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Abstract

The K-subspaces (KSS) method is a generaliza-

tion of the K-means method for subspace cluster-

ing. In this work, we present local convergence

analysis and a recovery guarantee for KSS, as-

suming data are generated by the semi-random

union of subspaces model, where N points are

randomly sampled from K ≥ 2 overlapping

subspaces. We show that if the initial assign-

ment of the KSS method lies within a neigh-

borhood of a true clustering, it converges at a

superlinear rate and finds the correct clustering

within Θ(log logN) iterations with high prob-

ability. Moreover, we propose a thresholding

inner-product based spectral method for initial-

ization and prove that it produces a point in this

neighborhood. We also present numerical results

of the studied method to support our theoretical

developments.

1. Introduction

Subspace clustering (SC) is a fundamental problem in un-

supervised learning, which can be applied to do dimen-

sionality reduction and data analysis. It has found wide

applications in diverse fields, such as computer vision

(Ho et al., 2003; Vidal et al., 2008), gene expression anal-

ysis (Jiang et al., 2004; Ucar et al., 2011), and image seg-

mentation (Hong et al., 2006), to name a few. In research

on SC, the union of subspace (UoS) model, which assumes

that data points lie in one of multiple underlying subspaces,

is a typical model for studying SC. In particular, substantial

advances have been made recently on designing algorithms
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for solving the SC problem and on establishing theoreti-

cal foundations in the UoS model; see, e.g., Vidal (2011);

Vidal et al. (2016); Meng et al. (2018) and the references

therein.

In the UoS model, the goal of SC is to recover the

underlying subspaces and cluster the unlabeled data

points into the corresponding subspaces. To achieve

this goal, many algorithms have been proposed in

the past two decades, such as sparse subspace clus-

tering methods (Elhamifar & Vidal, 2013; Wang & Xu,

2013), low-rank representation-based methods (Liu et al.,

2012), thresholding-based methods (Heckel & Bölcskei,

2015; Li & Gu, 2021), and K-subspaces (KSS) method

(Bradley & Mangasarian, 2000). In these methods, the

KSS method, which is known as a generalization of the

K-means method, can handle clusters in subspaces. In par-

ticular, it is conceptually simple and has linear complexity

per iteration. This computational benefits render it suitable

to handle large-scale datasets in practice. However, a com-

plete theoretical understanding of its convergence behavior

and recovery performance is not found in the literature, to

the best of our knowledge. This is due in part to its alternat-

ing and discrete nature, as well as the fact that as with the K-

means, KSS can easily get stuck in bad local minima with-

out a good initialization. Consequently, it remains a major

challenge to provide the theoretical foundations for KSS.

In this work, we provide guarantees for the convergence be-

havior and recovery performance of the KSS method. We

also develop a simple initialization method with provable

guarantees for the KSS method. It is worth mentioning that

our results improve on state-of-the-art theory with respect

to allowable affinity between subspaces, and support the al-

gorithm’s competitive performance in our numerical evalu-

ation.

1.1. Related Works

Over the past years, a substantial body of literature explores

algorithmic development and theoretical analysis of SC.

One of the most well-studied methods is arguably sparse

subspace clustering (SSC), which is motivated by repre-

senting each data point as a sparse linear combination of

the remaining ones. A seminal work by Elhamifar & Vidal

http://arxiv.org/abs/2206.05553v2
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Table 1. Comparison of affinity requirement and recovery results

of the surveyed methods in the noiseless semi-random UoS model

with overlapping subspaces (K ≥ 2).

References Methods Affinitya Results

Soltanolkotabi et al. (2012) SSC O( 1√
logN

) SDP

Wang & Xu (2013) SSC O( 1√
logN

) SDP

Tschannen & Bölcskei (2018) (O)MP O( 1√
logN

) SDP

Wang et al. (2016) SSC O( 1√
logN

) CC

Heckel & Bölcskei (2015) TSC O( 1√
logN

) CC

Park et al. (2014) GSR O( 1√
logN

)b CC

Lipor et al. (2021) EKSS O( 1√
logN

) CC

Ours KSS O(1) CC

aWe use the notion (15) to measure the subspace affinity. bThis is
obtained by taking δ = 1/N in Park et al. (2014, Theorem 3.2).

(2013) proposed and studied this method. The algorithm

proceeds by solving a convex sparse optimization problem,

followed by applying spectral clustering to the graph con-

structed by a solution of this convex problem. In particu-

lar, they showed that when the data points are drawn from

the disjoint subspaces in the noiseless setting, the solution

is non-trivial and no edges in the constructed graph con-

nect two points in different subspaces. This is referred

to as the subspace detection property (SDP) in literature;

see, e.g., Wang & Xu (2013); Soltanolkotabi et al. (2012;

2014). We should point out that SDP does not imply

correct clustering (CC) of data points as mentioned in

Wang et al. (2016); Li & Gu (2021). Following this line

of work, theoretical results on the SSC method in vari-

ous contexts have been established, and many variants and

extensions of the SSC method have been proposed. For

example, Soltanolkotabi et al. (2012) developed a unified

analysis framework of the SSC method, which showed

that the SDP holds even when subspaces can be overlap-

ping in the noiseless setting. Later, Soltanolkotabi et al.

(2014) extended their analysis and results to the noisy set-

ting. Meanwhile, an independent work by Wang & Xu

(2013) also studied the behavior of SSC based on the

SDP in the noisy setting. In spite of the solid theo-

retical guarantees and great empirical performance, SSC

suffers from high computational cost. To tackle this is-

sue, Dyer et al. (2013) applied an orthogonal matching pur-

suit (OMP) method to SSC. Then, Tschannen & Bölcskei

(2018) analyzed the performance of this method in the

noisy setting and also introduced and studied the match-

ing pursuit (MP) method for SSC. Recently, more and

more variants and extensions for solving SSC have been

proposed; see, e.g., Ding et al. (2021); Wang et al. (2019);

Wu et al. (2020); Chen et al. (2020); Matsushima & Brbic

(2019); Traganitis & Giannakis (2017); You et al. (2016).

As for other methods for SC, Liu et al. (2012) proposed

a low-rank representation (LRR) method by minimizing

a nuclear norm regularized problem. In particular, they

showed that the proposed method can recover the row

space of the data points. Later, Shen et al. (2016) devel-

oped an online version of the LLR method, which reduces

its computational cost significantly. Another notable ap-

proach for SC is thresholding-based methods, which ex-

ploit the correlation between data points. For example,

Heckel & Bölcskei (2015) proposed a thresholding-based

subspace clustering (TSC) method, which applies spectral

clustering to a weight matrix with entries depending on

spherical distances of each data point to its nearest neigh-

bors. They showed that TSC can achieve correct cluster-

ing by proving that the formed graph has no false con-

nection and K connected subgraphs. Li & Gu (2021) pro-

posed a thresholding inner-product (TIP) method for SC,

which constructs an adjacency matrix by thresholding mag-

nitudes of inner products between data points. In partic-

ular, they provided an explicit bound on the error rate of

the TIP method when there are only two subspaces of the

same dimension. Moreover, Park et al. (2014) proposed a

greedy subspace clustering (GSC) method that constructs

a neighborhood matrix using a nearest subspace neighbor

method and then recovers subspaces by a greedy algorithm.

They showed that their approach can guarantee correct

clustering. However, they assumed that the dimension of

each subspace is known and same and the number of data

points in each subspace is also same. Actually, there are

still numerous other popular methods using different tech-

niques for SC, such as matrix factorization-based method

(Boult & Brown, 1991; Pimentel-Alarcón et al., 2016; Fan,

2021) and principal component analysis type methods

(Vidal et al., 2005; McWilliams & Montana, 2014).

In contrast to the above methods, the KSS method

(Bradley & Mangasarian, 2000; Agarwal & Mustafa, 2004;

Tseng, 2000) is essentially a generalization of the k-means

method for SC, which minimizes the sum of distances of

each point to its projection onto the assigned subspace, i.e.,

min
C,U

K∑

k=1

∑

i∈Ck

‖zi −UkU
T
k zi‖2, (1)

where {zi}Ni=1 ⊆ R
n denotes the set of N data points,

C = {Ck}Kk=1 denotes the set of K ≥ 2 estimated clusters,

and U =
[
U1 . . . UK

]
with Uk being an orthonor-

mal basis of the corresponding cluster. Similar to the k-

means method, the KSS method proceeds by alternating

between the subspace update step and the cluster assign-

ment step. As a local search algorithm, it is conceptually

simple and has linear complexity as a function of the num-

ber of data points, while many popular methods based on

self-expression property, such as the surveyed SSC, OMP-

based SSC, and LLR, have at least quadratic complexity.

This computational advantage renders it more suitable to



K-Subspaces Method for Subspace Clustering

handle large-scale datasets than these self-expression prop-

erty based-methods. However, due to its non-convex na-

ture, it suffers from sensitivity to initialization and lack of

theoretical understanding. To fix the former issue, some

heuristics for good initialization have been proposed; see,

e.g., He et al. (2016); Zhang et al. (2009). To improve the

performance of the KSS method, Gitlin et al. (2018) em-

ployed a coherence pursuit algorithm. Recently, Lipor et al.

(2021) applied an ensembles approach to the KSS method

with random initialization and showed that it achieves cor-

rect clustering based on the argument in Heckel & Bölcskei

(2015). However, their analysis can only tackle one KSS

iteration. Generally, it remains open to propose a prov-

able initialization scheme for the KSS method and fully

understand its convergence behavior and recovery perfor-

mance. Due to this, the KSS method has mostly been su-

perseded by convex methods based on self-expression prop-

erty, which are widely studied and have solid theoretical

results. Moreover, establishing theoretical foundations for

the KSS method may open the door for the study of various

non-convex methods for SC.

1.2. Our Contributions

In this work, we study the KSS method for SC in the semi-

random UoS model. First, we provide theoretical guar-

antees for the convergence behavior and recovery perfor-

mance of the KSS method. Specifically, we prove the ex-

istence of a basin of attraction, whose radius is as large as

O(
√
N) around the true clustering of the data points, when

the cluster sample sizes are on the same order and the sub-

space dimensions are also on the same order. If the initial

assignment of the KSS method lies within this basin, the al-

gorithm is guaranteed to converge to the true clustering at

a superlinear rate. In particular, once the number of itera-

tions reaches Θ(log logN), the KSS method yields the true

clustering with the corresponding orthonormal bases ex-

actly. It is worth emphasizing that these results are obtained

under the condition that the normalized affinity between

pairwise subspaces is O(1), which is generally milder than

those in the existing literature; see the comparison in Ta-

ble 1. Second, we propose a thresholding inner-product

based spectral method for initialization of the KSS method.

We show that it can generate a point lying in the basin of

attraction of the KSS method by deriving its clustering er-

ror rate. Our core argument is to derive a spectral bound

for a random adjacency matrix without independence struc-

ture, which could be of independent interest. In conclusion,

our work demystifies the computational efficiency of the

KSS method and provides a provable initialization scheme

for it, thus bridging the gap between theory and practice.

From a broader perspective, our work also contributes to

the literature on simple and scalable non-convex methods

with provable guarantees; see, e.g., Wang et al. (2021a;b);

Zhang et al. (2020); Gao & Zhang (2019); Boumal (2016);

Ling (2022).

Notation. Let Rn be the n-dimensional Euclidean space

and ‖ · ‖ be the Euclidean norm. Given a matrix A, we

use ‖A‖ to denote its spectral norm, σi(A) its i-th largest

singular value, ‖A‖F its Frobenius norm, and aij its (i, j)-
th element. Given a vector a ∈ R

n, we denote by ai its

i-th element. Given a positive integer n, we denote by [n]
the set {1, . . . , n}. Given d1, . . . , dK , let dmin = min{dk :
k ∈ [K]} and dmax = max{dk : k ∈ [K]}. Given a dis-

crete set S, we denote by |S| its cardinality. Given two sets

A,B ⊆ [n], the set difference between A and B denoted

by A \ B is defined by A \ B = {x ∈ A : x /∈ B}. We

use On×d to denote the set of all n× d matrices that have

orthonormal columns (in particular, Od denotes the set of

all d × d orthogonal matrices) and ΠK to denote the set

of all K × K permutation matrices. Let π : [K] → [K]
denote a permutation of the elements in [K]. Each π corre-

sponds to a Qπ = {qij}1≤i,j≤K ∈ ΠK such that qij = 1
if j = π(i) and qij = 0 otherwise for all i ∈ [K]. The

converse also holds. Moreover, for any U ,V ∈ On×d,

we denote by d(U ,V ) =
∥
∥UUT − V V T

∥
∥ the distance

between the subspaces spanned by U and V . We define

S
d−1 =

{
a ∈ R

d : ‖a‖ = 1
}

and denote by Unif(Sd−1)
a uniform distribution over the sphere in R

d. For non-

negative sequences {ak} and {bk}, we write ak & bk if

there exists a universal constant C > 0 such that ak ≥ Cbk
for all k.

2. Preliminaries and Main Results

In this section, we formally set up the SC problem in the

semi-random UoS model, introduce the KSS method for

tackling the SC problem, propose an initialization scheme

for the KSS method, and give a summary of our main re-

sults.

2.1. Semi-Random UoS Model

Definition 1. Suppose that a family of sets {Ck}Kk=1 is a

partition of [N ]. We say that H ∈ R
N×K is a membership

matrix if hik = 1 if i ∈ Ck and hik = 0 otherwise. For

simplicity, we use MN×K to denote the collections of all

such N ×K membership matrices.

Given an H ∈ MN×K , each row of it has exactly one 1
and (K−1) 0’s. Besides, HQ for any Q ∈ ΠK represents

the same partition as H up to a permutation of the cluster

labels. We define the distance between two membership

matrices H ,H ′ ∈ MN×K by

dF (H ,H ′) = min
Q∈ΠK

‖H −H ′Q‖F .

Then, one can verify that the number of misclassified points

in H with respect to H ′ is d2F (H ,H ′)/2.
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Definition 2 (Semi-Random UoS Model1). Let S∗
k denote

a subspace of Rn of dimension dk with U∗
k ∈ On×dk be-

ing its orthonormal basis for all k ∈ [K]. Let H∗ ∈
MN×K represent a partition of [N ] into K clusters, each

of which is of size Nk for all k ∈ [K]. Then, we say

that a collection of N ≥ 2 points {zi}Ni=1 is generated

according to the semi-random UoS model with parameters
(
N,K, {U∗

k}Kk=1,H
∗) if

zi = U∗
kai, (2)

where k ∈ [K] satisfies h∗
ik = 1 and ai

i.i.d.∼ Unif(Sdk−1)
for all i ∈ [N ].

Intuitively, given an unknown partition encoded by H∗,

this model generates a collection of unlabeled observations.

Given these observations, the goal of SC is to design an

algorithm that finds the true partition, i.e., H∗Q for some

Q ∈ ΠK . We should point out that the subspace dimen-

sions d1, . . . , dK are also all unknown.

2.2. The KSS Method

In this subsection, we introduce the KSS method by inter-

preting it as an application of the alternating minimization

method to Problem (1). Such an interpretation is similar

to that in Bradley & Mangasarian (2000). By introducing

H ∈ MN×K , we can reformulate Problem (1) as

min

N∑

i=1

K∑

k=1

hik

(
‖zi‖2 − ‖UT

k zi‖2
)

(3)

s.t. H ∈ MN×K , Uk ∈ On×d̂k , for all k ∈ [K],

where d̂k for all k ∈ [K] are candidate subspace dimen-

sions. Observe that this problem is in a form that is

amenable to the alternating minimization method (see, e.g.,

Ghosh & Kannan (2020); Hardt (2014); Zhang (2020)).

Given the current iterate (Ht,U t
1, . . . ,U

t
K) ∈ MN×K ×

On×d̂1 × · · · ×On×d̂K , the method generates the next iter-

ate via

U t+1
k ∈ argmin

Uk∈On×d̂k

N∑

i=1

ht
ik

(
‖zi‖2 − ‖UT

k zi‖2
)

(4)

for all k ∈ [K] and

Ht+1 ∈ T
(
GH(U t+1)

)
, (5)

where the (i, k)-th element ofGH(U) ∈ R
N×K is ‖zi‖2−

‖UT
k zi‖2 and T denotes the operator that for any G ∈

R
N×K ,

T (G) = argmin
{
〈G,H〉 : H ∈ MN×K

}
. (6)

1This model is called semi-random UoS because the subspaces
are arbitrary but data points are randomly generated.

It is worth noting that the updates (4) and (5) both ad-

mit closed-form solutions, which respectively correspond

to the subspace update step and the cluster assignment step

of the KSS method. Indeed, the update (4) is typically a

PCA problem and its solution is given by

U t+1
k = PCA

(
N∑

i=1

ht
ikziz

T
i , d̂k

)

, (7)

where PCA(A, d) : Sn × R → R
n×d is the operator that

computes the eigenvectors associated with the d leading

eigenvalues of A. Moreover, the update (5) is a special

assignment problem, whose solution is given by

ht+1
ik =

{

1, if k = Ii,

0, otherwise,
(8)

where Ii ∈ [K] satisfies ‖U t+1T

Ii
zi‖ ≥ ‖U t+1T

k zi‖ for all

k 6= Ii; see Lemma 5.

A natural question arising in the update (7) is how to choose

d̂k for all k ∈ [K]. Generally, the KSS method assumes

that the subspace dimensions d1, . . . , dK are known be-

forehand (Vidal, 2011), which is not practical in applica-

tions. Even if d1, . . . , dK are known but unequal, it is

still unknown how to find an one-to-one mapping between

{dk}Kk=1 and {d̂k}Kk=1 due to the fact that the permutation

of clusters is unknown. To fix this issue, we propose an

adaptive strategy to choose d̂k for all k ∈ [K]. Specifi-

cally, let λt
k1 ≥ · · · ≥ λt

kd be the d leading eigenvalues

of
∑N

i=1 h
t
ikziz

T
i for all k ∈ [K], where d is an input pa-

rameter satisfying d > dmax. Then for all k ∈ [K], we

set

d̂t+1
k = argmax

i∈[d−1]

(

λt
ki − λt

k(i+1)

)

(9)

and replace (7) by

U t+1
k = PCA

(
N∑

i=1

ht
ikziz

T
i , d̂

t+1
k

)

. (10)

2.3. Initialization Method

A key ingredient in our approach is to identify a proper

initial point H0 that may guarantee rapid convergence of

the KSS method for solving Problem (3). Motivated by

the thresholding inner-product based scheme in Li & Gu

(2021), we propose a thresholding inner-product based

spectral method (TIPS) for initialization. Specifically,

given a thresholding parameter τ > 0, a graph G with adja-

cency matrix A ∈ R
N×N is generated by

aij =

{

1, if |〈zi, zj〉| ≥ τ and i 6= j,

0, otherwise,
(11)
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for all 1 ≤ i ≤ j ≤ N . Then, the initial cluster assign-

ment H0 is obtained by applying the k-means to the matrix

V formed by the eigenvectors associated with the K lead-

ing eigenvalues of A. Although it is NP-hard in the worst

case to compute a global minimizer of the k-means prob-

lem (see, e.g., Aloise et al. (2009)), some polynomial-time

algorithms have been proposed for finding an approximate

solution whose value is within a constant fraction of the

optimal value (see, e.g., Kumar & Kannan (2010)), i.e.,

(H0, X̂) ∈ MN×K × R
K×K s.t. ‖H0X̂ − V ‖2F

≤ (1 + θ) min
(H,X)∈MN×K×RK×K

‖HX − V ‖2F , (12)

where θ > 0 is a constant. We assume that we can find such

an approximate solution. We now summarize the proposed

method in Algorithm 1.

Algorithm 1 The TIPS initialized KSS method

1: Input: samples {zi}Ni=1, τ > 0, θ > 0, d, T,K ∈ Z+

/* The TIPS initialization */

2: construct an adjacency matrix A ∈ R
N×N by (11)

3: calculate V ∈ R
N×K formed by the eigenvectors as-

sociated with the K leading eigenvalues of A

4: let (H0, X̂) be a (1 + θ)-approximate solution to the

k-means problem (12) with K clusters and input V

/* The KSS method */

5: for t = 0, 1, . . . , T do

6: /* subspace update step */

7: for k = 1, . . . ,K do

8: Compute d̂t+1
k via (9) and U t+1

k via (10)

9: end for

10: /* cluster assignment step */

11: compute Ht+1 via (8)

12: end for

2.4. Main Theorems

Before we proceed, we introduce a definition to capture no-

tions of affinity between pairwise subspaces and impose an

assumption on the affinity.

Definition 3. The affinity between two subspaces Sk and

Sℓ is defined by

aff(Sk, Sℓ) =

√
√
√
√

min{dk,dℓ}∑

i=1

(

σ
(i)
kℓ

)2

, (13)

where σ
(1)
kℓ ≥ · · · ≥ σ

(min{dk,dℓ})
kℓ ≥ 0 are the singular

vaules of UT
k Uℓ ∈ R

dk×dℓ with Uk,Uℓ being respectively

orthonormal bases of Sk and Sℓ. The normalized affinity

between two subspaces Sk and Sℓ is defined by

aff(Sk, Sℓ) =
aff(Sk, Sℓ)

min{
√
dk,

√
dℓ}

. (14)

For ease of exposition, we define the maximum of the nor-

malized affinities as

κ = max
1≤k 6=ℓ≤K

aff(S∗
k , S

∗
ℓ ) (15)

and define

κd =
dmax

dmin
, κN =

Nmax

Nmin
. (16)

Assumption 1. The affinity between pairwise subspaces in

the UoS model satisfies κ ∈ (0, 1/2].

We remark that this affinity condition is milder than

those in the related literature. Because this assump-

tion allows the affinity aff(Sk, Sℓ) to be as large as

min{√dk,
√
dℓ}/2, while those in the literature require

aff(Sk, Sℓ) . min{
√
dk,

√
dℓ}/

√
logN for all 1 ≤ k 6=

ℓ ≤ K . Please see the comparison in Table 1. We next

present a main theorem of this work, which shows that the

KSS method converges superlinearly and achieves the cor-

rect clustering under Assumption 1.

Theorem 1. Let {zi}Ni=1 be data points generated ac-

cording to the semi-random UoS model with parameters

(N,K, {U∗
k }Kk=1,H

∗). Suppose that Assumption 1 holds,

Nmin & dk & logN for all k ∈ [K], and the initial point

H0 ∈ MN×K satisfies

dF (H
0,H∗) ≤ (1− κ)Nmin

5κd

√
N

. (17)

Set T = Θ(log logN) and d ∈ Z+ satisfying d > dmax

in Algorithm 1. Then, the following statements hold with

probability at least 1−N−Ω(1):

(i) For all t ∈ [T ], it holds that

dF (H
t,H∗) ≤ κ2t−1

1 dF
(
H0,H∗) , (18)

where κ1 ∈ (0, 1) is an absolute constant.

(ii) It holds for a permutation π : [K] → [K] that

HT = H∗Qπ (19)

and d̂T+1
π(k) = dk for all k ∈ [K],

UT+1
π(k) = U∗

kOk, Ok ∈ Odk for all k ∈ [K]. (20)

Before we proceed, some remarks are in order. First, while

Problem (1) is NP-hard in the worst case (Gitlin et al.,

2018), the assumption that the data points are generated

by the semi-random UoS model allows us to conduct an

average-case analysis of the KSS method. Second, a neigh-

borhood of size O
(

Nmin

κd

√
N

)

around each true cluster forms

a basin of attraction in the UoS model, in which the KSS

method converges superlinearly. In particular, if κd, κN
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are both constant, we can see that the size of this basin

is O(
√
N), which is rather large. Provided that the initial

point H0 lies within this basin, the subsequent iterates are

guaranteed to converge to ground truth at a superlinear rate.

Third, if the number of iterations reaches Θ(log logN), the

KSS method can not only find correct clustering, but also

exactly recovers the orthonormal basis of each subspace.

This demonstrates the efficacy of the KSS method. Finally,

any method that can return a point satisfying (17) is quali-

fied as an initialization scheme for the KSS method. In this

work, we design a simple initialization scheme in the first

stage of Algorithm 1 that can provably generate a point in

the basin of attraction under the following assumption. Be-

fore we proceed, let B ∈ R
K×K be a symmetric matrix

whose elements are given by

bkℓ = 2− 2Φ

(
τ
√
dkdℓ

aff(S∗
k , S

∗
ℓ )

)

, ∀ 1 ≤ k, ℓ ≤ K, (21)

where Φ(x) = 1√
2π

∫ x

−∞ exp
(

− t2

2

)

dt denotes the cumu-

lative distribution function of the standard normal distribu-

tion. It is worth noting that bkℓ is an approximation of the

probability of aij = 1 if zi ∈ S∗
k and zj ∈ S∗

ℓ for all

1 ≤ k, ℓ ≤ K , where aij is given in (11); see Lemma 1.

Assumption 2. The thresholding parameter is set as

τ =

√
c√

dmax

, (22)

where c > 0 is a constant. The parameter κd is a constant

and the maximum of the normalized affinities satisfying

κ ∈



0,

√
c

√
κdΦ−1

(

1− 1−Φ(
√
c)

2(K−1)

)



 (23)

is also a constant. Moreover, the affinity between pairwise

subspaces satisfies

aff(S∗
k , S

∗
ℓ ) & logN, ∀ 1 ≤ k 6= ℓ ≤ K (24)

and the subspace dimension satisfies

dmin & log3 N . (25)

We will use this assumption in the following theorem, re-

stricting our result to the high affinity case. In general,

the clustering becomes harder as the affinity increases; see,

e.g., Soltanolkotabi et al. (2014, Section 1.3.1). Then, it is

natural to assume that κ is a constant and (24) holds. We

want to also highlight that (24) implies that our subspaces

are of generally moderate dimension, which is made pre-

cise in (25) of the assumption. While this is slightly restric-

tive, it is in line with theoretical results in other subspace

clustering literature, and it also simplifies our theoretical

analysis. We leave an analysis of the low-to-moderate affin-

ity settings and low-rank subspaces to future work.

Theorem 2. Let {zi}Ni=1 be data points generated ac-

cording to the semi-random UoS model with parameters

(N,K, {U∗
k }Kk=1,H

∗). Suppose that Assumption 2 holds,

κd ≤ √
logN , and κdκ

2
N .

√
logN . It holds with proba-

bility at least 1−N−Ω(1) that

dF (H
0,H∗) .

√
κdκN

√
Nmax

4
√
logN

. (26)

In particular, if both κd and κN are constants and N is

sufficiently large, H0 satisfies (17) with probability at least

1−N−Ω(1).

To put the above results in perspective, we make some re-

marks. First, according to the fact that d2F (H
0,H∗)/2 de-

notes the number of misclassified data points, the bound

(26) implies that the TIPS method only misclassifies

O(N/
√
logN) points when κd, κN are constants and the

normalized subspace affinity is O(1). This automatically

satisfies (17), which requires the number of misclassified

points to be O(N) when κd, κN are constants. Second, we

believe that the recovery error bound (26) can be improved

by enhancing the spectral bound in Proposition 1. This is

left for future research.

3. Proofs of Main Results

In this section, we sketch the proofs of the theorems in Sec-

tion 2. The complete proofs can be found in Sections B, C,

and D of the appendix.

3.1. Analysis of Initialization Method

In this subsection, our goal is to establish a recovery error

bound of the TIPS method. To begin, we estimate the con-

nection probability of data points (i.e., the probability of

aij = 1 in (11)) according to their memberships after the

thresholding procedure (11). Moreover, we show that the

connection probability of data points in the same subspace

is larger than that of data points in different subspaces.

Lemma 1. Consider the setting in Theorem 2. Let pkℓ ∈ R

denote the connection probability between any pair of data

points that respectively belong to the subspaces S∗
k and S∗

ℓ

for all 1 ≤ k, ℓ ≤ K . Then, it holds for all 1 ≤ k, ℓ ≤ K
that

|pkℓ − bkℓ| . κd/
√

logN, (27)

where bkℓ is defined in (21), and

pkk − pkℓ & 1/
√
κd. (28)

Under Assumption 2, we can show that the approximate

connection matrix B is non-degenerate, which is crucial

for the analysis of the k-means error bound.
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Lemma 2. Consider the setting in Theorem 2. The matrix

B defined in (21) is of full rank and its smallest singular

value γ satisfies γ ≥ 1−Φ(
√
c), where c is the constant in

Assumption 2.

Next, we present a spectral bound on the deviation of A

from its mean.

Proposition 1. Consider the setting in Theorem 2. Then, it

holds with probability at least 1− 6K2N−1 that

‖A− E[A]‖ .

√
κdN

4
√
logN

. (29)

Despite that this bound seems large, it is sufficient for prov-

ing (26). A key observation is that the entries in the i-th
column of A are independent conditioned on zi, while they

are dependent. This plays an important role in our anal-

ysis. Compared to the results in Lei et al. (2015, Theorem

5.2), this lemma provides a spectral bound for an adjacency

matrix without independence structure, which could be of

independent interest.

Equipped with Proposition 1, Assumption 2, Lemma 2, and

Lei et al. (2015, Lemmas 5.1, 5.3), we can prove Theorem

2. The complete proof is provided in Section B.4 of the

appendix.

3.2. Analysis of Subspace Update Step

In this subsection, we analyze convergence behavior of the

subspace update step in the KSS iterations. For ease of

exposition, let us introduce some further notation. Given

an H ∈ MN×K , let Ck = {i ∈ [N ] : hik = 1} and

nk = |Ck| for all k ∈ [K]. Given C1, . . . , CK , let

nkℓ = |Ck ∩ C∗
ℓ |, Ψkℓ =

1

nkℓ

∑

i∈Ck∩C∗
ℓ

aia
T
i (30)

for all k, ℓ ∈ [K], where ai for all i ∈ [N ] are given in the

UoS model. Given a permutation π : [K] → [K] and a par-

tition {C1, . . . , CK} of [N ] represented by H ∈ MN×K ,

we define the maximum of the number of misclassified

points in Ck w.r.t. C∗
π−1(k) and that in C∗

k w.r.t. Cπ(k) as

Wk(H) = max
{

|Ck \ C∗
π−1(k)|, |C∗

k \ Cπ(k)|
}

. (31)

To begin, we present a lemma that estimates the singular

values of Ψkℓ for all 1 ≤ k 6= ℓ ≤ K .

Lemma 3. Suppose that π : [K] → [K] is a permutation,

Nk & dk & logN for all k ∈ [K], and H ∈ MN×K

satisfies

Wk(H) ≤ 1

8
Nmin for all k ∈ [K]. (32)

It holds with probability at least 1 − 2K/(d2minN) for all

1 ≤ k 6= ℓ ≤ K that

∣
∣
∣
∣
σi

(
Ψπ(k)k

)
− 1

dk

∣
∣
∣
∣
≤ 1

32dk
for all i ∈ [dk], (33)

σ1

(
Ψπ(k)ℓ

)
≤ 1

dℓ
+

5c1
4dℓ

(√

dℓ
nπ(k)ℓ

+
dℓ

nπ(k)ℓ

)

, (34)

where c1 > 0 is an absolute constant.

Armed with this lemma, we are now ready to show that

the distance from the subspaces generated by the update

steps to the true ones can be bounded by the number of

misclassfied data points.

Lemma 4. Let GUk
(H) =

∑N
i=1 hikziz

T
i for some H ∈

MN×K and λk1 ≥ · · · ≥ λkd be the d leading eigenvalues

of GUk
(H) for all k ∈ [K]. Suppose that for all k ∈ [K],

d̂k = argmax
i∈[d−1]

(
λki − λk(i+1)

)
(35)

and

Uk = PCA(GUk
(H), d̂k). (36)

Suppose in addition that π : [K] → [K] is a permutation,

Nmin & dk & logN for all k ∈ [K], and ε ∈ (0, 1/(8κd)]
is a constant such that

Wk(H) ≤ εNmin for all k ∈ [K]. (37)

Then, it holds with probability at least 1 − 2K/(d2minN)
that

d̂π(k) = dk for all k ∈ [K], (38)

K∑

k=1

d(Uπ(k),U
∗
k ) ≤

2dmax

Nmin
max

{
1

dmin
‖H −H∗Qπ‖2F ,

2K2(c1 + 1)c1
}
, (39)

where c1 is the constant in Lemma 3.

3.3. Analysis of Cluster Assignment Step

In this subsection, we turn to study convergence behavior of

the cluster assignment step in the KSS iterations. Observe

that Problem (6) is row-separable, and thus we can solve it

by dividing it into N subproblems. Specifically, for a row

of G denoted by g ∈ R
K , it suffices to consider

T (g) = argmin
{
〈g,h〉 : hT

1K = 1, h ∈ {0, 1}K
}
.

Then, we can show that this problem admits a closed-form

solution, which may be not unique.
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Figure 1. Convergence performance of KSS: The x-axis is number of iterations and the y-axis is the distance from an iterate to a ground

truth, i.e., d2F (H
k,H∗) + 10−8, where H

k is the k-th iterate generated by KSS.

Lemma 5. For any g ∈ R
K , it holds that v ∈ T (g) if and

only if vk = 1 and vℓ = 0 for all ℓ 6= k, where k ∈ [K]
satisfies gk ≤ gℓ for all ℓ 6= k. Moreover, v ∈ T (g) if and

only if Qv ∈ T (Qg) for Q ∈ ΠK .

Based on the above result, we can prove that the operator

T possesses a Lipschitz-like property.

Lemma 6. Suppose that g ∈ R
K is arbitrary and δ > 0 is

a constant such that gℓ − gk ≥ δ for some k ∈ [K] and all

ℓ 6= k. Then, for any v ∈ T (g), g′ ∈ R
K , and v′ ∈ T (g′),

it holds that

‖v − v′‖ ≤ 2‖g − g′‖
δ

. (40)

We are now ready to show that the number of misclassified

points is bounded by the subspace distance.

Lemma 7. Let π : [K] → [K] be a permutation such

that U = (U1, . . . ,UK) with Uπ(k) ∈ On×dk for all k ∈
[K]. Suppose that H̄ ∈ T (GH(U)), where the (i, k)-th
element of GH(U) ∈ R

N×K is ‖zi‖2 − ‖UT
k zi‖2. Then,

it holds for all i ∈ [N ] that

‖h̄i − h∗
iQπ‖ ≤

2
√
∑K

k=1 d(Uπ(k),U
∗
k )

1−maxℓ 6=Ii ‖U∗T

ℓ zi‖2
, (41)

where the row vectors h̄i,h
∗
i ∈ R

K respectively denote the

i-th row of H̄ and H∗, and Ii ∈ [K] satisfies h∗
iIi

= 1 for

all i ∈ [N ].

The following lemma indicates that the KSS iterations di-

rectly converge to ground truth once the distance from the

current iterate to ground truth is small enough. This implies

finite termination of the KKS method.

Lemma 8. Suppose that Assumption 1 holds, Nmin &

dk & logN for all k ∈ [K], and Ht ∈ MN×K satisfies

d2F (H
t,H∗) ≤ 2K2(c1 + 1)c1dmin, (42)

where c1 is the constant in Lemma 3. Then, it holds with

probability at least 1− 2K/(d2minN)− 5K2/N that

Ht+1 = H∗Qπ

for some Qπ ∈ ΠK .

Equipped with the results in Sections 3.2 and 3.3, we can

prove Theorem 1. The complete proof can be found in Sec-

tion D.5 of the appendix.

4. Experiment Results

In this section, we report the convergence behavior, re-

covery performance, and numerical efficiency of the KSS

method for SC on both synthetic and real datasets. All of

our experiments are implemented in MATLAB R2020a on

the Great Lakes HPC Cluster of the University of Michigan

with 180GB memory and 16 cores. Our code is available at

https://github.com/peng8wang/ICML2022-K-Subspaces.

4.1. Convergence Behavior and Recovery Performance

We first conduct 3 sets of numerical tests, which corre-

spond to K ∈ {3, 6, 9}, to examine the convergence be-

havior and recovery performance of the KSS method in

the semi-random UoS model (see Definition 2). We gen-

erate K overlapping subspaces as follows. First, we set

n = 300, d = 30, d = 25, and uniformly at random select

dk ∈ [d, d] for all k ∈ [K]. Second, we arbitrarily gener-

ate an orthogonal matrix U = [u1, . . . ,un] ∈ On and set

the shared basis as Ū = [un−s+1, . . . ,un] for an integer

s ∈ [0, d]. Next, we generate Vk by randomly picking up

(dk − s) columns, which are not repeated, from the first

n − s columns of U . Finally, we form U∗
k =

[
Vk Ū

]
for

all k ∈ [K], which ensures that the intersection between Sk

and Sℓ is at least of dimension s for all 1 ≤ k 6= ℓ ≤ K .

In each test, we generate 3 datasets by setting s = 6 and

Nk = 500 for all k ∈ [K] and respectively run the KSS

method with random initialization (denoted by RI-KSS)

https://github.com/peng8wang/ICML2022-K-Subspaces
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and TIPS initialization (denoted by TI-KSS) by setting

τ = 2/
√
d on them. Then, we plot the distance of the iter-

ates to ground truth, i.e., d2F (H
k,H∗) + 10−8, against the

iteration numbers in Figure 1. It can be observed that with a

proper initialization, the KSS method converges so quickly

that it finds the correct clustering within 10 iterations. This

supports the result in Theorem 1. Additionally, it exhibits a

finite termination phenomenon that corroborates the result

in Lemma 8. Moreover, it is observed in Figure 1(c) that

RI-KSS gets stuck at a local minimum while TI-KSS does

not on data 3.

Table 2. Average CPU time (in seconds) and the best clustering

accuracy of the tested methods on real datasets.

Accuracy COIL100 YaleB USPS MNIST

KSS 0.8117 0.7154 0.8172 0.9780

SSC 0.6732 0.8277 0.6583 –

OMP 0.3393 0.8268 0.2109 0.5749

TSC 0.7343 0.4878 0.6693 0.8514

GSC 0.6550 0.7071 0.9522 0.6306

LRR 0.5500 0.6828 0.7129 –

LRSSC 0.5200 0.7088 0.6443 –

Time (s) COIL100 YaleB USPS MNIST

KSS 53.53 6.90 8.85 30.53

SSC 912.25 136.36 1217.88 –

OMP 12.12 1.02 31.12 398.37

TSC 29.78 3.06 2.66 154.46

GSC 178.15 24.22 105.59 1800.00

LRR 144.25 63.31 112.56 –

LRSSC 1800.00 444.28 1800.00 –

“–” denotes out of memory.

4.2. Numerical Efficiency and Accuracy on Real Data

We now conduct experiments to examine the computational

efficiency and recovery accuracy of the KSS method on real

datasets. We also compare it with several state-of-the-art

methods: SSC in Elhamifar & Vidal (2013), SSC solved

by OMP in You et al. (2016), TSC in Heckel & Bölcskei

(2015), GSC in Park et al. (2014), LRR in Liu et al. (2012),

and LRSSC in Wang et al. (2019). In the implementations

of SSC, OMP, LRR, and LRSSC, we use the source codes

provided by their authors. We use the real datasets COIL-

100 (S. A. Nene & Murase, 1996a), the cropped extended

Yale B (Georghiades et al., 2001), USPS (Hull, 1994), and

MNIST (LeCun, 1998).2 The stopping criteria for the tested

methods are given as follows. For KSS, we terminate it

when the norm of two consecutive iterates is less than 10−2.

2The datasets COIL-100, Yale B, and USPS are downloaded
from http://www.cad.zju.edu.cn/home/dengcai/Data/data.html.
The dataset MNIST is downloaded from LIBSVM (Chang & Lin,
2011) at https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/.

For SSC, LRR, and LRSSC, we use the stopping criteria

in their source codes. No stopping criterion is needed for

TSC and GSC due to their one-shot nature. We set the max-

imum iteration number of KSS, SSC, LRR, and LRSSC as

200. We set the maximum running time of all tested al-

gorithms as 1800 seconds. For the implementation of KSS,

we used the TIPS initialization except for on MNIST, where

we use random initialization in Algorithm 1. More details,

including data processing, parameter settings, and test re-

sults, can be found in Section F of the appendix. Then, we

run each method 10 times. Note that if the algorithms are

initialized deterministically, the only randomness is from

the initialization for k-means in spectral clustering. To com-

pare the computational efficiency and recovery accuracy of

the tested methods, we report the average running time and

best clustering accuracy for all runs of each method in Ta-

ble 2. More experiment results can be also found in Section

F of the appendix. It can be observed that the KSS method

is in the top three in terms of both accuracy and computa-

tional efficiency for every dataset. This demonstrates the

efficiency and efficacy of the KSS method for SC.

5. Concluding Remarks

In this work, we analyzed the KSS method for subspace

clustering and provided a TIPS method for its initialization

in the semi-random UoS model. We showed that provided

an initial assignment satisfying a partial recovery condition,

the KSS method converges superlinearly and achieves cor-

rect clustering within Θ(log logN) iterations, even when

the normalized affinity between pairwise subspaces is

O(1). Moreover, we proved that the proposed initialization

method can return a qualified initial point. All these results

are demonstrated by the numerical results. A natural future

direction is to study the convergence behavior and recovery

performance of the KSS method in the noisy UoS model;

see, e.g., Heckel & Bölcskei (2015); Soltanolkotabi et al.

(2014); Tschannen & Bölcskei (2018); Wang & Xu (2013).
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Appendix

In the appendix, we provide proofs of the technical results presented in Sections 2 and 3. To proceed, we introduce some

further notations. Given a vector a ∈ R
n, we denote by diag(a) ∈ R

n×n the diagonal matrix with a on its diagonal.

Given a symmetric matrix A, we use λmin(A) to denote its smallest eigenvalue. We respectively use 1n, En, and Id to

denote the n-dimensional all-one vector, n × n all-one matrix, and d × d identity matrix, and simply write 1, E, and I

when their dimension can be inferred from the context. Given two random variables X and Y , we write X
d
= Y if X and

Y are equal in distribution. We use ei to denote a standard basis with a 1 in the i-th coordinate and 0’s elsewhere. For a

vector x ∈ R
n, we denote by xS its subvector consisting of the elements indexed by the set S. We denote the cumulative

distribution function of the standard normal distribution by

Φ(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt.

For any random vector a ∼ Unif(Sd−1), it is known that there exists a standard normal random vector such that a is its

normalization. We denote such vector by ā. Thus, it holds that

ā ∼ N (0, Id), a =
ā

‖ā‖ . (43)

Moreover, let

U∗T

k U∗
ℓ = U∗

kℓΣ
∗
kℓV

∗T

kℓ (44)

be a singular value decomposition (SVD) of U∗T

k U∗
ℓ , where σ

(1)
kℓ ≥ · · · ≥ σ

(min{dk,dℓ})
kℓ ≥ 0 are the singular values of

U∗T

k U∗
ℓ and U∗

kℓ ∈ Odk ,V ∗
kℓ ∈ Odℓ . Suppose that dk ≥ dℓ. We have

U∗T

k U∗
ℓ = U∗

kℓ

[
Σ̄

∗
kℓ

0

]

V ∗T

kℓ , (45)

where Σ̄∗
kℓ = diag

(

σ
(1)
kℓ , . . . , σ

(dℓ)
kℓ

)

. Suppose to the contrary that dk < dℓ. Then, we have

U∗T

k U∗
ℓ = U∗

kℓ

[
Σ̄

∗
kℓ 0

]
V ∗T

kℓ , (46)

where Σ̄∗
kℓ = diag

(

σ
(1)
kℓ , . . . , σ

(dk)
kℓ

)

. According to (13) and (44), one can verify that

aff(S∗
k , S

∗
ℓ ) = ‖Σ∗

kℓ‖F . (47)

Recall that for any U ,V ∈ On×d, we use d(U ,V ) =
∥
∥UUT − V V T

∥
∥ to denote the distance between the subspaces

respectively spanned by U and V . Then, one can verify

d(U ,V ) =
∥
∥(I −UUT )V

∥
∥ =

∥
∥(I − V V T )U

∥
∥ =

√

1− σ2
min(U

TV ). (48)

A. Concentration Inequalities

In this section, we present some concentration inequalities for random vectors. These inequalities play an important role in

the analysis of the proposed method. We first introduce a spectral bound on the covariance estimation for random vectors

generated by a uniform distribution over the sphere. It is a direct consequence of Vershynin (2018, Theorem 4.7.1) and

thus we omit its proof.

Lemma 9. Suppose that a1, . . . ,am ∈ R
d are i.i.d. uniformly distributed over the unit sphere. Then, it holds with

probability at least 1− 2e−u that
∥
∥
∥
∥
∥

1

m

m∑

i=1

aia
T
i − 1

d
Id

∥
∥
∥
∥
∥
≤ c1

d

(√

d+ u

m
+

d+ u

m

)

,

where c1 > 0 is an absolute constant.
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We next present a bound on the deviation of the weighted sum of standard normal random variables from its mean. This is

an extension of Li & Gu (2019, Lemma 7).

Lemma 10. Let x ∈ R
d be a normal random vector such that x ∼ N (0, σ2Id). It holds for λ1, . . . , λd ∈ [0, 1] with

∑d
i=1 λ

2
i ≥ 4 and t > 0 that

P





∣
∣
∣
∣
∣
∣

√
√
√
√

d∑

i=1

λ2
ix

2
i − σ

√
√
√
√

d∑

i=1

λ2
i

∣
∣
∣
∣
∣
∣

≥ t+ 2σ



 ≤ 2 exp

(

− t2

2σ2

)

.

Proof of Lemma 10. We define

f(x) =

√
√
√
√

d∑

i=1

λ2
ix

2
i .

By calculation, we obtain

‖∇f(x)‖ =

√
√
√
√

∑d
i=1 λ

4
i x

2
i

∑d
i=1 λ

2
i x

2
i

≤ 1.

Applying the concentration inequality for Lipschitz functions (see, e.g., Li & Gu (2019, Lemma 6))) to f(x) yields that

P (|f(x)− E[f(x)]| ≥ t) ≤ 2 exp

(

− t2

2σ2

)

. (49)

We first note that

E[f(x)] ≤
√

E[f2(x)] =

√
√
√
√

E

[
d∑

i=1

λ2
ix

2
i

]

= σ

√
√
√
√

d∑

i=1

λ2
i . (50)

By letting X = f(x) ≥ 0 and µ = E[X ], we can compute

Var (X) = E
[
(X − µ)2

]
=

∫ ∞

0

t2dP (|X − µ| ≤ t) = −
∫ ∞

0

t2dP (|X − µ| > t)

=

∫ ∞

0

2tP (|X − µ| > t) dt ≤
∫ ∞

0

4t exp

(

− t2

2σ2

)

dt = 4σ2,

where the forth equality and the last one follow from integration by parts and the inequality is due to (49). Thus, we have

E
2[f(x)] = E[f2(x)]−Var (f(x)) = E

[
d∑

i=1

λ2
i x

2
i

]

−Var (f(x)) ≥ σ2

(
d∑

i=1

λ2
i − 4

)

.

This, together with
∑d

i=1 λ
2
i ≥ 4, implies

E[f(x)] ≥ σ

√
√
√
√

d∑

i=1

λ2
i − 4 ≥ σ





√
√
√
√

d∑

i=1

λ2
i − 2



 . (51)

Plugging (50) and (51) into (49) yields the desired result.

Equipped with the above results, we are ready to present a lemma that characterizes the properties of a uniform distribution

over the sphere. This plays an important role in the subsequent analysis.
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Lemma 11. Suppose that ‖Σ∗
kℓ‖F ≥ 2 for all 1 ≤ k 6= ℓ ≤ K and ai

i.i.d.∼ Unif(Sdℓ−1) for all i ∈ [N ]. Then, it holds

with probability at least 1− 4N−2 that for some i ∈ [N ] and 1 ≤ k 6= ℓ ≤ K ,

∣
∣
∣‖āi‖ −

√

dℓ

∣
∣
∣ ≤ α, |‖Σ∗

kℓāi‖ − ‖Σ∗
kℓ‖F | ≤ α, (52)

and

‖Σ∗
kℓ‖F − α√
dℓ + α

≤ ‖Σ∗
kℓai‖ ≤ ‖Σ∗

kℓ‖F + α√
dℓ − α

, (53)

where α = 2
√
logN + 2.

Proof of Lemma 11. We first prove (52). Applying Lemma 10 with t = 2
√
logN and λj = 1 for all j ∈ [dℓ] to āi ∼

N (0, Idℓ
) yields that

P

(∣
∣
∣‖āi‖ −

√

dℓ

∣
∣
∣ ≥ α

)

≤ 2N−2. (54)

Suppose that dk ≥ dℓ. According to (45), we have Σ∗
kℓ =

[
Σ̄

∗
kℓ

0

]

. Applying Lemma 10 with t = 2
√
logN and λj = σ

(j)
kℓ

for all j ∈ [dℓ] to āi ∼ N (0, Idℓ
) yields

P
(∣
∣‖Σ̄∗

kℓāi‖ − ‖Σ̄∗
kℓ‖F

∣
∣ ≥ α

)
≤ 2N−2.

This, together with ‖Σ∗
kℓāi‖ = ‖Σ̄∗

kℓāi‖ and ‖Σ∗
kℓ‖F = ‖Σ̄∗

kℓ‖F , implies

P (|‖Σ∗
kℓāi‖ − ‖Σ∗

kℓ‖F | ≥ α) ≤ 2N−2. (55)

Suppose to the contrary that dk < dℓ. According to (46), we have Σ
∗
kℓāi =

(

σ
(1)
kℓ āi1, . . . , σ

(dk)
kℓ āidk

)

. Applying Lemma

10 with t = 2
√
logN and λj = σ

(j)
kℓ for all j ∈ [dk] to [āi]S ∼ N (0, Idk

) with S = [dk] yields

P (|‖Σ∗
kℓāi‖ − ‖Σ∗

kℓ‖F | ≥ α) ≤ 2N−2.

This, together with (54), (55), and the union bound, implies (52).

We next prove (53) using (52). Using ai = āi/‖āi‖ and (52), we have

‖Σ∗
kℓai‖ =

‖Σ∗
kℓāi‖

‖āi‖
≤ ‖Σ∗

kℓ‖F + α√
dℓ − α

and

‖Σ∗
kℓai‖ =

‖Σ∗
kℓāi‖

‖āi‖
≥ ‖Σ∗

kℓ‖F − α√
dℓ + α

.

Then, we complete the proof.

Then, we present a lemma that estimates the magnitudes of some crucial parameters in our analysis.

Lemma 12. Suppose that zi ∈ R
N are generated according to the semi-random UoS model such that zi ∈ S∗

ℓ . Then, for

any 1 ≤ i 6= j ≤ N and k ∈ [K], it holds with probability at least 1− 5K2/N that

aff(S∗
k , S

∗
ℓ )− α√

dℓ + α
≤ ‖U∗T

k zi‖ ≤ aff(S∗
k , S

∗
ℓ ) + α√

dℓ − α
(56)

and
∣
∣
∣
∣
∣

〈U∗T

k zi,U
∗T

k zj〉
‖U∗T

k zj‖

∣
∣
∣
∣
∣
≤ 2

√
logN√
dℓ − α

, (57)

where α = 2
√
logN + 2.
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Proof of Lemma 12. Suppose that (52) and (53) hold for all i ∈ [N ] and k, ℓ ∈ [K], which happens with probability

1− 4K2N−1 according to Lemma 11 and the union bound. We first show (56). Since zi ∈ S∗
ℓ and a uniform distribution

over the sphere is rotationally invariant, we have ‖U∗T

k zi‖ = ‖U∗T

k U∗
ℓ ai‖ = ‖U∗

kℓΣ
∗
kℓV

∗T

kℓ ai‖ ∼ ‖Σ∗
kℓai‖. This,

together with (53) and (47), implies that for any j ∈ [N ] and ℓ ∈ [K],

aff(S∗
k , S

∗
ℓ )− α√

dℓ + α
≤ ‖U∗T

k zi‖ ≤ aff(S∗
k , S

∗
ℓ ) + α√

dℓ − α
. (58)

We next show (57). According to zi ∈ S∗
ℓ and (43), we have

〈U∗T

k zi,U
∗T

k zj〉
‖U∗T

k zj‖
=

〈U∗T

k U∗
ℓ ai,U

∗T

k zj〉
‖U∗T

k zj‖
=

〈U∗T

k U∗
ℓ āi,U

∗T

k zj〉
‖āi‖‖U∗T

k zj‖
. (59)

By letting X be a standard normal random variable, i.e., X ∼ N(0, 1), we compute

P

(∣
∣
∣
∣
∣

〈U∗T

k U∗
ℓ āi,U

∗T

k zj〉
‖U∗T

k zj‖

∣
∣
∣
∣
∣
≤ 2

√

logN
∣
∣
∣ zj

)

= P

(

|X | ≤ 2‖U∗T

k zj‖
√
logN

‖U∗T

ℓ U∗
kU

∗T

k zj‖

)

≥ P

(

|X | ≤ 2
√

logN
)

≥ 1−
√

2

π

N−2

√
logN

,

where the equality is due to 〈U∗T

k U∗
ℓ āi,U

∗T

k zj〉/‖U∗T

k zj‖ ∼ N
(

0, ‖U∗T

ℓ U∗
kU

∗T

k zj‖2/‖U∗T

k zj‖2
)

and the first in-

equality is due to ‖U∗T

ℓ U∗
kU

∗T

k zj‖ ≤ ‖U∗T

k zj‖. This, together with (52), (59), and the union bound, implies that it holds

with probability at least 1−K2N−1/
√
logN that for all 1 ≤ i 6= j ≤ N and ℓ ∈ [K],

|〈U∗T

k zi,U
∗T

k zj〉|
‖U∗T

k zj‖
≤ 2

√
logN√
dℓ − α

.

This, together with (58) and the union bound, implies the desired results.

B. Proofs in Section 3.1

According to Assumption 2, dmin & log3 N , and α = 2
√
logN + 2, there exists an ε . 1/

√
logN such that

α ≤ εaff(S∗
k , S

∗
ℓ ) for all 1 ≤ k 6= ℓ ≤ K, α ≤ ε

√

dk for all k ∈ [K]. (60)

This result shall be used in the subsequent proofs again and again.

B.1. Proof of Lemma 1

Before we prove Lemma 1, we need the following lemma to estimate the probability of the event that |〈zi, zj〉| ≥ τ
conditioned on zj . Recall that we denote the cumulative distribution function of the standard normal distribution by

Φ(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt.

Lemma 13. Suppose that zi ∈ S∗
k for some k ∈ [K]. Then, it holds for any 1 ≤ i 6= j ≤ N that

2− 2Φ

(
τ(
√
dk + α)

‖U∗T

k zj‖

)

− 2N−2 ≤ P

(

|〈zi, zj〉| ≥ τ
∣
∣
∣ zj

)

≤ 2− 2Φ

(
τ(
√
dk − α)

‖U∗T

k zj‖

)

+ 2N−2, (61)

where α = 2
√
logN + 2. In particular, we have

P

(

|〈zi, zj〉| ≥
‖U∗T

k zj‖
√
logN√

dk

∣
∣
∣ zj

)

≤
√

2

π

2
√
dk

(
√
dk − α)

√
logN

N
− (

√
dk−α)2

2dk + 2N−2. (62)
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Proof of Lemma 13. According to zi ∈ S∗
k and (43), we have

P

(

|〈zi, zj〉| ≥ τ
∣
∣
∣ zj

)

= 2P
(

〈zi, zj〉 ≥ τ
∣
∣
∣ zj

)

= 2P
(

〈U∗
kai, zj〉 ≥ τ

∣
∣
∣ zj

)

= 2P
(

〈āi,U
∗T

k zj〉 ≥ τ‖āi‖
∣
∣
∣ zj

)

≥ 2P
(

〈āi,U
∗T

k zj〉 ≥ τ(
√

dk + α)
∣
∣
∣ zj

)

− 2P
(

‖āi‖ ≥
√

dk + α
)

≥ 2− 2Φ

(
τ(
√
dk + α)

‖U∗T

k zj‖

)

− 2N−2,

where the first inequality is due to the union bound and the fact that ai is independent of aj and the second inequality

follows from 〈āi,U
∗T

k zj〉 ∼ N (0, ‖U∗T

k zj‖2) and uses (54) for āi ∈ Unif
(
S
dk−1

)
. By the same argument, we obtain

P

(

|〈zi, zj〉| ≥ τ
∣
∣
∣ zj

)

= 2P
(

〈āi,U
∗T

k zj〉 ≥ τ‖āi‖
∣
∣
∣ zj

)

≤ 2P
(

〈āi,U
∗T

k zj〉 ≥ τ(
√

dk − α)
∣
∣
∣ zj

)

+ 2P
(

‖āi‖ ≤
√

dk − α
)

≤ 2− 2Φ

(
τ(
√
dk − α)

‖U∗T

k zj‖

)

+ 2N−2.

This, together with τ = ‖U∗T

k zj‖
√
logN/

√
dk, yields

P

(

|〈zi, zj〉| ≥
‖U∗T

k zj‖
√
logN√

dk

∣
∣
∣ zj

)

≤ 2− 2Φ

(√
logN(

√
dk − α)√

dk

)

+ 2N−2

≤
√

2

π

∫ ∞
√

log N(
√

dk−α)√
dk

exp

(

− t

2

√
logN(

√
dk − α)√

dk

)

dt+ 2N−2

=

√

2

π

2
√
dk

(
√
dk − α)

√
logN

N
− (

√
dk−α)2

2dk + 2N−2.

Proof of Lemma 1. First, we prove (27). Suppose that a pair of data points zi, zj ∈ S∗
k for some k ∈ [K]. According to

(61) in Lemma 13 and ‖U∗T

k zj‖ = ‖aj‖ = 1 due to the UoS model, we obtain

2− 2Φ
(

τ(
√

dk + α)
)

− 2N−2 ≤ P

(

|〈zi, zj〉| ≥ τ
∣
∣
∣ zj

)

≤ 2− 2Φ
(

τ(
√

dk − α)
)

+ 2N−2.

This, together with pkk = E

[

P

(

|〈zi, zj〉| ≥ τ
∣
∣
∣ zj

)]

, implies

2− 2Φ
(

τ(
√

dk + α)
)

− 2N−2 ≤ pkk ≤ 2− 2Φ
(

τ(
√

dk − α)
)

+ 2N−2. (63)

This, together with (21), yields that for all k ∈ [K],

pkk − bkk ≤ 2Φ
(

τ
√

dk

)

− 2Φ
(

τ(
√

dk − α)
)

+ 2N−2 ≤
√

2

π
exp

(

−τ2(
√
dk − α)2

2

)

τα + 2N−2 .
1

logN
, (64)

where the last inequality is due to (22) and dmin & log3 N . By the same argument, we have pkk − bkk & − 1
logN . This,

together with (64), implies (27) for all k = ℓ. Suppose that a pair of data points zi ∈ S∗
k , zj ∈ S∗

ℓ for some 1 ≤ k 6= ℓ ≤ K .

Since a uniform distribution over the sphere is rotationally invariant, we have

‖U∗T

k zj‖ = ‖U∗T

k U∗
ℓ aj‖ = ‖U∗

kℓΣ
∗
kℓV

∗T

kℓ aj‖ ∼ ‖Σ∗
kℓaj‖,

where the second equality is due to (44). This, together with (53) in Lemma 11 and (61) in Lemma 13, implies it holds

with probability at least 1− 2N−2 that

2− 2Φ

(
τ(
√
dk + α)(

√
dℓ + α)

‖Σ∗
kℓ‖F − α

)

− 2N−2 ≤ P

(

|〈zi, zj〉| ≥ τ
∣
∣
∣ zj

)

≤ 2− 2Φ

(
τ(
√
dk − α)(

√
dℓ − α)

‖Σ∗
kℓ‖F + α

)

+ 2N−2.
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This, together with aff(S∗
k , S

∗
ℓ ) = ‖Σ∗

kℓ‖F and pkℓ = E

[

P

(

|〈zi, zj〉| ≥ τ
∣
∣
∣ zj

)]

, further implies

2− 2Φ

(
τ(
√
dk + α)(

√
dℓ + α)

aff(S∗
k , S

∗
ℓ )− α

)

− 4N−2 ≤ pkℓ ≤ 2− 2Φ

(
τ(
√
dk − α)(

√
dℓ − α)

aff(S∗
k , S

∗
ℓ ) + α

)

+ 4N−2. (65)

This, together with (21), yields that for all 1 ≤ k 6= ℓ ≤ K ,

pkℓ − bkℓ ≤ 2Φ

(
τ
√
dkdℓ

aff(S∗
k , S

∗
ℓ )

)

− 2Φ

(
τ(
√
dk − α)(

√
dℓ − α)

aff(S∗
k , S

∗
ℓ ) + α

)

+ 4N−2

≤
√

2

π
exp

(

−τ2(
√
dk − α)2(

√
dℓ − α)2

2(aff(S∗
k , S

∗
ℓ ) + α)2

)(
τ
√
dkdℓ

aff(S∗
k , S

∗
ℓ )

− τ(
√
dk − α)(

√
dℓ − α)

aff(S∗
k , S

∗
ℓ ) + α

)

≤
√

2

π
exp

(

− (1− ε)4τ2d2min

2(1 + ε)2aff2(S∗
k , S

∗
ℓ )

)(

1− (1− ε)2

1 + ε

)
τ
√
dkdℓ

aff(S∗
k , S

∗
ℓ )

=

√

2

π

ε(3− ε)τ
√
dkdℓ

1 + ε
exp

(

− (1− ε)4τ2d2min

2(1 + ε)2aff2(S∗
k , S

∗
ℓ )

)

1

aff(S∗
k , S

∗
ℓ )

=

√

2

π
exp

(

−1

2

)
ε(3− ε)

√
dkdℓ

(1− ε)2dmin
.

dmax

dmin

√
logN

, (66)

where the third inequality is due to (60) and the last inequality follows from ε . 1/
√
logN and the fact that

exp
(
−ηx2/2

)
x attains the maximum at x = 1/

√
η when x ∈ (0,∞). By the same argument, we have pkℓ − bkℓ &

− d3/2
max

d
3/2
min

√
logN

. This, together with (64), implies (27) for all 1 ≤ k 6= ℓ ≤ K .

Next, we prove (28). Note that for any 1 ≤ k 6= ℓ ≤ K ,

(
√

dk − α)(
√

dℓ − α) − (
√

dk + α) (aff(S∗
k , S

∗
ℓ ) + α) =

√

dk

(√

dℓ − aff(S∗
k , S

∗
ℓ )
)

− α
(

2
√

dk +
√

dℓ + aff(S∗
k , S

∗
ℓ )
)

≥
√

dk

(√

dℓ − aff(S∗
k , S

∗
ℓ )
)

− 2α
(√

dk +
√

dℓ

)

≥ 1

10

√

dkdℓ, (67)

where the first inequality follows from aff(S∗
k , S

∗
ℓ ) ≤

√
dℓ and the second inequality uses aff(S∗

k , S
∗
ℓ ) ≤ 4

√
dℓ/5 due to

(15) and dmin & log3 N . For ease of exposition, let

xkℓ =
τ(
√
dk − α)(

√
dℓ − α)

aff(S∗
k , S

∗
ℓ ) + α

, yk = τ(
√

dk + α).

According to (67) and (22), we have xkℓ > yk for any 1 ≤ k 6= ℓ ≤ K . For all 1 ≤ k 6= ℓ ≤ K satisfying aff(S∗
k , S

∗
ℓ ) ≥

τ(
√
dk − α)(

√
dℓ − α)/(2c)− α, we have

xkℓ ≤ 2c

and

xkℓ − yk ≥ τ
√
dkdℓ

10 (aff(S∗
k , S

∗
ℓ ) + α)

≥ c
√
dkdℓ

10min{√dk,
√
dℓ}

√
dmax

&

√
dmin√
dmax

,

where the first inequality uses (67) and the second inequality follows from (60) and (15). This, together with (63), (65),

and xkℓ > yk, yields that for all 1 ≤ k 6= ℓ ≤ K ,

pkk − pkℓ ≥ 2 (Φ (xkℓ)− Φ (yk))− 6N−2 ≥
√

2

π
exp

(

−x2
kℓ

2

)

(xkℓ − yk)− 6N−2 &

√
dmin√
dmax

. (68)
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For all 1 ≤ k 6= ℓ ≤ K satisfying aff(S∗
k , S

∗
ℓ ) < τ(

√
dk − α)(

√
dℓ − α)/(2c)− α, we have for all 1 ≤ k 6= ℓ ≤ K ,

pkk ≥ 2− 2Φ

(
c(
√
dk + α)√
dmax

)

− 2N−2 ≥ 2− 2Φ ((1 + ε)c)− 2N−2,

where the first inequality is due to (63) and (22) and the second inequality uses (60), and

pkℓ ≤ 2− 2Φ (2c) + 4N−2.

Then, we have for all 1 ≤ k 6= ℓ ≤ K ,

pkk − pkℓ ≥ 2Φ (2c)− 2Φ ((1 + ε)c)− 6N−2,

which is a constant due to the fact that c > 0 is a constant. This, together with (68) and dmin & logN , implies (28).

B.2. Proof of Lemma 2

Proof. According to (21) and (22), we have for all 1 ≤ k 6= ℓ ≤ K ,

bkk = 2− 2Φ

( √
cdk√
dmax

)

≥ 2− 2Φ(
√
c) (69)

and

bkℓ = 2− 2Φ

( √
cdkdℓ√

dmaxaff(S∗
k , S

∗
ℓ )

)

≤ 2− 2Φ

( √
cdmin

κ
√
dmax

)

= 2− 2Φ

( √
c

κ
√
κd

)

, (70)

where the inequality is due to aff(S∗
k , S

∗
ℓ ) ≤ κmin{

√
dk,

√
dℓ} for all 1 ≤ k 6= ℓ ≤ K by Assumption 2 and (15). Then,

we can decompose the symmetric matrix B into B = B1 +B2, where

B1 =








b11
2 b12 . . . b1K
b12

b22
2 . . . b2K

...
...

. . .
...

b1K b2K . . . bKK

2







, B2 =

1

2








b11 0 . . . 0
0 b22 . . . 0
...

...
. . .

...

0 0 . . . bKK







.

According to (69), (70), and (23), we can verify for all k ∈ [K],

1

2
|bkk| −

∣
∣
∣
∣
∣
∣

∑

ℓ:k 6=ℓ

bkℓ

∣
∣
∣
∣
∣
∣

≥ 1− Φ(
√
c)− 2(K − 1)

(

1− Φ

( √
c

κ
√
κd

))

≥ 0,

which implies that B1 is a symmetric diagonally dominant matrix (see Golub & Van Loan (2013, Section 4.1.1)). Using

the result that a symmetric diagonally dominant matrix with real non-negative diagonal entries is positive semidefinite, we

can conclude that B1 is positive semidefinite. On the other hand, we can see that B2 is a diagonal matrix with all the

diagonal elements being larger than 1− Φ(
√
c). Then, we have

min
‖x‖=1

xTBx ≥ min
‖x‖=1

xTB1x+ min
‖x‖=1

xTB2x = λmin(B1) + λmin(B2) ≥ 1− Φ(
√
c).

Then, we complete the proof.

B.3. Proof of Proposition 1

Before we prove Proposition 1, we need estimate the covariance between the random variables aik and ajk generated by

the thresholding procedure (11) for all 1 ≤ i 6= j ≤ N and k ∈ [N ].

Lemma 14. Suppose that zi, zj , and zk are different points generated according to the semi-random UoS model such

that zk ∈ Sℓ for some ℓ ∈ [K]. Suppose in addition that Assumption 2 holds, the thresholding parameter is set as in (22),

dmin & logN . Then, it holds for any 1 ≤ i 6= j ≤ N with probability at least 1− 5K2N−2 that

|E[aikajk|zi, zj ]− E[aik|zi]E[ajk|zj ]| .
dmax

dmin

√
logN

.
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Proof of Lemma 14. Suppose that (56) and (57) hold, which happens with probability at least 1 − 5K2/N according to

Lemma 12. To simplify the notations, let

vi := U∗T

ℓ zi, ṽi :=
vi

‖vi‖
, for all i ∈ [N ]. (71)

Besides, for any given vi and vj , let

βij :=

(
τ + |〈vi, ṽj〉|

√
logN/

√
dℓ
)
(
√
dℓ + α)

(‖vi‖ − |〈vi, ṽj〉|)
√

1− (logN)/dℓ
, β′

ij :=

(
τ − |〈vi, ṽj〉|

√
logN/

√
dℓ
)
(
√
dℓ − α)

‖vi‖
. (72)

In addition, suppose that the following inequalities hold:

E[aikajk|zi, zj ] ≥
(
2− 2Φ (βij)− 2N−2

)
P

(

τ ≤ |〈zj , zk〉| ≤
‖vj‖

√
logN√
dℓ

∣
∣
∣ zj

)

(73)

E[aikajk|zi, zj ] ≤
(
2− 2Φ

(
β′
ij

)
+ 2N−2

)
P

(

τ ≤ |〈zj , zk〉| ≤
‖vj‖

√
logN√
dℓ

∣
∣
∣ zj

)

+

(
2 + 2N−2

)
P

(‖vj‖
√
logN√
dℓ

≤ |〈zj , zk〉| ≤ 1
∣
∣
∣ zj

)

. (74)

According to Lemma 13, we obtain

2− 2Φ

(
τ(
√
dℓ + α)

‖vi‖

)

− 2N−2 ≤ E[aik|zi] ≤ 2− 2Φ

(
τ(
√
dℓ − α)

‖vi‖

)

+ 2N−2. (75)

This, together with (73), yields

E[aikajk|zi, zj ]− E[aik|zi]E[ajk|zj ]

≥ 2
(
1− Φ (βij)−N−2

)
P

(

τ ≤ |〈zj , zk〉| ≤
‖vj‖

√
logN√
dℓ

∣
∣
∣ zj

)

− 2

(

1− Φ

(
τ(
√
dℓ − α)

‖vi‖

)

+N−2

)

P

(

|〈zj , zk〉| ≥ τ
∣
∣
∣ zj

)

= 2

(

Φ

(
τ(
√
dℓ − α)

‖vi‖

)

− Φ (βij)− 2N−2

)

P

(

τ ≤ |〈zj , zk〉| ≤
‖vj‖

√
logN√
dℓ

∣
∣
∣ zj

)

− 2

(

1− Φ

(
τ(
√
dℓ − α)

‖vi‖

)

+N−2

)

P

(

|〈zj , zk〉| ≥
‖vj‖

√
logN√
dℓ

∣
∣
∣ zj

)

& − dmax

dmin

√
logN

, (76)

where the last inequality is due to Lemma 16, Lemma 13, and (22). By the similar argument, according to (74) and (75),

we have

E[aikajk|zi, zj ]− E[aik|zi]E[ajk|zj ] ≤ 2

(

Φ

(
τ(
√
dℓ + α)

‖vi‖

)

− Φ(β′
ij) + 2N−2

)

P

(

τ ≤ |〈zj , zk〉| ≤
√
logN√
dℓ

∣
∣
∣ zj

)

+ 2

(

Φ

(
τ(
√
dℓ + α)

‖vi‖

)

+ 2N−2

)

P

(

|〈zj , zk〉| ≥
√
logN√
dℓ

∣
∣
∣ zj

)

.
dmax

dmin

√
logN

.

According to this and (76), we complete the proof.

Then, the rest of the proof is devoted to proving (73) and (74). According to (11) and zk = U∗
ℓ ak, we have

E[aikajk|zi, zj ] = P

(

|〈zi, zk〉| ≥ τ, |〈zj , zk〉| ≥ τ
∣
∣
∣ zi, zj

)

=

∫ ∞

−∞
P

(

|〈zi, zk〉| ≥ τ, |〈zj , zk〉| ≥ τ
∣
∣
∣ |〈zj , zk〉| = t, zi, zj

)

dP
(

|〈zj , zk〉| ≤ t
∣
∣
∣ zj

)

=

∫ 1

τ

P

(

|〈zi, zk〉| ≥ τ
∣
∣
∣ |〈zj , zk〉| = t, zi, zj

)

dP
(

|〈zj , zk〉| ≤ t
∣
∣
∣ zj

)

=

∫ 1

τ

P

(

|〈vi,ak〉| ≥ τ
∣
∣
∣ |〈vj ,ak〉| = t, zi, zj

)

dP
(

|〈zj , zk〉| ≤ t
∣
∣
∣ zj

)

, (77)
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where the second equality is due to the the law of total probability, the third equality uses τ ≤ |〈zj , zk〉| ≤ 1, and the last

equality follows from vi = U∗T

ℓ zi for all i ∈ [N ]. Due to ‖ak‖ = 1 and ‖ṽj‖ = 1, we can decompose ak into two parts

that are orthogonal:

ak = xṽj +
√

1− x2bk, (78)

where x ∈ R and bk ∈ R
dℓ satisfying 〈bk, ṽj〉 = 0 and ‖bk‖ = 1. This, together with |〈vj ,ak〉| = t, implies

t = |x|‖vj‖. (79)

Since ‖ṽj‖ = 1, there exists an orthogonal matrix U ∈ Odℓ such that Uṽj = e1. Let

b̃k :=
UTak − xe1√

1− x2
(80)

and ck ∈ R
dℓ−1 such that ck := (b̃k2, · · · , b̃kdℓ

). According to Lemma 15, we obtain

Ubk ∼ b̃k (81)

such that b̃k1 = 0 and ck ∼ Unif(Sdℓ−2). Besides, let

wi := vi − 〈vi, ṽj〉ṽj . (82)

According to (78), we have

〈vi,ak〉 = x〈vi, ṽj〉+
√

1− x2〈vi, bk〉 = x〈vi, ṽj〉+
√

1− x2〈wi, bk〉, (83)

where the second equality is due to (82) and 〈ṽj , bk〉 = 0. According to 〈wi, ṽj〉 = 0, we have 〈UTwi,Uṽj〉 =
〈UTwi, e1〉 = 0. This, together with letting ui denote the i-th column of U ∈ Odℓ and di :=

(
uT
2 wi, . . . ,u

T
dwi

)
∈

R
dℓ−1, we have uT

1 wi = 0 and ‖di‖ = ‖wi‖. It follows from this and (81) that

|〈wi, bk〉| = |〈UTwi,Ubk〉| ∼ |〈UTwi, b̃k〉| = |〈di, ck〉|. (84)

Now, we are ready to compute the lower bound of E[aikajk|zi, zj ]. According to (77), (79), (83), and (84), we have

P

(

|〈vi,ak〉| ≥ τ
∣
∣
∣ |〈vj ,ak〉| = t, zi, zj

)

≥ P

(

|〈wi, bk〉| ≥
τ + |x〈vi, ṽj〉|√

1− x2

∣
∣
∣ |x| = t

‖vj‖
, zi, zj

)

= P

(

|〈di, ck〉| ≥
τ‖vj‖+ t|〈vi, ṽj〉|

√
‖vj‖2 − t2

∣
∣
∣ zi, zj

)

. (85)

Then, let

h(t) :=
(τ‖vj‖+ t|〈vi, ṽj〉|) (

√
dℓ + α)

(‖vi‖ − |〈vi, ṽj〉|)
√

‖vj‖2 − t2
.

According to the argument in Lemma 13 with α = 2
√
logN + 2, ck ∼ Unif(Sdℓ−2), and ‖di‖ = ‖wi‖, we obtain

P

(

|〈di, ck〉| ≥
τ‖vj‖+ t|〈vi, ṽj〉|

√
‖vj‖2 − t2

∣
∣
∣ zi, zj

)

≥ 2− 2Φ

(

(τ‖vj‖+ t|〈vi, ṽj〉|) (
√
dℓ + α)

‖wi‖
√
‖vj‖2 − t2

)

− 2N−2

≥ 2− 2Φ (h(t))− 2N−2, (86)
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where the second inequality is due to ‖wi‖ ≥ ‖vi‖−|〈vi, ṽj〉| > 0 according to (82) and the triangle inequality. According

to (77), (85), and (86), we have

E[aikajk|zi, zj ] ≥
∫ 1

τ

(
2− 2Φ (h(t))− 2N−2

)
dP

(

|〈zj , zk〉| ≤ t
∣
∣
∣ zj

)

≥
∫ ‖vj‖

√
log N√

dℓ

τ

(
2− 2Φ (h(t))− 2N−2

)
dP

(

|〈zj , zk〉| ≤ t
∣
∣
∣ zj

)

≥
∫ ‖vj‖

√
log N√

dℓ

τ

(
2− 2Φ (βij)− 2N−2

)
dP

(

|〈zj , zk〉| ≤ t
∣
∣
∣ zj

)

=
(
2− 2Φ (βij)− 2N−2

)
P

(

τ ≤ |〈zj , zk〉| ≤
‖vj‖

√
logN√
d

∣
∣
∣ zj

)

, (87)

where the last inequality is because h(t) is an increasing function. Next, by letting

g(t) :=
(τ‖vj‖ − t|〈vi, ṽj〉|) (

√
dℓ − α)

‖vi‖‖vj‖
,

we can obtain the following inequality by the same argument as (85) and (86):

P

(

|〈vi,ak〉| ≥ τ
∣
∣
∣ 〈vj ,ak〉 = t, zi, zj

)

≤ 2− 2Φ

(

(τ‖vj‖ − t|〈vi, ṽj〉|) (
√
dℓ − α)

‖wi‖
√
‖vj‖2 − t2

)

+ 2N−2

≤ 2− 2Φ (g(t)) + 2N−2,

where the last inequality is due to ‖wi‖ ≤ ‖vi‖. Besides, it holds for t ∈ (τ, ‖vj‖
√
logN/

√
dℓ] that

g(t) ≥ β′
ij .

These, together with (77), imply

E[aikajk|zi, zj ] ≤
∫ 1

τ

(
2− 2Φ (g(t)) + 2N−2

)
dP

(

|〈zj , zk〉| ≤ t
∣
∣
∣ zj

)

=

∫ ‖vj‖
√

log N√
dℓ

τ

(
2− 2Φ (g(t)) + 2N−2

)
dP

(

|〈zj , zk〉| ≤ t
∣
∣
∣ zj

)

+

∫ 1

‖vj‖
√

log N√
dℓ

(
2− 2Φ (g(t)) + 2N−2

)
dP

(

|〈zj , zk〉| ≤ t
∣
∣
∣ zj

)

≤
(
2− 2Φ

(
β′
ij

)
+ 2N−2

)
P

(

τ ≤ |〈zj , zk〉| ≤
‖vj‖

√
logN√
dℓ

∣
∣
∣ zj

)

+

(
2 + 2N−2

)
P

(‖vj‖
√
logN√
dℓ

≤ |〈zj , zk〉| ≤ 1
∣
∣
∣ zj

)

. (88)

Proof of Proposition 1. Suppose that (56) and (57) hold, which happens with probability at least 1− 5K2/N according to

Lemma 12. For ease of exposition, let ∆ := A− E[A]. Recall the definition of pk and qkℓ for 1 ≤ k 6= ℓ ≤ K in Lemma

1. It follows from (11) and Lemma 1 that the (i, j)-th element of A satisfies aij ∼ Bern(pij) such that

pij =

{

pk, if zi, zj ∈ Sk,

qkℓ, if zi ∈ Sk, zj ∈ Sℓ, and k 6= ℓ.
(89)
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According to (63), (22), and dmin & logN , one can verify that pk ∈ (0, 1) is a constant for all k ∈ [K]. According to (65)

and (22), we have for 1 ≤ k 6= ℓ ≤ K ,

qkℓ ≤ 2− 2Φ

(
maxk 6=ℓ aff(Sk, Sℓ) + α

aff(Sk, Sℓ) + α

(
√
dk − α)(

√
dℓ − α)

(
√
dmax − α)2

)

+ 4N−2

≤ 2− 2Φ

(
(
√
dk − α)(

√
dℓ − α)

(
√
dmax − α)2

)

+ 4N−2. (90)

Now, we are devoted to bounding ‖∆‖2 = ‖∆2‖. First, we consider the diagonal elements of ∆2. According to (11), we

note that aij for all j ∈ [n] are mutually independent conditioned on zi ∈ R
N . This, together with δij = aij − E[aij ] ∈

{1− pij ,−pij} and the Hoeffding’s inequality for general bounded random variables (see, e.g., Vershynin (2018, Theorem

2.2.6)), yields that

P





∣
∣
∣
∣
∣
∣

N∑

j=1

(
δ2ij − E[δ2ij ]

)

∣
∣
∣
∣
∣
∣

≥
√

N logN
∣
∣
∣ zi



 ≤ 2 exp

(

−2N logN

N

)

= 2N−2.

This, together with the union bound, yields that it holds with probability at least 1− 2N−1 that for all i ∈ [N ],

∣
∣
∣
∣
∣
∣

N∑

j=1

(
δ2ij − E[δ2ij ]

)

∣
∣
∣
∣
∣
∣

≤
√

N logN. (91)

Due to the fact that pk ∈ (0, 1) is a constant for all k ∈ [K] and (90), we have for all 1 ≤ i < j ≤ N ,

E[δ2ij ] = E[a2ij ]− E
2[aij ] = pij(1− pij)

is less than some constant. According to this and (91), it holds with probability at least 1− 2N−1 that for all i ∈ [N ],

∣
∣(∆2)ii

∣
∣ =

∣
∣
∣
∣
∣
∣

N∑

j=1

δ2ij

∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣

N∑

j=1

E[δ2ij ]

∣
∣
∣
∣
∣
∣

+
√

N logN . N. (92)

Next, we consider the off-diagonal elements of ∆2. According to (11), we note that aikajk for all k 6= i and k 6= j are

mutually independent conditioned on zi, zj ∈ R
N for all 1 ≤ i 6= j ≤ N . This, together with δij = aij − E[aij ] and the

Hoeffding’s inequality for general bounded random variables (see, e.g., Vershynin (2018, Theorem 2.2.6)), yields that

P





∣
∣
∣
∣
∣
∣

∑

k 6=i,k 6=j

(δikδjk − E[δikδjk])

∣
∣
∣
∣
∣
∣

≥
√

2N logN
∣
∣
∣ zi, zj



 ≤ 2 exp

(

−4N logN

N

)

= 2N−4.

According to Jensen’s inequality, Lemma 14, and E[δikδjk|zi, zj ] = E[aikajk|zi, zj ]− E[aik|zi]E[ajk |zj ], we obtain for

k 6= i, k 6= j,

|E[δikδjk]| ≤ E [|E[δikδjk|zi, zj ]|] .
dmax

dmin

√
logN

.

These, together with the union bound, yields that it holds with probability at least 1− 2N−2 that for all 1 ≤ i 6= j ≤ N ,

∣
∣
∣
∣
∣
∣

∑

k 6=i,k 6=j

δikδjk

∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣

∑

k 6=i,k 6=j

(δikδjk − E[δikδjk])

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

∑

k 6=i,k 6=j

E[δikδjk]

∣
∣
∣
∣
∣
∣

.
√

2N logN +
dmaxN

dmin

√
logN

.

As a result, it holds with probability at least 1− 2N−2 that for any 1 ≤ i 6= j ≤ N ,

∣
∣(∆2)ij

∣
∣ =

∣
∣
∣
∣
∣

N∑

k=1

δikδjk

∣
∣
∣
∣
∣
.

dmaxN

dmin

√
logN

, (93)
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Applying the union bound to (92) and (93) yields that

‖∆2‖ ≤ max
i∈[N ]

∣
∣(∆2)ii

∣
∣+

√
∑

i6=j

|(∆2)ij |2 . N +
dmaxN

2

dmin

√
logN

holds with probability at least 1− 6K2N−1. This further implies

‖∆‖ .

√

dmax

dmin

N
4
√
logN

.

B.4. Proof of Theorem 2

Proof. Suppose that (29) holds, which happens with probability at least 1 − 6K2N−1 according to Proposition 1. Given

zi ∈ S∗
k and zj ∈ S∗

ℓ , recall that pkℓ = P (|〈zi, zj〉| ≥ τ) denotes the connection probability between any pair of data

points that respectively belong to the subspaces S∗
k and S∗

ℓ for all 1 ≤ k, ℓ ≤ K . Let B := {bkℓ}1≤k,ℓ≤K , C :=

H∗BH∗T

, P := {pkℓ}1≤k,ℓ≤K , and D := H∗PH∗T

, where bkℓ is defined in (21). In addition, let Û ,U ∈ R
n×K be

respectively the eigenvectors of A and C associated with the K leading eigenvalues. According to (11), one can verify

that

E[A] = D − diag(D). (94)

We claim that C is of rank K and its smallest singular value is larger than Nminγ, where γ ≥ 1−Φ(c) is given in Lemma

2. Indeed, let Λ = diag
(√

N1, . . . ,
√
NK

)
. Then, we have

C = H∗
Λ

−1
ΛBΛ

(
H∗

Λ
−1

)T
.

One can verify that H∗
Λ

−1 has orthonormal columns and

σmin(C) ≥ σmin (ΛBΛ) ≥ σ2
min (Λ)σmin(B) = Nminγ.

According to (94) and Lemma 1, we have

‖E[A]−C‖ = ‖D −C − diag(D)‖ ≤ ‖D −C‖+ max
1≤k≤K

pkk

≤ ‖H∗‖2‖B − P ‖+ 1 ≤ ‖H∗T

H∗‖‖B − P ‖F + 1 .
κdNmax√
logN

.

This, together with (29), yields that

‖A−C‖ ≤ ‖A− E[A]‖ + ‖E[A]−C‖ .

√
κdN

4
√
logN

,

where the last inequality is due to κd .
√
logN . This, together with Lei et al. (2015, Lemma 5.1), γ ≥ 1− Φ(c), and the

fact that κd is a constant, yields that there exists a Q ∈ OK such that

‖Û −UQ‖F ≤ 2
√
2K

Nminγ
‖A−C‖ .

√
κdN

Nmin
4
√
logN

. (95)

According to Lei et al. (2015, Lemma 2.1), we have U = H∗X for some X ∈ R
K×K with ‖xk−xℓ‖ =

√

1/Nk + 1/Nℓ,

where xk denotes k-th row of X . By letting X ′ = XQ, we obtain

UQ = H∗X ′,

where ‖x′
k − x′

ℓ‖ =
√

1/Nk + 1/Nℓ. This, together with setting δk = 1/
√
Nk in Lei et al. (2015, Lemma 5.3) and (95),

yields that

min
k∈[K]

Nkδ
2
k = 1 &

κdN
2

N2
min

√
logN

& ‖Û −UQ‖2F
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where the first inequality is due to κ2
Nκd ≤ √

logN . This implies that there exists a Q ∈ OK such that

‖Û −UQ‖2F
δ2k

. Nk, for all k ∈ [K]. (96)

Let Ū = H0X̂ , where (H0, X̂) is an (1 + ε)-approximate solution to Problem (12). Moreover, we define Tk =
{i ∈ C∗

k : ūk − ūℓ ≥ δk/2} for all k ∈ [K], where ūi denote the i-th row of Ū . According to (96) and Lei et al. (2015,

Lemma 5.3), we have

K∑

k=1

|Tk|
Nk

. ‖Û −UQ‖2F .
κdN

2

N2
min

√
logN

.
κdκ

2
N√

logN
,

where the second inequality is due to (95). This implies

K∑

k=1

|Tk| . κdκ
2
N

Nmax√
logN

Note that Lei et al. (2015, Lemma 5.3) ensures that the membership is correctly recovered outside of ∪k∈[K]Tk, then we

have

d2F (H ,H∗) . κdκ
2
N

Nmax√
logN

,

which implies (26). Then, we complete the proof.

C. Proofs in Section 3.2

Recall that given an H ∈ MN×K , Ck = {i ∈ [N ] : hik = 1}, nk = |Ck| for all k ∈ [K], and nkℓ = |Ck ∩ C∗
ℓ | for

all k, ℓ ∈ [K]. We can verify that the number of misclassified points in {C1, . . . , CK} represented by H with respect to

{C∗
1 , . . . , C∗

K} represented by H∗ is ‖H −H∗Qπ∗‖2F /2, where Qπ∗ ∈ argminQ∈ΠK
‖H −H∗Q‖F . Moreover, we can

verify that for a permutation π : [K] → [K],

1

2
‖H −H∗Qπ‖2F =

K∑

k=1

∑

ℓ 6=π−1(k)

nkℓ =

K∑

k=1

∑

ℓ 6=π(k)

nℓk. (97)

and

∑

ℓ:ℓ 6=π−1(k)

nkℓ =
1

2

∑

ℓ:ℓ 6=π−1(k)

∑

i∈Ck∩C∗
ℓ

‖hi − h∗
iQπ‖2, Wk(H) = max







∑

ℓ:ℓ 6=π−1(k)

nkℓ,
∑

ℓ:ℓ 6=π(k)

nℓk






, (98)

where Wk(H) is defined in (31). Using Lemma 9, we can present a spectral bound on the deviation of the sample

covariance of random vectors that follow a uniform distribution over the sphere from its mean.

Corollary 1. Suppose that dk ≥ 4 log
(
Kd2kN

)
for all k ∈ [K]. For all k, ℓ ∈ [K], it holds with probability at least

1− 2K/(Nd2min) that

∥
∥
∥
∥
Ψkℓ −

1

dℓ
Idℓ

∥
∥
∥
∥
≤ 5c1

4dℓ

(√

dℓ
nkℓ

+
dℓ
nkℓ

)

, (99)

where Ψkℓ is defined in (30) and c1 > 0 is an absolute constant.

Proof of Corollary 1. Since i ∈ C∗
ℓ , we have ai ∈ Unif(Sdℓ−1) according to the UoS model in Definition 2. Applying

Lemma 9 to (30) with u = log
(
Kd2ℓN

)
yields that it holds with probability at least 1− 2/(Kd2ℓN) that

∥
∥
∥
∥
Ψkℓ −

1

dℓ
Idℓ

∥
∥
∥
∥
≤ c1

dℓ





√

dℓ + log(Kd2ℓN)

nkℓ
+

dℓ + log(Kd2ℓN)

nkℓ



 ≤ 5c1
4dℓ

(√

dℓ
nkℓ

+
dℓ
nkℓ

)

,

where the second inequality is due to dℓ ≥ 4 log(Kd2ℓN). This, together with the union bound, implies the desired

result.
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C.1. Proof of Lemma 3

Proof of Lemma 3. Suppose that (99) holds for all k, ℓ ∈ [K], which happens with probability at least 1 − 2K/(Nd2min)
according to Nk & dk & logN and Corollary 1. According to (30) and (32), we have for all k ∈ [K] ,

nπ(k)k = |Cπ(k) ∩ C∗
k | = |C∗

k | −
∑

ℓ:ℓ 6=π(k)

|Cℓ ∩ C∗
k | = Nk −

∑

ℓ:ℓ 6=π(k)

nℓk ≥ Nk −Wk(H) ≥ 7

8
Nk.

This, together with (99), yields that for all k ∈ [K],

∥
∥
∥
∥
Ψπ(k)k − 1

dk
Idk

∥
∥
∥
∥
≤ 5c1

4dk

(√

8dk
7Nk

+
8dk
7Nk

)

≤ 5c1
2dk

√

8dk
7Nk

≤ 1

32dk
,

where the third and last inequalities are due to Nk & dk for all k ∈ [K]. This, together with Weyl’s inequality, yields (33).

Again, applying (99) to Ψπ(k)ℓ for all ℓ 6= k yields

∥
∥
∥
∥
Ψπ(k)ℓ −

1

dℓ
Idℓ

∥
∥
∥
∥
≤ 5c1

4dℓ

(√

dℓ
nπ(k)ℓ

+
dℓ

nπ(k)ℓ

)

.

This, together with Weyl’s inequality, yields (34). Then, the proof is completed.

C.2. Proof of Lemma 4

Proof of Lemma 4. Suppose that (33) and (34) hold, which happens with probability at least 1 − 2K/(d2minN) according

to Lemma 3. Recall that

GUk
(H) =

N∑

i=1

hikziz
T
i for all k ∈ [K]. (100)

It follows from H ∈ MN×K and Ck = {i ∈ [N ] : hik = 1} that hik = 1 if i ∈ Ck and hik = 0 otherwise for all i ∈ [N ].
Then, we note that

GUπ(k)
(H) =

∑

i∈Cπ(k)

ziz
T
i =

K∑

ℓ=1

∑

i∈Cπ(k)∩C∗
ℓ

ziz
T
i =

K∑

ℓ=1

∑

i∈Cπ(k)∩C∗
ℓ

U∗
ℓ aia

T
i U

∗T

ℓ =

K∑

ℓ=1

nπ(k)ℓU
∗
ℓ Ψπ(k)ℓU

∗T

ℓ ,

where the third equality is due to (2) in Definition 2 and the last equality follows from (30). To simplify the notations, we

define

Aℓ = U∗
ℓ Ψπ(k)ℓU

∗T

ℓ for all ℓ ∈ [K], δi = σi

(
GUπ(k)

(H)
)
− σi+1

(
GUπ(k)

(H)
)

for all i ∈ [d− 1].

On one hand, it follows from (33), σdk

(
Ψπ(k)k

)
≤ σdk

(Ak), and σ1(Ak) ≤ σ1

(
Ψπ(k)k

)
that

31

32dk
≤ σdk

(Ak) ≤ · · · ≤ σ1(Ak) ≤
33

32dk
. (101)

On the other hand, it follows from U∗
k ∈ On×dk that

σdk+1(Ak) = · · · = σn(Ak) = 0. (102)

According to (30), (31), and (37), we have for all k ∈ [K],

nπ(k)k = |C∗
k | −

∑

ℓ:ℓ 6=π(k)

|Cℓ ∩ C∗
k | ≥ Nk −Wk(H) ≥ 7

8
Nk,

∑

ℓ:ℓ 6=k

nπ(k)ℓ ≤ Wπ(k)(H) ≤ εNmin. (103)

This, together with (34), yields that for all k ∈ [K] and ℓ 6= k,

nπ(k)ℓσ1

(
Ψπ(k)ℓ

)
≤ nπ(k)ℓ

dℓ
+

5c1
4

√
nπ(k)ℓ

dℓ
+

5c1
4

≤ 21nπ(k)ℓ

16dℓ
+

5c1
4

(c1 + 1), (104)
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where the second inequality is due to 2
√
αβ ≤ α/ρ + ρβ for any α, β ≥ 0 and ρ > 0. Summing up (104) for all ℓ 6= k

yields that for all k ∈ [K],

∑

ℓ:ℓ 6=k

nπ(k)ℓσ1

(
Ψπ(k)ℓ

)
≤ 21

16

∑

ℓ:ℓ 6=k

nπ(k)ℓ

dℓ
+

5c1
4

K(c1 + 1) ≤ 21εNmin

16dmin
+

3εNk

16dmin
≤ 3εNk

2dmin
, (105)

where the second inequality is due to (103) and Nk & dk. We now show (38). According to GUπ(k)
(H) = nπ(k)kAk +

∑

ℓ 6=k nπ(k)ℓAℓ, we have for all i ∈ [d− 1],

δi = σi

(
GUπ(k)

(H)
)
− σi+1

(
nπ(k)kAk

)
+ σi+1

(
nπ(k)kAk

)
− σi+1

(
GUπ(k)

(H)
)

≤ σi

(
nπ(k)kAk

)
− σi+1

(
nπ(k)kAk

)
+ 2σ1




∑

ℓ:ℓ 6=k

nπ(k)ℓAℓ



 ,

≤ nπ(k)k (σi (Ak)− σi+1 (Ak)) + 2
∑

ℓ:ℓ 6=k

nπ(k)ℓσ1

(
Ψπ(k)ℓ

)
, (106)

where the first inequality is due to Weyl’s inequality. Plugging (101), nπ(k)k ≤ Nk, and (105) into (106) yields that for all

i = 1, . . . , dk − 1,

δi ≤
Nk

16dk
+

3εNk

dmin
≤ 7Nk

16dk
, (107)

where the second inequality is due to ε ≤ dmin/(8dk). Meanwhile, plugging (102) and (105) into (106) yields that for all

i = dk + 1, . . . , d,

δi ≤
3εNk

dmin
≤ 3Nk

8dk
, (108)

where the second inequality is due to ε ≤ dmin/(8dk). Note that GUπ(k)
is a positive semidefinite matrix and satisfies

σdk

(
GUπ(k)

(H)
)
≥ σdk

(

U∗
knπ(k)kΨπ(k)kU

∗T

k

)

− σ1




∑

ℓ:ℓ 6=k

U∗
ℓ nπ(k)ℓΨπ(k)ℓU

∗T

ℓ





≥ nπ(k)kσdk

(
Ψπ(k)k

)
−

∑

ℓ:ℓ 6=k

nπ(k)ℓσ1

(
Ψπ(k)ℓ

)
, (109)

where the first inequality is due to Weyl’s inequality and the second inequality follows from σd(AUT ) ≥ σd(A),
σ1(AUT ) ≤ σ1(A) for A ∈ R

d×d and U ∈ On×d, and σ1(B + C) ≤ σ1(B) + σ1(C) for B,C ∈ R
m×n. Plug-

ging (33), (103), and (105) into (109) yields for all k ∈ [K],

σdk

(
GUπ(k)

(H)
)
≥ 217Nk

256dk
− 3εNk

2dmin
≥ 217Nk

256dk
− 3Nk

16dk
≥ 169Nk

256dk
, (110)

where the second inequality is due to ε ≤ dmin/(8dk). Applying Weyl’s inequality to GUπ(k)
(H) gives

σdk+1

(
GUπ(k)

(H)
)
≤ nπ(k)kσdk+1 (Ak) + σ1




∑

ℓ:ℓ 6=k

nπ(k)ℓAℓ



 ≤
∑

ℓ:ℓ 6=k

nπ(k)ℓσ1

(
Ψπ(k)ℓ

)
≤ 3Nk

16dk
,

where the second inequality is due to (102) and the last inequality follows from (105) and ε ≤ dmin/(8dk). This, together

with (110), yields

δdk
≥ 169Nk

256dk
− 3Nk

16dk
=

121Nk

256dk
.

This, together with (35), λπ(k)i = σi

(
GUπ(k)

(H)
)

for all i ∈ [d] due to the positive semidefiniteness of GUπ(k)
(H),

(107), and (108), implies (38).
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We next show (39). Note that

∥
∥
∥(I −U∗

kU
∗T

k )GUπ(k)
(H)

∥
∥
∥ =

∥
∥
∥
∥
∥
∥

∑

ℓ:ℓ 6=k

(I −U∗
kU

∗T

k )U∗
ℓ nπ(k)ℓΨπ(k)ℓU

∗T

ℓ

∥
∥
∥
∥
∥
∥

≤
∑

ℓ:ℓ 6=k

nπ(k)ℓ

∥
∥
∥(I −U∗

kU
∗T

k )U∗
ℓ

∥
∥
∥ ‖Ψπ(k)ℓ‖ ≤

∑

ℓ:ℓ 6=k

nπ(k)ℓσ1

(
Ψπ(k)ℓ

)
, (111)

where the last inequality is due to

∥
∥
∥(I −U∗

kU
∗T

k )U∗
ℓ

∥
∥
∥ ≤ 1 for any 1 ≤ k 6= ℓ ≤ K . Since Uk consists of eigenvectors

associated with the top d̄k eigenvalues of GUk
(H) that is positive semidefinite, then we have GUk

(H)Uk = UkΣk by

the eigenvalue equation, where Σk is a diagonal matrix with the i-th diagonal element being σi (GUk
(H)) for all i ∈ [d̄k].

This, together with (110), implies Uk = GUk
(H)UkΣ

−1
k for all k ∈ [K]. According to (38), we have

d(Uπ(k),U
∗
k ) =

∥
∥
∥(I −U∗

kU
∗T

k )Uπ(k)

∥
∥
∥ =

∥
∥
∥(I −U∗

kU
∗T

k )GUπ(k)
(H)Uπ(k)Σ

−1
π(k)

∥
∥
∥

≤
∥
∥
∥(I −U∗

kU
∗T

k )GUπ(k)
(H)

∥
∥
∥ ‖Σ−1

π(k)‖ ≤
256dk

∑

ℓ:ℓ 6=k nπ(k)ℓσ1(Ψπ(k)ℓ)

169Nk
, (112)

where the first equality uses (48) and the last inequality is due to (110) and (111). Substituting (104) into the above

inequality and summing up from k = 1 to k = K yield that for all k ∈ [K],

K∑

k=1

d(Uπ(k),U
∗
k ) ≤

K∑

k=1

256dk
169Nk

· 21
16



K(c1 + 1)c1 +
1

dmin

∑

ℓ:ℓ 6=k

nπ(k)ℓ





≤ 2dmax

Nmin



K2(c1 + 1)c1 +
1

dmin

K∑

k=1

∑

ℓ:ℓ 6=k

nπ(k)ℓ





≤ 2dmax

Nmin

(
1

2dmin
‖H −H∗Qπ‖2F +K2(c1 + 1)c1

)

≤ 2dmax

Nmin
max

{
1

dmin
‖H −H∗Qπ‖2F , 2K2(c1 + 1)c1

}

,

where the third inequality is due to (97) and
∑K

k=1

∑

ℓ 6=π−1(k) nkℓ =
∑K

k=1

∑

ℓ 6=k nπ(k)ℓ. Then, we complete the proof.

D. Proofs in Section 3.3

D.1. Proof of Lemma 5

Proof of Lemma 5. Note that h satisfying hT
1K = 1, h ∈ {0, 1}K is a vector that has exactly one 1 and (K − 1) 0’s. We

can see that T (g) is to find the minimum element of g. Then, the solution follows immediately. This also implies that for

Q ∈ ΠK , v ∈ T (g) if and only if Qv ∈ T (Qg).

D.2. Proof of Lemma 6

Proof of Lemma 6. According to Lemma 5 and gℓ > gk for a k ∈ [K] and all ℓ 6= k, we see that T (g) is a singleton and

{v} = T (g) satisfies vk = 1 and vℓ = 0 for all ℓ 6= k. Let g′ ∈ R
K be arbitrary and v′ ∈ T (g′). It then follows from

Lemma 5 that v′k′ = 1 and vℓ′ = 0 for some k′ ∈ [K] and all ℓ′ 6= k′ satisfying g′k′ ≤ g′ℓ′ . Suppose that k′ = k. Then,

we have ‖v − v′‖ = 0, and thus (40) holds trivially. Suppose to the contrary that k′ 6= k. Then, we have ‖v − v′‖ =
√
2.

Moreover, we can compute

‖g − g′‖2 ≥ (gk − g′k)
2
+ (gk′ − g′k′)

2 ≥ 1

2
(gk − gk′
︸ ︷︷ ︸

≤−δ

+ g′k′ − g′k
︸ ︷︷ ︸

≤0

)2 ≥ 1

2
δ2.

This, together with ‖v − v′‖ =
√
2, implies the desired result (40).
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D.3. Proof of Lemma 7

Proof of Lemma 7. Let the row vectors gi, g
∗
i ∈ R

K denote the i-th row of GH(U) and GH(U∗), respectively. For all

i ∈ [N ], note that Ii = {k ∈ [K] : h∗
ik = 1}. According to the semi-random UoS model in Definition 2, we have for all

i ∈ [N ] and ℓ 6= Ii,

g∗iℓ − g∗iIi =
(

‖zi‖2 − ‖U∗T

ℓ zi‖2
)

−
(

‖zi‖2 − ‖U∗T

Ii zi‖2
)

= ‖U∗T

Ii U∗
Iiai‖2 − ‖U∗T

ℓ zi‖2

= 1− ‖U∗T

ℓ zi‖2 ≥ 1−max
ℓ 6=Ii

‖U∗T

ℓ zi‖2,

where the last equality is due to ‖ai‖ = 1. This, together with Lemma 5 and ‖U∗T

ℓ zi‖ < 1 for all ℓ 6= Ii, implies

{H∗} = T (GH(U∗)) . (113)

Besides, we note that for each i ∈ [N ] and Qπ ∈ ΠK ,

‖giQT
π − g∗

i ‖2 =
K∑

k=1

(

‖UT
π(k)zi‖2 − ‖U∗T

k zi‖2
)2

≤
K∑

k=1

‖Uπ(k)U
T
π(k) −U∗

kU
∗T

k ‖2‖zi‖4 =

K∑

k=1

d2(Uπ(k),U
∗
k ),

where the first equality is due to gQT
π =

[
gπ(1) . . . gπ(K)

]
. This, together with Lemma 6 and (113), implies for all

i ∈ [N ],

‖h̄i − h∗
iQπ‖ = ‖h̄iQ

T
π − h∗

i ‖ ≤ 2‖giQT
π − g∗

i ‖
1−maxℓ 6=Ii ‖U∗T

ℓ zi‖2
≤

2
√
∑K

k=1 d
2(Uπ(k),U

∗
k )

1−maxℓ 6=Ii ‖U∗T

ℓ zi‖2
,

where the first inequality uses the fact that HQT ∈ T (GH(U)QT ) for Q ∈ ΠK if and only if H ∈ T (GH(U)) due to

Lemma 5.

With the preparations in Sections 3.2 and 3.3, we can analyze each iteration of the KSS method as follows.

Proposition 2. Let ε ∈
(

0, dmin

8dmax

]

be a constant. Suppose that Assumption 1 holds, Nmin & dk & logN for all k ∈ [K],

and Ht ∈ MN×K satisfies

‖Ht −H∗Qπ‖2F ≤ 2εNmin, (114)

where Qπ ∈ argminQ∈ΠK
‖Ht − H∗Q‖F . Then, it holds with probability at least 1 − 2K/(d2minN) − 5K2/N that

d̂π(k) = dk for all k ∈ [K],

K∑

k=1

d(U t+1
π(k),U

∗
k ) ≤

2dmax

Nmin
max

{
1

dmin
‖Ht −H∗Qπ‖2F , 2K2(c1 + 1)c1

}

, (115)

and for all i ∈ [N ],

‖ht+1
i − h∗

iQπ‖ ≤ 2

1− κ

√
√
√
√

K∑

k=1

d2( U t+1
π(k),U

∗
k ), (116)

where the row vectors ht+1
i ,h∗

i ∈ R
K respectively denote the i-th row of Ht+1 and H∗.

Proof of Proposition 2. Suppose that (33), (34), and (56) hold, which happens with probability at least 1 − 5K2/N −
2K/(d2minN) according to Lemma 3, Lemma 12,and the union bound. According to (97), we have Wk(H

t) ≤ ‖Ht −
H∗Qπ‖2F/2 ≤ εNmin. It follows from this and Lemma 4 that d̂t+1

π(k) = dk for all k ∈ [K] and (115). Next, note that

Ii = {k ∈ [K] : h∗
ik = 1} for all i ∈ [N ]. This, together with (15) in Assumption 1 and (56), implies that for all i ∈ [N ]

and ℓ 6= Ii,

‖U∗T

ℓ zi‖2 ≤
(
aff(SIi , S

∗
ℓ ) + α√

dℓ − α

)2

≤
(
κ
√
dℓ + α√
dℓ − α

)2

=

(

κ+
(1− κ)α√
dℓ − α

)2

≤ 2κ2 ≤ κ, (117)

where the third inequality is due to dk & logN for all k ∈ [K] and the last inequality is due to κ ≤ 1/2. Using this and

Lemma 7 yields (116).
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D.4. Proof of Lemma 8

Proof of Lemma 8. Suppose that (115) and (116) hold, which happens with probability at least 1−2K/(d2minN)−5K2/N
according to (42), Nmin & dk for all k ∈ [K], and Proposition 2. According to (42) and (115), we obtain

K∑

k=1

d(U t+1
π(k),U

∗
k ) ≤

4dmax

Nmin
K2(c1 + 1)c1.

This, together with (116), κ ≤ 1/2, and Nmin & dmax, yields that for all i ∈ [N ],

‖ht+1
i − h∗

iQπ‖ ≤ 4

K∑

k=1

d(U t+1
π(k),U

∗
k ) ≤

16dmax

Nmin
K2(c1 + 1)c1 < 1.

Since ht+1
i ,hi ∈ {0, 1}K for all i ∈ [N ], then we have ht+1

i = h∗
iQπ for all i ∈ [N ]. Thus, Ht+1 = H∗Qπ. Moreover,

due to the fact that minQ∈ΠK ‖Ht+1 −H∗Q‖F ≤ ‖Ht+1 −H∗Qπ‖F = 0, the desired result is implied.

D.5. Proof of Theorem 1

We should point out that a technical issue occurred in our analysis is that we cannot infinitely use the result in Proposition

2 infinitely due to the union bound. Then, we study T = Θ(log logN) iterates.

Proof of Theorem 1. For ease of exposition, let πt : [K] → [K] be a permutation such that

Qπt ∈ argmin
Q∈ΠK

‖Ht −H∗Q‖F (118)

and the row vector hi ∈ R
K denote the i-th row of H ∈ MN×K for all i ∈ [N ]. We first show (i). Suppose that t ≤ T is

a positive integer such that

‖Ht −H∗Qπt‖2F ≤ 2K2(c1 + 1)c1dmin.

Using Lemma 8, it holds with probability at least 1− 2K/(d2minN)− 5K2/N that

Ht+1 = H∗Qπt+1 .

Then, it suffices to consider that for all t ≤ T such that

‖Ht −H∗Qπt‖2F > 2K2(c1 + 1)c1dmin. (119)

We first consider t = 0. According to (17), Proposition 2, and (119), it holds with probability at least 1− 2K/(d2minN)−
5K2/N that d̂1π0(k) = dk for all k ∈ [K],

K∑

k=1

d(U1
π0(k),U

∗
k ) ≤

2dmax

Nmindmin
‖H0 −H∗Qπ0‖2F (120)

and for all i ∈ [N ],

‖h1
i − h∗

iQπ0‖ ≤ 2

1− κ

√
√
√
√

K∑

k=1

d2(U1
π0(k),U

∗
k ). (121)

Summing up (121) from i = 1 to i = N gives

‖H1 −H∗Qπ0‖F ≤ 2
√
N

1− κ

√
√
√
√

K∑

k=1

d2(U1
π0(k),U

∗
k ) ≤

2
√
N

1− κ

K∑

k=1

d(U1
π0(k),U

∗
k ). (122)
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This, together with (120) and (17), yields that

‖H1 −H∗Qπ0‖F ≤ 2
√
N

1− κ

2dmax

Nmindmin
‖H0 −H∗Qπ0‖2F = κ1‖H0 −H∗Qπ0‖F , (123)

where

κ1 :=
2
√
N

1− κ

2dmax

Nmindmin
‖H0 −H∗Qπ0‖F ≤ 2

√
N

1− κ

2dmax

Nmindmin

(1− κ)dminNmin

5dmax

√
N

=
4

5
. (124)

Now, we use mathematical induction to show that it holds for all t ∈ [T ] that

K∑

k=1

d(U t+1
πt(k),U

∗
k ) ≤ κ2t

1

K∑

k=1

d(U t
πt−1(k),U

∗
k ), (125)

‖Ht+1 −H∗Qπt+1‖F ≤ κ2t

1 ‖Ht −H∗Qπt‖F , (126)

‖Ht −H∗Qπt−1‖F ≤ 2
√
N

1− κ

K∑

k=1

d(U t
πt−1(k),U

∗
k ). (127)

We first verify (125), (126), and (127) for t = 1. Due to (118) and (123), we obtain

‖H1 −H∗Qπ1‖F ≤ ‖H1 −H∗Qπ0‖F ≤ κ1‖H0 −H∗Qπ0‖F . (128)

According to this, (124), Proposition 2, and (119), it holds with probability at least 1 − 2K/(d2minN) − 5K2/N that

d̂2π1(k) = dk for all k ∈ [K],

K∑

k=1

d(U2
π1(k),U

∗
k ) ≤

2dmax

Nmindmin
‖H1 −H∗Qπ1‖2F (129)

and for all i ∈ [N ],

‖h2
i − h∗

iQπ1‖ ≤ 2

1− κ

√
√
√
√

K∑

k=1

d2(U2
π1(k),U

∗
k ). (130)

Substituting (122) with the first inequality of (128) into (129) yields that

K∑

k=1

d(U2
π1(k),U

∗
k ) ≤

2dmax

Nmindmin
‖H1 −H∗Qπ1‖F · 2

√
N

1− κ

K∑

k=1

d(U1
π0(k),U

∗
k )

≤ κ1

√
N

1− κ

4dmax

Nmindmin
‖H0 −H∗Qπ0‖F

K∑

k=1

d(U1
π0(k),U

∗
k )

= κ2
1

K∑

k=1

d(U1
π0(k),U

∗
k ),

where the second inequality follows from (128) and the equality is due to (124). Thus, (125) holds for t = 1. According to

(130), repeating the arguments in (122) and (123), we obtain

‖H2 −H∗Qπ1‖F ≤ 2
√
N

1− κ

K∑

k=1

d(U2
π1(k),U

∗
k )

and

‖H2 −H∗Qπ1‖F ≤ 2
√
N

1− κ

2dmax

Nmindmin
‖H1 −H∗Qπ1‖2F

≤ 2
√
N

1− κ

2dmax

Nmindmin
κ1‖H0 −H∗Qπ0‖F ‖H1 −H∗Qπ1‖F = κ2

1‖H1 −H∗Qπ1‖F ,
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where the second inequality is due to the equality in (123). This, together with (118), implies

‖H2 −H∗Qπ2‖F ≤ κ2
1‖H1 −H∗Qπ1‖F .

Thus, (127) and (126) holds for t = 1. Next, suppose that (125), (126), and (127) hold for all t ≥ 1. Then, we can show

that (128),(129), and (130) also hold for t + 1 using the same arguments as those of t = 1. Consequently, we can further

show that (125), (126), and (127) hold for t+1 until t = T . Finally, we use mathematical induction and deduce that for all

t ∈ [T ], the desired results (125) and (126) hold with probability at least 1− (T + 1)(2K/(d2minN) + 5K2/N) according

to the union bound. It follows from (123) and (126) that

dF
(
Ht+1,H∗) ≤ κ2t

1 κ2t−1

1 . . . κ21

1 ‖H1 −H∗Qπ1‖F ≤ κ2t+1−1
1 ‖H0 −H∗Qπ0‖F = κ2t+1−1

1 dF
(
H0,H∗) .

We next show (ii). It follows from T = log2

(
log((1−κ)

√
dminNmin)−log(5

√
2Kc1κ1dmax

√
N)

log(1/κ1)

)

+ 1 that

dF
(
HT−1,H∗) ≤ κ2T−1

1

(1− κ)dminNmin

5κ1dmax

√
N

≤ Kc1
√

2dmin.

This, together with Lemma 8, yields (19). According to Proposition 2, we also have d̂T+1
πT (k) = dk for all k ∈ [K]. This,

together with (19) and (2) in Definition 2, yields

UT+1
π(k)U

T+1T

π(k) = U∗
kU

∗T

k for all k ∈ [K]. (131)

By letting Ok = U∗T

k UT+1
π(k) , we have

OT
k Ok = UT+1T

π(k) U∗
kU

∗T

k UT+1
π(k) = Idk

,

where the second equality is due to (131). This implies Qk ∈ Odk for all k ∈ [K]. Then, we prove (20).

E. Auxiliary Lemmas

Lemma 15. Suppose that a ∼ Unif(Sd−1) and ṽ ∈ R
d is a fixed vector with ‖ṽ‖ = 1. Let a be decomposed as

a = xṽ +
√

1− x2b, (132)

where x ∈ R and b ∈ R
d satisfying 〈ṽ, b〉 = 0 and ‖b‖ = 1. There exists an orthogonal matrix U ∈ Od such that

Uṽ = e1. Let

b̃ =
UTa− xe1√

1− x2
(133)

and c ∈ R
d−1 such that c = (b̃2, · · · , b̃d). Then, it holds that Ub ∼ b̃, where

b̃1 = 0, c ∼ Unif(Sd−2).

Proof of Lemma 15. According to (132) and the rotational invariance of a uniform distribution over sphere, we have

Ub =
Ua − xe1√

1− x2
∼ b̃.

Since 〈a, ṽ〉 = x, then 〈UTa,Uṽ〉 = 〈UTa, e1〉 = x. This implies b̃1 = 0. Moreover, since a ∼ Unif(Sd−1), then

UTa ∼ Unif(Sd−1) due to the rotational invariance of a uniform distribution over sphere. Then, let y ∼ N (0, Id) such

that UTa = y/‖y‖. This, together with 〈UTa, e1〉 = x, implies

y21 =
x2

∑

i6=1 y
2
i

1− x2
.
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Then, we have

‖y‖2 = y21 +
∑

i6=1

y2i =
1

1− x2

∑

i6=1

y2i .

This, together with (133), implies that for any i 6= 1,

b̃i =
yi

‖y‖
√
1− x2

=
yi

√
∑

i6=1 y
2
i

.

Then, we complete the proof.

Lemma 16. Consider the setting in Lemma 14. Suppose that vi, ṽi for i ∈ [N ] are defined in (71) and βij is defined as in

(72) for some given vi and ṽj . Then, it holds that

Φ (βij)− Φ

(
τ(
√
dℓ − α)

‖vi‖

)

.
1√

logN
, (134)

and

Φ

(
τ(
√
dℓ + α)

‖vi‖

)

− Φ
(
β′
ij

)
.

1√
logN

, (135)

Proof of Lemma 16. Suppose that (56) and (57) hold, which happens with probability at least 1 − 5K2N−2 according to

Lemma 12. Let k = {ℓ ∈ [K] : h∗
iℓ = 1}. It follows from (60) that

‖vi‖ ≥ aff(S∗
k , S

∗
ℓ )− α√

dk + α
≥ (1 − ε)aff(S∗

k , S
∗
ℓ )

(1 + ε)
√
dk

. (136)

This, together with (57), yields that

|〈vi, ṽj〉| ≤
2
√
logN√

dk − α
≤ 2

√
logN

(1− ε)
√
dk

≤ ε‖vi‖. (137)

According to (22) and (60), we have

τ =
maxk 6=ℓ aff(S

∗
k , S

∗
ℓ ) + α

(
√
dmax − α)2

≤ (1 + ε)maxk 6=ℓ aff(S
∗
k , S

∗
ℓ )

(1− ε)2dmax
≤ 1 + ε

(1− ε)2
√
dmax

. (138)

We first compute

τ(
√
dℓ + α)

(‖vi‖ − |〈vi, ṽj〉|)
√

1− (logN)/dℓ
− τ(

√
dℓ − α)

‖vi‖
≤ 1 + ε

(1− ε)2
√
dmax

(
1 + ε

(1− ε)2
− (1 − ε)

) √
dℓ

‖vi‖

.
1√

logN‖vi‖
, (139)

where the first inequality is due to (60) and (138). We next compute

|〈vi, ṽj〉|
√

(logN)/dℓ(
√
dℓ + α)

(‖vi‖ − |〈vi, ṽj〉|)
√

1− (logN)/dℓ
≤ 4

√
logN |〈vi, ṽj〉|

‖vi‖
.

1√
logN‖vi‖

, (140)

where the first inequality is due to (137) and dmin & log3 N and the second one follows from the second inequality of

(137) and dmin & log3 N . Then, we obtain

βij −
τ(
√
dℓ − α)

‖vi‖
=

τ(
√
dℓ + α)

(‖vi‖ − |〈vi, ṽj〉|)
√

1− (logN)/dℓ
− τ(

√
dℓ − α)

‖vi‖
+

|〈vi, ṽj〉|
√

(logN)/dℓ(
√
d+ α)

(‖vi‖ − |〈vi, ṽj〉|)
√

1− (logN)/dℓ

.
1√

logN

1

‖vi‖
, (141)
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where the first inequality is due to (139) and (140). Moreover, we have

Φ (βij)− Φ

(
τ(
√
dℓ − α)

‖vi‖

)

≤
√

1

2π
exp

(

−τ2(
√
dℓ − α)2

2‖vi‖2
)(

βij −
τ(
√
dℓ − α)

‖vi‖

)

≤ 1√
2π logN

exp

(

−
(
κ
√
dmin + α

)2 (√
dℓ − α

)2

2(
√
dmax − α)4‖vi‖2

)

1

‖vi‖

.
dmax

dmin

√
logN

,

where the first inequality is due to the basic inequality for the integral, the second inequality uses the inequality of (138)

and (141), and the last inequality follows from dmin & logN and the fact that exp
(
−cx2/2

)
x attains the maximum at

x = 1/
√
c when x ∈ (0,∞). The proof of (135) follows from the same argument as above.

F. Experiment Setups and Results in Section 4.2

In this section, we provide more implementation details and results for the experiments in Section 4.2. We use the real

datasets COIL-20 (S. A. Nene & Murase, 1996b), COIL-100 (S. A. Nene & Murase, 1996a), the cropped extended Yale B

(Georghiades et al., 2001), USPS (Hull, 1994), and MNIST (LeCun, 1998).3 The information about the used real-world

datasets can be found in Table 3. Before using these datasets in the experiments, we normalize them such that each sample

has unit length. Note that the MNIST dataset contains 70000 images of handwritten digits 0-9. Following the preprocessing

technique in You et al. (2016); Lipor et al. (2021), we represent each image by a feature vector of dimension 3472 using

the scattering convolutional network (Bruna & Mallat, 2013) and reduce the dimension of each vector to 500 using PCA.

Table 3. The parameters for the real datasets: N is the number of samples, n is the dimension of samples, and K is the number of

clusters.

Datasets N n K

COIL20 1440 1024 20

COIL100 7200 1024 100

YaleB 2414 1024 38

USPS 9298 256 10

MNIST 70000 780 10

Since the data points in real datasets generally do not follow the semi-random UoS model in Definition 2, we cannot

guarantee good clustering performance if we directly apply the TIPS method for initializing the KSS method. Therefore,

in the implementation of the TIPS method, we improve the idea of the thresholding inner product to construct the weight

matrix A = {aij}1≤i,j≤N by

aij =

{

|〈zi, zj〉|, if |〈zi, zj〉| ≥ τ or j ∈ Ti and i 6= j,

0, otherwise,

where Ti ⊆ [N ] \ {i} with |Ti| = 2 satisfies |〈zi, zj〉| ≥ |〈zi, zk〉| for all j ∈ Ti and k /∈ Ti. Introducing Ti is to ensure

that each column of A contains at least two non-zero elements. For the implementation of the KSS method, we simply set

d1 = · · · = dK = d, where d is given in Table 4. For all algorithms, we assume that K is known and given in Table 3. We

present the parameters of all the tested methods in Table 4.

To complement the result of recovery accuracy in Table 2, we also report the running time and clustering accuracy for all

runs of each method in Table 5.

3The datasets COIL-20, COIL-100, the cropped extended Yale B, and USPS are downloaded from
http://www.cad.zju.edu.cn/home/dengcai/Data/data.html. The dataset MNIST is downloaded from
https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/.

http://www.cad.zju.edu.cn/home/dengcai/Data/data.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 4. Parameters setting of the tested methods in the experiments .

COIL20 COIL100 YaleB USPS MNIST

KSS (d, τ ) = (10, 0.98) (d, τ ) = (10, 0.98) (d, τ ) = (8, 0.98) (d, τ ) = (9, 0.99) (d, τ ) = (18, 0.98)
SSC (α, ρ) = (10, 0.8) (α, ρ) = (10, 2) (α, ρ) = (10, 1) (α, ρ) = (10, 0.5) (α, ρ) = (10, 0.8)
TSC q = 4 q = 3 q = 4 q = 5 q = 6
GSC q = 25 q = 15 q = 20 q = 20 q = 20
LRR λ = 10−2 λ = 10−3 λ = 0.1 λ = 10−3 λ = 10−2

LRSSC (σ, λ) = (0.2, 0.5) (σ, λ) = (1, 2) (σ, λ) = (0.1, 1) (σ, λ) = (10, 1) (σ, λ) = (0.2, 0.5)
OMP q = 2 q = 2 q = 5 q = 25 q = 20

Table 5. CPU times (in seconds) and the clustering accuracy of the tested methods on real datasets over 10 runs.

Accuracy COIL20 COIL100 YaleB USPS MNIST

KSS 0.9187±0 0.8050±0.0040 0.6715±0.0253 0.8120±0.0164 0.8989±0.0796

SSC 0.9075±0.0164 0.6542±0.0165 0.8179±0.0074 0.6582±0.0002 –

OMP 0.5012±0.0168 0.3273±0.0083 0.7968±0.0216 0.1967±0.0071 0.5749±0

TSC 0.8271±0 0.7164±0.0093 0.4700±0.0092 0.6688±0.0002 0.8514±0

GSC 0.7896±0 0.6445±0.0084 0.6852±0.0135 0.9522±0.0001 0.5411±0.0427

LRR 0.7161±0.0064 0.5403±0.0066 0.6534±0.0146 0.7129±0.0001 –

LRSSC 0.8194±0 0.5035±0.0101 0.6971±0.0097 0.6440±0.0005 –

Time (s) COIL20 COIL100 YaleB USPS MNIST

KSS 1.32±0.08 53.53±6.78 5.94±0.84 8.85±0.67 30.5287±13.15

SSC 55.37±4.99 912.25±42.12 136.36±13.64 1217.88±27.21 –

OMP 0.62±0.04 12.11±0.54 1.02±0.06 31.12±0.29 398.37±8.14

TSC 0.66±0.03 29.78±1.05 3.06±0.18 2.66±0.07 154.46±20.91

GSC 11.73±0.54 178.15±7.93 24.22±0.85 105.59±7.22 1800.00±0

LRR 33.63±2.62 144.25±7.99 63.30±16.06 111.56±9.05 –

LRSSC 73.31±3.45 1800.00±0 444.28±37.95 1800.00±0 –

“–” denotes out of memory.


