
FuzzBoost: Reinforcement Compiler
Fuzzing

Xiaoting Li1, Xiao Liu2, Lingwei Chen3, Rupesh Prajapati4,
and Dinghao Wu4(B)

1 Visa Research, Palo Alto, CA, USA
xiaotili@visa.com

2 Meta, Inc., Menlo Park, CA, USA
bamboo@fb.com

3 Wright State University, Dayton, OH, USA
lingwei.chen@wright.edu

4 Pennsylvania State University, University Park, PA, USA
{rxp338,duw12}@psu.edu

Abstract. Enforcing the correctness of compilers is important for the
current computing systems. Fuzzing is an efficient way to find security
vulnerabilities in software by repeatedly testing programs with enormous
modified, or fuzzed input data. However, in the context of compilers,
fuzzing is challenging because the inputs are pieces of code that are
required to be both syntactically and semantically valid to pass front-
end checks. Also, the fuzzed inputs are expected to be distinct enough to
trigger abnormal crashes, memory leaks, or failing assertions that have
not been detected before. In this paper, we formalize compiler fuzzing as
a reinforcement learning problem and propose an automatic code syn-
thesis framework called FuzzBoost to empower the input code muta-
tions in the fuzzing process. In our learning system, we incorporate the
deep Q-learning algorithm to perform multi-step code mutations in each
training episode, and design a reward policy to assess the testing cover-
age information collected at runtime. By interacting with the system, the
fuzzing agent learns to predict code mutation actions that maximizing
the fuzzing rewards. We validate the effectiveness of our proposed app-
roach and the preliminary evidence shows that our reinforcement fuzzing
method can outperform the fuzzing baseline on production compilers.
Our results also show that a pre-trained model can boost the fuzzing
process for seed programs with similar patterns.
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1 Introduction

Compilers are fundamental in the current computing system as they are part of
the trust base of the machine. However, they contain bugs and it is non-trivial
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to verify all the vulnerabilities due to their large codebase. For example, GCC
has about 15 million lines of code [27]. Fuzzing is an effective way to find secu-
rity vulnerabilities in compilers by repeatedly testing the codes with randomly
modified, or fuzzed inputs [28]. It plays an important role in quality assurance,
software development, and vulnerability assessment over decades [8,9,19,30].
Many existing vulnerabilities are reported by fuzzing techniques [23]. Due to the
unlimited search space and limited computing resources, existing fuzzing tools
explore efficient strategies in fuzzing program inputs. Especially in the scenario
of compiler testing, no one can exhaustively examine the entire input space, or
traverse all the possible execution paths of target compilers in practice. There-
fore, a variety of strategies are designed based on fuzzing heuristics to prioritize
finding interesting inputs to be fuzzed. Such fuzzing heuristics may be a ran-
dom selection, or trying to maximize a specific goal, such as code coverage [15],
execution timeouts, and crashes [35].

Coverage-guided testing is widely adopted by fuzzers [10,33,36], which uti-
lizes code coverage information as the search heuristic to generate new inputs
from the fuzz action of a predefined list. These exhaustive bounded searches
use domain-specific heuristics and are thereby limited in applicability and scala-
bility. Additionally, they overlook the benefit from past experiences in historical
mutations and cannot automatically learn the common knowledge that is shared
in different input seeds generated during the fuzzing boosting process. Moreover,
most coverage-guided frameworks only calculate the rewards/fitness after a sin-
gle mutation is taken, which yet underestimates the power of a series of mutation
combinations. For instance, state-of-the-art mutation-based methods like Amer-
ican Fuzzing Lop (AFL) [36] add newly generated fuzzing programs after one
mutation according to defined search heuristics into the seed set for the next
round of fuzzing. However, for coverage-guided fuzzing, testing coverage does
not increase linearly. In other words, each of these mutations may not improve
the testing efficacy incrementally. They can be rejected by lexical or semantic
checks in the early stage of compilation. But a trace of mutations may trigger a
giant improvement as it may increase the possibility of generating more diverse
input programs to enhance the code coverage of compilers.

Faced with these challenges, we formalize compiler fuzzing as a reinforcement
learning problem and propose FuzzBoost to integrate the superiority of rein-
forcement learning to the coverage-guided fuzzing. The design of FuzzBoost is
inspired by the fact that fuzzing can be modeled as a learning process with a feed-
back loop where the model aims to learn the mutation heuristics based on the
feedback (reward) from the runtime information for evaluating the quality of cur-
rent input [5]. Reinforcement learning describes the learning process by an agent
interacting with the environment to learn an optimal policy by trial and error. It
is usually effective for sequential decision-making problems in natural and social
sciences, and engineering [3,29]. Theoretically speaking, the problem of compiler
fuzzing can be seen as a problem of program synthesis, the goal of which is to cover
more paths, trigger more crashes or memory leaks in compilers’ execution traces
while compiling new generated codes. Specifically, we model compiler fuzzing
as a multi-step decision-making process where a learning task progresses with a
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feedback loop. The fuzzing agent initially generates new inputs with little knowl-
edge but random heuristics. The compiler iteratively runs with the newly fuzzed
input. Based on the feedback of the environment, we capture runtime information
gathered from binary instrumentation techniques to evaluate the quality of input
seeds according to heuristics we define in our learning cycle.

In this paper, we utilize seed programs from test suites of production com-
pilers (GCC [11] in our research) to evaluate FuzzBoost. To demonstrate the
effectiveness of our framework, we also compare it with a baseline fuzzing mech-
anism used in the system AFL [36], which is a widely-used fuzzing method.
AFL applies mutation actions with a uniformly distributed strategy. From the
results, FuzzBoost outperforms baseline random fuzzing with a higher coverage
improvement on seed programs. Additionally, to better improve the efficiency of
FuzzBoost on the fuzzing process, we conduct the experiments on a pre-trained
model. As a result, our tool achieves a better fuzzing performance, which means
that the fuzzing process can be boosted when we reuse the existing model for
new seed programs in compiler fuzzing.

In summary, we make the following contributions:

– We integrate reinforcement learning to the compiler fuzzing problem and
design a principled reinforcement fuzzing method to automatically generate
new test seeds.

– We define reward functions to optimize the fuzzing goal and use a deep Q-
learning algorithm to automatically learn a trace of high-reward mutations for
given seeds which extensively leverage the knowledge in prior experiences. Our
method is task-agnostic that does not rely on any other fuzzing techniques.

– We implement a prototyping tool called FuzzBoost and analyze real-world
compiler fuzzing jobs. We conduct various analytical experiments and results
demonstrate its testing efficacy.

2 Overview

Mutation-based fuzzing relies on generating new program inputs by mutating
seed programs with heuristics. In the previous method [36], the designed fuzzer
performs one-step manipulation on the provided input corpus. Then the fuzzer
may select its collection of interesting fuzzed inputs after based on their perfor-
mance, which is measured by capturing new crashes in the context of black-box
fuzzing or capturing new path information in grey- or white-box fuzzing. How-
ever, it overlooks the potential of a trace of mutations in generating interesting
fuzzed inputs, some intermediate states of which may not be good enough to
attract interest or even break the compilation process due to lexical checks in
early stages. Therefore, we re-model the problem as a multi-step decision-making
problem that gives enough attention to these intermediate states being ignored
in previous design models. Specifically, we formally model compiler fuzzing as a
Markov decision-making process as described in Fig. 1.

As shown in the figure, in this multi-step decision-making process, there is
an input mutation engine M , that performs a fuzzing action a, and subsequently
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Fig. 1. Compiler fuzzing process

observes a new state s directly derived from the mutated program Pt by exer-
cising the predicted action a on an original seed program Pt−1. It means that
the input mutation engine predicts the program rewriting actions based on the
extracted state from the seed program. After that, the engine can receive a
reward r based on performed actions and system state transitions. With the
given formalization, it is natural to use the Markov decision process (MDP) to
model this problem. Therefore, we define the corresponding T -step finite horizon
MDP as M = (s1, a1, r1, s2, a2, ..., sT ). Here st, at, rt represent the state, action,
and reward at time step t = 1, ..., T − 1, respectively. To achieve the trace of
the most effective rewrites for a seed program, we apply reinforcement learning
methods [34] to deploy our formalization. Followed by prior footsteps [5,16], we
use deep Q-learning algorithm [20,21] to learn the fuzzing engine.

In reinforcement learning, one episode is one complete sequence of actions
that starts with an initial state configuration and ends with a terminal state.
In the problem of compiler fuzzing, one episode can be formalized as generating
a fuzzed program by performing one pre-designed mutation on an existing seed
program (initial state), while the learning agent guides the mutation actions that
aims to maximize the total reward it receives during the episode. Compared with
those conventional mutation-based fuzz testing methods, we adopt the same
methodology that using the coverage-guided heuristics to continuously select
and generate the desired program generated from the seed set along the episode.
The main difference is that, in our design, we lazy-evaluate the quality of the
fuzzed inputs until it reaches the terminal state. To this end, our fuzzing process
contains those intermediate states that might not be syntactically valid but can
eventually contribute to high-quality fuzzed inputs.

Before we start the learning process, we randomly initialize a standard deep
neural network. In the first episode, State 0 is represented as a program string
P preprocessed from a seed program. To reduce the randomness and exhaus-
tive space of mutation, we choose a substring of the whole input program to be
our mutation target. Specifically, we extract a substring within a seed program
with the window size (length of the substring) w and offset o. By observing
this substring, the trained deep neural network automatically predict a muta-
tion action to be taken in the next step. Feasible mutation actions on token-level
include insert a token, switch two or more tokens, replace a token, or change the
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window position or size to enable another substring to observe and mutate. Once
an action is decided, we run the compiler with the program after performing such
a mutation and calculate the reward r of this new program with a record of the
execution trace. Subsequently, it moves to the State 1 for further mutations.
With the increased number of actions being taken, we deduct the reward by a
discounted rate γ which is a value between 0 and 1 to enforce an expected fuzzing
trace with fewer mutation actions. We iterate the mutation prediction and eval-
uation until a terminal state is achieved. During the learning process, there are
four key elements in this process: state, action, environment, and reward.

2.1 State

A state S is a concrete configuration in the environment. As defined in MDP, each
process has one state and when the process proceeds, the state updates. In the
case of compiler fuzzing, the agent learns to interact with a given seed program.
We define the state as a function regarding a given input seed program P . The
interaction is performed upon the observation of selected substring within such
an input, which is viewed as a series of consecutive token symbols. Formally, let
Σ denote a finite set of symbols. The set of possible program inputs I in this
language is defined by the Kleen closure I := Σ∗. For an input program string
P = (p1, p2, ..., pn) ∈ I, let

S(P ) := {(p1+i, p2+i, ..., pm+i) | i ≥ 0, m + i ≤ n} (1)

denote the set of all substrings of P . We define the states of the Markov decision
process to be I and I is a union set of S(P ). Thus, we have P ∈ I denotes an
input program and P0 ∈ S(P ) ⊂ I is a substring of this input seed program. The
entire state space of a seed program is S(P ), which is theoretically infinite since
permutations in this language I can increase after mutation. In other words, the
seed program can be converted to any other valid programs.

2.2 Action

Action A is the set of all possible mutation actions that the agent can perform. In
most cases, actions are deterministic and should be chosen among a pre-defined
list. In compiler fuzzing, we define the set of possible action A of the MDP to be
pre-designed rewrite rules on the extracted substrings S(Po). The rewrite rules
are designed in accord with the extracted substring and predicted type. To be
specific, we categorize rewrites from two perspectives, i.e., the extracted content
and the extraction window, so the agent can predict which type and on which
position an action should be performed on the current input.

The rewrites of extracted content are performed on the token-level which
include insertion, replacement, re-ordering, deletion and replication. These
rewriting rules conform with the C language lexical requirements. For inser-
tion, we append new tokens after the predicted index according to production
rules; that is, if the last token is an operator, we randomly sample a token from
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the existing identifiers as its next. For deletion, we delete the token located at
the predicted index. For replacement, we replace the token at the predicted index
with another token randomly sampled from sets of tokens with same character-
istic; e.g., if this token is a keyword of C, we select another keyword for replace-
ment. Note, the keyword and operator token set are predefined, while identifier
token set is generated by parsing the seed program. For the second type, they
are designed to make a change on the extraction windows. Atomic mutations
include window left shift and right shift, and window size up and down with
one token length either from left or right side for each. Each of these actions
do not change the input program but motivate the diversity of the extracted
substring S(Po) and covers more states in the mutation space. For both types of
mutations, the time step increases until the termination state is triggered on the
current episode. We define a terminate action to early stop the mutation episode.
That is, the mutation agent can proactively terminate a mutation episode while
observing an extracted substring.

2.3 Environment

The environment is the world that the agent evaluates each action. The environ-
ment takes the current state and action as the input, and then outputs the reward
of performing such action and calculates the next state after executing the action.
In compiler fuzzing, the environment is the compiler or verifier. To observe more
detailed information about the fuzzing efficacy, we develop a tool called Fuzz-
Boost based on program execution traces. In this respect, we record dynamic
traces while running the testing production compilers, i.e., GCC, on generated
programs. In compiler construction, a basic block of an execution trace is defined
as a straight-line code sequence with no branches except for the entry and exit
points, which is considered as one of the important atomic units to measure code
coverage. In our method, we capture all the unique basic blocks B(TP ) concerning
each execution trace TP and calculate a store of all the unique basic blocks cov-
ered by the existing test suite I ′ to represent our measure of interest. In our imple-
mentation of FuzzBoost, the program execution trace is collected by Pin [18], a
widely-used dynamic binary instrumentation tool. Pin provides infrastructures to
intercept and instrument the execution trace of a binary. During execution, Pin
inserts the instrumentation code into the input program and recompile the output
with a Just-In-Time (JIT) compiler. We develop a plug-in of Pin to log the exe-
cuted instructions. Additionally, we develop another coverage analysis tool based
on the execution trace to report all the basic blocks touched so far. It also reports
whether new basic blocks are triggered by the fuzzed program and the number of
new covered blocks as well. Furthermore, our environment also logs and reports
abnormal crashes, memory leaks, or failing assertions of compilers with the assis-
tance of internal errors alarms from the compiling messages.

2.4 Reward

Designing a good reward function to facilitate learning and maintaining the
optimal policy is the key goal in our framework. Rewards provide evaluative
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Fig. 2. Fuzz action prediction in the reinforcement learning process of compiler fuzzing

feedback to guide an RL agent to make decisions. However, rewards can be very
sparse so that it is challenging for the learning problems. In the game of Go,
a reward only occurs at the end of a game. In such cases, the learning process
can converge slowly because of the sparse motivations. We solve this challenge
by giving every mutation step a reward, so the goal of agent is to maximize the
accumulated rewards until one episode terminates at step T ,

R =
T∑

t=0

γtrt+1(P ), (2)

where γt ∈ (0, 1) indicates a discount factor to gradually deduct the reward
in the future. rt+1(P ) represents the reward of generated program P at step
t + 1. In fuzz testing, the possible rewarding heuristics are program coverage,
new crashes, timeout, etc. They aim at enlarging the analyzed surface in the
target programs being fuzzed and digging into the program traces accordingly
that are more suspicious. In compiler fuzzing, we adopt testing coverage as the
reward to motivate the learning towards a vulnerability search on more areas
of the compiler’s code. However, unlike conventional definitions for coverage,
which are usually line/function/branch coverage that require expensive comput-
ing resources to calculate, we define the reward based on the ratio of unique
basic blocks covered by a certain fuzzed seed program P at step t to the entire
unique basic blocks of its mutated test suites I ′ along the episode;

r(P, I ′) := B(TP )/
∑

ρ∈I′
B(Tρ), (3)

where B(TP ) is the number of unique basic blocks in the execution trace of
a program P and I ′ ⊂ I is the programs generated from this test suite. This
stepwise reward r is a continuous scalar value that has a range of (0, 1], where 1
is achieved when a specific execution trace covers all the basic blocks that have
been tested so far by its existing fuzzed cases. The designed reward motivates
the mutation steps towards the training goal: improving the compiler testing
coverage by selecting a critical subsequence inside a seed program and enforcing
simple mutations in a trace.

3 Designed Framework

To start a deep Q-learning process for compiler fuzzing, we propose FuzzBoost
which adopts a deep neural network with two layers connected with non-linear
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activation functions. We build this end-to-end learning framework with the envi-
ronment reward calculated based on dynamic trace analysis. In this section, we
present the overall learning process for FuzzBoost by illustrating an iteration of
fuzz action prediction in the reinforcement learning process for compiler fuzzing
as shown in Fig. 2.

3.1 Initialization

We start with an initial input seed P ∈ I, where the choice of P is not constrained
but can be any C program even not well-formed ones. We employ the GCC test
suite as our sampling pool and randomly selected programs to be our seed inputs.
We propose to use a neural network as the Q function to mimic the reasoning
for input mutation of compiler fuzzing. This deep neural network maps states
(embedding of an extracted substring from seed programs) to Q outputs for all
actions A. Due to the lack of heuristics at the very beginning, the neural network
is randomly initialized and reinforcely optimize the model parameters θ from the
environment feedbacks, i.e., rewards, by maximizing the code mutation rewards
in the episode training.

3.2 State Extraction

FuzzBoost observes a substring within a seed program to predict actions to
perform. The substring is extracted from the seed program by the customized
window and encoded as S(P ). In Sect. 2.1, we define the states of our Markov
decision process to be I = Σ∗. To be more specific, it is a substring P ′ at off-
set o ∈ 0, ..., |P | − |P ′| and of window size |P ′|. To make the extracted state
tractable, we define actions in Sect. 2.2 to shift and resize the window. By per-
forming window-related actions, the fuzzing agent can see the whole program by
partially observing fragments consecutively. In other words, FuzzBoost learns
to select the most critical piece of code to mutate incrementally during the train-
ing process. After the sequence is extracted, we use a word embedding model to
abstract the sequence into a fixed-dimensional vector for training.

3.3 Deep Q-Network

We implement the Q-learning module based on Tensorflow [1] 1.14. The deep
neural network used for prediction is a forward neural network with two hidden
layers connected with non-linear activation functions. The two hidden layers
contain 100 and 512 hidden units respectively, and are fully connected with an
input layer with 100 units (which is the max window size for input substring)
and an output layer with 10 units (which is the size of action space). The goal
of the training is to maximize the expected reward. Since the MDP is a finite
horizon in our practical design, we adopt a discount rate γ = 0.9 to address
the long-term reward. We set the learning rate α = 0.001 to achieve our best-
tuned results. We use the decayed epsilon-greedy strategy for exploration in the
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reinforcement learning iteration, that is, the ε value is set up to 1 at the very
beginning and decays over time until a min value, 0.01 in our configuration, is
reached. In this scenario, with the probability 1 − ε, the agent selects an action
a = argmaxa′Q(st, at), which is the estimated optimum by the on-training neural
network. In the meanwhile, with probability ε, the agent explores any other
actions with a uniformly distributed choice within the action space |A|.

3.4 Termination

A mutation episode terminates when the agent detects a terminal state. In our
design, we define three conditions that may trigger the terminal state of mutat-
ing the seed program: (1) the agent executes the “terminate” action from the
neural network prediction; (2) the generated program reaches a maximum num-
ber of mutation steps; or (3) the agent generates an invalid action that triggers
miscellaneous effects during the reward calculation. The first type of termination
will cut the program mutation actively by FuzzBoost while the latter two are
passively ended with pre-defined policies. Theoretically, the mutation trace can
be generated as long as possible to achieve enough diversity. But in practice,
to excessively improve the testing efficacy, we empirically set up the mutation
trace length to be 20 actions to enforce our agent to learn within the short-
est path. To catch the found bugs/vulnerabilities, we log and report abnormal
crashes, memory leaks, or failing assertions of compilers with the assistance of
internal errors alarms from the compiling messages. Moreover, in our design,
all the programs that have achieved higher code coverage are kept to be the
seeds and waiting for another round of fuzzing, otherwise removed from the seed
pool. Therefore, the agent can still explore the entire language set even with the
restricted length of learning traces during an episode. The methodology applied
in our mechanism is the same as conventional coverage-guided fuzzing methods
but has made mutation traces longer in one round (compared with 1 step in con-
ventional fuzzing) and predictable by a neural network (compared with purely
random in conventional fuzzing).

4 Experiments

In our research, we propose a reinforcement learning framework FuzzBoost
that incrementally trains a deep neural network to predict mutation actions on
a given seed program to improve the compiler testing coverage effectively. We
evaluate the performance of FuzzBoost on a seed input set gathered from
the GCC test suites. We randomly sample 20 C programs in the test suite as
our benchmark dataset, more specifically, from the gcc.c-torture repository. The
window size is set to be 50 to extract the substring inputs. We run FuzzBoost
for four weeks to test its fuzzing efficacy and compare with the baseline random
fuzzing method used in a popular tool (AFL) [36]. We also conduct an empirical
analysis on starting the compiler fuzzing with a pre-trained model to investigate
if it can boost our process. All measurements are performed on i7-7700T 2.90 Ghz
with 12 GB of RAM.
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Fig. 3. Number of unique basic blocks covered by generated test suites

4.1 Fuzzing Efficacy

In our design, to improve the efficiency in this end-to-end learning process, we
use an approximation of the code coverage improvement to describe the cover-
age information, which is the accumulated number of unique basic blocks being
executed with the generated new test cases. In order to show that FuzzBoost
learning algorithm learns to perform high-reward actions given a seed input
observation, we compare the improved testing efficacy against a baseline with
random action selection policy. The choice of the baseline method is uniformly
distributed among the action space A and we terminate the actions with the
same methodologies as our method described in Sect. 3.4. Random mutation is
widely used in software fuzzing tools [36] which is proven to be effective while a
good heuristic, such as coverage-guided, is designed.

Comparison: We perform the experiments with our method FuzzBoost and
baseline method Random-based mutation strategy to fuzz each of the programs
from the sampling pool. We respectively generate 1,000 new tests from seed pro-
grams for both strategies and record the accumulated number of unique basic



FuzzBoost: Reinforcement Compiler Fuzzing 369

Table 1. Coverage improvements with different window size

Window size 50 60 70 80 90 100

Coverage improvement (%) 37.14 36.11 30.29 28.95 28.07 27.94

blocks along the execution trace. On average, our proposed method FuzzBoost
achieves higher testing coverage by 37.14% than the Random-based mutation
method in terms of the number of the accumulated unique basic blocks on the
seed programs. We randomly select four seed programs and illustrate the cover-
age improvement of comparisons between baseline method and FuzzBoost in
Fig. 3. The results in each sub-figure represent the number of unique basic blocks
that different amount of test programs trigger in the compiler. We can see that
FuzzBoost gradually increases the code coverage as the model being trained to
mutate programs more effectively. Our method obviously outperforms the base-
line for all cases, among which the most and least improvements, 79.17% (case 1,
seed1.c) and 12.24% (case 2, seed2.c) respectively, are achieved. We also observe
that FuzzBoost improves the code coverage with a faster speed than the base-
line. We believe this is because our method can learn to fuzz more efficiently and
generate interesting test suites with fewer mutation actions.

Window Size: Since the size of each seed program varies, and, arguably, the
limited window size may restrict the diversity of mutation trace and thus put
a constraint on exploring the entire seed program. As a result, the seed pro-
gram cannot be thoroughly observed or mutated accordingly after one episode
of fuzzing. In this part, we analyze the impact of the current framework with
different window sizes on model effectiveness. We increase the initial window
size w = |P ′| from 50 to 100 and measure the average coverage improvement to
compare against the baseline strategy on seed1.c as the seeds in sample pool are
generally short. Table 1 shows the experimental results. We can see the coverage
improvement decreases while increasing the window size of the initially extracted
substring. That is, smaller substrings are better to start with and to mutate the
program than larger ones in our method. Our interpretation is that small win-
dows narrow down the mutation space and thus reduce the action randomness,
which may increase the possibility of learning a high-quality mutation trace for
the model, especially when the model is highly under-trained in the beginning
stage. It also indicates that our model is trained to learn better moves of small
windows and accordingly select better action to improve coverage. Also, it is
worth noting that the ultimate goal for fuzz testing is not the exploration of
entire programs, but making control-flow changes within limited observations to
boost the fuzzing process.

End State: We set up the compiler fuzzing as an end-to-end reinforcement
learning framework. Unlike the problem of Go, the end state of FuzzBoost is
not deterministic in all cases. In our design, we hard-code a limit on the length
of mutation traces from the computation cost point of view, but theoretically,
the traces can be endless to gain enough randomness and achieve the higher
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Fig. 4. Mutation length during training

reward. In the process of optimization, we provide the learning agent an action
to actively terminate the episode which varies across the learning stage. Thus, to
analyze how the end state evolves, we record the distribution of mutation trace
lengths under different training stages. Figure 4 presents the average trace length
distributions along the learning process over all training seeds. From the result,
we can see that, as the training goes on, mutation trace lengths are increasing
gradually. In this respect, the reward expectation of learned mutation actions are
positive in a form that reinforces the model to dig more mutation opportunities
in one episode to maximize the fuzzing reward.

4.2 Boosting with Pre-training

Our trained fuzzing tool learns to constantly accumulate the prior experience
by training on the seed programs. This naturally lead us to the question for
the sake of resource cost: given an agent which is pre-trained on seed programs
Ptrain = pi ∼ P , can it improve testing efficiency than learning from scratch? To
answer that, we use the same experimental setting as the experiments in Sect. 4.1
and reuse the seed programs from the initial 20 seed programs and craft another
9 α-equivalent programs for each seed respectively. We call a program P ′ is α-
equivalent to program P when we only perform bound variable renaming on P .
We randomly pick 80% of them to serve as Ptrain to learn an agent and the rest
20% are used for Ptest . After pre-training on Ptrain , we save the model and use
it on Ptest to continue the trial-and-error reinforcement compiler fuzzing.

The fuzzing results under such a pre-trained model are shown in Fig. 3
and compared with the performance of FuzzBoost learned with an initially
arbitrary model. The coverage improvement for the case of pre-trained model
increases drastically towards the highest coverage against the one trained from
scratch despite the small improvements in one of the seed programs (case 4). In
addition, as the training goes on, the pre-trained model can find useful action
in mutation space more quickly and generate fuzzed programs with high testing
coverage.
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1 foo (a, p)
2 int ∗p;
3 { p[0] = a;
4 a = (short) a;
5 return a;
6 }
7 main () {
8 int i ;
9

10 foobar ( i , &i);
11

12

13 }
14 foobar (a, b) {
15 int c;
16 c = a % b;
17 a = a / b;
18 return a + b;
19 }

Listing 1.1. Original

1 foo (a, p)
2 int ∗p;
3 { p[0] = foobar(a,p);
4 p = (short) a;
5 return a;
6 }
7 main () {
8 int i ;
9 for ( int a=8; a>0; a−−) {

10 foobar ( i , &i);
11 }
12 foobar(i , &i);
13 }
14 foobar (a, b) {
15 int c;
16 c = a % b;
17 a = c / b;
18 return a + b;
19 }

Listing 1.2. Mutated

4.3 Mutation Example

In this part, to demonstrate how effective FuzzBoost can achieve in program
mutations for compiler fuzzing, we showcase the topmost utilized mutations in
the following example. We present an original seed (on the left) and its cor-
responding new generations after mutations (on the right). We discuss each of
these abstracted edits involved in the trace of atomic mutations. These edits
help explain what is learned by the model during the reinforcement learning
process. It should be noted that these mutations are not accomplished within
one episode, while we just use this one example to illustrate what the most used
mutations are and how they look like.

Example: By observing the results, we find: (1) the top most chosen mutation
is insertion. Usually, the fuzzing engine tries to insert statements with keywords
that do not exist in the original seed file. As shown in line 9 to line 11 in the
mutated file, the fuzzing engine tries to insert a for statement into the seed file.
By inserting these non-existing tokens, the compiler should execute the lexical
analysis in a way that has not been used before; (2) the second chosen mutation
is replication that the fuzzing engine tries to replicate statements locally as
shown in line 12 in the mutated file. The replication will trigger the compiler
to optimize code which will improve the testing coverage; (3) the third chosen
mutation is replacement that can replace a variable (a) with a function call
(foobar(a,p)) as in line 3 or replace a variable (a) with another existing variable
(p). The replacement either makes the statement more complex to parse, causes
exception handlings such as typecast, or changes the control-flow of the seed file,
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all of which will make the compilation different from the original paths, thereby
increasing the testing coverage.

5 Discussion

It is critical to compare with related works, but we find it difficult to perform
apple-to-apple comparisons. For instance, generation-based fuzzing tools, such as
DeepSmith [7] and Learn&Fuzz [12], craft new programs from scratch other than
mutating seed programs while our tool is built on mutation-based fuzzing that
rely on seed programs to achieve the whole-program validity. Moreover, some
previous methods [7,12] generate a bunch of new programs which usually get
rejected at an early stage in compilation and therefore leads to a inefficient and
shallow testing procedure. AFL [36] can generate new fuzzed inputs in a very fast
way as it only conducts one-step random mutation on seed programs each time.
However, it does not suit for compiler fuzzing because its mutation mechanism
deals with random changes on inputs without considering their structure con-
text. Compiler requires highly-structured and syntax-aware inputs, so we only
compare our tool with its mutation heuristic in the paper. For NEUZZ [26], it is
grey-box fuzzing that relies on the coverage analysis on target applications. But
for compiler testing, the computation cost for code edge coverage is very high,
and that is why we use #BasicBlocks tested as an approximation.

In this work, we do not claim our tool is better than others. Instead, we reveal
our insight of leveraging the superiority of reinforcement learning for compiler
fuzzing to efficiently solve a multi-step mutation-based fuzzing problem. In our
mechanism, we lazy-evaluate the mutation results and consider those interme-
diate states in the mutation traces to explore code coverage in a deeper way.
Our designed rewriting rules in mutation actions incorporate the structure con-
text of programs, thus our fuzzed inputs can better conform with the syntax
requirements of programming languages. What’s more, the mutations can real-
ize the comprehensive search in the large space to iteratively guiding the tool for
the final fuzzing goals. Our experimental results and analysis comprehensively
demonstrate the effectiveness of our compiler fuzzing tool.

6 Related Work

Our study is related to deep reinforcement learning and mutation-based fuzzing.

Deep Reinforcement Learning: Despite the popularity in solving the game
of Go, reinforcement learning is also widely adopted as a powerful technique for
program synthesis [2,5,13,16,17,22,26]. Bunel et al. [6] perform reinforcement
learning on top of a supervised model with an objective that explicitly maxi-
mizes the likelihood of generating semantically correct programs. Böttinger et
al. [5] use a deep Q-learning network to learn a grammar description for inputs
to perform generation-based fuzzing. Researchers also propose Neurally Directed
Program Search (NDPS) [31], for solving the challenging non-smooth optimiza-
tion problem of finding a programmatic policy with maximal reward. Existing
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projects that adopt deep reinforcement learning for program synthesis focus on
semantic goals toward synthesis tasks. Our target is to generate source programs
that are well-formed but contain different syntactic features, which are similar
to the work from Böttinger et al. [5] that aims at PDF parser fuzzing. But
differently, in our design, we consider the improvement of testing coverage of
compilers as the reward for reinforcement learning.

Mutation-Based Fuzzing: Mutation-based fuzzing contains two important
decisions: 1) where to mutate, and 2) what new value to use for the mutation [24].
Generally mutation-based fuzzers are not aware of the expected input format or
specifications, and they cannot select mutations very wisely [25]. It generates
new inputs by blindly modifying the provided seeds. A well-known fuzzer that is
mutation-based is called AFL [36] which randomly mutates seed inputs and
incrementally add new seeds into the set with respect to defined heuristics.
Several boosting techniques are proposed to improve the efficiency of mutation-
based fuzzing. AFLFast [4] boosts up original AFL fuzzer by focusing on low-
frequency paths that allow the fuzzer to explore more paths with limited time.
Skyfire [32] applies grammar in existing seed inputs for fuzzing programs that
take highly-structured inputs. Kargen and Shahmehri [14] perform mutations
on the machine code instead of on a well-formed input to produce high-coverage
inputs. DeepFuzz [17] utilizes an RNN-based model to generate new well-formed
C programs for compiler fuzzing based on existing testsuites. In this paper, our
method boosts the mutation process by using a deep neural network to predict
the mutation without any training data.

7 Conclusion

In this paper, we propose FuzzBoost, a deep reinforcement learning framework
to fuzz off-the-shelf compilers by generating new programs with coverage-guided
dynamics. Our proposed end-to-end learning framework learns to select a trace
of best mutation actions in each round towards high code coverage and performs
automatically without any human supervision. It improves the testing coverage
on a seed set from the GCC test suites and outperforms the baseline fuzzing
agent with a random selection strategy. Moreover, we demonstrate that a pre-
trained agent in our framework can generalize the strategy to new seed instances
to expedite the fuzzing process, which is much faster than starting from scratch.
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