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Abstract: Classical statistical mechanics has long relied on assumptions such as the equipartition 1

theorem to understand the behavior of complicated systems of many particles. The successes of this 2

approach are well-known, but there are also many well-known issues with classical theories. For 3

some of these, the introduction of quantum mechanics is necessary, e.g. the ultraviolet catastrophe. 4

However, more recently, the validity of assumptions like equipartition of energy in classical systems 5

have been called into question. For instance, a detailed analysis of a simplified model for blackbody 6

radiation was apparently able to deduce the Stefan-Boltzmann law using purely classical statistical 7

mechanics [1]. This novel approach involved a careful analysis of a "metastable" state which greatly 8

delays the approach to equilibrium. 9

In this paper we perform a broad analysis of such a metastable state in the classical Fermi-Pasta-Ulam- 10

Tsingou (FPUT) models. We treat both α-FPUT and β-FPUT models, exploring both quantitative and 11

qualitative behavior. After introducing the models, we validate our methodology by reproducing 12

the well-known FPUT recurrences in both models as confirming earlier results on how the strength 13

of the recurrences depends on a single system parameter. We establish that the metastable state in 14

the FPUT models can be defined by using a single degree of freedom measure—the spectral entropy 15

(η) and show that this measure has the power to quantify the distance from equipartition. For the 16

α-model, a comparison to the integrable Toda lattice allows us to define rather clearly the lifetime of 17

the metastable state for the standard initial conditions. 18

We next devise a method to measure the lifetime of the metastable state tm in the α-FPUT model that 19

reduces the sensitivity to the exact initial conditions. Our procedure involves averaging over random 20

initial phases in the plane of initial conditions, the P1-Q1 plane. Applying this procedure gives us a 21

power law scaling for tm, with the important result that the power laws for different system sizes 22

collapse down to the same exponent as Eα2 → 0. 23

We examine the energy spectrum E(k) over time in the α-FPUT model and again compare the results 24

to those of the Toda model. This analysis tentatively supports a method for an irreversible energy 25

dissipation process suggested by Onorato et al. [2]: four-wave and six-wave resonances as described 26

by "wave turbulence" theory. We next apply a similar approach to the β-FPUT model. Here we 27

explore in particular the different behavior for the two different signs of β. Finally, we describe a 28

procedure for calculating tm in the β-FPUT model, a very different task than for the α-FPUT model 29

since the β-FPUT model is not a truncatation of an integrable model. 30

Keywords: Metastability; Classical Statistical Mechanics; Advanced numerical methods; Semiclassical 31

methods and results 32

1. Introduction 33

Statistical mechanics, broadly speaking, aims to draw conclusions about the behavior 34

of systems with large numbers of particles without needing to solve the even larger number 35

of equations that the system obeys. This approach has been successful in explaining every- 36

thing from the temperature of a gas to the density of a neutron star, with many stunning 37

discoveries in between [3]. One of the central tenets of this subject is the equipartition theo- 38

rem [4], which assumes that over time, energy will be shared equally around the system. 39
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This assumption has led to many successes, e.g. the ideal gas law, but also some failures, e.g. 40

the ultraviolet catastrophe from the failure of the Rayleigh-Jeans law to describe blackbody 41

radiation [5]. Until recently, it was believed that the resolution of the ultraviolet catastrophe 42

required the quantization of the energy of light into photons. However, more recently, 43

an entirely classical resolution has been proposed [1]. By avoiding the assumption of the 44

equipartition theorem, Wang et al. were able to find the Stefan-Boltzmann law through 45

purely classical mechanics, consistent with the results of quantum mechanics. The key was 46

the statistics of a quasi-stationary state in the model, which has the effect of stalling the 47

approach to equilibrium. While the impact of these new results on statistical mechanics 48

and the approach to equilibrium remains to be seen, the suggestion that "metastable" states 49

may play a critical role in the interactions of many-body classical systems is very intriguing 50

and is something that we will study in detail in this paper. 51

As background and motivation for our study, we recall that in the early 1950s Enrico 52

Fermi, John Pasta, Stanislaw Ulam and Mary Tsingou (FPUT) made the first detailed 53

computational study of the validity of the equipartition theorem. For the parameters used 54

in their studies, instead of equipartition they observed a similar quasi-stationary state 55

consisting of "recurrences" to the initial state [6]. Their assumption had been that adding 56

even a small nonlinear term to the linear couplings between harmonic oscillators would 57

allow the system to thermalize, i.e. reach a state of equipartition. However, they found 58

that for small enough energies, the system would remain localized in mode space for all 59

the times that were computationally possible to explore with their computer and that 60

there were remarkable and entirely unexpected (near) recurrences to the initial state. This 61

discovery opened the door for many important advances in the field of nonlinear dynamical 62

systems: the discovery of solitons [7], q-breathers [8] and many more. Some of the most 63

significant implications of their results were summarized on its 50-year anniversary [9]. 64

The dedicated reader is referred to these major reviews of the FPUT problem: [10–13]. 65

Our interest here is to explore computationally what is referred to as the "metastable 66

state" [14] in the FPUT models. This is a quasi-stationary state which stalls the approach 67

to equipartition. In particular, we are interested in the lifetime of the metastable state, 68

since the system is not able to approach equilibrium until the metastable state has ended. 69

Understanding the lifetime of this state, especially any scaling laws that it exhibits, will 70

likely provide a basis for analyzing other systems with quasi-stationary states. Hence we 71

will develop and explore some techniques which can standardize the study of metastable 72

states in non-integrable systems. It is our belief that the continued exploration of these 73

states in physical systems has the potential to unlock more equivalencies between quantum 74

mechanics and classical statistical mechanics, as was the case with blackbody radiation [1]. 75

The structure of the remainder of this paper is as follows. First, in Section 2, we 76

introduce the systems we will explore. Then, in Section 3 we lay out the recurrence 77

phenomenon and give an intuitive picture of the metastable state. In Section 4 we explore 78

the metastable state in the α-FPUT model, the primary computational focus of our article. 79

In this section we explore the strength of recurrences (Section 4.1), the lifetime of the 80

metastable state (Section 4.2), and the energy spectrum (Section 4.3). We conclude with 81

a qualitative exploration of the metastable state in the β-FPUT model, in Section 5. We 82

examine a comparison between the two signs of β (Section 5.1) and in Section 5.2 we discuss 83

the possibility of measuring the lifetime of the metastable state in the β model. Section 6 84

presents a summary of our conclusions. 85

2. Methods 86

2.1. Models 87

The general Hamiltonian for the systems we will consider is that of a chain of oscillators 88

constrained to move in one dimension with nearest neighbor interactions given by a 89

potential V(r), i.e. 90
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H(q, p) =
N

∑
n=1

p2
n

2
+

N

∑
n=0

V(qn+1 − qn). (1)

We will consider both the α-FPUT model, with a cubic potential: 91

Vα(r) =
r2

2
+

α

3
r3, (2)

and the β-FPUT model, with a quartic potential: 92

Vβ(r) =
r2

2
+

β

4
r4, (3)

with fixed boundary conditions q0 = qN+1 = 0 and p0 = pN+1 = 0 such that there are N 93

distinguishable oscillators. The β-FPUT model can be considered as a perturbation of a 94

linear chain of oscillators (with perturbation strength β), while the α-FPUT model behaves 95

as a truncation of the Toda Lattice, which has potential energy: 96

VToda(r) = V0

(
eλr − 1 − λr

)
, (4)

and has been shown to be completely integrable [15]. 97

We define the normal modes through the canonical transformation: 98[
qn
pn

]
=

√
2

N + 1

N

∑
k=1

[
Qk
Pk

]
sin

(
nkπ

N + 1

)
. (5)

These normal modes have frequencies: 99

ωk = 2 sin
(

kπ

2(N + 1)

)
. (6)

This normal mode transformation diagonalizes the harmonic lattice (i.e. α = β = 0 100

only) but leaves off-diagonal terms in the Hamiltonians for the anharmonic models (α, β ̸= 101

0). These terms lead to the transfer of energy among the modes. 102

After this normal mode transformation the Hamiltonian for the α-FPUT model is 103

Hα(Q, P) =
N

∑
k=1

P2
k + ω2

k Q2
k

2
+

α

3

N

∑
k,j,l=1

Ak,j,lQkQjQl , (7)

while for the β-FPUT: 104

Hβ(Q, P) =
N

∑
k=1

P2
k + ω2

k Q2
k

2
+

β

4

N

∑
i,j,l=1

Bk,i,j,lQkQiQjQl , (8)

where the last (summed) terms in both equations couple the normal modes together, 105

allowing for energy sharing, with coupling constants given by [16,17]: 106

Ak,j,l =
ωkωjωl√
2(N + 1)

∑
±

[
δk,±j±l − δk±j±l,2(N+1)

]
, (9)

Bk,i,j,l =
ωkωiωjωl

2(N + 1) ∑
±

[
δk,±j±l±m − δk±j±l±m,±2(N+1)

]
, (10)

where δi,j is the Kronecker delta function and the sums ∑± are over all combination of plus 107

and minus signs in the equation. 108

109

The energy Ek of the k-th mode is 110

Ek =
1
2

(
P2

k + ω2
k Q2

k

)
. (11)
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This definition is exact only for the harmonic lattice, but serves as a good approxi- 111

mation for small nonlinearity, since any contributions to the energy coming from coupled 112

modes have a pre-factor of the nonlinear strength (α or β). 113

Whenever a quantity is time-averaged, we place a line over its symbol (e.g. E). This 114

represents a time-average from time t = 0 to t = T, i.e. 115

E(T) =
1
T

∫ T

0
E(t) dt. (12)

2.2. Numerical Methods 116

For integrations involving the α-FPUT model and β-FPUT model with β < 0, which 117

have been observed to be reasonably stable [18], we use the SABA2C symplectic integration 118

scheme described in appendix 1 of [19]. This scheme has error O([dt]4). For integration of 119

the Toda lattice, we use the SABA2 scheme i.e. the same scheme but without the corrector 120

Hamiltonian term, giving error O([dt]2), which was determined to provide sufficient 121

accuracy for the range of parameters considered. For β > 0 the β-FPUT model is known 122

to exhibit exponential instabilities, related to instabilities of the soliton solutions to the 123

modified Korteweg-de Vries (mKdV) equation [20], since the mKdV equation arises from 124

the continuum limit of the β-FPUT model. To reduce the need for extremely small time step 125

sizes, we implement the symplectic integrator SABA2Y8_D described in [21] and in Table 126

2 of [22], which has error O([dt]8). In general, we use a time step dt = 0.1 unless a failure 127

of time reversal requires us to decrease dt to improve the accuracy. 128

2.3. Spectral Entropy 129

We will use spectral entropy to quantify the FPUT system’s "distance" from equiparti- 130

tion at a given time. The spectral entropy is similar to Shannon information entropy [23] 131

and is defined as 132

S(t) = −
N

∑
k=1

ek(t)ln[ek(t)],

with: ek(t) =
Ek(t)

∑k Ek(t)
,

(13)

where ek(t) is the proportion of linear energy in mode k at time t. Spectral entropy ranges 133

from 0 when all the energy is in one mode, to Smax when an equal amount of energy is 134

present in all modes. For the α-FPUT and Toda lattices, equal energy sharing corresponds 135

to ek = 1/N ∀ k, therefore Smax = ln(N). However, the β-FPUT lattice remains symmetric 136

about its center for initially symmetric excitations, and therefore energy can’t spread from 137

an even numbered mode number to an odd numbered mode or vice versa. Since our initial 138

conditions will include only an odd mode, energy can only be shared among odd modes, 139

so Smax = ln⌈N
2 ⌉, where ⌈⌉ is the ceiling function, which rounds a number up to the next 140

highest integer. Since this definition of spectral entropy has a different maximum value 141

for different lattice sizes N, we can rescale it by defining the rescaled spectral entropy 142

(henceforth entropy for short): 143

η(t) =
S(t)− Smax

S(0)− Smax
. (14)

This is a convenient definition because η ranges from 1 at t = 0, to 0 when energy is 144

shared equally among all modes (equipartition), regardless of system size N. 145

3. Phenomena 146

3.1. FPUT Recurrences 147

One of the surprising features of the models first explored by FPUT [6] was the 148

presence of what have come to be known as "FPUT recurrences". Indeed, Fermi himself 149

expressed the (understated) opinion that this behavior really constituted a "little discovery 150
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(a) α-FPUT model with initial E1 = 10−4 and
N = 127 (with α = 1).

(b) β-FPUT model with initial E1 = 0.15 and
N = 127 (with β = 1α = 1KAR).

Figure 1. The energy in each normal mode in the α-FPUT and β-FPUT models as a function of time.
At t = tr the first FPUT recurrence is observed, with nearly all energy returning to its initial condition,
the first normal mode. The lowest 5 allowed modes in each model are plotted.

in providing limitations that the prevalent beliefs in the universality of "mixing" and "ther- 151

malization" in nonlinear systems may not always be justified" [6]. The FPUT recurrences 152

were discovered as follows: when all of the energy was initialized in the first normal mode, 153

this energy was first observed to diffuse to higher order modes, but then the energy began 154

to return to the first normal mode, eventually nearly fully returning at what is called the 155

"recurrence time" (tr). This phenomena is shown in Figure 1, which shows the energy in 156

the lowest 5 allowed modes in the α-FPUT and β-FPUT models as a function of time. Note 157

that the β-FPUT lattice preserves symmetry about its center so with initial energy only 158

in mode 1, only odd modes are allowed. At t = tr, the systems have nearly reproduced 159

their initial conditions. tr is calculated for the α-FPUT model following [24] and for the 160

β-FPUT model following [25]. The timescale for this recurrent behavior is many orders of 161

magnitude shorter than the Poincaré recurrence time [26], and the recurrences continue 162

quasi-periodically for a long time; indeed, the initial conditions considered by FPUT have 163

yet to be driven to equipartition in any computer simulation. However, for larger initial 164

energy, the FPUT recurrences eventually break down, and the system is able to thermalize. 165

Clearly, when most of the energy is quasi-periodically returning near the initial condition, 166

which is extremely localized, the system remains localized while these recurrences continue 167

to occur. 168

FPUT recurrences have been used to study ultra-cold Bose gases [27], the nonlinear 169

Schrödinger equation [28], and electron-phonon interactions [29] to name a few. Their study 170

has extended also to higher order recurrences, such as super-recurrences [19,30]. Their 171

existence has been explained in various ways, most notably 1) by using q-breathers [8,31,32]; 172

or 2) by the presence of solitons in the KdV (mKdV) equation, which is the continuum limit 173

of the α-FPUT (β-FPUT) model [7,25,33]. The importance of FPUT recurrences is difficult to 174

overstate, but in this paper we focus primarily on their role in delaying the approach to 175

equipartition. 176

3.2. Metastable State 177

The recurrence phenomenon has the effect of stalling the approach to equilibrium by 178

keeping the system’s energy localized near its initial condition. This phenomenon has been 179

interpreted, as early as 1982 [34], as the system having two distinct time "regions": in the 180

first region, the system relaxes into an intermediate quasi-stationary state, which persists 181

for some time, before it again relaxes, this time into its true equilibrium state defined by 182

equipartition, such that η = ⟨η⟩. The intermediate or "metastable" state has more recently 183

been studied extensively by Giancarlo Benettin [14,35–37]. His work frames the phenomena 184

as a cross-over between predominantly integrable dynamics to the true non-integrable 185

dynamics of the FPUT models. 186
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(a) α-FPUT model with Eα2 = 0.02 and N = 63. (b) β-FPUT model with Eβ = 0.57 and N = 31.
Figure 2. The time-averaged entropy as a function of time in the α-FPUT and β-FPUT models. The
ensemble average ⟨η⟩ (from Eq. 15) is plotted and the agreement η = ⟨η⟩ appears to be stalled by a
metastable state.

In terms of the spectral entropy η, the system is considered to be in equilibrium when 187

η = ⟨η⟩, where we calculate ⟨η⟩ following Danieli [38]: 188

⟨η⟩ = 1 − γ

Smax − S(0)
, (15)

where γ ≃ 0.577 is the Euler-Mascheroni constant. We are interested in the time that 189

the metastable state persists, before its ultimate destruction and the system’s approach to 190

equilibrium. We call this the lifetime tm of the metastable state. In Figure 2, we illustrate 191

the metastable state in the α-FPUT and β-FPUT models. We can see that their behaviors are 192

qualitatively quite different. While the α-FPUT model appears to be decreasing gradually 193

in η, the β-FPUT model exhibits a clear flat plateau for a long time before some mechanism 194

causes the metastable state to collapse fairly suddenly. The features of the metastable state 195

in the α-FPUT model at first glance make it difficult to define where the metastable state 196

ends and the approach to equilibrium begins, but we will show that we separate these 197

two regions by comparing the α-FPUT model’s behavior to that of the Toda lattice and 198

considering the crossover time tm to be that time at which the behavior of the two systems 199

begins to differ substantially. 200

To make this point more explicitly, we note that up to O(r4), the α-FPUT potential (Eq. 201

2) can be thought of as a truncation of the Toda potential (Eq. 4), through a convenient 202

change of parameters. By setting V0 = λ−2 and λ = 2α, and Taylor expanding the Toda 203

potential around r = 0, we get the following series expansion: 204

VToda(r) =
r2

2
+

α

3
r3 +

α2

6
r4 +

α3

15
r5 +O(r6) = Vα(r) +O(r4). (16)

Thus the α-FPUT model’s metastable state can be analyzed by considering its behavior 205

to be similar to the integrable Toda lattice, before it breaks off and exhibits the behavior 206

of non-integrable systems [35]. Figure 3 demonstrates the similarity of the evolution of η 207

between the Toda model and the α-FPUT model up to a certain point in time, after which 208

the α-FPUT model falls to the expected equilibrium value of η: the ensemble average ⟨η⟩. 209

This comparison to the Toda lattice will allow us to define rather precisely tm in the α-FPUT 210

model. 211

4. α-FPUT Model 212

4.1. Strength of FPUT Recurrences 213

It has been shown [24] that the time to the first FPUT recurrence (tr) in the α-FPUT 214

model scales as a function of an essential system parameter R, defined as: 215

R = (N + 1)3/2
√

Eα2. (17)
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Figure 3. The time-averaged entropy η as a function of time (note logarithmic time scale) for both
the Toda model (red) and α-FPUT model (blue). Both have initial energy Eα2 = 0.02 and system size
N = 63.

(a) The "strength" of FPUT recurrences, repre-
sented by E1(tr)/E, the fraction of energy re-
turning to the initial condition at the first recur-
rence.

(b) The quantity Emin
1 /E, which represents the

proportion of energy that leaves the 1st normal
mode before the first recurrence.

Figure 4. Heatmaps as a function of R (Equation 17) and system size N in the α-FPUT model. Note
that the gray region corresponds to initial conditions which blow up (Potential V(r) → −∞) before
1.5tr.

Specifically, as was shown in [24], by rescaling the FPUT recurrence time by (N + 1)3, 216

then for R ≥ 10: 217

tr

(N + 1)3 = R−1/2. (18)

We use this expected value of the first FPUT recurrence time and look in the region 218

0.5tr < t < 1.5tr for the maximum value of the energy in the first normal mode, and name 219

that E1(tr). We can then calculate the ratio of this energy to the initial energy, and use this 220

as a measure of the relative "strength" of the FPUT recurrence for a given value of R and N. 221

The results are plotted in Figure 4a, and demonstrate that the FPUT recurrence strength 222

drops off as R increases - nearly independent of system size N. 223

Although this discussion is similar in motivation to that describing the behavior of the 224

β-FPUT model (see Section 7 of [25]), the implications are quite different: for the β-FPUT 225

model, FPUT recurrences lose strength as a function of the parameter Eβ independent of N 226

- NOT the essential system parameter 227

S = Eβ(N + 1), (19)
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Figure 5. The "strength" of recurrences in the α-FPUT model, E1(tr)/E as a function of system
parameter R at fixed N = 502. An exponential fit is added.

which the FPUT recurrence time scales with. For the α-FPUT model, the strength of FPUT 228

recurrences scales with R, independent of N, instead of the corresponding energy parameter 229

Eα2. It is also worth noting that while in [25] one had to define a parameter called "shareable 230

energy" to compare the quality of FPUT recurrences between the cases β > 0 and β < 0, 231

Figure 4b shows that this is not necessary for the α-FPUT model. This figure plots the 232

quantity: 233

Emin
1
E

≡ min
0<t<tr

E1(t)
E

, (20)

which quantifies how much energy leaves the first normal mode (the initial condition), 234

before most of it comes back at the recurrence time. Figure 4b demonstrates that for the 235

α-FPUT model, nearly all of the energy consistently leaves the first normal mode before 236

coming back for a recurrence. This appears to be true for all R and N except in the harmonic 237

limit (Eα2 → 0). However, this sharing of energy is not the case for the β-FPUT model 238

with β < 0, where roughly 70% of the energy remains in the first normal mode before a 239

recurrence [25]. 240

Since Figure 4a seems to show that the strength of recurrences falls off as a function 241

of R, independent of N outside of regimes where blow-up is likely, it helps to look at 242

systems with the same N and plot the recurrence strength E1(tr)/E as a function of system 243

parameter R. This is performed in Figure 5, and a nearly exponential decay is found. This 244

result holds for all sufficiently large system sizes, results are presented for N = 512 to 245

avoid blow-up and other small N behavior [39].KAR This exponential decay KARis again in 246

contrast to the β-FPUT model, where recurrence strength appears to be roughly consistent 247

until a cut-off energy Eβ where the recurrence strength falls precipitously [25]. 248

4.2. Lifetime of Metastable State 249

4.2.1. Procedure 250

We endeavor to find a scaling for the lifetime of the metastable state, through a direct 251

comparison to the Toda model as motivated by Section 3.2. To define tm by comparing 252

the α-FPUT model’s behavior with that of the Toda lattice, the most natural approach is 253

to define some arbitrary tolerance, and look for the last time which the α-FPUT model’s 254

entropy is within that tolerance of the entropy of the Toda model. Doing so, however, 255

reveals a key feature of the metastable state. The results of following this procedure for 256

N = 63 are shown in Figure 6. Even though a clear power law scaling emerges, the data 257

is quite noisy around this scaling. This noisiness appears to be an inherent feature of the 258

chaotic nature of the α-FPUT model around the metastable state. 259
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Figure 6. An attempt at defining tm in the α-FPUT model for N = 63 by defining an arbitrary
tolerance and waiting for a deviation from the Toda model beyond this tolerance. A power law best
fit is added. Note the logarithmic scaling on the tm axis.

Figure 7. The time-averaged entropy in the Toda model (red curve) compared to 10 bins of α-FPUT
trajectories, each made up of the average of 10 random phases. All systems are fixed at energy
Eα2 = 0.028 and system size N = 63.

Note that since the Toda model is integrable, its dynamics can in theory be broken 260

down into actions that remain constant in time and angles that evolve periodically in time. 261

The picture of the metastable state of the α-FPUT model presented by Benettin et al. in [37] 262

is that there are two time scales in the system. In the first one the actions of the Toda model 263

remain nearly constant even in the α-FPUT model, while the corresponding angles evolve 264

on tori, leading to a behavior very similar to that of the Toda model. Eventually, on a longer 265

time scale, the Toda-like actions in the α-FPUT model start to diffuse throughout the phase 266

space, eventually leading to ergodicity and equipartition. The short time scale where the 267

Toda-like actions remain nearly constant is the metastable state. An important aspect of 268

the transition to diffusing actions is that this diffusion behaves chaotically, with positive 269

definite maximal Lyapunov exponents as described in [37]. This leads to an exponential 270

sensitivity to initial conditions for when the diffusion of action variables dominates the 271

dynamics, which explains the noise in Figure 6. To quantify the effect of initial conditions, 272

we next conduct bin averaging over initial conditions. 273

Note that from Equation 11, the energy initially given to the first normal mode can be 274

distributed either in canonical position or momentum. We define the "phase" θ between 275

our canonical coordinates as: 276



Version January 26, 2023 submitted to Entropy 10 of 17

Figure 8. The bin deviation, averaged over bins, again for Eα2 = 0.028 and N = 63 in the α-FPUT
model. The measure value for tm is marked as a vertical dashed green line.

θ = tan−1
(

P1(t)
ω1Q1(t)

)
. (21)

We can then initialize systems with the same condition E1(0) = E, i.e. the same 277

point in energy space, but slightly separated in phase space by distributing along the oval 278

of canonical coordinates defined by rotating θ. In the following, we take 100 random 279

phases for every choice of energy and bin them together to create 10 bins which are each 280

the average of 10 trials with different phases. This bin averaging seeks to calculate an 281

approximation of the ensemble average. KARAn example of the results of this procedure is 282

shown in Figure 7, where each α-FPUT curve represents an average over 10 random phases. 283

Figure 7 demonstrates that each of the α-FPUT trials remains close to the Toda model, up 284

until some time where the entropy starts to decrease below the Toda model entropy (red 285

curve), and then the α-FPUT trajectories start to diverge, not only from the Toda trajectory 286

but also from each other. 287

We gain two advantages from binning in this manner: 1) we now have a natural 288

length to use as a tolerance cut-off to define separation between the α-FPUT model and 289

Toda model that isn’t arbitrary: the standard deviation of each bin; 2) averaging over 10 290

different bins again gives us an error bar on our measurement of tm for a given energy. Our 291

procedure is now as follows: take 10 trials for the α-FPUT model with random phases and 292

average their entropy together. Find the last time that the Toda model’s entropy was within 293

1 standard deviation of this bin average. Repeat this for 10 total bins, and average those 294

times together to get a measurement of tm with an error bar. 295

Performing this operation reveals a surprising result, shown in Figure 8. If we look at 296

the bin standard deviation (σ), averaged over bins (σ), there is a feature similar to a phase 297

transition in the plot. The time at which this occurs happens to line up with the time t = tm 298

as defined in our above procedure. Since our procedure looks at when η in the α-FPUT 299

model is greater than σ outside of η in the Toda model, this means η is falling quicker than 300

σ is rising in Figure 8, which is significant. This also further validates the point of view 301

that tm represents a transition from mostly integrable dynamics to chaotic, non-integrable 302

dynamics. The growth in σ for t > tm shows that initially nearby systems are deviating 303

in time, whereas for t < tm, σ is seen to be relatively bounded in time. This also serves to 304

validate our procedure to measure tm. 305

4.2.2. Analysis 306

We apply the procedure described in the previous section and iterate across a range 307

of energies, for N = 63, 127, and 255. We determined that system size N = 31 was too 308

small and gave erratic results incompatible with the thermodynamic limit. For a discussion 309
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(a) The height of each data point represents its
bin error. In the Eα2 → 0 limit the data is seen
to follow a power law, in dashed red.

(b) Nearby energies are binned to get an upper
bound on the noise as a combination of phase
and energy error.

Figure 9. The lifetime of the metastable state as a function of Eα2 for N = 63, 127, and 255. Note
logarithmic scale on all axes.

of small system size effects in the α-FPUT model, see [39]. We chose system sizes such 310

that N + 1 is a power of 2, to avoid resonances discussed in [40]. The results are shown 311

in Figure 9a. The length of each data point is the extent of its bin error. Each system size 312

appears to follow its own trend for high energies. However, for low energies the data 313

appear to overlap, regardless of system size. In this regime, tm is seen to follow a power law, 314

roughly consistent with an exponent of −4.9, as shown by the red dashed line in Figure 9a. 315

A few simulations indicate that this overlap and scaling is consistent for larger system sizes 316

too. This result is more significant than that presented in Figure 6, as it both considers 317

the ensemble average, and appears to hold in the thermodynamic limit. In particular, this 318

result has significant implications for the Eα2 → 0 limit, which is that originally considered 319

by FPUT.KAR
320

One interesting aspect of Figure 9a is that the error in the noise (shown by the scattering 321

of the data) seems to be larger than the error due to phase averaging and binning (shown 322

by height of data points). In order to account for these two possible sources of chaotic noise, 323

we bin data into groups of 20 consecutive energies to estimate the noise in energy. Then we 324

assume that phase noise (σθ) and energy noise (σE) are independent, and add them together 325

as 326

σ =
√

σ2
θ + σ2

E, (22)

to perform error propagation and get an upper bound on the noise. The results are 327

presented in Figure 9b. This gives a better idea of the noise (inherent since the metastable 328

state signals the onset of chaos) in the lifetime of the metastable state. 329

Another question of interest is how tm behaves as Eα2 increases. In Figure ??, tm is 330

plotted for larger energies. An interesting aspect of this plot is that the error bars, both for 331

σθ and σE, decrease dramatically around Eα2 = 0.145, where the calculated value of tm is 332

seen to start increasing. This region appears to correspond to the α-FPUT model deviating 333

from the Toda behavior before the beginning of the plateau shown in Figure 3. Therefore 334

we say that metastable state stops forming for systems with energy higher than this value. 335

The measured value of tm follows from our procedure but just shows that the systems are 336

deviating on a very short time scale, i.e. there is no real metastable state.KAR
337

We removed the figure that was previously Figure 10, in accordance with Reviewer 338

2’s notes.KAR
339

4.3. Spectrum 340

Our use of spectral entropy as the single measure of the destruction of the metastable 341

states gives a qualitative picture, but by plotting the time-averaged energy in each normal 342

mode, at a given time, we have access to many more degrees of freedom than simply 343
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(a) Spectra for t = 105. (b) Spectra for t = 108.
Figure 10. The spectra of the α-FPUT and Toda models for system parameter R = 75 and N = 127.
Spectra are compared at two different times.

looking at the entropy. Therefore, we can therefore get a fuller picture. For short times, we 344

expect that the spectra of the α-FPUT and Toda models look essentially identical. This is 345

indeed the case. As time goes on, however, the Toda spectrum flattens out to an exponential 346

tail, which is the shape of the α-FPUT spectrum in the metastable state as well. Nonetheless, 347

some higher modes start to gain energy, and spread this energy to the other nearby modes. 348

This process continues until most higher modes are excited and the system approaches 349

equipartition. This behavior is demonstrated in Figure 10. For more discussion on the 350

spectral picture of diffusion in the α-FPUT model compared to the Toda lattice, see [41]KAR
351

Figure 10a is plotted at t = 105, and shows that the spectra of the α-FPUT model and 352

the Toda model largely agree at this time. Figure 10b is plotted at t = 108, and we can see 353

that resonances have caused local peaks in the α-FPUT spectrum, which diffuse energy 354

into the modes around them. This has the effect of lifting the spectrum at each resonance, 355

a process which continues until the system reaches equipartition. In [2], Onorato et al. 356

showed that four-wave resonances in the thermodynamic limit of the α-FPUT model lead to 357

irreversible energy mixing. It was also shown that six-wave interactions are always possible, 358

and lead to irreversible energy mixing. Despite the appealing possibility that the observed 359

peaks in the spectra might correspond to those predicted by the wave turbulence method 360

of Onorato et al. we have at present been unable to verify this possibility quantitatively.DKC
361

It is possible that the two largest peaks in the spectra of the α-FPUT model (Figure 10b) 362

are actually made of two resonant modes each, so it is unclear if this is an example of a 363

four-wave or six-wave resonance. We are currently investigating this matter further.DKC
364

Another peculiarity in Figure 10b is the apparent high-k modes in the Toda model which lie 365

well above an exponential tail, even after a long time. The peaks around k/N ≃ 0.8 do not 366

appear to be a numerical artifact, so there could possibly be resonances in the integrable 367

limit (which do not lead to irreversible energy mixing). 368

5. β-FPUT model 369

5.1. Comparison Between β > 0 and β < 0 370

A surprising difference between the FPUT recurrences in the β-FPUT model for 371

the different signs of β was noted in Section 7 of [25]. The difference is qualitatively 372

demonstrated in Figures 11a (β < 0) and 11b (β > 0), which show the proportion of total 373

energy in each of the first 13 modes against time. Results are plotted for the first 50 FPUT 374

recurrences, with the FPUT recurrence time tr calculated using the results from [25]. For a 375

system with β > 0, the energy almost entirely leaves the first normal mode before coming 376

back at an FPUT recurrence (as demonstrated by Figure 1, which is essentially a zoom into 377

Figure 11b). When β < 0, nearly 70% of the energy always remains in the first normal 378

mode during the metastable state. While Figure 12b shows that the first normal mode is 379

not isolated when β > 0 for the relatively small Eβ = 0.15, driving the magnitude of Eβ 380

higher for β < 0, as shown in Figure 12a for Eβ = −0.35, leaves the first normal mode still 381
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(a) Eβ = −0.35 (Note: β < 0). (b) Eβ = 0.15 (Note: β > 0).
Figure 11. The energy in the lowest 13 modes as a function of time for N = 127, and the two choices
of the sign of β, in the β-FPUT model. Energy in each mode is rescaled by initial energy E and time is
rescaled by the FPUT recurrence time tr.

(a) Eβ = −0.35 (Note: β < 0). (b) Eβ = 0.15 (Note: β > 0).
Figure 12. Time-averaged energies in each mode for N = 127, as a function of mode number k. The
average is taken after 50 FPUT recurrences have taken place.

largely isolated. Figure 6 of [25] shows that this behavior is only a function of the sign of 382

Eβ, not its magnitude.KAR
383

When the distribution of energy among all normal modes (energy spectrum) in the 384

metastable state is considered, however, the two systems are relatively similar. Figures 12a 385

(β < 0) and 12b (β > 0) plot the spectra of the two β-FPUT systems, i.e. the time-averaged 386

energy in each mode. The time averages are computed after 50 FPUT recurrences have 387

occurred. Both spectra follow an exponential decay, with a few peaks in the spectra raising 388

further questions. In [2], Onorato et al. showed that six-wave resonances lead to irreversible 389

energy mixing, these peaks might correspond to those resonances. This possibility is under 390

further investigation. 391

Figure 12 shows that the differences noted in Figure 11 are only evident between the 1st 392

and 3rd normal modes, with all other modes following a qualitatively similar distribution. 393

It is possible that for β < 0, the k = 1 mode engages in the energy diffusing resonance 394

while k = 1 is not a resonant mode for β > 0. This would explain the lack of energy mixing 395

for β < 0 and the local peak at k = 1 in the spectrum (Figure 12a). 396

5.2. Lifetime of Metastable State 397

As depicted in Figure 2, the metastable state in the β-FPUT model ends much more 398

abruptly than that in the α-FPUT model. However, the α-FPUT model can be considered 399

a truncation of the integrable Toda lattice, so that the point at which the α-FPUT spectral 400

entropy begins to deviate substantially from that of the Toda model is well-defined for any 401

set of parameters and can be considered as the end of the metastable state. We showed 402

how to make this even more precise by taking bin averages that effectively approximate an 403
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Figure 13. The entropy of the β-FPUT system for N = 31, Eβ = 0.57. The calculated value of η in the
metastable state, η25, is shown starting at the time of the 25th recurrence as a red dashed line, and
the calculated metastable lifetime, tm, shown as a vertical green line. The ensemble average, ⟨η⟩, is
shown in orange.

ensemble average. We find that this is very well defined for all the ranges of parameters 404

we have studied in the α-FPUT model. In contrast, the β-FPUT model cannot be viewed 405

as the truncation of any nonlinear integrable model but rather as a perturbation of the 406

linear lattice. This observation coupled with the fact that for β > 0, the β-FPUT model 407

exhibits well-known exponential numerical instabilities related to the soliton solutions 408

of the modified Korteweg-de Vries (mKdV) equation [20], (see Section 2.2), results in 409

significant convergence issues when we try to adapt our “bin averaging” technique for 410

the β-FPUT model. In particular, it requires very accurate numerics to ensure that we are 411

correctly following the true dynamics of a given trajectory over time in the β-FPUT model, 412

since there are no non-trivial integrable models to compare to. If we look again at Figure 2 413

in Section 3.2, these comments seem counter-intuitive, since the α-FPUT model seems to 414

“slide” down from the metastable state to true equilibrium whereas the β-FPUT model 415

shows a sudden drop-off to the equilibrium value of the spectral entropy. However, in the 416

β-FPUT model, using the binning procedure to establish the true lifetime of the metastable 417

stage requires an enormous number of runs of very high accuracy to ensure that we are not 418

observing a numerical artifact, i.e. an inaccurate calculation of the true trajectory.DKC
419

However, no integrable nonlinear lattice model exists for which the β-FPUT potential 420

is a truncation. Instead, the β-FPUT model is most closely a perturbation of the harmonic 421

lattice.DKC
422

A direct calculation of tm for the β-FPUT model is beyond the computational resources 423

of our present study, as it requires using an integration scheme accurate enough to ensure 424

that the collapse of the metastable state is not a numerical artifact (see Section 2.2), and 425

hundreds of these simulations are required.DKC
426

We will endeavor nonetheless to describe a possibleKAR procedure for calculating tm in 427

the β-FPUT model, which can be undertaken in future worksKAR. As in the α-FPUT model, 428

we run 100 trials with random initial phases, and bin them into 10 bins with 10 trials each. 429

We then define η25, the time-averaged entropy after 25 FPUT recurrence times, averaged 430

across the 10 trials in a bin. The recurrence time is calculated following [25]. The number 431

25 was chosen because this allows the system to relax into its metastable state. After η25, 432

then η tends to be nearly constant in time up until a critical time where it starts relaxing to 433

equilibrium. We can find this critical time, tm, by calculating the deviation of η from η25 434

by more than the bin standard deviation of the 10 trials. This procedure is visualized in 435

Figure 13, where η25 is plotted in red, and the computed tm is seen to line up with the end 436

of the plateau in η. KARFinally, averaging this result over the 10 bins gives a measurement 437

of tm with associated error bars. 438
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6. Conclusion 439

In this article we have investigated the metastable state in the α-FPUT and β-FPUT 440

models, both qualitatively and quantitatively. We began with a visualization of the 441

metastable state using spectral entropy (η). This single degree of freedom measure has the 442

power to quantify the distance from equipartition. This approach allowed us to follow G. 443

Benettin [35] in viewing the α-FPUT model as a truncation of the integrable Toda model. 444

We next studied the strength of recurrences in the α-FPUT model, following the results 445

from S. Pace [25] on the β-FPUT model. This yielded the surprising result that the recurrence 446

strength is a function only of the essential system parameter R = (N + 1)3/2√Eα2 in the 447

α-FPUT model – whereas the strength of recurrences in the β-FPUT model scale with 448

the energy Eβ and not the essential system parameter S = Eβ(N + 1). The strength of 449

recurrences was shown to decay exponentially with R, independent of system size N. 450

We devised a method to measure the lifetime of the metastable state tm in the α- 451

FPUT model. Our procedure involved averaging over random initial phases in the P1-Q1 452

plane (at fixed energy E1 = 1
2
(

P2
1 + ω2

k Q2
1
)
). This bin average provided a relevant length 453

distance, the standard deviation, from which we could determine when the α-FPUT model 454

trajectories break off from the entropy of the Toda model. Applying this procedure yielded 455

Figure 9a, which shows tm as a function of Eα2 for different N. Surprisingly, as Eα2 → 0, 456

the data for different N collapses onto the same power law with exponent −4.9. 457

We also explored the spectrum of the α-FPUT model, compared to that of the Toda 458

model. We extended this analysis to relate to a method for an irreversible energy dissipation 459

process suggested by Onorato et al. [2] (four-wave and six-wave resonances in wave 460

turbulence theory). Our preliminary results confirm the presence of resonances in the 461

spectrum, but it is not clear these are those proposed by Oronato et el. [2]. Future work is 462

anticipated on this point. 463

Turning our attention to the β-FPUT model, we explored the two different signs of β, 464

something which is not interesting in the α-FPUT model since the α-FPUT Hamiltonian 465

is symmetric under α → −α. The spectra for the β-FPUT model suggestively point to 466

resonances leading to equipartition as well. We developed a procedure for calculating tm 467

in the β-FPUT model, a very different task than for the α-FPUT model since the β-FPUT 468

model is not the truncation of an integrable model. 469
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