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The power of microscopic nonclassical states to amplify the
precision of macroscopic optical metrology
Wenchao Ge 1,2,3✉, Kurt Jacobs4,5✉ and M. Suhail Zubairy3

It is well-known that the precision of a phase measurement with a Mach-Zehnder interferometer employing strong classic light can
be greatly enhanced with the addition of weak nonclassical light. In the context of quantifying nonclassicality, the amount by which
a nonclassical state can enhance precision in this way has been termed its ’metrological power’. To-date, the enhancement
provided by weak nonclassical states has been calculated only for specific measurement configurations. Here we are able to
optimize over all measurement configurations to obtain the maximum enhancement that can be achieved by any single or multi-
mode nonclassical state together with strong classical states, for local and distributed quantum metrology employing any linear or
nonlinear single-mode unitary transformation. Our analysis reveals that the quantum Fisher information for quadrature-
displacement sensing is the sole property that determines the maximum achievable enhancement in all of these different
scenarios, providing a unified quantification of the metrological power.
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INTRODUCTION
Measurement devices that employ quantum systems in non-
classical states can outperform their classical counterparts using
no more resources. The resources here are the number, N, of
photons, phonons, spin-1/2 systems, or other elementary probe
systems used by the device1–12. The precision of classical devices
scales at most with the square root of N, whereas that of quantum
devices can in principle scale linearly with N, a scaling referred to
as the Heisenberg limit3. Recent studies have tended to focus on
the use of quantum systems to achieve this optimal scaling.
However, as pointed out by Lang and Caves13, since nonclassical
states become harder to produce the larger N, for measurements
using light, even weak lasers will outperform the most energetic
nonclassical states produced to-date, something that is likely to
remain true for the foreseeable future.
Even with the above limitation, nonclassical states of light are

remarkably powerful: few-photon nonclassical states can greatly
enhance the precision of measurements that employ classical
states with 1012 photons14. A well-known example is that of a
Mach-Zehnder interferometer (MZI)4,13,15–18. A coherent state with
Nc photons injected into one input of the MZI achieves a precision
for phase measurement of P ¼ ffiffiffiffiffi

Nc
p 4. (The precision is defined

here as the inverse of the minimum measurement error—see
below.) Injecting a squeezed state with Nq photons into the
second input of the MZI increases this precision to approximatelyffiffiffiffiffiffiffiffiffiffiffiffiffi
4NqNc

p
4,13,15,16. Thus to achieve a given precision, the addition of

only 2.5 nonclassical photons reduces the required power of the
classical input by an order of magnitude, while 25 nonclassical
photons reduces it by two orders of magnitude.
The ability of nonclassical states to perform metrology is an

important element in the study of nonclassicality as a
resource16,19–21. For this purpose classical resources are free, so
the quantity of interest is the amount by which nonclassical states
increase precision when employed with arbitrarily large coherent

states, the same limit in which we are interested in practical
purposes. This quantity has been termed the metrological power,
Mρ̂, of a nonclassical state, ρ̂21. It provides a resource theoretic
measure of nonclassicality for pure states and a witness of
nonclasicality for mixed states16,20,21.
The enhancement to otherwise classical measurements provided

by weak nonclassical states has been calculated for specific
scenarios such as the MZI, but the maximal enhancement enabled
by any given state (that is, the metrological power) and how to
achieve it has remained lacking. Here we answer these questions
for all nonclassical states of light and for both local and distributed
quantum metrology22–27. The latter involves estimating a linear
combination of a number of independent values of the same
physical quantity28–30. Since the quantities of interest for metrology
to date have invariably been transformations of individual modes
(e.g., displacement and phase shifts) we restrict ourselves to unitary
transformations of a single mode here, obtaining results for all such
transformations, including linear and nonlinear31, for which the
metrological power is well-defined.
A summary of our main results is as follows. First, we show that

the quantum enhancement is always proportional to the classical
precision, so this enhancement is always an amplification of the
classical precision. Second, the metrological power for the
metrology of every single-mode transformation is determined
by a single quantity. For single-mode states, this quantity is the
quantum Fisher information (QFI) for measuring phase-space
displacement using that state. For pure states, this QFI reduces to
the maximum quadrature variance for the mode. For multi-mode
states, it is the same quantity but this time evaluated for the linear
combination of the modes for which this QFI is the largest.
We show that for a single-mode nonclassical state and strong

coherent state(s), the maximum precision can be obtained for
single-parameter estimation merely by displacing the mode by
the total available classical amplitude. For two-parameter
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distributed quantum metrology the balanced MZI achieves the
maximum precision. For a multi-mode nonclassical state, the
maximum precision can be obtained by first employing a linear
network that outputs the linear combination of the modes into a
single mode that has the largest QFI for displacement measure-
ment, and then using this mode as the nonclassical input to the
optimal schemes employing single-mode nonclassical states.
Moreover, since squeezed vacuum states have the minimum

energy for a given value of the quadrature variance, our results
imply that a squeezed vacuum is the most energy efficient among
single-mode nonclassical states for amplifying the precision for
metrology of any single-mode transformation, generalizing
previous results for just phase measurements with the MZI13,16.

RESULTS
Phase metrology with a single-mode nonclassical state
We consider first the special case of phase sensing with a single-
mode nonclassical state. This allows us to illustrate the method
using the simplest nontrivial case. We generalize this method both
to arbitrary single-mode transformations and multi-mode non-
classical input states in the next subsection.
In Fig. 1 we depict a general scheme for distributed quantum

metrology of m phase shifts, θj, j= 0,…,m− 1 employing a
nonclassical state ρ̂ along with arbitrary classical resources. The
mode with annihilation operator â0 contains the state ρ̂ which
we are free to displace by a coherent amplitude α0 and the average
number of nonclassical photons is Nq � Tr½ρ̂ây0â0�, where Tr denotes
the tracing operation on the basis of the mode â0. Coherent states
with amplitudes αj are supplied in m− 1 additional modes âj ðj ¼
1; 2; ¼ ;m� 1Þ (we find that there is no utility in using more input
modes than unknown parameters) so that the total average number
of classical photons is Nc �

Pm�1
j¼0 jαjj2. The modes b̂k are related to

the input modes âj by the unitary U so b̂k ¼
Pm�1

j¼0 ukj âj where ukj
are the matrix elements of U. Phase shift θk is applied to mode b̂k via

the transformation exp � i θkn̂k½ �, where n̂k � b̂
y
kb̂k . We will perform

our analysis for the special case in which ρ̂ is a pure state
(ρ̂ ¼ ψj i ψh j). At the end of this section, we will show how the result
can be generalized to nonclassical mixed states using the result by
Yu employing the convex roof32.

To evaluate the precision of multi-parameter estimation, we
need the elements of the QFI matrix33 for the general scheme
depicted in Fig. 1 (see Methods)

F jk ¼ 4½hn̂j n̂ki � hn̂jihn̂ki�; (1)

where �h i represents the expectation value of an operator for the
state ψj i. The complexity of this expression for F jk comes from
the fact that in terms of the input modes, âj , each of the n̂k must

be replaced by b̂
y
kb̂k ¼

Pm�1
j¼0

Pm�1
l¼0 u�lkukj â

y
l âj . The key to evaluat-

ing F jk is to employ normal ordering34 of the mode operators b̂k ,
noting that all but one of the input modes are in coherent states.
We will denote the normal ordering of a product of mode
operators in the usual way by sandwiching the product between

colons. Thus : ðb̂yj b̂jÞ
2
:¼ b̂

y
j b̂

y
j b̂j b̂j ≠ ðb̂yj b̂jÞ

2
. Writing F jk in terms of

normally ordered products gives

F jk ¼ 4 h: n̂j n̂k :i � hn̂jihn̂ki þ δjkhn̂ji
� � ¼ : F jk : þ δjk4hn̂ji

(2)

where we have defined : F jk : as four times the normally ordered
covariance. Since this covariance vanishes for all classical states,
and since hn̂ji (the energy of mode j), is effectively independent of
ψj i (recall that Nq≪ Nc), it is : F jk : that is the nonclassical
contribution to F jk . According to Eqs. (49), (50) in the section of
Methods, the quantum enhancement in metrology is defined as
the difference between the square precision with and without the
nonclassical state:

ΔP2
ψj i �

wt : F : w

jjw jj4 ¼ 1

jjw jj4
X
jk

wjwk : F jk :; (3)

where w ¼ ðw0; ¼ ;wm�1Þt are the weights in distributed phase
sensing24 with ∑j∣wj∣= 1 and ∣∣⋅∣∣ is the 2-norm defined by

jjwjj � ffiffiffiffiffiffiffiffiffiffi
wtw

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiP

jw
2
j

q
.

We note next that since b̂k are normally ordered, so are âj when
we make the replacement b̂k !

P
jukj âj . As a result, for j ≥ 1 we

can replace âj with the coherent state amplitude αj because the
respective modes are in coherent states. Including the displace-
ment of mode â0, the resulting replacement is

b̂k ! uk0â0 þ
Xm�1

j¼0

ukj αj ¼ uk0â0 þ f k (4)

where we have defined the complex amplitudes f k �
Pm�1

j¼0 ukjαj .
In the limit that jhan0ij and hðay0a0Þ

ni are very much smaller than
∣fk∣n and ∣fk∣2n since jf k j /

ffiffiffiffiffi
Nc

p � ffiffiffiffiffiffi
Nq

p
, we obtain according to

Supplemental Methods

: F jk : ¼ 8juk0f k jjuj0f j j : CðX̂ϕk
; X̂ϕj

Þ : (5)

where ϕk ¼ arg½u�k0f k � and CðÂ; B̂Þ � ÂB̂
� �� Â

� �
B̂
� �

is the covar-
iance of two operators Â and B̂. Putting the expression for : F jk :
into Eq. (3) we can now factor the double summation to write the
metrological advantage in terms of a single variance:

ΔP2
ψj i Nc; n̂; wð Þ � 8jzj2

jjw jj4 : V ψj iðX̂ϕÞ :; (6)

where V ψj iðX̂ϕÞ � CðX̂ϕ; X̂ϕÞ and we have used the arguments
n̂ ¼ ðn̂1; ¼ ; n̂mÞ and w in ΔP2

ψj i to denote distributed phase
sensing24, and Nc is the total amount of classical resources. Here
ϕ ¼ arg z and

z ¼
X
k

wkuk0f
�
k : (7)

So to obtain the metrological power we need to maximize ∣z∣2
in Eq. (6) over all weights {wj}, unitary transformations U, and
amplitudes of the classical inputs {αj}. In the Supplementary
Methods, we show that

jzj2 � Ncjjw jj4: (8)

Inserting this tight bound into the definition of the metrolo-
gical power in (52), we obtain that for distributed phase
measurement is:

M ψj i Nc; n̂ð Þ ¼ 8Nc max
ϕ

: V ψj iðXϕÞ : ¼ 2NcM F
ψj i; (9)

Fig. 1 A distributed quantum sensing scheme. It consists of a
passive linear network with m input modes, one of which may
contain a single-mode nonclassical state, ρ̂, and it may be displaced
by a coherent amplitude α0. The m output modes can be sent to
different locations where the respective probe transformations are
applied.
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where M F
ψj i is the metrological power of ψj i for quadrature-

displacement (force) sensing given in Eq. (54). This is one of the
main results of this work that the metrological power of
displacement sensing and that of phase sensing using single-
mode nonclassical state are unified.
The maximum precision is given by adding the classical

contribution to the quantum contribution, Eq. (9). The classical
contribution is the precision obtained when all the inputs are in
coherent states. In this case the QFI is diagonal where the diagonal
elements are simply four times the average number of photons in
the respective modes: F jj ¼ 4hn̂ji ¼ 4jαjj2. As a result, according
to Eq. (49), the square precision becomes

P2
c Nc; n̂;wð Þ ¼ 1

wtF�1 σ̂; Ĝ
� �

w
¼ 4

X
j

w2
j

jαj j2
" #�1

; (10)

We can minimize the summation in the square brackets by using
the Cauchy-Schwarz inequality, ðPjujvjÞ2 �

P
ju

2
j

P
kv

2
k , setting

uj= ∣wj∣/∣αj∣ and vj= ∣αj∣. The result is

P2
c Nc; n̂;wð Þ � 4Nc; (11)

where the maximum is obtained (the inequality saturated) with
the choice ∣αj∣2=wjNc. Both the classical and nonclassical
contributions in the maximum precision can be achieved
simultaneously. Since for any quadrature X̂ϕ

V ψj iðX̂ϕÞ ¼ : V ψj iðX̂ϕÞ : þ 1
2
; (12)

the maximum achievable precision for phase measurement
(after maximizing the passive linear network (PLN) and the
weights) is thus

P ψj i Nc; n̂ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M ψj i Nc; n̂ð Þ þ P2

c Nc; n̂ð Þ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Nc max

ϕ
V ψj iðX̂ϕÞ

r
;

(13)

where the dependence on w is dropped after the optimization
procedure. This maximum precision is an amplification of the
classical precision whenever maxϕ V ψj iðX̂ϕÞ> 1=2. The amplifica-
tion factor is

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2max

ϕ
V ψj iðX̂ϕÞ

r
: (14)

In Supplemental Note 1, we derive explicit solutions (net-
works) that saturate the inequality in Eq. (8) and thus achieve
the maximal precision. For the metrology of a single parameter,
the maximal precision is obtained simply by displacing the
nonclassical mode by the available classical energy. For two-
parameter distributed quantum metrology, the maximum
precision can be obtained using the balanced Mach-Zehnder
interferometer. In this case

U ¼ 1ffiffiffi
2

p 1 eiβ

�e�iβ 1

 !
(15)

where β is the phase shift of the MZI beam-splitter. For the
maximum precision, one chooses the weightings w1=−w2= 1/2.

Metrology of any single-mode transformation with multi-
mode nonclassical states
We now extend the results obtained in the previous section in two
ways. We extend the microscopic nonclassical input to all pure
multi-mode states, and we extend the phase shift to all single-
mode transformations for which the metrological power is well-
defined (see Fig. 2). To this end, we consider an arbitrary Hermitian
single-mode transformation Ĝ expressed as a normally ordered

power series of the annihilation and creation operators:

Ĝ ¼
Xp
q¼0

Xq
j¼0

κqj b̂
yðq�jÞ

b̂
j
; (16)

where κqj are the coefficients to ensure Ĝ Hermitian. In this power
series the number of mode operators in each term (the order of
each term) is given by q. We will find that every term of order q
contributes to the metrological power a term proportional to Nq�1

c .
This has two consequences. First, since the metrological power is
defined in the limit of large Nc, it is undefined if the power series is
infinite. We, therefore, restrict Ĝ to transformations for which the
maximum value of q is p <∞. Second, in the limit of large Nc it is
only those terms of order p that contribute. So for the purposes of
calculating the metrological power we need only retain those
terms and can thus write Ĝ as

Ĝ ¼
Xp
j¼0

κj b̂
yðp�jÞ

b̂
j
: (17)

Because Ĝ is Hermitian κj ¼ κ�p�j , and we normalize Ĝ by setting
∑jκj= 1. Subsitituting Ĝ in Eq. (43), the matrix elements of the QFI
for a pure state are given by

F uv ¼ 4½hĜuĜvi � hĜuihĜvi� ¼ 4
X
j;k

κjκk ½hĈðuÞ
j Ĉ

ðvÞ
k i � hĈðuÞ

j ihĈðvÞ
k i�;

(18)

where Ĝu ¼
Pp

j¼0 κj b̂
yðp�jÞ
u b̂

j
u and we have defined Ĉ

ðvÞ
k ¼ b̂

yðp�kÞ
v b̂

k
v .

To split the QFI into the classical and quantum contributions we

need to calculate h: ĈðuÞ
j Ĉ

ðvÞ
k :i. Deriving the identity

b̂
k
b̂
yn ¼ b̂

yn
b̂
k þ

Xminðk;nÞ

j¼1

k!n!
ðk � jÞ!ðn� jÞ!j! b̂

yn�j
b̂
k�j

; (19)

and noting that only the terms with at least p− 2 mode operators
will contribute in the limit of large Nc, we obtain according to
Supplemental Methods

F uv ¼ : F uv : þ4 δuv
P
jk
κjκkðp� kÞj b̂

yð2p�j�k�1Þ
u b̂

jþk�1
u

D E

¼ : F uv : þ 4δuv f uj j2p�2 Pp�1

k¼1
κkke2ikγu

				
				
2

;

(20)

where we have defined the phases γu ¼ argðf uÞ.
The classical contribution to the QFI matrix is the second term in

Eq. (20), namely

FðcÞ
uv � 4δuv f uj j2p�2

Xp�1

k¼1

κkke
2ikγu

					
					
2

: (21)

Fig. 2 Distributed quantum metrology with a multi-mode non-
classical input state. It is a generalization to Fig. 1 by considering a
multi-mode nonclassical input state ρ̂. The multi-mode nonclassical
state is displaced by a multi-mode coherent state α0j i 	 � � � αq�1

		 �
.

Also, the probes are more general than the standard phase shifts,
which are given by nonlinear operators in Eq. (17).
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We now recall that to maximize the precision, the QFI matrix
must be such as to have w as an eigenvector24. Since we see from
Eq. (21) that the classical contribution to this matrix, F uv , is
diagonal, this can only be satisfied if F is proportional to the
identity or w has only one non-zero element. In fact, the latter is
merely the special case of the former in which m= 1. We also note
that the final summation in Eq. (20) is maximized by choosing
the appropriate value for the phases γu. Since these phases can be
chosen arbitrarily and independently of ∣fu∣, the classical
contribution to the QFI matrix is

FðcÞ
uv ¼ 4δuvBðκÞjf uj2ðp�1Þ ¼ 4δuvBðκÞ N

p�1
c

mp�1
; (22)

where

BðκÞ � max
γ

Xp�1

k¼1

κkke
2ikγ

					
					
2

: (23)

To obtain the RHS of Eq. (22), we have chosen all the ∣fu∣ to be
equal (∣fu∣2= Nc/m) so that F uv is proportional to the identity. As
per Eq. (49) the upper bound on the square precision is now

P2
c Nc; Ĝ; w
� � � 4BðκÞ N

p�1
c

mp�1

1

jjw jj2 � 4BðκÞ N
p�1
c

mp�2
� 4BðκÞNp�1

c ;

(24)

we have used the arguments Ĝ ¼ ðĜ1; ¼ ; ĜmÞ and w in P2
c to

denote the general distributed sensing with an arbitrary single-
mode Hermitian transformation. Here the second inequality is
maximized by choosing w to be equally distributed over the m
parameters. Note that when p= 2 (phase measurement) the
maximum precision is the same for any number of parameters,
i.e., independent of m. However, when the transformation Ĝ is
nonlinear (p ≥ 3) the precision reduces as the number of parameters
is increased. Thus the maximum classical precision is obtained for
m= 1 as given in the last inequality in the above equation.
We now turn to calculating the quantum contribution to the

QFI, namely : F uv :. Instead of a single input mode containing a
nonclassical state, now input modes with mode operators
a0, a1,…, aq−1 contain a joint nonclassical state (Fig. 2). As a
result the transformation in Eq. (4) is replaced by

b̂u !
Xq�1

l¼0

uulâl þ f u (25)

and as before f u ¼
Pm�1

l¼0 uulαl . We rewrite this sum over the
nonclassical modes al as a single-mode operator:

b̂u ! gud̂u þ f u (26)

where d̂u ¼ 1
gu

Pq�1
l¼0 uulâl and gu ¼

Pq�1
l¼0 juul j2


 �1=2
. Making the

above replacement in : F uv : and keeping only those terms with no
more than two factors of d̂u as in the previous section, we find that
we can write it in the form according to Supplemental Methods

lim
Nc!1

: F uv : ¼ 4 : ÂuÂv :
� �� Âu

� �
Âv
� �� �

; (27)

where Âu ¼
Pp

j¼0 κj f
�p�j�1
u f j�1

u gu ðp� jÞf ud̂yu þ jf �ud̂u

 �

: By substi-
tuting : F uv : in Eq. (3), we obtain

ΔP2
ψj i Nc; Ĝ; w
� � � max

PLN

8jzj2
jjw jj4 : V ψj i X̂d

� �
: : (28)

Here jzj2 ¼ BðκÞPq�1
l¼0 jclj2 and X̂d ¼ ðd̂ þ d̂

yÞ= ffiffiffi
2

p
, where the

mode operator d̂ is the linear combination of nonclassical input
modes

d̂ ¼
Pq�1

l¼0 cl âlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPq�1
l¼0 jclj2

q (29)

with coefficients cl= ∑uwu∣fu∣p−1uul= v ⋅ ul. Here the elements of
the vector v are vu=wu∣fu∣p−1. We need to choose d̂ so that it is
the linear combination of the nonclassical input modes that has
the maximum quadrature variance, and also maximize the sumPq�1

l¼0 jcl j2. To this end, we first note that the set of q vectors ul are
orthonormal (q ≤m) and can be chosen arbitrarily. We choose
them so that the vector v lies in the q-dimensional space that they
span. This automatically ensures that

Xq�1

l¼0

jcl j2 ¼ jjvjj2: (30)

which is its maximum value. Since the vectors ul are a basis for a
q-dimensional space containing v, we can choose the coeffi-
cients cl arbitrarily merely by rotating this basis. In particular we
can choose cl so that d̂ gives the maximum quadrature variance.
We now use the fact that ∣∣v∣∣2= (v⋅r)2 when r is a unit vector

aligned with v. This allows us to write

jzj2 ¼ BðκÞjj v jj2 ¼ BðκÞ
Xm�1

u¼0

wujf ujðp�1Þru

 !2

: (31)

Apart from the fact that fu is raised to a higher power, the
summation in ∣z∣2 has exactly the same form as that in Eq. (7) for
phase sensing with a single-mode nonclassical state. We, there-
fore, use the same procedure to optimize it and obtain (see
Supplemental Methods)

jzj2 � Np�1
c BðκÞjjw jj4: (32)

This time, however, the upper bound can only be saturated
when the vector ðf 0; f 1; ¼ ; fm�1ÞT has only one non-zero
element. Since ∑u∣fu∣2= Nc we have

P
ujf uj2ðp�1Þ � Np�1

c where
for p ≥ 3 the equality holds only if the vector has only one non-
zero element. In this case, to optimize the precision, w must also
have only one non-zero element (single-parameter metrology).
Thus for a fixed available classical energy, for nonlinear metrology
(p ≥ 3) the precision decreases as the number of measured
parameters is increased. This is not the case for linear metrology
(phase measurement).
Substituting Eq. (32) into Eq. (28), we obtain the maximum

nonclassical contribution to the square precision, which is also the
metrological power:

M ψj i Nc; Ĝ
� � ¼ max

PLN;w
ΔP2

ψj i Nc; Ĝ; w
� � ¼ 8Np�1

c BðκÞmax
d

: V ψj i X̂d
� �

:;

(33)

where the maximization over d is over all passive linear
transformations of the nonclassical input modes. Adding together
the classical and nonclassical contributions to the precision,
Eqs. (24) and (33), gives us the maximum precision obtainable
with nonlinear metrology, strong coherent states with total
photon number Nc, and weak nonclassical states:

P ψj i Nc; Ĝ
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8Np�1
c BðκÞmax

d
V ψj i X̂d
� �r

: (34)

The expression for the maximum precision, Eq. (34), shows
that for a multi-mode input this precision is the same as for a
single-mode input when the single mode has the same
maximum quadrature variance as the optimal linear combina-
tion of the multiple nonclassical input modes. This shows us
immediately that the following two-stage linear network will
achieve maximal precision. First, we construct a network that
takes the multi-mode noclassical state as an input and produces
the linear combination of the input modes that has the maximal
quadrature variance at one of its outputs. Second, we feed this
output into a network in the scheme that achieves the maximum
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precision for a single-mode nonclassical input. We show in
Supplemental Note 1 that the MZI is one such network.

Metrological power for mixed states
So far we have calculated the metrological power only for pure
states. We can now use Yu’s theorem32,35, given in Eq. (39), to
extend our results to all mixed states. Yu’s theorem is only valid for
single-parameter metrology, but since the maximum nonclassical
contribution to the square precision (the metrological power) can
be achieved for m= 1, Yu’s theorem is sufficient for our purposes.
We have

F ρ̂; Ĝ
� � ¼ min

fpn ; ψnj ig
P
n
pnF ψnj i ψnh j; Ĝ� �

¼ 8Np�1
c BðκÞmax

d
min

fpn ; ψnj ig
P
n
pnV ψnj i X̂d

� �� 

¼ 8Np�1

c BðκÞmax
d

F ρ̂; X̂d
� �

(35)

where the second line is obtained by using the fact that for single-
parameter metrology the QFI is the square precision which for
pure states is in turn given by Eq.(34). We recall that B(κ) is defined
in Eq.(23), and the parameters κj define the transformation Ĝ,
given in Eq.(17). Here F ρ̂; X̂d

� �
is the QFI for quadrature-

displacement of the operator X̂d ¼ ðd̂ þ d̂
yÞ= ffiffiffi

2
p

. The maximiza-
tion is over a mode d̂ that is a passive linear transformation of the
nonclassical input modes. Note that there is only a single
maximization over the mode d̂ because when using the mixed
state for metrology we can only use one linear network (we
cannot use a different linear network for each state in the
decomposition of ρ̂). We note that there is a closed-form
expression for the QFI, which can be used to calculate F ρ̂; X̂d

� �
for a given ρ̂ and X̂d

36.
Performing the analysis in Eq.(35), but splitting the QFI into its

quantum and classical parts, we have the equivalent result for the
metrological power for a mixed state

Mρ Nc; Ĝ
� � ¼ 8Np�1

c BðκÞmax
d

min
fpn; ψnj ig

X
n

pn : V ψnj i X̂d
� �

:

" #
¼ 4Np�1

c BðκÞM F
ρ :

(36)

A practical example: LIGO
Adding a microscopic nonclassical state to a measurement scheme
that employs macroscopic laser light can greatly reduce the laser
power required to achieve a given measurement precision. There
are two quite distinct situations in which this is useful. The first is

whenever we wish to reduce the overall power consumption of a
measuring device. The second is when there is a limit to the amount
of laser power that can be applied to the object being measured.
Microscopic nonclassical states are useful in reducing overall

power consumption only if they can be produced without using
more power than they save. Since experimental technology has
not yet reached the point at which nonclassical states can be
produced with the necessary efficiency, applications of these
states are presently restricted to measurements in which there is
a practical limitation to laser power. This can be true for
measurements on various biological systems that are fragile
under heating, and it is true for LIGO (the laser-interferometric
gravitational observatory) in which one needs to obtain the
maximum possible precision.
The use of squeezed states in improving the precision of

LIGO6,37 provides an example to connect our results directly to an
application. LIGO is an interferometer designed to measure
extremely small changes in distance induced by gravity waves6.
A change in distance between the two end mirrors of an optical
cavity translates to a phase shift of the light that is output from
the cavity. An interferometer measures the phase difference
between two phase shifts, each applied respectively to two modes
that are referred to as the ’arms’ of the interferometer. This is the
configuration referred to in our treatment above as distributed
metrology of two-phase shifts. For the LIGO interferometer
there are two cavities, one inserted into each arm, that apply
the respective phase shifts. The LIGO interferometer is in the
Michelson configuration as opposed to the Mach-Zehnder
configuration that we use in our analysis, but the two are
equivalent and are shown together in Fig. 3. The only difference
between these configurations is that the Mach-Zender uses two
beam-splitters (A and B) whereas the Michelson uses a single
beam-splitter twice: it uses the same beam-slitter (C) to split the
input and to combine the two arms to produce the output.
Here we have shown that the method originally suggested by

Caves in 19812 and now being used by LIGO38 is in fact the
optimal way to measure a phase difference using a weak
nonclassical state. The LIGO configuration is a distributed phase
measurement of two-phase shifts in which one input mode is a
strong coherent state and the other is a weak squeezed state. The
precision of this configuration is given in Eq. (13). In implementing
this scheme using continuous-wave inputs the variance of the
measurement error reduces as the inverse of the measurement
time; the longer we measure the output of the interferometer the
more photons we detect and the more accurate the measure-
ment. The total number of photons used for the measurement is
the total number of photons detected in the measurement time t

Fig. 3 The equivalence between the Mach-Zehnder interferometer. a that we use in our analysis and the Michelson interferometer b used
by LIGO. While the Mach-Zehnder uses one beam-splitter (A) at the input and a second (B) for the output, the Michelson uses the same beam-
splitter (C) twice: first to combine the inputs and second to produce the output. In the LIGO interferometer the phase shifts Δϕ1 and Δϕ2 are
applied by two optical cavities.
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being Nc ¼ Pt=ð�hω0Þ where P is the laser power for the coherent
input and ω0 is the frequency of the light. The variance of the
measurement error thus reduces with time as C/t where, for
classical inputs, the constant is C ¼ �hω0=ð4PÞ . If the time t is
measured in seconds then the square root of this constant is
referred to as the phase error ’per

ffiffiffiffiffiffiffi
Hz

p
’. For a nonclassical input,

as per Eq. (13), the phase error per
ffiffiffiffiffiffiffi
Hz

p
is

Δϕ ¼ 8P
_ω0

max
ϕ

V ψj iðX̂ϕÞ
� ��1=2

¼
ffiffiffiffiffiffiffiffi
_ω0

4P

r
e�r ; (37)

where r is the ’squeezing parameter’ that characterizes the
amount by which the nonclassical input is squeezed39. This
maximum possible precision will be degraded by imperfections
such as loss in the interferometer which reduces the squeezing
and loss at the photo-detectors.
For LIGO there is an additional source of error that is quite

separate from the noise that limits the maximum precision for
phase metrology2,38. Changes in the distance between the cavity
mirrors change the phase of the cavity output. The quantum
fluctuations in the laser intensity impart momentum and therefore
position noise to the mirrors, and these position fluctuations
produce phase noise40,41. This noise is the quantum ’back-action’
of the position measurement42. Squeezing the input light
increases the fundamental precision of the measurement but also
increases the phase noise power from the back-action by the
factor e2r. At the operating laser power for LIGO, P= 200 kW,
measuring a signal at 400 Hz without squeezed light the back-
action phase noise power per unit frequency is ~10−27rad2Hz−1

(see Supplemental Note 2). Since the measurement error for LIGO
at this power is ~10−25rad2Hz−1 will increase the accuracy up to a
squeezing factor of e2r ≈ 10 before the back-action phase noise
would prevent further increases. The squeezing factor of the
squeezed states presently injected into the LIGO L1 interferometer
is 7.2 dB or e2r= 5.238. If there were no losses this would reduce
the error of the phase measurement by a factor of e−r= 1/2.3.
Losses reduce the squeezing to 2.7 dB which results in a more
modest error reduction of 36%. This example makes clear the
difficulty of using nonclassical states for metrology: one must not
only reduce all classical sources of noise so that they are much
smaller than the very tiny fundamental quantum noise, as well as
creating a nonclassical state, but protect this state from loss long
enough to make use of it. All of these elements have been
achieved by LIGO. Improvements are also planned that will allow
squeezing to increase the precision further.

DISCUSSION
Weak nonclassical light is able to amplify the precision of
measurements that employ much stronger coherent light.
Here we have determined the maximum amplification that can
be achieved in this way by every quantum state of light (more
generally, any bosonic field), for local and distributed quantum
metrology that employs any single-mode transformation.
We have shown that for the measurement of all single-mode
quantities the maximum amplification depends on the same
quantity, being the QFI for displacement metrology. For single-
mode pure states this QFI is simply the maximum quadrature
variance. Our analysis also reveals the linear networks that can be
used to achieve maximum precision.
The method we have used to obtain our results should also

enable answering the same question for multi-mode transforma-
tions, which constitutes an interesting question for future work.
We also expect that our results will have applications to the
resource theory of nonclassicality, something that we have not
explored here.

METHODS
Local and distributed quantum metrology
Quantum metrology refers to the measurement of a classical
quantity or quantities using a quantum system as a probe. First
consider metrology of a single quantity, ξ. For a quantum system
to act as a probe its state must be affected in some way by ξ so
that information about ξ can be extracted by making a
measurement on the system. We can write the effect of ξ on
the system as the action of an operator Uξ ¼ e�iξĜ where Ĝ (the
’metrological transformation’) is a Hermitian operator1. As an
example, if we are measuring the size of a force then Ĝ ¼
b̂e�iϕ=

ffiffiffi
2

p þ H.c � X̂ϕ is the position operator, where b̂ is the
mode operator at the probe and ϕ is the quadrature phase. If we
are measuring a phase shift induced in a mode by a distance or a

duration, then Ĝ ¼ b̂
y
b̂. The amount of information that can be

obtained about ξ by measuring the system depends on the
state in which the system is prepared prior to the action of U(ξ). If
we denote this state by σ̂, then the maximum information that can
be obtained about ξ (the ’sensitivity’ of the probe) is captured by
the QFI, denoted by Fðσ̂; ĜÞ. For a pure state σ̂ ¼ ψj i ψh j, the QFI
reduces to four times the variance of Ĝ33, namely

Fð ψnj i ψnh j; ĜÞ � 4V ψj iðĜÞ ¼ 4 hĜ2i � hĜi2

 �

; (38)

where hÂi � hψjÂjψi for any operator Â. For mixed states, Yu’s
theorem states that the QFI can be written in terms of that for
pure states as32,35

F σ̂; Ĝ
� � ¼ min

fpn ; ψnj ig

X
n

pnF ψnj i ψnh j; Ĝ� �
; (39)

where the minimization is over all ensembles that decompose σ̂
(all ensembles fpn; ψnj ig for which σ̂ ¼Pnpn ψnj i ψnh j and pn > 0,
∀ n). The expression on the RHS of Eq. (39) is referred to as the
convex roof of F .
The QFI quantifies the minimum error with which the parameter

ξ can be obtained, Δξ, by measuring the probe system given the
initial state σ̂ and transformation Ĝ via the relation36,43

Δξ 
 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MF σ̂; Ĝ

� �q (40)

where M is the (sufficiently large) number of repetitions of the
metrology procedure. This relationship is referred to as the
quantum Cramér-Rao bound36,43.
Defining the precision of a metrology protocol, P σ̂; Ĝ

� �
, as the

inverse of the minimum error per root repetition, we have

P σ̂; Ĝ
� � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F σ̂; Ĝ
� �q

: (41)

Distributed quantum metrology is a straightforward general-
ization of the metrology process considered above in which a
quantum system is used to measure a function of a set of m
parameters {ξj}22–25,44. Usually, these parameters are considered to
be values of the same physical quantity at different locations. Here
we will restrict ourselves to determining (estimating) a linear
combination of the parameters. Our analysis is also applicable to
the simultaneous estimation of all the parameters45.
In Fig. 1, we display a distributed quantum sensing scheme with

an initial input state σ̂ ¼ D α0ð Þρ̂Dy α0ð Þ 	 α1j i α1h j � � � 	
αm�1j i αm�1h j, in which one of the input modes contains an
arbitrary quantum state, ρ̂, displaced by a coherent displacement
D α0ð Þ � expðα0ay0 � α�0a0Þ and the rest are in coherent states,
αj
		 � ðj ¼ 1; 2; � � � ;m� 1Þ. After combining all the input modes
with an arbitrary PLN each transformation is applied to a different
mode. This allows each mode to be sent to a different location
where the respective transformations are applied. Distributed
quantum metrology is not the most general way to implement a

W. Ge et al.

6

npj Quantum Information (2023) 5 Published in partnership with The University of New South Wales



measurement of a global parameter. In Supplemental Note 3, we
depict the most general linear scheme for this purpose. We show
that in the regime in which we are interested here, that is when
the classical input energy is much larger than that of the
nonclassical states, the most general scheme can improve upon
the precision of distributed quantum metrology only by the factor
m, the origin of which is a trivial classical effect resulting from
applying all the phase shifts in sequence to a single mode.
As per Fig. 1, defining mode operators b̂j; j ¼ 0; ¼ ;m� 1 for

each of m modes at the probe, and operators Ĝj ¼ f ðb̂j ; b̂yj Þ in
which f is some function, the action of the set of parameters on
the probe system is given by the product

Uξ ¼
Y
j

exp½� i ξ j Ĝj�: (42)

If the input state ρ̂ is a pure state then the QFI for this multi-
parameter estimation problem, which we again denote by F , is
now a matrix whose elements are33,43

F jk ¼ 4 hĜj Ĝki � hĜjihĜki
� �

: (43)

For simultaneous estimation of all the parameters ξj with a set
of unbiased estimators Ξj , the error of the estimators is now given
by a covariance matrix, cov Ξð Þ, whose matrix elements are

cov Ξð Þjk ¼ ðΞj � ξ jÞðΞk � ξkÞ
� �

; (44)

where Oh i is the average value of the quantity O. Note that here
the average is not only a quantum expectation over the joint
multi-mode state input to the PLN but also over the possible
values of the parameters and the results of the measurement for
each repetition of the metrology scheme. The multi-parameter
version of the quantum Cramér-Rao bound33,43 is

cov Ξð Þ 
 ðMFÞ�1; (45)

where M is again the number of independent repetitions of the
metrology process.
For estimating a linear combination of the parameters, namely

ξ ¼
X
j

wjξ j; with
X
j

jwj j ¼ 1; (46)

which is referred to as a global estimate22–25,44, the measurement
uncertainty in the estimate of ξ is24

Δξ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wtF�1 w

M

s
(47)

in which we have defined the vector w ¼ ðw1; ¼ ;wmÞt . The
above inequality is not well-suited to minimizing Δξ, however,
because it involves the inverse of the QFI matrix. We can obtain a
much simpler lower bound by using the Cauchy-Schwartz
inequality to show that24

Δξ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wtF�1 w

M

s

 jjwjj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MwtF w
p (48)

The beauty of the second inequality is that it becomes an equality
when w is an eigenvector of the QFI matrix, F , and the RHS of
Eq. (47) is also minimized when w is an eigenvector of F . We can
therefore find the maximum precision by minimizing the RHS of
Eq. (48) under the constraint that w is an eigenvector of F .
We define the precision of a distributed quantum metrology

protocol by

P σ̂; Ĝ;w
� � � wtF�1 σ̂; Ĝ

� �
w

� ��1=2 � 1

jjwjj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wtF σ̂; Ĝ

� �
w

q
;

(49)

where Ĝ ¼ ðĜ1; ¼ ; ĜmÞ denotes the set of transformations for m
probes. Note that a distributed quantum metrology protocol
automatically reduces to a single-parameter protocol when m= 1.

Metrological power
A classical metrology procedure is one in which the initial state, σ̂,
consists of any number of modes in coherent states αkj i. An
optimal classical metrology procedure for a given set of
transformations fĜjg is one that achieves the maximum QFI for
the total average number of photons, Nc. Obtaining an optimal
protocol, by definition, involves maximizing over all PLNs as well
as the choice of weightings, w.
Consider an optimal classical metrology procedure M, that

employsm transformations Ĝ to measure a single (m= 1) or global
parameter ξ ¼Pm�1

j¼0 wjξ j . Let us denote the precision of M by

PcðNc; Ĝ;wÞ. Now define an optimal metrology protocol that
employs classical states with the same total number of photons Nc

and transformations Ĝ, but this time with an additional mode
containing a nonclassical state ρ̂ with average photon number Nq.
Since Nq is required to be negligible compared to Nc, there is little
point in including Nq in the resource count for the protocol. Hence,
we will denote the precision of this protocol by Pρ̂ðNc; Ĝ;wÞ. The
increase in the square of the precision resulting from adding the
nonclassical state is

ΔP2
ρ̂ðNc; Ĝ;wÞ ¼ P2

ρ̂ðNc; Ĝ;wÞ � P2
c ðNc; Ĝ;wÞ: (50)

We wish to define the metrological power as this increase in the
square precision as Nc→∞ for a fixed Nq. We use the square of
the precision so that the metrological power is linear in the QFI. If
ΔP2

ρ̂ðNc; Ĝ;wÞ depends on w and the PLN involving the coherent
states and the unitary U, then we also maximize over w and the
PLN. To be precise, in our definition we have to be a little careful
because the metrological power scales with the resource Nc and
thus tends to infinity as Nc→∞.
Allowing the elements of Ĝ to take the general form

Ĝj ¼
Xp
l¼0

Xl
r¼0

κlr b̂
yl�r
j b̂

r
j ; (51)

we will find that for large Nc this maximum increase is
proportional to Np�1

c . We can thus define metrological power as

Mρ̂ðNc; ĜÞ ¼ max
w; PLN

lim
Nc!1

ΔP2
ρ̂ðNc; Ĝ;wÞ
Np�1
c

" #
Np�1
c : (52)

There is one transformation for which the maximum precision is
straightforward to calculate and thus the metrological power is
already known21. This transformation is a displacement in phase-
space (corresponding to measuring force or acceleration), for
which Ĝ ¼ X̂ϕ � b̂e�iϕ=

ffiffiffi
2

p þ H.c . This transformation is unique in
that the maximum precision is achieved using the nonclassical
state alone; there is no benefit to combining the nonclassical state
with classical states. Thus the QFI for a displacement transforma-
tion using state ψj i, which we will denote by Fϕ, is given simply
by four times the variance of X̂ϕ for ψj i. Since the quadrature
angle, ϕ, can be selected merely by using a phase shift, we must
maximize over it to determine the maximum precision46,47.
According to Eq. (41), the maximum precision in this case is

P F
max ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max
ϕ

Fϕ

q ¼ 2 max
ϕ

V ψj iðX̂ϕÞ
� �1=2

: (53)

The corresponding metrological power for displacement sen-
sing is

M F
ψj i ¼ 4 max

ϕ
V ψj iðX̂ϕÞ � 1

2

� �
: (54)

W. Ge et al.

7

Published in partnership with The University of New South Wales npj Quantum Information (2023) 5



The difficulty of calculating the maximum precision for all other
transformations, in which Ĝ has terms involving products of two or
more mode operators, is the complexity of the expression for the
QFI when considering one or more input quantum states, additional
coherent inputs, and an arbitrary PLN20,21,24,25,48–58. We show in the
section of Results that this expression can be made tractable by a
judicious application of normal ordering34. It is then possible to
maximize the result over all PLNs even when Ĝ involves arbitrarily
high-order nonlinearities and multiple nonclassical input modes.
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