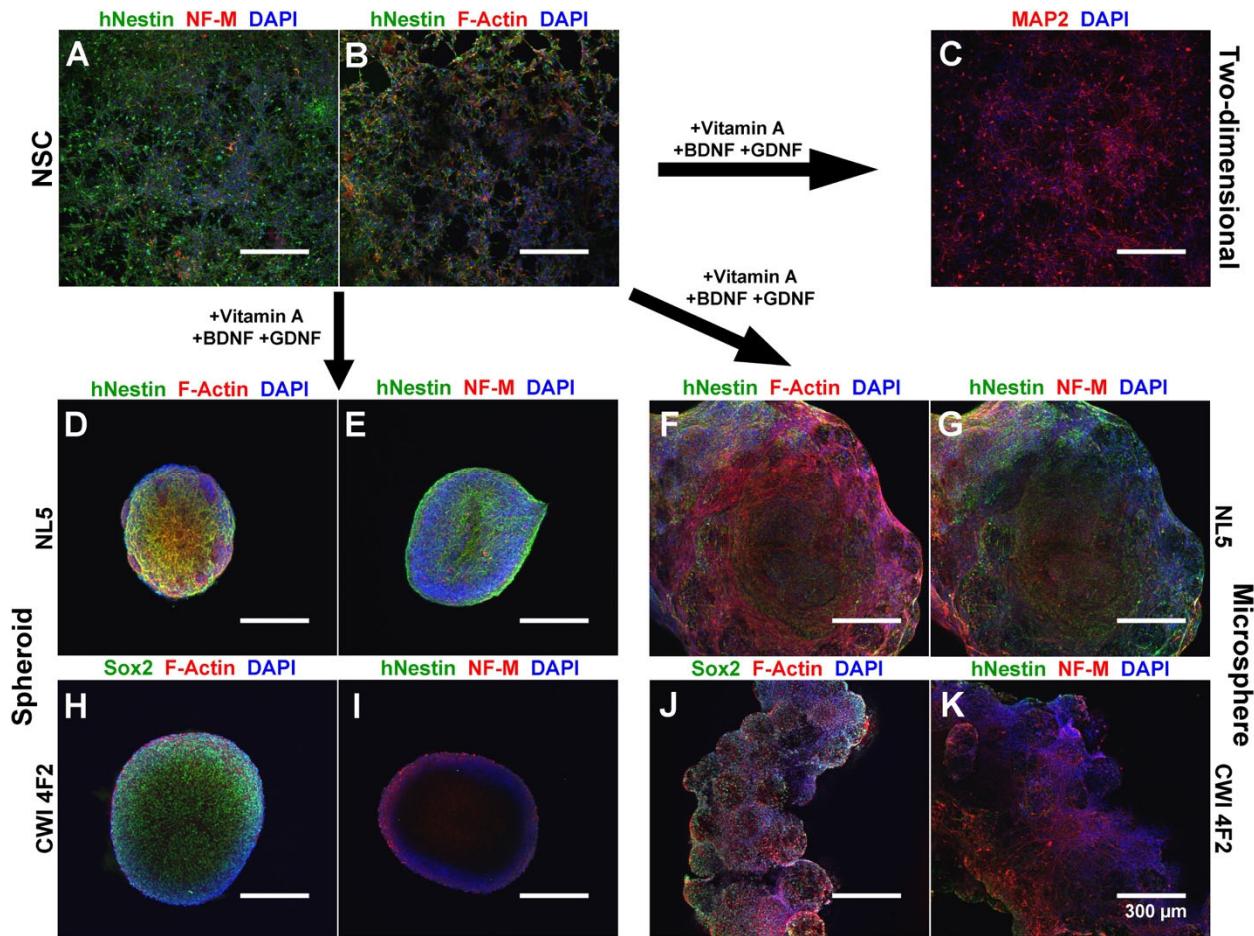
474 group. (D) Quantified F-actin per cell by Phalloidin Texas-red after varying durations of serum

475 supplementation; n = 3 biological replicates per group. Error bars represent \pm standard deviation. *
476 indicates significant increase ($p < 0.05$) in Scui NSCs compared to serum-free control; # indicates
477 significant increase ($p < 0.05$) in NL5 NSCs compared to serum-free control.

478

479

480 **Figure 5. Neural supportive substrates promote proliferation and cytoskeletal production from**
 481 **microsphere-cultured NSCs.** (A) Confocal images of Scui NSCs at d7 on uncoated microspheres (top
 482 panel), PLO+laminin coated microspheres (middle panel), and Matrigel coated microspheres (bottom
 483 panel) (scale bar = 200 μ m). Arrowheads indicate selected Ki67 positive cells. (B) Increasing cell counts
 484 on uncoated, PLO+laminin-coated, and Matrigel-coated microspheres over 7 days. (C) The volume of F-
 485 actin per cell on d7 remained constant despite increasing cell number. (D) No significant difference in the
 486 percentage of Ki67 positive cells was observed between uncoated and coated microspheres. n = 15 (3
 487 biological replicates and 5 image fields per group). Error bars represent \pm standard deviation.

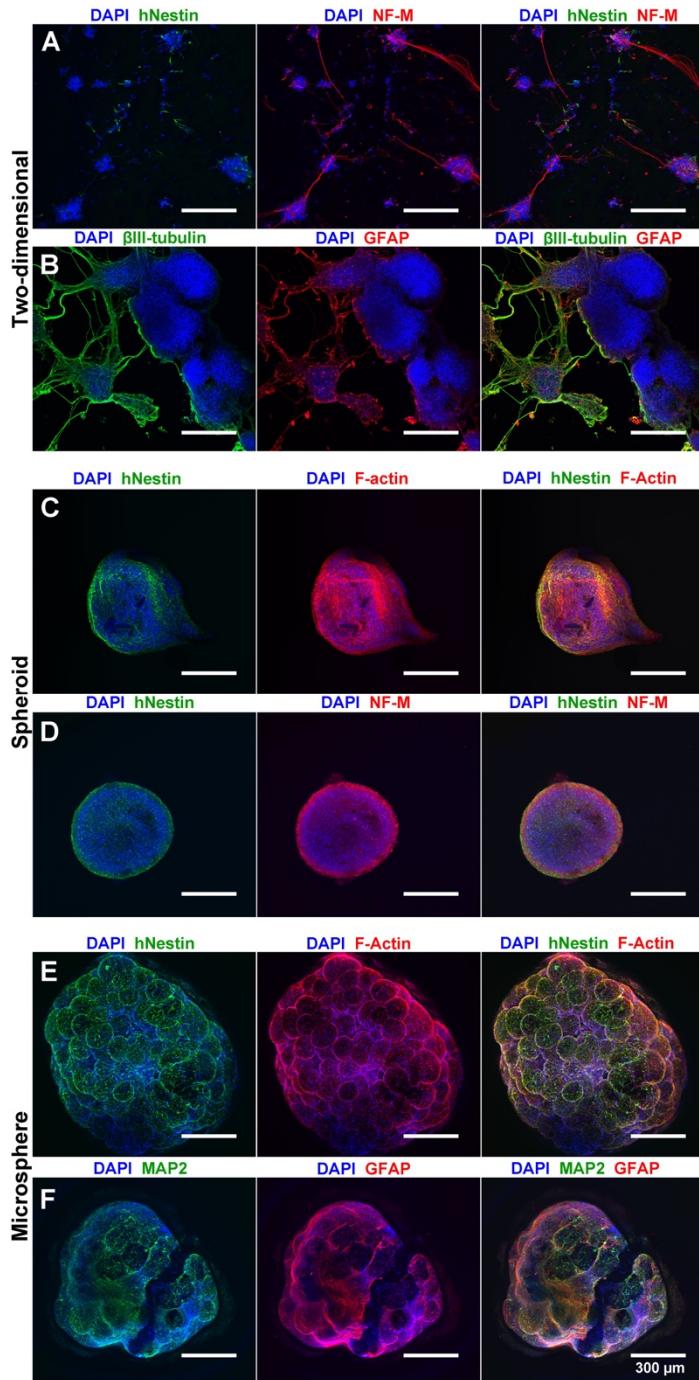

488

489 microsphere scaffolds display comparable characteristics to those exposed to the poorly defined
490 supportive effects of Matrigel.

491 *A scaffold-based model supports neural differentiation of both control and patient-derived iPSC*
492 *models*

493 Recent studies have questioned the quality of 2D monolayer neural culture due to the inability of
494 cells to become polarized on rigid, flat surfaces.^{19, 54} To evaluate the differentiation of iPSC-derived
495 NSCs cultured on a microsphere scaffold to traditional differentiation models, we compared the
496 differentiation of control and patient-derived iPSCs within a two-dimensional system, as self-
497 aggregating neurospheres, and cultured on microsphere scaffolds. The CWI 4F2 patient iPSC
498 line is a model for the cholesterol synthesis disorder Smith-Lemli-Opitz syndrome, a rare disease
499 where subjects exhibit significant neurological malformations.^{41, 55} We previously demonstrated
500 this cell line exhibits stem cell defects and accelerated neuronal differentiation.⁴¹ After 7 days of
501 differentiation, we verified the multilineage differentiation of both control and patient-derived NSCs
502 using immunocytochemistry. Cultured cell lines exhibited extensive expression of the human
503 neural progenitor marker hNestin, pan-neuronal marker β III-tubulin, the neuronal dendritic marker
504 microtubule associated protein-2 (MAP2), and the astrocyte marker glial fibrillary acidic protein
505 (GFAP) (**Figure 6A-C**). Compared to traditional two-dimensional culture, spheroid culture allowed
506 for abundant hNestin⁺ neural progenitors but very little NF-M expression (**Figure 6D,E**). In
507 scaffold-based culture, control (NL5) NSCs showed abundant hNestin expression, F-Actin and
508 high expression of NF-M (**Figure 6F,G**). Patient (CWI 4F2) neurospheres exhibited both high
509 levels of Sox2 and NF-M compared to NL5, in agreement with the previously published
510 accelerated neuronal differentiation phenotype in this model (**Figure 6H,I**).⁴¹ In comparison, CWI
511 4F2 cultured scaffolds demonstrated a mixed neural lineage, including Sox2⁺ and hNestin⁺ NSCs,
512 as well as extensive NF-M expression (**Figure 6J,K**). Analysis of F-actin also demonstrated
513 increased cytoskeleton formation within both control and patient-derived cells on scaffold vs.
514 neurospheres (**Figure 6D,F,H,J**).

515 After 28 days of differentiation, NSCs cultured on two-dimensional PLO+laminin coated coverslips
516 underwent considerable morphological change. While extensive GFAP⁺ astrocytes were
517 observed by d28, differentiated neurons formed cell clumps and demonstrated loss of cell
518 adhesion associated with diminished cell health (**Figure 7A,B**). While spheroid cultures
519 maintained a uniform cell distribution and overall structure, spheroid size was unchanged
520 compared to d7. Further, spheroids exhibited increased NF-M⁺ neurons compared to d7 while
521 maintaining high F-Actin and hNestin levels (**Figure 7C,D**). However, GFAP expression was not

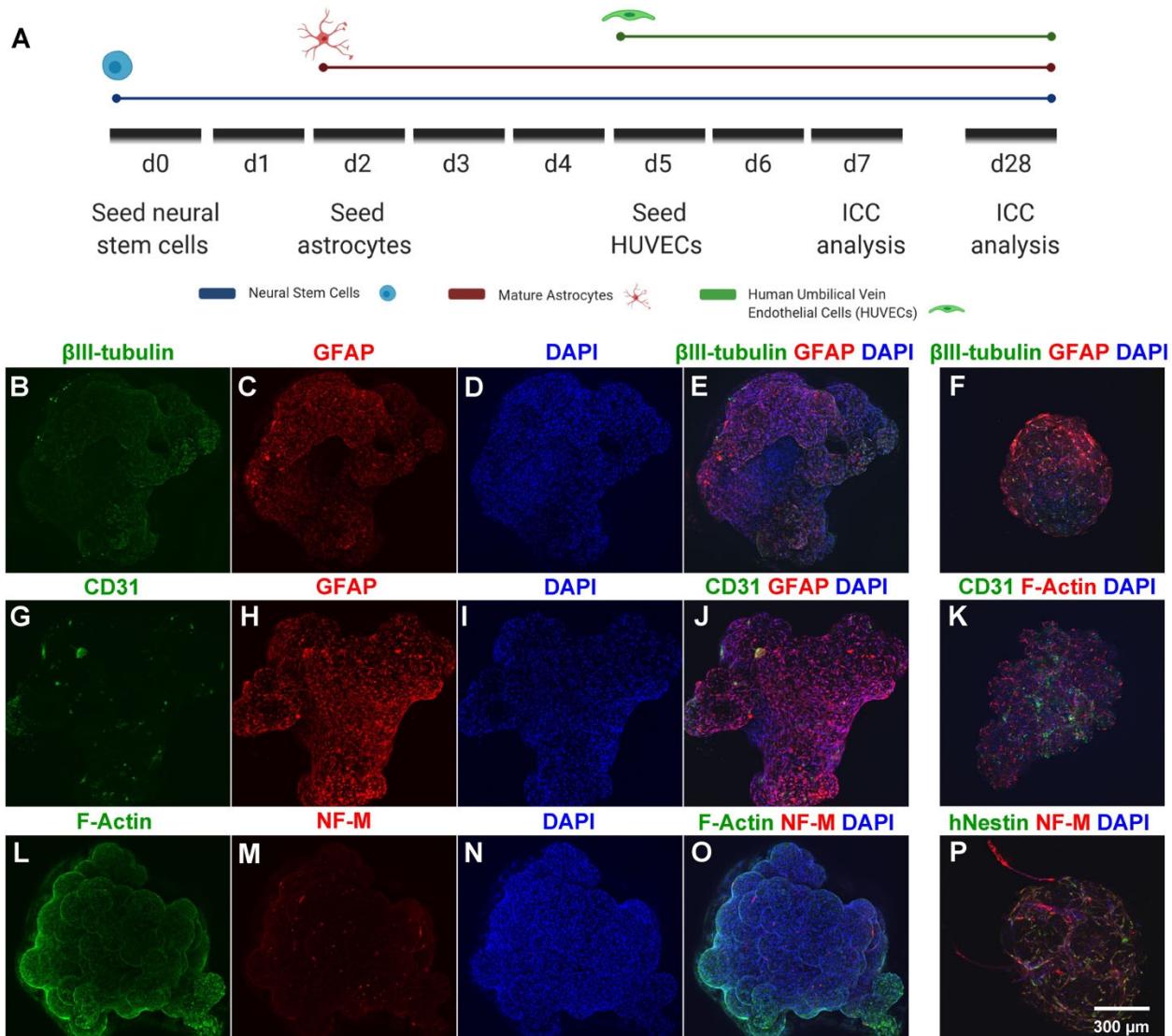

522

523 **Figure 6. Microsphere-cultured control and patient-derived iPSC derivatives exhibit early neuronal**
 524 **lineage commitment.** Comparison of control (NL5) and patient (CWI 4F2) models in 2D, 3D neurospheres,
 525 and 3D microspheres after 7 days differentiation. (A,B) NSCs exhibit low amounts of NF-M and F-Actin, but
 526 abundant hNestin expression. (C) 2D differentiation produces extensive MAP2 expression. (D,E) Control
 527 NSCs cultured as scaffold-free neurospheres labeled by ICC for hNestin, F-Actin, and DAPI (D) or hNestin,
 528 NF-M, and DAPI (E). (F,G) Control NSCs cultured as cellular scaffolds labeled by ICC for hNestin, F-Actin,
 529 and DAPI (F) or hNestin, NF-M, and DAPI (G). (H,I) CWI 4F2 NSCs cultured as a scaffold-free neurosphere
 530 labeled by ICC for Sox2, F-Actin, and DAPI (H) or hNestin, NF-M, and DAPI (I). (J,K) CWI 4F2 NSC
 531 scaffolds labeled by ICC for Sox2, F-Actin, and DAPI (J) or hNestin, NF-M, and DAPI (K) (scale bar = 300
 532 μm).

533

534

535

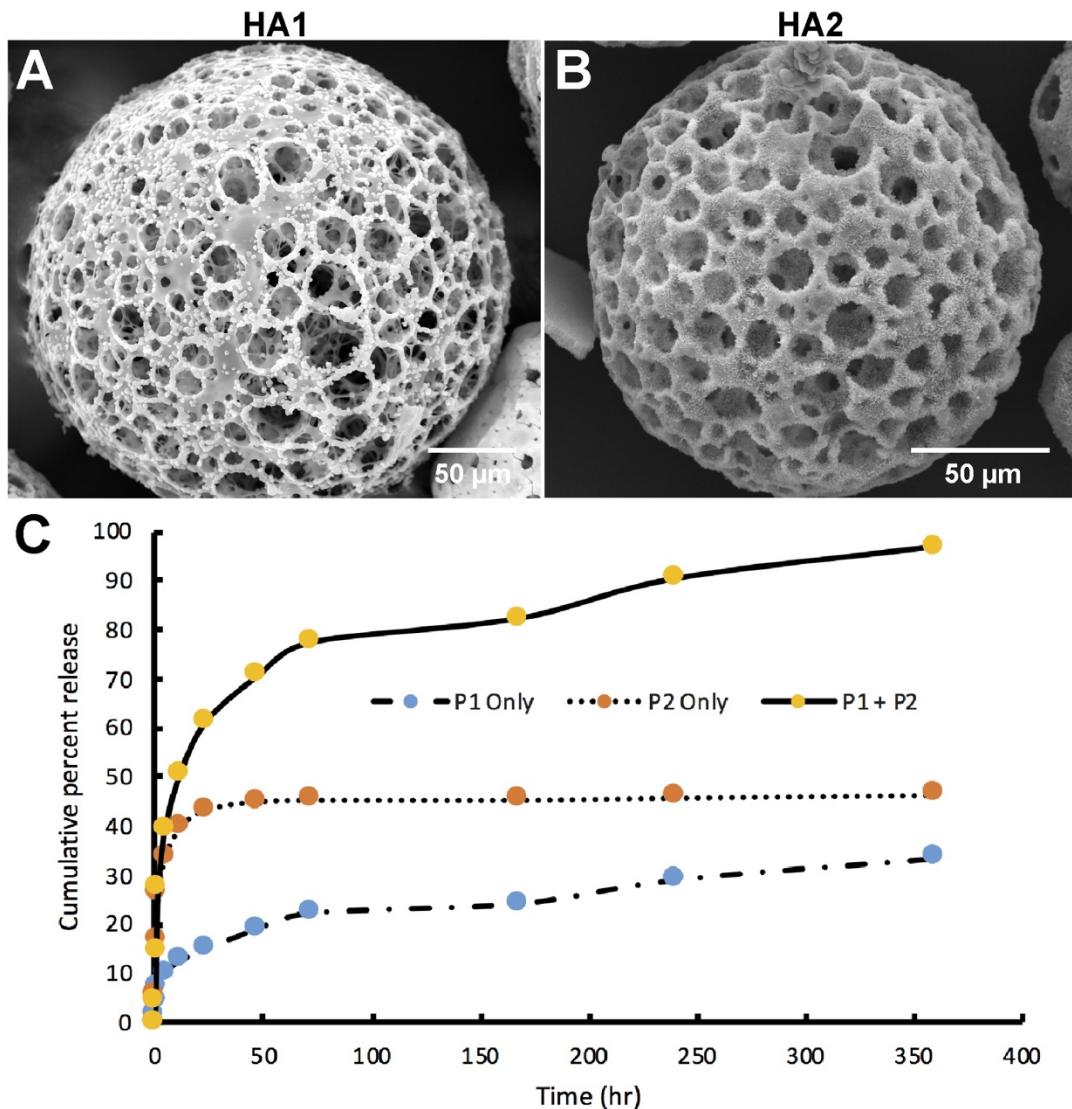

536 **Figure 7. Microsphere culture allows NSC differentiation to neuronal and glial lineages.** (A,B) 28 day
 537 differentiation in 2D conditions generates extensive neuronal (NF-M, β III-tubulin) and astrocyte (GFAP)
 538 formation with loss of NSCs (hNestin) (DAPI nuclear counterstain). (C,D) Spheroid culture maintains NSCs
 539 (hNestin) over 28 days with neuronal (NF-M) and cytoskeletal (F-actin) formation. (DAPI nuclear
 540 counterstain). (E,F) Microsphere culture allows for expansion and cytoskeletal production of NSCs (hNestin,
 541 F-actin), as well as robust differentiation to neuronal (MAP2) and astrocytic (GFAP) lineages. (scale bar =
 542 300 μ m).

543 observed in spheroids. In comparison to spheroid cultures, the diameter of microsphere scaffold
544 cultures was significantly increased on d28 of differentiation (**Figure 7E,F**). Scaffold-based
545 cultures also demonstrated extensive glial differentiation, as exhibited by GFAP⁺ cell types.
546 Expansive glial differentiation within scaffold-based cultures was not at the expense of neuronal
547 differentiation, as evidenced by extensive MAP2 expression. Using immunohistochemistry, we
548 further determined that scaffold-based cultures exhibited integration of NSC-derived cells
549 throughout the microsphere (**Supplemental Figure 2**). H&E staining demonstrated broad
550 distribution of cells throughout the scaffold, validating the ability of cells to migrate from the
551 scaffold's exterior surface. Overall, these assays demonstrate that our microsphere matrix
552 provided a chemically defined, neural-supportive microenvironment which allows expansion,
553 migration and multilineage differentiation of both control and patient-derived NSCs.

554 Recent work has demonstrated co-culture of endothelial cells with iPSC-derived models supports
555 neural health and maturation.^{56, 57} To demonstrate the capacity of our scaffold-based system for
556 multi-lineage co-culture, NSCs, astrocytes, and endothelial cells were sequentially seeded onto
557 a PLO+laminin coated microsphere scaffold. NSCs were first seeded onto microspheres in ultra-
558 low attachment 96 well plates, followed by astrocytes and finally HUVECs (**Figure 8A**). As
559 demonstrated by expression of β III-tubulin, GFAP, and CD31 on d7 of co-culture, the scaffold
560 allows for attachment, survival, and integration of each cell type (**Figure 8**). F-actin expression,
561 identified by Phalloidin Texas-red, and nuclear counterstaining demonstrate broad cell distribution
562 and cytoskeletal formation throughout the microsphere-based scaffold (**Figure 8L,O**). ICC
563 demonstrated that astrocytes, neurons, and HUVECs were still identifiable within the cellular
564 scaffold on d28 of co-culture (**Figure 8F,K,P**). Increased expression of NF-M, GFAP and CD31
565 on d28 suggests increased neuronal maturation and proliferation of astrocytes and HUVECs
566 (**Figure 8F,K,P**). Further, maintenance of hNestin⁺ cells at d28 suggests continued NSC
567 maintenance within this co-culture scaffold. These data further demonstrate the ability of the
568 microsphere scaffold for robust co-culture of neural, glial, and endothelial cells, representing a
569 critical initial step towards the formation of mature, nutrient-rich, and vascularized 3D structures
570 using this material⁵⁸.

571 *Microspheres can function as a platform for sustained growth factor release*

572 Neural differentiation of iPSCs requires frequent exogenous supplementation of defined cocktails
573 of growth factors and cytokines to promote cell proliferation, differentiation, and tissue
574 organization. To determine if microspheres could function in both cellular support and growth



575

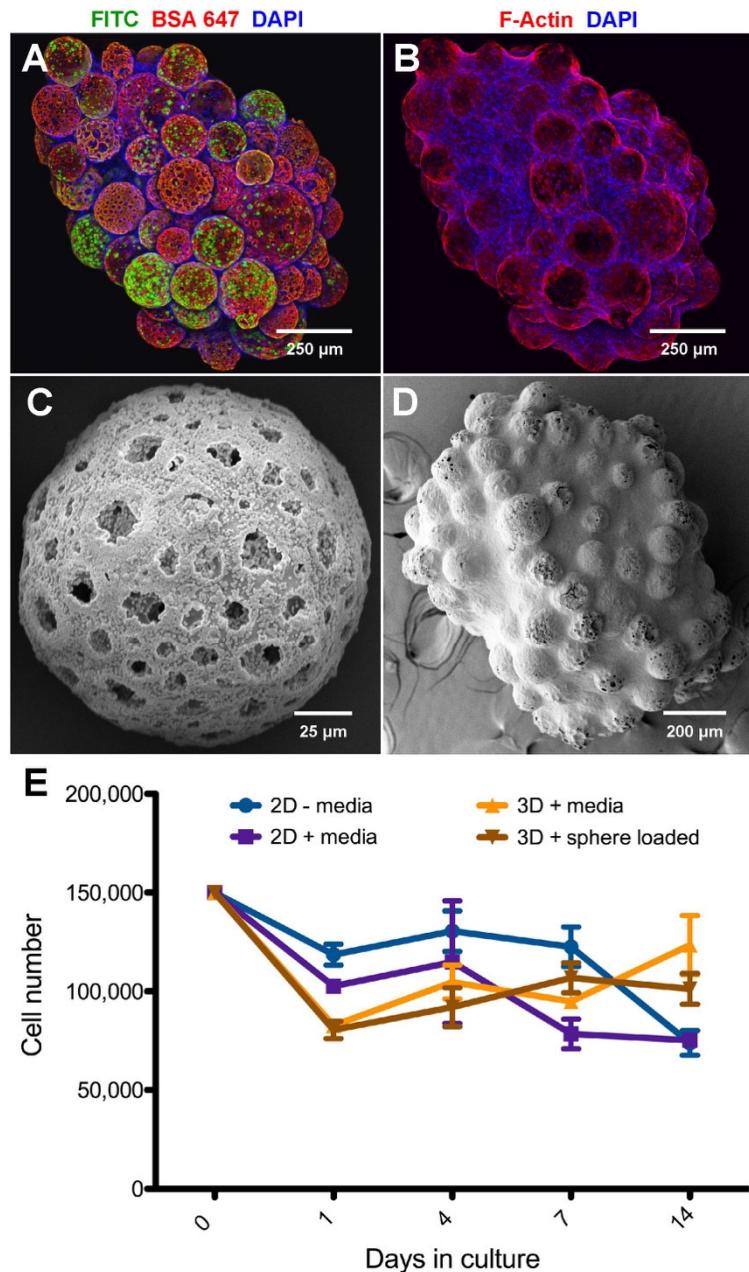
576 **Figure 8. Microsphere-based scaffolds support the co-culture of NSCs, astrocytes, and HUVECs.**
 577 (A) Cell seeding and ICC analysis timeline. Confocal images displayed as maximum projections of iPSC-
 578 derived NSCs, astrocytes, and HUVECs within scaffold. (B-E) d7 ICC for neurons (β III-tubulin) and
 579 astrocytes (GFAP). (F) d28 ICC for neurons (β III-tubulin) and astrocytes (GFAP). (G-J) d7 ICC for HUVECs
 580 (CD31) and astrocytes (GFAP). (K) d28 ICC for HUVECs (CD31) and cytoskeletal formation (F-actin). (L-
 581 O) d7 ICC for cytoskeletal formation (F-actin) and mature neurons (NF-M). (P) d28 ICC for neural
 582 progenitors (hNestin) and mature neurons (NF-M). DAPI nuclear counterstain is also shown. (Scale bar =
 583 300 μ m).

584

585

586 **Figure 9. Hydroxyapatite coated microspheres allow for protein loading and release.** (A) An SEM
 587 image of a PLGA microsphere covered in hydroxyapatite nucleation crystals after immersion in SBF
 588 phase I (P1) solution (scale bar = 50 μ m). (B) An SEM image of a PLGA microsphere covered in mature
 589 hydroxyapatite crystals after immersion in SBF phase II (P2) solution (scale bar = 50 μ m). (C) Greater
 590 amounts of BSA were released from P1+P2 compared to P1 only or P2 only after 360 h in solution (n =
 591 4).

592


593

594

595

factor release, microspheres were layered with hydroxyapatite crystals via SBF. While hydroxyapatite has traditionally been utilized for osteogenic differentiations⁵⁹⁻⁶¹, recent work has demonstrated hydroxyapatite also promotes neural differentiation and functional neuronal development through enhanced Ca²⁺ signaling.^{62, 63} HA was deposited onto the entire exposed exterior and interior surfaces of the microsphere, allowing crystal deposition without pore occlusion (**Figure 9A,B**). The first SBF phase deposited on the microsphere surface (HA1) acts as a nucleation site, while second phase deposition creates an additional layer (HA2) (**Figure 9A,B**). To model the capacity of the two HA layers to entrap and release proteins, BSA was added to SBF phase 1 and phase 2 solutions. BSA entrapment was evaluated in three different combinations: BSA added to SBF phase 1 only (P1 only), BSA added to SBF phase 2 (P2 only), or BSA added to both SBF phases (P1+P2). While P1 only incorporation of BSA was relatively inefficient (7.2%), P2 only (34.5%) and P1+P2 (56.3%) demonstrated robust protein incorporation into HA layers. BSA release following P1+P2 entrapment was also highly efficient (96.9 ± 3.56%) (**Figure 9C**). The release rates among the three groups varied in relation to their incorporation efficiency. The P1 only group (7.2% incorporation efficiency) had an overall release rate of 0.008 µg/min during the 360-hour release timeframe. The P2 only group (34.5% incorporation efficiency) had an overall release rate of 0.04 µg/min over 360 hours and the P1+P2 group (56.3% incorporation efficiency) had an overall release rate of 0.14 µg/min.

After verifying that an entrapped protein could be loaded and released in a controlled and sustained manner, we sought to determine if the scaffold could support loading and release of multiple molecules. Two biomolecules were loaded into hydroxyapatite-coated microspheres: a FITC-conjugated peptide was loaded into phase 1 HA and AlexaFluor647-conjugated BSA was incorporated into phase 2 HA. NSCs were seeded onto the scaffold following protein entrapment, followed by imaging for FITC, AlexaFluor647, and DAPI counterstained NSC nuclei (**Figure 10A**). NSCs attached onto the surfaces of all HA-coated microspheres and formed robust cytoskeletal projections across the scaffold (**Figure 10B**). To determine the bioactivity of entrapped biomolecules, bFGF was entrapped in both phases of the HA crystal matrix (P1+P2). The loading of bFGF into both HA layers did not interfere with the porous structure of the microsphere, as the microsphere matrix was covered in HA crystals (**Figure 10C**). While bFGF-loaded crystals appeared somewhat flattened compared to HA crystals without loading (**Figure 10D**), the bFGF-entrapped scaffold demonstrated increased NSC proliferation in scaffold cultures compared to standard 2D culture (**Figure 10E**). These data demonstrate the microsphere scaffold can be utilized for entrapment and release proteins of interest in a sustained manner, providing direct trophic factor support to seeded cells.

630 **Figure 10. Protein-loaded and hydroxyapatite-coated microspheres supply growth factors directly**
631 **to scaffold-cultured NSCs.** (A) Confocal images of NSCs on an HA-microsphere-based scaffold with
632 merged ICC channels showing FITC-peptide in phase I HA, BSA-AlexaFluor 647 in phase II HA, and cell
633 nuclei counterstained with DAPI; scale bar = 250 μ m. (B) Confocal images of NSCs on an HA-
634 microsphere-based scaffold with merged ICC channels showing F-actin filaments identified with
635 Phalloidin Texas-red and nuclei counterstained with DAPI; scale bar = 250 μ m. C) SEM image of a
636 microsphere with bFGF incorporated into HA matrix (+P1+P2) (scale bar = 25 μ m); (D) SEM image of
637 NSC cultured microsphere scaffold after 5 days. Scaffold contains bFGF incorporated into HA. (scale bar
638 = 200 μ m). (E) bFGF released directly from HA promoted NSC proliferation over 14 days comparably to
639 bFGF-supplemented media. Error bars represent \pm standard deviation.

640 **Discussion**

641 PLGA has been widely used as a biomaterial to support and direct cell fate through various 3D
642 tissue engineering scaffold fabrication techniques such as electrospinning, soft lithography, gas
643 foaming, particle leaching, supercritical CO₂, phase separation, 3D printing, and freeze-drying.⁶⁴
644⁷⁰ Polymeric and composite materials utilizing PLGA have been used to align tenocytes to support
645 tendon repair, induce chondrogenesis of rabbit mesenchymal stem cells, promote hepatogenesis
646 of human adipogenic stem cells, and differentiation of canine smooth muscles cells.^{64, 66} PLGA
647 scaffolds were used with and without the addition of transforming growth factor- β 3 to support the
648 delivery and differentiation of mesenchymal stem cells towards articular cartilage *in vivo*.⁷¹ Our
649 work has demonstrated PLGA microspheres provide a multifunctional, 3D cell culture platform
650 also capable of loading and releasing proteins, peptides, and other growth factors. By
651 incorporating biocompatible materials, using defined starting numbers of stem cells, and providing
652 a chemically defined environment, our scaffold platform addresses some of the current challenges
653 limiting the utility of 3D cell culture.¹⁵ The microsphere scaffold developed here can be readily
654 produced in high numbers, the product is shelf-stable for future use, and the final microsphere
655 diameter is tunable during preparation. We have further demonstrated this system can be used
656 to allow effective neural differentiation in three dimensions. Though Young's modulus of PLGA is
657 higher than the presumptive ECM of the brain, substrate stiffness differs between areas of the
658 brain and within glial subtypes. Studies have reported a stiffness range from 0.1 to 16 kPa across
659 brain regions.^{1, 11, 72} Substrate stiffness also influences neural subtype differentiation. Neuronal
660 differentiation favors softer substrates (100-500 Pa) while stiffer substrates (1-10 kPa) favor glial
661 differentiation.^{1, 72} Rat NPCs cultured on surfaces with stiffness up to 35 kPa were not affected by
662 the discrepancy to native tissue stiffness.¹ Despite having a higher elastic modulus in its dry state,
663 PLGA undergoes bulk degradation through hydrolytic cleavage of ester bonds along the polymer
664 backbone as water penetrates the matrix.^{73, 74} As our work confirms, PLGA was previously shown
665 to soften over the first 48 h due to a 221- 350% increase in water content.^{74, 75} Previous work with
666 PLGA has demonstrated a significant reduction of the elastic modulus due to matrix swelling and
667 rapid loss of molecular weight through the bulk degradation process.^{73, 75} In our study, hydration
668 of PLGA microspheres reduced the elastic modulus by approximately four-fold. The microspheres
669 used here were designed to be a malleable substrate that softens and degrades, allowing for cell
670 remodeling and migration.¹⁶

671

672 The undefined ECM and growth factor milieu of naturally-derived hydrogels exposes self-
673 aggregating and self-organizing cells to a poorly controlled mix of excitatory, proliferative,
674 instructive, mechanotransducive, and inhibitory signals.^{16, 51, 76} Matrigel-based methods can result
675 in low reproducibility and poor control of differentiation due to the inherent variability within
676 Matrigel.^{4, 77} The use of a chemically undefined environments may also obscure or limit the utility
677 of observations.^{4, 16, 18, 72, 78, 79} The use of serum-free formulations has created more defined and
678 consistent neural differentiation methods.^{10, 80, 81} Therefore, a more defined 3D structure which
679 incorporates neural ECM components would be a beneficial differentiation platform. Through
680 incorporation of substrate-specific matrices such as PLO+laminin, this study offers improved
681 control over the *in vitro* microenvironment by providing physiologically relevant cues found in the
682 brain.^{1, 10, 66, 76, 82, 83} We have demonstrated microspheres promote iPSC-derived NSC growth and
683 differentiation. Compared to cell-only 3D neurospheres, which rely on cell aggregation, cell-
684 secreted ECM proteins, and self-organization to generate the 3D structure, the microspheres can
685 be coated with ECM proteins and ligands to mechanically and chemically direct stem cell
686 differentiation. Scaffolds with high porosity and nearly 100% interconnected pore structure, such
687 as the microsphere platform presented here, allow for nutrients, oxygen, and waste products to
688 be transported throughout the biomaterial-based organoid structure.^{1, 84} We have modeled the
689 flow of solution through the microsphere by the deposition of HA crystals throughout the internal
690 architecture of the microsphere. The larger surface area, porosity, and biocompatibility of PLGA
691 microspheres support cell attachment, growth and differentiation.^{4, 32, 85} The acidic by-products
692 that form upon matrix degradation can lower the pH and lead to inflammation within PLGA-based
693 scaffolds.^{74, 86, 87} However, less than 12% of our microsphere volume is composed of PLGA.
694 Further, the interconnected pore structure allows lactic acid and glycolic acid monomers to be
695 diluted within the surrounding media, limiting toxicity on scaffold-based cells.^{64, 66, 87} Lastly, the
696 porous matrix and the high surface area of the scaffolds create a supportive environment that
697 promote cellular health and complexity compared to cell-based neurospheres.
698

699 Due to the frequent inability of animal models to recapitulate disease manifestation,^{1, 14, 88} the
700 ability to model human disease using iPSCs in a 3D environment is critical for both basic and
701 translational research. The ability to model human disease *in vitro* with iPSCs allows access to
702 both unaffected and disease-impacted cell types of interest, providing opportunities for analysis
703 of disease pathogenesis or drug discovery studies.² However, the cellular complexity of iPSC-
704 based neurological models has been limited due to the stochastic nature of the differentiation
705 process. We have demonstrated that our 3D microsphere-based scaffold system can function as

706 an *in vitro* neurodevelopment platform using iPSC-derived cells. Our system can support both
707 unaffected and disease-affected iPSC models, as well as combinatorial culture of progenitors,
708 differentiated neuronal and glial cell types, and endothelium.^{1, 6, 27, 50, 88 41}

709
710 While we have demonstrated our microsphere platform can successfully host cell types of interest,
711 future studies utilizing this platform will determine the functional activity of cultured cells, the
712 impact of cell-to-cell interactions, optimization of cell populations, and utilization of ECM coatings
713 favorable to specific cell types. Such studies will involve prolonged, multi-month culture to allow
714 maturation and functional development of cellular networks as has previously been performed in
715 self-organizing cerebral organoid models.^{17, 89} Through directed differentiation towards specific
716 cell types of interest on separate scaffolds, the microspheres could be combined, similar to
717 assembloids, to create composite scaffolds with greater heterogeneity and functionality.^{90, 91} The
718 microsphere-based scaffold architecture offers a unique platform to assemble distinct clusters of
719 differentiating cells to maximize recapitulation of CNS regions of interest. Future studies will
720 therefore be needed to determine the precise impact of our microsphere scaffold on the formation
721 and function of defined neuronal and glial populations.

722
723 Our data demonstrates the microsphere platform described can function as both a cellular scaffold
724 and growth factor elution system consisting of biocompatible materials. This work provides
725 important proof-of-concept data regarding the multifunctionality of this system. The HA coated
726 microspheres described here can be loaded with multiple growth factors, as demonstrated by
727 incorporation of two fluorescently bound molecules. Future work will evaluate other bioactive
728 molecules, such as silk nanofibers, which limit substrate stiffness compared to HA for the
729 incorporation and release of soluble factors.⁹² The incorporation of physiologically critical growth
730 factors, such as bFGF, into a 3D platform has the capacity to promote progenitor proliferation or
731 drive cellular differentiation without additional environmental manipulation. Proteins, peptides and
732 other small molecules can thus be released directly to cells to modify a signaling pathway or
733 cellular function without disturbing the growing organoid. The porous structure allows for a much
734 greater loading capacity due to the surface area, as well as the rapid clearance of any acidic by-
735 products that may interfere with the bioactivity of sensitive molecules.⁷⁴ We demonstrated that
736 bFGF, released from microspheres over 14 days, increased proliferation above the level of the
737 2D monolayer which was receiving bFGF supplemented media every other day. In a similar
738 manner to coating microspheres with various proteins to model different ECM substrates, the
739 microspheres can be dual loaded with factors to influence attached cells. For example, the

740 addition of a bioceramic component to PLGA microspheres is applicable for use in other, non-
741 neural tissue engineering models.

742 In summary, we have developed a chemically-defined, microsphere-based cell culture platform
743 to model neurodevelopment and disease pathogenesis using iPSC derivatives. The microspheres
744 developed in this study represent a biodegradable, highly porous, customizable substrate capable
745 of hosting NSCs and differentiated cells types for weeks *in vitro*. We show that the platform can
746 be customized with various extracellular matrices such as PLO and laminin to support proliferation
747 or directed differentiation, as desired. We further demonstrate these microspheres can support
748 multiple neural and non-neural cell types simultaneously, through co-culture of NSCs, NSC-
749 differentiated neurons, mature astrocytes, and HUVEC cells. Lastly, modified microspheres can
750 simultaneously function as both a cellular scaffold and small molecule delivery platform. Future
751 work will utilize the biophysical and nanoarchitectonic cues utilized here to generate complex
752 culture systems for the study of development, disease pathogenesis, or 3D-based drug discovery
753 assays.

754

755 **Acknowledgements**

756 We would like to thank the University of South Dakota Center for Brain and Behavior Research
757 and the University of South Dakota Neuroscience, Nanotechnology, and Networks programs for
758 their support. We would like to thank Kelly Graber and Claire Evans for assistance with H&E
759 immunohistochemistry. The graphical abstract was created using BioRender.com.

760 **Author contributions**

761 ES, HS, and KRF conceived the study. ES performed most of the experiments under the
762 supervision of DE and KRF. SVJ performed analysis of scaffold mechanical properties under the
763 supervision of DRK and KSK. ES and KRF wrote the manuscript. All authors discussed the results
764 and approved the final manuscript.

765 **Declaration of conflicting interests**

766 The authors declare no potential conflicts of interest with respect to the research, authorship,
767 and/or publication of this article.

768 **Funding**

769 This study was supported by NIH grants (NIGMS P20 GM103620 and P20 GM103548), the
770 National Science Foundation (DGE-1633213), a National Science Foundation/EPSCoR
771 Cooperative Agreement (IIA-1355423), a National Science Foundation/EPSCoR Cooperative
772 Agreement (OIA-1946202), and the State of South Dakota. The content is solely the responsibility
773 of the authors and does not necessarily represent the official views of the National Institutes of
774 Health or the National Science Foundation.

775 **ORCID iD for corresponding author**

776 Kevin Francis, <https://orcid.org/0000-0002-3636-7264>

777 **Statement of significance**

778 In this study, highly porous PLGA microspheres were prepared using a double emulsion and
779 porogen leaching technique. The resulting microspheres were used as a 3D platform to culture
780 control and patient iPSC-derived neural stem cells as a model for neurodevelopment. The goal of
781 this research was to demonstrate that protein-coated microspheres could serve as a suitable *in*
782 *vitro* model for the developing brain. Through our *in vitro* biological results, we have shown that
783 the porous PLGA microspheres developed herein can simultaneously support multilineage
784 differentiation, co-culture of neural and non-neural lineages, and directly deliver small molecules
785 to 3D neural models. This platform represents a significant step in creating more reproducible
786 three-dimensional models for the *in vitro* study of human disease or for use in drug discovery
787 assays.

788 **Data availability statement**

789 Datasets generated in this study are available from the corresponding author upon request.

790 **References**

- 791 1. Murphy AR, Laslett A, O'Brien CM, et al. Scaffolds for 3D *in vitro* culture of neural lineage cells.
792 *Acta Biomater* 2017; 54: 1-20. 2017/03/06. DOI: 10.1016/j.actbio.2017.02.046.
- 793 2. Sloan SA, Andersen J, Pasca AM, et al. Generation and assembly of human brain region-specific
794 three-dimensional cultures. *Nat Protoc* 2018; 13: 2062-2085. 2018/09/12. DOI: 10.1038/s41596-018-
795 0032-7.
- 796 3. Chukwurah E, Osmundsen A, Davis SW, et al. All Together Now: Modeling the Interaction of
797 Neural With Non-neural Systems Using Organoid Models. *Front Neurosci* 2019; 13: 582. 2019/07/12.
798 DOI: 10.3389/fnins.2019.00582.
- 799 4. Poli D, Magliaro C and Ahluwalia A. Experimental and Computational Methods for the Study of
800 Cerebral Organoids: A Review. *Front Neurosci* 2019; 13: 162. 2019/03/21. DOI:
801 10.3389/fnins.2019.00162.

802 5. Centeno EGZ, Cimarosti H and Bithell A. 2D versus 3D human induced pluripotent stem cell-
803 derived cultures for neurodegenerative disease modelling. *Mol Neurodegener* 2018; 13: 27. 2018/05/24.
804 DOI: 10.1186/s13024-018-0258-4.

805 6. Lage OM, Ramos MC, Calisto R, et al. Current Screening Methodologies in Drug Discovery for
806 Selected Human Diseases. *Mar Drugs* 2018; 16 2018/08/17. DOI: 10.3390/md16080279.

807 7. Saxe JP, Wu H, Kelly TK, et al. A phenotypic small-molecule screen identifies an orphan ligand-
808 receptor pair that regulates neural stem cell differentiation. *Chem Biol* 2007; 14: 1019-1030.
809 2007/09/22. DOI: 10.1016/j.chembiol.2007.07.016.

810 8. Zhao WN, Cheng C, Theriault KM, et al. A high-throughput screen for Wnt/β-catenin signaling
811 pathway modulators in human iPSC-derived neural progenitors. *J Biomol Screen* 2012; 17: 1252-1263.
812 2012/08/28. DOI: 10.1177/1087057112456876.

813 9. Horvath P, Aulner N, Bickle M, et al. Screening out irrelevant cell-based models of disease. *Nat
814 Rev Drug Discov* 2016; 15: 751-769. 2016/11/04. DOI: 10.1038/nrd.2016.175.

815 10. Chen AK, Reuveny S and Oh SK. Application of human mesenchymal and pluripotent stem cell
816 microcarrier cultures in cellular therapy: achievements and future direction. *Biotechnol Adv* 2013; 31:
817 1032-1046. 2013/03/28. DOI: 10.1016/j.biotechadv.2013.03.006.

818 11. Shah SB and Singh A. Cellular self-assembly and biomaterials-based organoid models of
819 development and diseases. *Acta Biomater* 2017; 53: 29-45. 2017/02/06. DOI:
820 10.1016/j.actbio.2017.01.075.

821 12. Koo B, Choi B, Park H, et al. Past, Present, and Future of Brain Organoid Technology. *Mol Cells*
822 2019; 42: 617-627. 2019/09/30. DOI: 10.14348/molcells.2019.0162.

823 13. Edmondson R, Broglie JJ, Adcock AF, et al. Three-dimensional cell culture systems and their
824 applications in drug discovery and cell-based biosensors. *Assay Drug Dev Technol* 2014; 12: 207-218.
825 2014/05/17. DOI: 10.1089/adt.2014.573.

826 14. Wang H. Modeling Neurological Diseases With Human Brain Organoids. *Front Synaptic Neurosci*
827 2018; 10: 15. 2018/06/26. DOI: 10.3389/fnsyn.2018.00015.

828 15. Amin ND and Pasca SP. Building Models of Brain Disorders with Three-Dimensional Organoids.
829 *Neuron* 2018; 100: 389-405. 2018/10/26. DOI: 10.1016/j.neuron.2018.10.007.

830 16. Yin X, Mead BE, Safaee H, et al. Engineering Stem Cell Organoids. *Cell Stem Cell* 2016; 18: 25-38.
831 2016/01/11. DOI: 10.1016/j.stem.2015.12.005.

832 17. Lancaster MA and Knoblich JA. Generation of cerebral organoids from human pluripotent stem
833 cells. *Nat Protoc* 2014; 9: 2329-2340. DOI: 10.1038/nprot.2014.158.

834 18. Lee CT, Bendriem RM, Wu WW, et al. 3D brain Organoids derived from pluripotent stem cells:
835 promising experimental models for brain development and neurodegenerative disorders. *J Biomed Sci*
836 2017; 24: 59. 2017/08/22. DOI: 10.1186/s12929-017-0362-8.

837 19. Logan S, Arzua T, Canfield SG, et al. Studying Human Neurological Disorders Using Induced
838 Pluripotent Stem Cells: From 2D Monolayer to 3D Organoid and Blood Brain Barrier Models. *Compr
839 Physiol* 2019; 9: 565-611. 2019/03/16. DOI: 10.1002/cphy.c180025.

840 20. Kim SJ, Kim EM, Yamamoto M, et al. Engineering Multi-Cellular Spheroids for Tissue Engineering
841 and Regenerative Medicine. *Adv Healthc Mater* 2020: e2000608. 2020/08/01. DOI:
842 10.1002/adhm.202000608.

843 21. Heo DN, Hospoduk M and Ozbolat IT. Synergistic interplay between human MSCs and HUVECs
844 in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. *Acta Biomater* 2019; 95:
845 348-356. 2019/03/05. DOI: 10.1016/j.actbio.2019.02.046.

846 22. Yang Y, Bajaj N, Xu P, et al. Development of highly porous large PLGA microparticles for
847 pulmonary drug delivery. *Biomaterials* 2009; 30: 1947-1953. 2009/01/13. DOI:
848 10.1016/j.biomaterials.2008.12.044.

849 23. Galiakberova AA and Dashinimaev EB. Neural Stem Cells and Methods for Their Generation
850 From Induced Pluripotent Stem Cells in vitro. *Front Cell Dev Biol* 2020; 8: 815. 2020/10/30. DOI:
851 10.3389/fcell.2020.00815.

852 24. Gjorevski N, Ranga A and Lutolf MP. Bioengineering approaches to guide stem cell-based
853 organogenesis. *Development* 2014; 141: 1794-1804. 2014/04/24. DOI: 10.1242/dev.101048.

854 25. Huch M, Knoblich JA, Lutolf MP, et al. The hope and the hype of organoid research.
855 *Development* 2017; 144: 938-941. 2017/03/16. DOI: 10.1242/dev.150201.

856 26. Jensen G, Morrill C and Huang Y. 3D tissue engineering, an emerging technique for
857 pharmaceutical research. *Acta Pharm Sin B* 2018; 8: 756-766. 2018/09/28. DOI:
858 10.1016/j.apsb.2018.03.006.

859 27. Lancaster MA and Knoblich JA. Organogenesis in a dish: modeling development and disease
860 using organoid technologies. *Science* 2014; 345: 1247125. DOI: 10.1126/science.1247125.

861 28. Yu X, Dillon GP and Bellamkonda RB. A laminin and nerve growth factor-laden three-dimensional
862 scaffold for enhanced neurite extension. *Tissue Eng* 1999; 5: 291-304. 1999/09/09. DOI:
863 10.1089/ten.1999.5.291.

864 29. Horch RE, Weigand A, Wajant H, et al. [Biofabrication: new approaches for tissue regeneration].
865 *Handchir Mikrochir Plast Chir* 2018; 50: 93-100. 2018/01/30. DOI: 10.1055/s-0043-124674.

866 30. Ariga K. Progress in Molecular Nanoarchitectonics and Materials Nanoarchitectonics. *Molecules*
867 2021; 26 2021/04/04. DOI: 10.3390/molecules26061621.

868 31. Ariga K. Nanoarchitectonics: what's coming next after nanotechnology? *Nanoscale Horiz* 2021;
869 6: 364-378. 2021/05/06. DOI: 10.1039/d0nh00680g.

870 32. Qutachi O, Vetsch JR, Gill D, et al. Injectable and porous PLGA microspheres that form highly
871 porous scaffolds at body temperature. *Acta Biomater* 2014; 10: 5090-5098. 2014/08/26. DOI:
872 10.1016/j.actbio.2014.08.015.

873 33. Kokubo T and Takadama H. How useful is SBF in predicting in vivo bone bioactivity? *Biomaterials*
874 2006; 27: 2907-2915. 2006/02/02. DOI: 10.1016/j.biomaterials.2006.01.017.

875 34. Yao Q, Sandhurst ES, Liu Y, et al. BBP-Functionalized Biomimetic Nanofibrous Scaffold Can
876 Capture BMP2 and Promote Osteogenic Differentiation. *J Mater Chem B* 2017; 5: 5196-5205.
877 2017/12/19. DOI: 10.1039/C7TB00744B.

878 35. Cheng MT, Yang HW, Chen TH, et al. Modulation of proliferation and differentiation of human
879 anterior cruciate ligament-derived stem cells by different growth factors. *Tissue Eng Part A* 2009; 15:
880 3979-3989. 2009/07/10. DOI: 10.1089/ten.TEA.2009.0172.

881 36. Grazul-Bilska AT, Johnson ML, Bilska JJ, et al. Wound healing: the role of growth factors. *Drugs*
882 Today (Barc) 2003; 39: 787-800. 2003/12/12. DOI: 10.1358/dot.2003.39.10.799472.

883 37. W.C. Oliver GMP. Measurement of hardness and elastic modulus by instrumented indentation:
884 Advances in understanding and refinements to methodology. *Journal of Materials Research* 2004; 19: 3-
885 20. Review.

886 38. W.C. Oliver GMP. An Improved Technique for Determining Hardness and Elastic Modulus Using
887 Load Displacement Sensing Indentation Experiments. *Journal of Materials Research* 1992; 7: 1564-1583.
888 DOI: <https://doi.org/10.1557/JMR.1992.1564>.

889 39. Kar S, Katti DR and Katti KS. Evaluation of quasi-static and dynamic nanomechanical properties
890 of bone-metastatic breast cancer cells using a nanoclay cancer testbed. *Sci Rep* 2021; 11: 3096.
891 2021/02/06. DOI: 10.1038/s41598-021-82664-9.

892 40. Molla MS, Katti DR and Katti KS. Mechanobiological evaluation of prostate cancer metastasis to
893 bone using an in vitro prostate cancer testbed. *J Biomech* 2021; 114: 110142. 2020/12/09. DOI:
894 10.1016/j.jbiomech.2020.110142.

41. Francis KR, Ton AN, Xin Y, et al. Modeling Smith-Lemli-Opitz syndrome with induced pluripotent stem cells reveals a causal role for Wnt/beta-catenin defects in neuronal cholesterol synthesis phenotypes. *Nat Med* 2016; 22: 388-396. 2016/03/22. DOI: 10.1038/nm.4067.

42. Malik N, Wang X, Shah S, et al. Comparison of the gene expression profiles of human fetal cortical astrocytes with pluripotent stem cell derived neural stem cells identifies human astrocyte markers and signaling pathways and transcription factors active in human astrocytes. *PLoS One* 2014; 9: e96139. DOI: 10.1371/journal.pone.0096139.

43. Hung CH and Young TH. Differences in the effect on neural stem cells of fetal bovine serum in substrate-coated and soluble form. *Biomaterials* 2006; 27: 5901-5908. 2006/09/02. DOI: 10.1016/j.biomaterials.2006.08.009.

44. Sawyer AA, Hennessy KM and Bellis SL. Regulation of mesenchymal stem cell attachment and spreading on hydroxyapatite by RGD peptides and adsorbed serum proteins. *Biomaterials* 2005; 26: 1467-1475. 2004/11/04. DOI: 10.1016/j.biomaterials.2004.05.008.

45. Fang CY, Wu CC, Fang CL, et al. Long-term growth comparison studies of FBS and FBS alternatives in six head and neck cell lines. *PLoS One* 2017; 12: e0178960. 2017/06/08. DOI: 10.1371/journal.pone.0178960.

46. Hemeda H, Giebel B and Wagner W. Evaluation of human platelet lysate versus fetal bovine serum for culture of mesenchymal stromal cells. *Cytotherapy* 2014; 16: 170-180. 2014/01/21. DOI: 10.1016/j.jcyt.2013.11.004.

47. Hu BY and Zhang SC. Directed differentiation of neural-stem cells and subtype-specific neurons from hESCs. *Methods Mol Biol* 2010; 636: 123-137. 2010/03/26. DOI: 10.1007/978-1-60761-691-7_8.

48. Schulz TC, Noggle SA, Palmarini GM, et al. Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture. *Stem Cells* 2004; 22: 1218-1238. 2004/12/08. DOI: 10.1634/stemcells.2004-0114.

49. Chuang JH, Tung LC and Lin Y. Neural differentiation from embryonic stem cells in vitro: An overview of the signaling pathways. *World J Stem Cells* 2015; 7: 437-447. 2015/03/31. DOI: 10.4252/wjsc.v7.i2.437.

50. Fang Y and Eglen RM. Three-Dimensional Cell Cultures in Drug Discovery and Development. *SLAS DISCOVERY: Advancing Life Sciences R&D* 2017. DOI: 10.1177/2472555217696795.

51. Hughes CS, Postovit LM and Lajoie GA. Matrigel: a complex protein mixture required for optimal growth of cell culture. *Proteomics* 2010; 10: 1886-1890. 2010/02/18. DOI: 10.1002/pmic.200900758.

52. Scholzen T and Gerdes J. The Ki-67 protein: from the known and the unknown. *J Cell Physiol* 2000; 182: 311-322. 2000/02/01. DOI: 10.1002/(SICI)1097-4652(200003)182:3<311::AID-JCP1>3.0.CO;2-9.

53. Melissaridou S, Wiechec E, Magan M, et al. The effect of 2D and 3D cell cultures on treatment response, EMT profile and stem cell features in head and neck cancer. *Cancer Cell Int* 2019; 19: 16. 2019/01/18. DOI: 10.1186/s12935-019-0733-1.

54. Li X, Chu J, Wang A, et al. Uniaxial mechanical strain modulates the differentiation of neural crest stem cells into smooth muscle lineage on micropatterned surfaces. *PLoS One* 2011; 6: e26029. 2011/10/22. DOI: 10.1371/journal.pone.0026029.

55. Porter FD and Herman GE. Malformation syndromes caused by disorders of cholesterol synthesis. *J Lipid Res* 2011; 52: 6-34. Research Support, N.I.H., Extramural

56. Pham MT, Pollock KM, Rose MD, et al. Generation of human vascularized brain organoids. *Neuroreport* 2018; 29: 588-593. 2018/03/24. DOI: 10.1097/WNR.0000000000001014.

941 57. Shafiee S, Shariatzadeh S, Zafari A, et al. Recent Advances on Cell-Based Co-Culture Strategies
942 for Prevascularization in Tissue Engineering. *Front Bioeng Biotechnol* 2021; 9: 745314. 2021/12/14. DOI:
943 10.3389/fbioe.2021.745314.

944 58. Risau W and Flamme I. Vasculogenesis. *Annu Rev Cell Dev Biol* 1995; 11: 73-91. 1995/01/01.
945 DOI: 10.1146/annurev.cb.11.110195.000445.

946 59. Santos C, Gomes P, Duarte JA, et al. Development of hydroxyapatite nanoparticles loaded with
947 folic acid to induce osteoblastic differentiation. *Int J Pharm* 2017; 516: 185-195. 2016/11/17. DOI:
948 10.1016/j.ijpharm.2016.11.035.

949 60. Bodhak S, de Castro LF, Kuznetsov SA, et al. Combinatorial cassettes to systematically evaluate
950 tissue-engineered constructs in recipient mice. *Biomaterials* 2018; 186: 31-43. 2018/10/03. DOI:
951 10.1016/j.biomaterials.2018.09.035.

952 61. Kuznetsov SA, Cherman N and Robey PG. In vivo bone formation by progeny of human
953 embryonic stem cells. *Stem Cells Dev* 2011; 20: 269-287. 2010/07/02. DOI: 10.1089/scd.2009.0501.

954 62. Hao M, Zhang Z, Liu C, et al. Hydroxyapatite Nanorods Function as Safe and Effective Growth
955 Factors Regulating Neural Differentiation and Neuron Development. *Adv Mater* 2021; 33: e2100895.
956 2021/07/12. DOI: 10.1002/adma.202100895.

957 63. Shen Y, Liu F, Duan J, et al. Biomaterial Cues Regulated Differentiation of Neural Stem Cells into
958 GABAergic Neurons through Ca(2+)/c-Jun/TLX3 Signaling Promoted by Hydroxyapatite Nanorods. *Nano*
959 *Lett* 2021; 21: 7371-7378. 2021/08/24. DOI: 10.1021/acs.nanolett.1c02708.

960 64. Loh QL and Choong C. Three-dimensional scaffolds for tissue engineering applications: role of
961 porosity and pore size. *Tissue Eng Part B Rev* 2013; 19: 485-502. 2013/05/16. DOI:
962 10.1089/ten.TEB.2012.0437.

963 65. Makadia HK and Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug
964 Delivery Carrier. *Polymers (Basel)* 2011; 3: 1377-1397. 2012/05/12. DOI: 10.3390/polym3031377.

965 66. Krishna L, Dhamodaran K, Jayadev C, et al. Nanostructured scaffold as a determinant of stem cell
966 fate. *Stem Cell Res Ther* 2016; 7: 188. 2017/01/01. DOI: 10.1186/s13287-016-0440-y.

967 67. Kim SH, Kim JE, Kim SH, et al. Substance P/dexamethasone-encapsulated PLGA scaffold
968 fabricated using supercritical fluid process for calvarial bone regeneration. *J Tissue Eng Regen Med* 2017;
969 11: 3469-3480. 2017/06/02. DOI: 10.1002/term.2260.

970 68. Raeisdasteh Hokmabad V, Davaran S, Ramazani A, et al. Design and fabrication of porous
971 biodegradable scaffolds: a strategy for tissue engineering. *J Biomater Sci Polym Ed* 2017; 28: 1797-1825.
972 2017/07/15. DOI: 10.1080/09205063.2017.1354674.

973 69. Davies JE, Matta R, Mendes VC, et al. Development, characterization and clinical use of a
974 biodegradable composite scaffold for bone engineering in oro-maxillo-facial surgery. *Organogenesis*
975 2010; 6: 161-166. 2011/01/05. DOI: 10.4161/org.6.3.12392.

976 70. Papadimitriou L, Manganas P, Ranella A, et al. Biofabrication for neural tissue engineering
977 applications. *Mater Today Bio* 2020; 6: 100043. 2020/03/20. DOI: 10.1016/j.mtbio.2020.100043.

978 71. Yamagata K, Nakayamada S and Tanaka Y. Use of mesenchymal stem cells seeded on the
979 scaffold in articular cartilage repair. *Inflamm Regen* 2018; 38: 4. 2018/03/22. DOI: 10.1186/s41232-018-
980 0061-1.

981 72. Zhuang P, Sun AX, An J, et al. 3D neural tissue models: From spheroids to bioprinting.
982 *Biomaterials* 2018; 154: 113-133. 2017/11/10. DOI: 10.1016/j.biomaterials.2017.10.002.

983 73. Clark A, Milbrandt TA, Hilt JZ, et al. Tailoring properties of microsphere-based poly(lactic-co-
984 glycolic acid) scaffolds. *J Biomed Mater Res A* 2014; 102: 348-357. 2013/03/28. DOI:
985 10.1002/jbm.a.34706.

986 74. Keles H, Naylor A, Clegg F, et al. Investigation of factors influencing the hydrolytic degradation of
987 single PLGA microparticles. *Polymer Degradation and Stability* 2015; 119: 228-241. DOI:
988 10.1016/j.polymdegradstab.2015.04.025.

989 75. Kranz H, Ubrich N, Maincent P, et al. Physicomechanical properties of biodegradable poly(D,L-
990 lactide) and poly(D,L-lactide-co-glycolide) films in the dry and wet states. *J Pharm Sci* 2000; 89: 1558-
991 1566. 2000/10/24. DOI: 10.1002/1520-6017(200012)89:12<1558::aid-jps6>3.0.co;2-8.

992 76. Hazeltine LB, Selekman JA and Palecek SP. Engineering the human pluripotent stem cell
993 microenvironment to direct cell fate. *Biotechnol Adv* 2013; 31: 1002-1019. 2013/03/21. DOI:
994 10.1016/j.biotechadv.2013.03.002.

995 77. Yakoub AM and Sadek M. Development and Characterization of Human Cerebral Organoids: An
996 Optimized Protocol. *Cell Transplant* 2018; 27: 393-406. 2018/05/12. DOI: 10.1177/0963689717752946.

997 78. Langhans SA. Three-Dimensional in Vitro Cell Culture Models in Drug Discovery and Drug
998 Repositioning. *Front Pharmacol* 2018; 9: 6. 2018/02/08. DOI: 10.3389/fphar.2018.00006.

999 79. Marti-Figueroa CR and Ashton RS. The case for applying tissue engineering methodologies to
1000 instruct human organoid morphogenesis. *Acta Biomater* 2017; 54: 35-44. 2017/03/21. DOI:
1001 10.1016/j.actbio.2017.03.023.

1002 80. Vieira MS, Santos AK, Vasconcellos R, et al. Neural stem cell differentiation into mature neurons:
1003 Mechanisms of regulation and biotechnological applications. *Biotechnol Adv* 2018; 36: 1946-1970.
1004 2018/08/06. DOI: 10.1016/j.biotechadv.2018.08.002.

1005 81. Verma I, Rashid Z, Sikdar SK, et al. Efficient neural differentiation of mouse pluripotent stem
1006 cells in a serum-free medium and development of a novel strategy for enrichment of neural cells. *Int J
1007 Dev Neurosci* 2017; 61: 112-124. 2017/07/05. DOI: 10.1016/j.ijdevneu.2017.06.009.

1008 82. Hellwig C, Barenys M, Baumann J, et al. Culture of human neurospheres in 3D scaffolds for
1009 developmental neurotoxicity testing. *Toxicol In Vitro* 2018; 52: 106-115. 2018/06/09. DOI:
1010 10.1016/j.tiv.2018.06.002.

1011 83. Koh HS, Yong T, Chan CK, et al. Enhancement of neurite outgrowth using nano-structured
1012 scaffolds coupled with laminin. *Biomaterials* 2008; 29: 3574-3582. 2008/06/06. DOI:
1013 10.1016/j.biomaterials.2008.05.014.

1014 84. Chou MJ, Hsieh CH, Yeh PL, et al. Application of open porous poly(D,L-lactide-co-glycolide)
1015 microspheres and the strategy of hydrophobic seeding in hepatic tissue cultivation. *J Biomed Mater Res
1016 A* 2013; 101: 2862-2869. 2013/03/19. DOI: 10.1002/jbm.a.34594.

1017 85. Kang SW and Bae YH. Cryopreservable and tumorigenic three-dimensional tumor culture in
1018 porous poly(lactic-co-glycolic acid) microsphere. *Biomaterials* 2009; 30: 4227-4232. 2009/05/19. DOI:
1019 10.1016/j.biomaterials.2009.04.025.

1020 86. Jakobsson A, Ottosson M, Zalis MC, et al. Three-dimensional functional human neuronal
1021 networks in uncompressed low-density electrospun fiber scaffolds. *Nanomedicine* 2017; 13: 1563-1573.
1022 2017/01/09. DOI: 10.1016/j.nano.2016.12.023.

1023 87. Sensharma P, Madhumathi G, Jayant RD, et al. Biomaterials and cells for neural tissue
1024 engineering: Current choices. *Mater Sci Eng C Mater Biol Appl* 2017; 77: 1302-1315. 2017/05/24. DOI:
1025 10.1016/j.msec.2017.03.264.

1026 88. Hofrichter M, Nimtz L, Tigges J, et al. Comparative performance analysis of human iPSC-derived
1027 and primary neural progenitor cells (NPC) grown as neurospheres in vitro. *Stem Cell Res* 2017; 25: 72-82.
1028 2017/11/08. DOI: 10.1016/j.scr.2017.10.013.

1029 89. Martens YA, Xu S, Tait R, et al. Generation and validation of APOE knockout human iPSC-derived
1030 cerebral organoids. *STAR Protoc* 2021; 2: 100571. 2021/06/22. DOI: 10.1016/j.xpro.2021.100571.

1031 90. Pasca SP. Assembling human brain organoids. *Science* 2019; 363: 126-127. 2019/01/12. DOI:
1032 10.1126/science.aaau5729.

1033 91. Marton RM and Pasca SP. Organoid and Assembloid Technologies for Investigating Cellular
1034 Crosstalk in Human Brain Development and Disease. *Trends Cell Biol* 2019; 29: 126-127. 2019/12/28. DOI:
1035 10.1016/j.tcb.2019.11.004.

1036 92. Wang X, Wenk E, Zhang X, et al. Growth factor gradients via microsphere delivery in biopolymer
1037 scaffolds for osteochondral tissue engineering. *J Control Release* 2009; 134: 81-90. 2008/12/17. DOI:
1038 10.1016/j.jconrel.2008.10.021.

1039