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Ribozymes are RNA molecules that catalyze biochemical reactions. Self-
cleaving ribozymes are a common naturally occurring class of ribozymes
that catalyze site-specific cleavage of their own phosphodiester backbone.
In addition to their natural functions, self-cleaving ribozymes have been used to
engineer control of gene expression because they can be designed to alter RNA
processing and stability. However, the rational design of ribozyme activity
remains challenging, and many ribozyme-based systems are engineered or
improved by random mutagenesis and selection (in vitro evolution). Improving a
ribozyme-based system often requires several mutations to achieve the desired
function, but extensive pairwise and higher-order epistasis prevent a simple
prediction of the effect of multiple mutations that is needed for rational design.
Recently, high-throughput sequencing-based approaches have produced data
sets on the effects of numerous mutations in different ribozymes (RNA fitness
landscapes). Here we used such high-throughput experimental data from
variants of the CPEB3 self-cleaving ribozyme to train a predictive model
through machine learning approaches. We trained models using either a
random forest or long short-term memory (LSTM) recurrent neural network
approach. We found that models trained on a comprehensive set of pairwise
mutant data could predict active sequences at higher mutational distances, but
the correlation between predicted and experimentally observed self-cleavage
activity decreased with increasing mutational distance. Adding sequences with
increasingly higher numbers of mutations to the training data improved the
correlation at increasing mutational distances. Systematically reducing the size
of the training data set suggests that a wide distribution of ribozyme activity may
be the key to accurate predictions. Because the model predictions are based
only on sequence and activity data, the results demonstrate that this machine
learning approach allows readily obtainable experimental data to be used for
RNA design efforts even for RNA molecules with unknown structures. The
accurate prediction of RNA functions will enable a more comprehensive
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understanding of RNA fitness landscapes for studying evolution and for guiding
RNA-based engineering efforts.

KEYWORDS

ribozyme, fitness landscape, RNA, epistasis, machine learning, long short-term
memory, random forest

Introduction

RNA enzymes, or ribozymes, are structured RNA molecules
that catalyze biochemical reactions. One well-studied class of
ribozymes are the small self-cleaving ribozymes that catalyze site
specific cleavage of phosphate bonds in their own RNA backbone
(Ferré-D’Amaré and Scott, 2010). These self-cleaving ribozymes
are found in all domains of life, and their biological roles are still
being investigated (Jimenez et al,, 2015). In addition to their
natural functions, these ribozymes have been used as the basis for
engineering biological systems. For example, several small
ribozymes (hammerhead, twister, pistol, and HDV) have been
used as genetically encoded gene regulatory elements by
combining them with RNA aptamer and embedding them
into untranslated regions of genes (Groher and Suess, 2014;
Dykstra et al, 2022). This approach continues to gain
attention because of the central importance of controlling
gene expression and the simple design and build cycles of
these small RNA elements. Nevertheless, ribozymes often need
optimization for sequence dependent and cell specific effects.
This can be achieved by modifying the sequence of the
ribozymes, but this often requires multiple mutational changes
and the vast sequence space requires extensive trial and error.
Given this large sequence space, even the most high-throughput
approaches can only find the optimal solutions present in the
sequences that can be explored experimentally, which is a
fraction of the total possible sequences. The engineering of
could benefit
prediction of the effects of multiple mutations in order to

ribozyme-based  systems from accurate
narrow the search space towards optimal collections of
sequences.

One way to think of the ribozyme optimization problem is in
terms of fitness landscapes. Molecular fitness landscapes of
protein and RNA molecules are studied by measuring the
effects of numerous mutations on the function of a given
reference molecule (Athavale et al., 2014; Blanco et al., 2019).
Recently, the fitness landscapes of RNA molecules have been
studied experimentally by synthesizing large numbers of
sequences and using high-throughput sequencing to evaluate
the relative activity of the RNA in vitro, or the growth effect of the
RNA in a cellular system, both of which are termed “RNA fitness”
(Kobori and Yokobayashi, 2016; Li et al., 2016; Pressman et al.,
2019). The goal of in vitro evolution is often to find the highest
peak in the landscape, or one of many high peaks, by introducing
random mutations and selecting for improved activity. However,
the RNA fitness landscapes that have been experimentally
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studied so far have revealed rugged topographies with peaks
of high relative activity and adjacent valleys of low activity.
Landscape ruggedness is an impediment to finding desired
sequences through in vitro evolution approaches (Ferretti
et al, 2018). Epistasis, defined as the non-additive effects of
mutations, is the cause of ruggedness in fitness landscapes, and
epistasis has been used to quantify the ruggedness of fitness
landscapes (Szendro et al, 2013). More frequent and more
extreme epistasis indicates that a landscape is more rugged.
Importantly, more epistasis also means that the effect of
combining multiple mutations is challenging to predict even if
the effects of each individual mutation are known. In addition,
experimental fitness landscapes can only study a limited number
of sequences, except for very small RNA molecules (Pressman
et al, 2019). It is often not possible to know if the process of
in vitro evolution discovered a sequence that is globally optimal,
or just a local optimum. For these reasons, it has become a goal to
accurately predict the activity of sequences in order to streamline
RNA evolution experiments and to study fitness landscapes in a
more comprehensive manner (Groher et al., 2019; Schmidt and
Smolke, 2021).

Here, we use high-throughput experimental data of
mutational variants of a self-cleaving ribozyme to train a
the effect of
combinations of three or more mutations. The ribozyme
used in this study is the CPEB3 ribozyme (Figure 1A). This
ribozyme is highly conserved in the genomes of mammals,

model for predicting higher-order

where it is found in an intron of the CPEB3 gene (Salehi-
Ashtiani et al., 2006). For training purposes, we generated a
new data set that includes all possible individual and pairs of
mutations to the reference CPEB3 ribozyme sequence
(Figure 1B). These mutations were made by randomization
of the CPEB3 ribozyme sequence with a 3% per nucleotide
mutation rate during chemical synthesis of the DNA template.
We reasoned that given the extensive amount of pairwise
epistasis in RNA (Bendixsen et al., 2017), this data set might
be sufficient for predicting higher-order mutants. In addition,
we used a second, previously published data set that included
27,647 sequences comprised of random permutations of
that up

the reference
ribozyme (Bendixsen et al., 2021). This second data set not

mutations found in mammals include to

13 mutational differences from same
only contains higher-order mutational combinations, but also
a broad range of self-cleaving activity (Figure 1D). In both
data sets, the relative activity of each sequence was determined

by the deep sequencing of co-transcriptional self-cleavage
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FIGURE 1

The CPEB3 ribozyme and data prediction challenge. (A) Secondary structure diagram of the CPEB3 ribozyme. The white arrow indicates the site

of self-cleavage. Nucleotide color indicates the average relative activity of the three possible point mutations at each position. Boxes indicate
nucleotide positions mutated in the phylogenetically derived higher-order mutants (B) Heatmap representation of comprehensive single and
double-mutant data. Each pixel in the heatmap shows the ribozyme activity for a specific double mutant indicated by the nucleotide positions

on the top and right of the heatmap. Insets show base paired regions and specific mutations. Ribozyme activity is determined as the fraction of total

(Continued)
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FIGURE 1

reads that map to each sequence that are in the cleaved form (fraction cleaved) relative to the wildtype fraction cleaved. (C) Distribution of pairwise
epistasis from double mutant data. Epistasis was calculated as ¢ = logig (Wag*
ribozyme, Wx and Wy are fraction cleaved of sequences with individual mutations and Wag is the fraction cleaved of the sequence with both
individual mutations. (D) Higher mutational distance variants of the CPEB3 ribozyme represented as a fitness landscape. Ribozyme activity (fraction
cleaved) is shown for 27,647 sequence variants derived from permutations of naturally occurring mutations. Each node represents a different
sequence and the size and color of the node is scaled to the ribozyme activity. Edges connect nodes that differ by a single mutation. Sequences are
binned into quintiles of ribozyme activity and the number of genotypes reports the number of sequences in each quintile.

wt!/ Wa*Wp), where W, is the fraction cleaved of the wild-type

data, as previously described. Briefly, the mutated DNA
template was transcribed in vitro with T7 RNA polymerase.
The transcripts were prepared for Illumina sequencing by
reverse transcription and PCR. Relative activity was
determined as the fraction cleaved, defined by the fraction
of sequencing reads that mapped to a specific sequence variant
in the shorter, cleaved form relative to the total number of
reads for that sequence variant.

We set the goal of being able to predict the activity of the
higher-order mutants in the phylogenetically derived fitness
landscape (Figure 1D). In addition, we wanted to guide future
experiments aimed at producing additional data for training
models of ribozyme-based systems. The number of possible
sequences increases exponentially with the number of variable
nucleotide positions. In addition, the probability of finding active
ribozymes at higher mutational distances becomes increasingly
unlikely. Experiments aimed at training predictive models will
need to choose realistic numbers of sequences that can have the
highest impact on model performance. We therefore evaluated
the effect of adding to the training data sequences with increasing
mutational distances from the wild-type sequence as well as the
effect of reducing the number of sequences in the training data.
The results of these experiments were expected to be useful in
guiding the choice of which sequence variants, and how many, to
analyze experimentally in order to produce effective training
data sets.

Results

We first evaluated our new training data set that contained all
single and double-mutants of the CPEB3 ribozyme. We found
that the data did in fact contain full coverage of the possible
207 single mutants and the 21,114 double mutants. While the
number of reads that mapped to each of these sequences varied,
we found that, on average, 170 reads mapped to each double
mutant, and ~18,000 reads mapped to each single mutant
(Supplementary Figure S1). This read depth was sufficient for
the determination of the fraction cleaved for all single and double
mutants (Figure 1B). Mapping the fraction cleaved to base paired
structural elements showed expected patterns of activity caused
by compensatory base pairs. Mutations that break a base pair
typically showed low activity, but a second mutation that restored
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the base pair showed high activity. To further evaluate this data,
we calculated the non-additive pairwise epistasis in this data set
(Figure 1C). Together, this analysis indicated that this data set
contained a wide range of ribozyme activity and the effects of all
pairwise intramolecular epistatic interactions.

In order to determine the training potential of the
comprehensive double-mutant data, we first trained models
using only the fraction cleaved data for sequences with two or
fewer mutations including the wild-type reference sequence. We
then tested the models’ performance in predicting the fraction
cleaved for sequences with increasing numbers of mutations. We
trained two models with two approaches (see Materials and
Methods). The first approach used a Random Forest regressor.
In the second approach, we added a Long Short-Term Memory
(LSTM) recurrent neural network to extract hidden features from
the data. We then fed the hidden features with associated fraction
cleaved to a Random Forest regressor. We will refer to this
approach as “LSTM.” We found that models trained on two or
fewer mutations with Random Forest outperformed LSTM at
predicting the activity of sequences with five or fewer mutations
(Figures 2A-C), but LSTM performed better when predicting the
activity of sequences with six or more mutations relative to the
wild-type (Figures 2D-I). However, both approaches showed a
decrease in the correlation between predicted and observed when
challenged to predict the activity of sequences with higher
numbers of mutations, and both resulted in relatively low
correlation (Pearson r < 0.7) for sequences with seven or
more mutations when trained only on this double mutant
data (Figure 2 and Supplementary Table S2). We concluded
that models trained on simple random mutagenesis containing
all double mutants can be useful for predicting lower mutational
distances, but we anticipated that additional data might improve
the ability to predict the effect of higher numbers of mutations.

To determine the effect of adding higher-order mutants to
the training data, we divided the phylogenetic derived sequence
data by mutational distance and re-trained models with
increasing orders of mutations in the training set. As
the
predicted to observed correlation at higher mutational

expected, adding higher-order mutants improved

distances (Figure 3 and Supplementary Figures S2-S14).
Interestingly, we found that the Random Forest approach
outperformed the LSTM approach when sequences with more
mutations were included in the training data. This is especially
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FIGURE 2

Prediction accuracy of models trained on comprehensive individual and pairs of mutations. (A—I) Scatter plots of predicted (fraction cleaved
from the models) and observed (fraction cleaved from experiments). The models were trained on the experimentally determined fraction cleaved for
the wild-type and all possible sequences with one mutation (207 sequences) or two mutations (21,114 sequences). Insets report Pearson correlation
coefficients r for the model trained by the Random Forest approach (orange) and the LSTM-RF approach (blue). The sequences used to
compare prediction vs. observed were separated by the number of mutations relative to the wild-type, as indicated by the title of each graph.

apparent for predicting the activity of sequences with
8-10 mutations. The Random Forrest approach resulted in
models with high correlation between predicted and observed
for all mutational distances when trained with data from
sequences with four or more mutations (Figures 3A-C). For
both approaches, the largest improvements in the correlations
occurred when sequences with three mutations (relative to wild-

Frontiers in Molecular Biosciences

05

type) were added to the data. Subsequently appending additional
sequences with greater numbers of mutations had diminishing
improvements on the correlation. This was also generally true for
two other machine learning approaches that we benchmarked
(linear regression and multilayer perceptron regressor, scikit-
learn), but that we did not pursue further because they showed
lower correlations than the Random Forrest (Supplementary
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FIGURE 3

Improvement in prediction accuracy when including sequences with increased mutational distances in the training data. Changes in Pearson r,

R?, and mean squared error (MSE) of prediction-observed correlation (y-axis) with increasing numbers of max mutations within the training data
(x-axis). Training sets included all sequences up to and including the y-axis value. (A—C) Results obtained for the random forest model. (D—F) Results
from the LSTM model. For each plot, colors indicate the numbers of mutations in sequences in the test data (see key). Insets show changes to

the same prediction accuracy measurement with the 3—7 mutation training data, to allow more visual resolution.

Figure S15). We note that all the testing data was set aside prior to
training and identical testing data was used for all models. The
results demonstrate that adding higher order mutants to the
training data improves the Pearson correlation of sequences at
higher distances in this data set. It is important to note that the
phylogenetically derived data has different numbers of sequences
for each class of mutations (Table 1), and sequences with higher
numbers of mutations in our data show mostly low activity
(Supplementary Figure S16). This helps interpret the effect of
sequentially adding higher-order mutant sequences to the
It that the
phylogenetic derived sequences only contain mutations at

training data. is also important to note
thirteen different positions. The higher order sequences in this

data are therefore combinations of the lower order sequences. For
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example, a sequence with six mutations can be constructed by
combining two sequences with three mutations, both of which
would be in the “3 mutations” training data. Our model is
the effects of
mutations, and adding precise sets of lower order mutations

therefore predicting of combining sets
that re-occur in higher order mutations clearly improves the
correlations between prediction and experimental observation in
our data.

In order to inform future experiments for collecting
training data, we next set out to determine the effect of
decreasing the amount of data in the training sets. Starting
from the 80% of data used as prior training data, we randomly
sampled sequences from this data to create new training data

sets with 60, 40, 20, 10 and 1% of the total data. These
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TABLE 1 Counts of sequences in training and testing data sets.

No. of mutations Training Testing
1 207 -

2 21,114 —

3 414 104
4 1,240 310

5 2,650 662

6 4,162 1,040
7 4,867 1217
8 4241 1,060
9 2,720 680
10 1,249 312
11 389 97

12 74 18

13 6 2

subsampled data sets were used to train models using the
random forest regressor. The same testing data was set aside
for all models and used to compare the Pearson correlation
coefficient of each model trained with decreasing amounts of
data. As an illustrative example, we focused on a model trained
with sequences with five or fewer mutations relative to wild-
type used to predict the activity of sequences with seven
mutations (Figure 4 and Supplementary Table S1). We
this
correlation (Pearson r =

chose example because it achieved very high
0.99) when trained with 80%
(25,733 unique sequences) of the data and therefore
provided an opportunity to observe how rapidly the
correlation decreased with less data. We found that the
models trained on five or fewer mutations predicted with
high correlation when as little as 40% (12,866) of the data was
used for training (Pearson r = 0.97). With only 20% (6,433)
and 10% (3,217) of the data, the model still showed good
0.9.
Surprisingly, we still observed reasonably high correlation

prediction accuracy with a Pearson correlation r =

when including only 1% (322) of the training data, and this
was reproducible over five different models trained with
0.81,
stdev = 0.046, n = 5). Similar results were observed with

different random samples of the data (Pearson r =

other training and testing scenarios. To illustrate general
trends, we have plotted the Pearson correlation for the
same model trained on five or fewer mutations when
predicting the activity of sequences with 6, 7, 8 or
9 mutations, and for a model trained on 9 or fewer
mutations used to predict sequences with 5, 6, 7, or
8 mutations (Figure 4). This analysis suggests that the total
amount of training data is not critical for predicting the
activity of sequences in our data set. When combined with
the diminishing returns of adding more higher order
mutations 3), this analysis the

(Figure emphasizes
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importance of collecting appropriate experimental data sets
for training that include ribozymes with more mutations that
still maintain relatively high activity. However, given the low
probability of finding higher-order sequences with higher
activity, an iterative approach with several cycles of
predicting and testing might be necessary to acquire such data.

While the primary goal was to predict the relative activity of
RNA sequences, we wondered if the models might also be useful
for predicting structurally important nucleotides. To address this
question, we analyzed the “feature importance” in several of our
Random Forest models. Feature importance is a method to assign
importance to specific input data. Because our data only uses
sequence as input, the features in our data are specific nucleotides
(A, G, C or U) at specific positions. We found that for the
Random Forest models, the most important feature all clustered
around the active site of the ribozyme (Supplementary Figures
S17, S§18). Further, the CPEB3 ribozyme uses metal ion catalysis
and several of the most important features were nucleotides that
have been observed coordinated to the active site magnesium ion
in the CPEB3 ribozyme, or the analogous nucleotides in the
structurally similar HDV ribozyme (Kapral et al., 2014; Skilandat
et al,, 2016). For example, for all the models trained with some
higher order mutants, the most important feature was G1, which
positions the cleaved phosphate bond in contact with the
catalytic magnesium ion. The second most important feature
was G25, which forms a wobble base pair with U20 (Lévesque
et al, 2012), another important feature (top 4-6), and this
nucleotide pair coordinates the active site magnesium ion
through outer sphere contacts. The catalytic nucleotide
C57 binds the same catalytic magnesium as the G25:
U20 wobble pair, and had a high feature importance similar
to U20. Most of the other important features are involved in base
pairs that stack or interact with the metal ion coordinating bases.
Interestingly, we found that nine of the ten most important
features were identical for models trained with only single and
double mutants or with increasing amounts of higher-order
the Gl and G25 features
increasingly more important as with  higher
mutational distance were added to the training data. This

mutants. However, became

sequences

indicates that the higher-order mutants in the training data
helped We
conclude presented

emphasize critical nucleotides.
that

identified nucleotides involved in forming the active sites of

structurally
the machine learning models
the CPEB3 ribozyme. Because we did not use structural data to
train our models, the results suggest that similar data could
identify active sites in RNA molecules with unknown structures.

Discussion

We have shown that a model trained on ribozyme activity
data can accurately predict the self-cleavage activity of sequences
with numerous mutations. This approach can be used to guide

frontiersin.org



Beck et al.

10.3389/fmolb.2022.893864

A
Train with 80% (25,733)
I,I’
P
%
0.8
b
4
/”
g o6
2 oo
s
504
0.2 2
: —— r=0.99
0.0
0.0 0.2 0.4 0.6 0.8 1.0
observed
D
Train with 20% (6,433)
I"I
pe
e
0.8
l//l
k-] //
H 0.6
i
K
504
0.2
—— r=0.89
0.0
0.0 0.2 0.4 0.6 0.8 1.0
observed
G ; -
Train 5 Mutations
1.00
0.95
0.90
0.85
.
0.80
075 Predict6
070 — — Predict7
—— Predict 8
0.65 —— Predict9
80 60 40 20 10 1
% of data in training set
FIGURE 4

B (o]
Train with 60% (19,300) ., Train with 40% (12,866)
0.8 . 0.8

B 06 = T 06 -

s s

-] T

[ @

g 04 504

0.2

0.2
— r=0.99 — r=0.97
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
observed observed
E
‘o Train with 10% (3,217) ‘o Train with 1% (322)
; /, ; ,/,
l/ I,
I, /’
0.8 0.8
. .,
/’,’ /,l/
. .
E 0.6 s E 0.6 i
2 2
K K
5 04 504
0.2 0.2
—— r=0.91 —— r=0.81
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
observed observed
H Predict 9 Mutations
1.00
0.95
0.90
0.85
= 0.80
0.75
—— Train 5
070 — Train6
—— Train 7
065 —— Train8

80 60 40 20 10 1
% of data in training set

Effects of reducing the number of sequences in the training data. (A—F) Scatter plots of Predicted (fraction cleaved from the models) and
Observed (fraction cleaved from experiments) for models trained with decreasing amounts of sequences with five or fewer mutations using the
random forest approach and predicting the fraction cleaved of sequences with seven mutations. The percent of the total sequence used in the
training data is indicated in the title of each plot, and the number of unique sequences in the training data is reported in parentheses. Pearson
correlation coefficients r are indicated as insets. (G) The correlation between predicted and observed for a model trained with decreasing amounts
data from sequences with five or fewer mutations ("Train 5”) and predicting the activity of sequences with increasing numbers of mutations (Predict
6-9). (H) Predicting the activity of sequences with 9 mutations (“Predict 9 Mutations”) with models trained on different reduced data sets.

experiments based on a relatively small set of initial data.
Importantly, the approach did not use structural information
such as X-ray crystallography or cryo-EM, and used only
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sequence and activity data, which can be obtained with
common molecular biology approaches (in vitro transcription,
RT-PCR, and sequencing). In addition, the training data starts
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with small amounts of synthetic DNA. The comprehensive
double mutant data and the phylogenetic derived data each
started from a single DNA oligo synthesis that used doped
phosphoramidites at the variable positions. Each data set was
collected on a single lane of an Illumina sequencer. The approach
presented in this paper is therefore accessible, rapid and
inexpensive as compared to approaches that use structural
data to train their models.

Sequence conservation of naturally occurring RNA
molecules has been another useful data type for training
RNA
Leonardis et al., 2015; Weinreb et al., 2016). This approach is

models to predict structure from sequence (De
based on the observation that nucleotide positions that form a
base pair often show co-evolutionary patterns of sequence
conservation. In some cases, this co-evolutionary data has
been combined with thermodynamic predictions or structural
data from chemical probing, such as SHAPE experiments
(Calonaci et al, 2020). Numerous ribozymes, aptamers and
aptazymes have been discovered through in vitro evolution
experiments and conservation data is not available unless
sequencing experiments were applied during the selection
process. Our approach could be used to expand functional
information of non-natural RNA molecules which could then
be used to guide structure prediction of these molecules in a way
similar to how naturally occurring sequence conservation has
been used. In addition, sequence conservation does not
necessarily predict relative activity. For example, while the
CPEB3 ribozyme is highly conserved in nature, not all of the
sequence are equally proficient at catalyzing self-cleavage
(Chadalavada et al., 2010; Bendixsen et al, 2021). Our
approach using machine learning from experimentally derived
data may prove useful for guiding experiments with non-natural
RNA molecules discovered through in vitro selection or SELEX-
like approaches. However, adopting this machine learning
approach will require that each experimenter acquire specific
data for their system necessary to train and test sequences with
the functions they are investigating.

With future work, it may be possible to produce more general
models of ribozyme activity. For example, a model trained on
data sets from several different self-cleaving ribozymes with
different nucleotide lengths might learn to predict the activity
of sequences of arbitrary length and sequence composition. In
fact, recent advances in RNA structure prediction have used the
crystal structures of several different self-cleaving ribozymes as
training data to develop predictive modes that achieve near-
atomic level resolution of arbitrary sequences (Townshend et al.,
2021). Alternatively, models trained on ribozymes with different
activities beyond self-cleavage might be able to classify sequences
as ribozymes of various functions. There has been some success
with generating general models for predicting protein functions.
The latent features identified by deep generative models of
protein sequences are being used to better understand the
complex, higher-order amino acid interactions necessary to
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achieve a functional protein structure (Riesselman et al., 2018;
Detlefsen et al., 2022). We hypothesize that latent features could
aid in the identification of generalized parameters that govern the
epistatic interactions of higher-order mutants of RNA sequences
as well. We hope that the accuracy and accessibility of the
approach presented here will inspire others to carry out
similar experiments and initiate the data sharing that will be
needed to develop more general models, similar to what is being
accomplished for protein functional predictions (Biswas et al.,
2021).

One challenge to our predictive models appears to be the low
frequency of active sequences at higher mutational distances. In
our phylogenetically derived data the vast majority of sequences
have very low activity (Figure 1D), and the probability of finding
sequence with high fraction cleaved decreases with the number of
mutations relative to wild-type. As a consequence, models
trained on lower-order mutant variants tend to overestimate
the activity of sequences at higher mutational distances. It has
been previously observed that experimental RNA fitness
landscapes are dominated by negative epistasis, which means
that mutations in combination tend to have lower fitness than
would be expected from the additive effects of individual
mutations (Bendixsen et al, 2017). The overestimation of
fraction cleaved at higher mutational distances suggests that
our models have a difficult time learning to predict negative
epistasis. It has been previously observed that mutations with
“neutral” or “beneficial” effects on protein function often have
destabilizing effects on protein structure (Soskine and Tawfik,
2010). We postulate that the same effect is causing negative
epistasis in the RNA data. This suggests that additional
of
thermodynamic stability of helices, might be necessary for

information, such as measurements or estimates
increasing accuracy at even higher distances beyond those
offered by this data set (Groher et al, 2019; Yamagami et al,,
2019). For example, we have recently demonstrated that our
sequencing based approach to measuring ribozyme activity can
be extended to include magnesium titrations in order to evaluate
RNA folding/stability (Peri et al., 2022). In the future, combining
structural and functional information might be the best approach
to accurately design RNA molecules with desired functional

properties.

Materials and Methods
Ribozyme activity data

Ribozyme activity was determined as previously described
(Bendixsen et al., 2021). Briefly, DNA templates were synthesized
with the promoter for T7 RNA polymerase to enable in vitro
transcription. Templates were synthesized with mixtures of
phosphoramidites at variable positions. For the comprehensive
double-mutant data set, templates were synthesized with 97%
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wild-type nucleotides and 1% each of the other three nucleotides.
For the phylogenetic derived data set, the template was
synthesized with an equal mixture of the naturally occurring
nucleotides that were found at 13 positions that varied across
99 mammalian genomes. During in vitro transcription, RNA
molecules self-cleaved at different rates. The reaction was
stopped at 30 min, and the RNA was concentrated and
reverse transcribed with a 5'-RACE protocol that appends a
new primer site to the cDNA of both cleaved and uncleaved RNA
(SMARTScribe, Takara). The cDNA was PCR amplified with
primers that add the adaptors for Illumina sequencing. This
procedure was done in triplicate with unique dual-indexes for
each replicate. DNA was combined equimolar and sent for
sequencing (GC3F, University of Oregon.) Sequencing was
performed on a single lane of a HiSeq 4,000 using paired-end
150 reads.

Ribozyme activity from sequence data

FastQ sequencing data were analyzed using custom Julia and
Python scripts. Briefly, the scripts identified the reverse
transcription primer binding site at the 3’-end to determine
nucleotide positions and then determined if the sequence was
cleaved or uncleaved by the absence or presence of the 5'-
upstream sequence. For the single and double mutants, all
possible sequences were generated and stored in a list, and
reads that matched the list elements were counted and cleaved
or uncleaved was determined by the presence or absence of the
5'-upstream sequence. For the phylogenetically derived data,
the
13 variable positions by counting the string character position

nucleotide identities were determined at expected
from the fixed regions. Sequencing reads were discarded if they
contained unexpected mutations in the primer binding site, the
uncleaved portion, or the ribozyme sequence. For each unique
genotype in the library the number of cleaved and uncleaved
sequences were counted and ribozyme activity (fraction cleaved)
was calculated as fraction cleaved = countsjeayea/ (COUNtS eayed +

COUHtSuncleaved) .

Machine learning

Random Forest regression uses an ensemble of decision trees
to improve prediction accuracy. Each tree in the ensemble is
created by partitioning the sequences within a sample into groups
possessing little variation. Each sample is drawn with
replacement and the resulting trees are aggregated into forests
that best predict the cleavage rates of the sequences. The Random
Forest regression was performed using the python package scikit-
learn. Each sequence was transformed into a 69 by 4 one-hot
encoding representation of the sequence. Each of the four
possible nucleotides within the sequence was represented by a
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vector of length 4 possessing a uniquely located “1” within the
vector to signify the nucleotide’s identity. Each sequence in
the training set was fit using scikit-learn’s Random Forest
Regressor ensemble module. Feature importance was
computed via a forest of randomized trees using the
features_importances function in the module under default
settings. Briefly, the relative importance of a feature was
determined by the depth of the feature when it was used as
a decision node in a tree. Features used at the top of the tree
contribute to the final prediction decision of a larger fraction
of the input samples. The expected fraction of the samples
they contributed to was used as an estimate of the relative
importance of the features.

LSTM is a recurrent neural network commonly used for
the predictive modeling of written text data, which has
sequential dependencies. Here we used an LSTM to
compute a set of hidden features given a set of nucleotide
sequences. These hidden features are learned by the LSTM in a
supervised way for the purpose of relating the nucleotide
sequence to the corresponding ribozyme activity (fraction
cleaved). The LSTM network has an architecture where
each cell C outputs the next state h, (1 < t < n) by taking
in input from the previous state h, ; and the embedding x, of
the current nucleotide in the sequence. The output h, of the
last cell of the LSTM is then used as input to a Random Forest
regressor to predict the sequence functional activity rate. The
LSTM model was built using PyTorch’s open-source machine
learning framework. Sequences were trained using an LSTM
layer with 32 hidden dimensions and a dropout rate of 0.2.
Each sequence was embedded in a 69 by 4 tensor (where 4 is
the size of the nucleotide embedding) and then batched in
groups of 64 sequences for input to the model. The gradient
descent was performed using PyTorch’s built-in Adam
optimizer and MSELoss criterion. Twenty-five training
epochs were performed on each training set.

Training and test data

The data set containing the fraction cleaved data from the
27,647 phylogenetically derived sequences was binned based on
the number of mutations relative to the wild-type ribozyme. For
each bin, a portion of the data (20%) was chosen at random and
set aside as test data. This resulted in test data sets that were also
separated by the number of mutations relative to the wild-type
sequence. Training data sets were created from the 80% of data in
each mutational bin that was not set aside for testing. Training
data sets were created by combining bins at a given number of
mutations to all the bins with lower numbers of mutations.
Training data included 100% of the single and double mutant
data. For reduced training sets were created by randomly
sampling different numbers of sequences from the original full
training data sets.
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