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Convergence and Recovery Guarantees of the K-Subspaces Method
for Subspace Clustering
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Abstract

The K-subspaces (KSS) method is a generaliza-
tion of the K-means method for subspace cluster-
ing. In this work, we present local convergence
analysis and a recovery guarantee for KSS, as-
suming data are generated by the semi-random
union of subspaces model, where N points are
randomly sampled from K > 2 overlapping
subspaces. We show that if the initial assign-
ment of the KSS method lies within a neigh-
borhood of a true clustering, it converges at a
superlinear rate and finds the correct clustering
within ©(loglog N) iterations with high prob-
ability. Moreover, we propose a thresholding
inner-product based spectral method for initial-
ization and prove that it produces a point in this
neighborhood. We also present numerical results
of the studied method to support our theoretical
developments.

1. Introduction

Subspace clustering (SC) is a fundamental problem in un-
supervised learning, which can be applied to do dimen-
sionality reduction and data analysis. It has found wide
applications in diverse fields, such as computer vision
(Ho et al., 2003; Vidal et al., 2008), gene expression anal-
ysis (Jiang et al., 2004; Ucar et al., 2011), and image seg-
mentation (Hong et al., 2006), to name a few. In research
on SC, the union of subspace (UoS) model, which assumes
that data points lie in one of multiple underlying subspaces,
is a typical model for studying SC. In particular, substantial
advances have been made recently on designing algorithms
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for solving the SC problem and on establishing theoreti-
cal foundations in the UoS model; see, e.g., Vidal (2011);
Vidal et al. (2016); Meng et al. (2018) and the references
therein.

In the UoS model, the goal of SC is to recover the
underlying subspaces and cluster the unlabeled data
points into the corresponding subspaces. To achieve
this goal, many algorithms have been proposed in
the past two decades, such as sparse subspace clus-
tering methods (Elhamifar & Vidal, 2013; Wang & Xu,
2013), low-rank representation-based methods (Liu et al.,
2012), thresholding-based methods (Heckel & Bolcskei,
2015; Li & Gu, 2021), and K-subspaces (KSS) method
(Bradley & Mangasarian, 2000). In these methods, the
KSS method, which is known as a generalization of the
K-means method, can handle clusters in subspaces. In par-
ticular, it is conceptually simple and has linear complexity
per iteration. This computational benefits render it suitable
to handle large-scale datasets in practice. However, a com-
plete theoretical understanding of its convergence behavior
and recovery performance is not found in the literature, to
the best of our knowledge. This is due in part to its alternat-
ing and discrete nature, as well as the fact that as with the K-
means, KSS can easily get stuck in bad local minima with-
out a good initialization. Consequently, it remains a major
challenge to provide the theoretical foundations for KSS.
In this work, we provide guarantees for the convergence be-
havior and recovery performance of the KSS method. We
also develop a simple initialization method with provable
guarantees for the KSS method. It is worth mentioning that
our results improve on state-of-the-art theory with respect
to allowable affinity between subspaces, and support the al-
gorithm’s competitive performance in our numerical evalu-
ation.

1.1. Related Works

Over the past years, a substantial body of literature explores
algorithmic development and theoretical analysis of SC.
One of the most well-studied methods is arguably sparse
subspace clustering (SSC), which is motivated by repre-
senting each data point as a sparse linear combination of
the remaining ones. A seminal work by Elhamifar & Vidal
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Table 1. Comparison of affinity requirement and recovery results
of the surveyed methods in the noiseless semi-random UoS model
with overlapping subspaces (K > 2).

References Methods Affinity® Results
Soltanolkotabi et al. (2012) SSC O( lolg N) SDP
Wang & Xu (2013) SSC  O(ypzw) SDP
Tschannen & Boleskei (2018)  (OMP  O( \/IJW) SDP
Wang et al. (2016) SSC  O(ypew) CC
R 1
Heckel & Bolcskei (2015) TSC O( m) CcC
Park et al. (2014) GSR  O(==)" cC
Lipor et al. (2021) EKSS  O( \/jﬁ) CC
Ours KSS o(1) CcC

“We use the notion (15) to measure the subspace affinity. ®This is
obtained by taking § = 1/N in Park et al. (2014, Theorem 3.2).

(2013) proposed and studied this method. The algorithm
proceeds by solving a convex sparse optimization problem,
followed by applying spectral clustering to the graph con-
structed by a solution of this convex problem. In particu-
lar, they showed that when the data points are drawn from
the disjoint subspaces in the noiseless setting, the solution
is non-trivial and no edges in the constructed graph con-
nect two points in different subspaces. This is referred
to as the subspace detection property (SDP) in literature;
see, e.g., Wang & Xu (2013); Soltanolkotabi et al. (2012;
2014). We should point out that SDP does not imply
correct clustering (CC) of data points as mentioned in
Wang et al. (2016); Li & Gu (2021). Following this line
of work, theoretical results on the SSC method in vari-
ous contexts have been established, and many variants and
extensions of the SSC method have been proposed. For
example, Soltanolkotabi et al. (2012) developed a unified
analysis framework of the SSC method, which showed
that the SDP holds even when subspaces can be overlap-
ping in the noiseless setting. Later, Soltanolkotabi et al.
(2014) extended their analysis and results to the noisy set-
ting. Meanwhile, an independent work by Wang & Xu
(2013) also studied the behavior of SSC based on the
SDP in the noisy setting. In spite of the solid theo-
retical guarantees and great empirical performance, SSC
suffers from high computational cost. To tackle this is-
sue, Dyer et al. (2013) applied an orthogonal matching pur-
suit (OMP) method to SSC. Then, Tschannen & Bolcskei
(2018) analyzed the performance of this method in the
noisy setting and also introduced and studied the match-
ing pursuit (MP) method for SSC. Recently, more and
more variants and extensions for solving SSC have been
proposed; see, e.g., Ding et al. (2021); Wang et al. (2019);
Wu et al. (2020); Chen et al. (2020); Matsushima & Brbic
(2019); Traganitis & Giannakis (2017); You et al. (2016).

As for other methods for SC, Liu et al. (2012) proposed

a low-rank representation (LRR) method by minimizing
a nuclear norm regularized problem. In particular, they
showed that the proposed method can recover the row
space of the data points. Later, Shen et al. (2016) devel-
oped an online version of the LLR method, which reduces
its computational cost significantly. Another notable ap-
proach for SC is thresholding-based methods, which ex-
ploit the correlation between data points. For example,
Heckel & Boleskei (2015) proposed a thresholding-based
subspace clustering (TSC) method, which applies spectral
clustering to a weight matrix with entries depending on
spherical distances of each data point to its nearest neigh-
bors. They showed that TSC can achieve correct cluster-
ing by proving that the formed graph has no false con-
nection and K connected subgraphs. Li & Gu (2021) pro-
posed a thresholding inner-product (TIP) method for SC,
which constructs an adjacency matrix by thresholding mag-
nitudes of inner products between data points. In partic-
ular, they provided an explicit bound on the error rate of
the TIP method when there are only two subspaces of the
same dimension. Moreover, Park et al. (2014) proposed a
greedy subspace clustering (GSC) method that constructs
a neighborhood matrix using a nearest subspace neighbor
method and then recovers subspaces by a greedy algorithm.
They showed that their approach can guarantee correct
clustering. However, they assumed that the dimension of
each subspace is known and same and the number of data
points in each subspace is also same. Actually, there are
still numerous other popular methods using different tech-
niques for SC, such as matrix factorization-based method
(Boult & Brown, 1991; Pimentel-Alarcon et al., 2016; Fan,
2021) and principal component analysis type methods
(Vidal et al., 2005; McWilliams & Montana, 2014).

In contrast to the above methods, the KSS method
(Bradley & Mangasarian, 2000; Agarwal & Mustafa, 2004;
Tseng, 2000) is essentially a generalization of the k-means
method for SC, which minimizes the sum of distances of
each point to its projection onto the assigned subspace, i.e.,

K
min » " |z — UpU 2%, (1

c,U -
k=11€Cy,

where {z;}, C R™ denotes the set of N data points,
C= {Ck}szl denotes the set of K > 2 estimated clusters,
and U = [Ul UK] with Uy being an orthonor-
mal basis of the corresponding cluster. Similar to the k-
means method, the KSS method proceeds by alternating
between the subspace update step and the cluster assign-
ment step. As a local search algorithm, it is conceptually
simple and has linear complexity as a function of the num-
ber of data points, while many popular methods based on
self-expression property, such as the surveyed SSC, OMP-
based SSC, and LLR, have at least quadratic complexity.
This computational advantage renders it more suitable to
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handle large-scale datasets than these self-expression prop-
erty based-methods. However, due to its non-convex na-
ture, it suffers from sensitivity to initialization and lack of
theoretical understanding. To fix the former issue, some
heuristics for good initialization have been proposed; see,
e.g., He et al. (2016); Zhang et al. (2009). To improve the
performance of the KSS method, Gitlin et al. (2018) em-
ployed a coherence pursuit algorithm. Recently, Lipor et al.
(2021) applied an ensembles approach to the KSS method
with random initialization and showed that it achieves cor-
rect clustering based on the argument in Heckel & Bolcskei
(2015). However, their analysis can only tackle one KSS
iteration. Generally, it remains open to propose a prov-
able initialization scheme for the KSS method and fully
understand its convergence behavior and recovery perfor-
mance. Due to this, the KSS method has mostly been su-
perseded by convex methods based on self-expression prop-
erty, which are widely studied and have solid theoretical
results. Moreover, establishing theoretical foundations for
the KSS method may open the door for the study of various
non-convex methods for SC.

1.2. Our Contributions

In this work, we study the KSS method for SC in the semi-
random UoS model. First, we provide theoretical guar-
antees for the convergence behavior and recovery perfor-
mance of the KSS method. Specifically, we prove the ex-
istence of a basin of attraction, whose radius is as large as
O(v/'N) around the true clustering of the data points, when
the cluster sample sizes are on the same order and the sub-
space dimensions are also on the same order. If the initial
assignment of the KSS method lies within this basin, the al-
gorithm is guaranteed to converge to the true clustering at
a superlinear rate. In particular, once the number of itera-
tions reaches © (log log V), the KSS method yields the true
clustering with the corresponding orthonormal bases ex-
actly. Itis worth emphasizing that these results are obtained
under the condition that the normalized affinity between
pairwise subspaces is O(1), which is generally milder than
those in the existing literature; see the comparison in Ta-
ble 1. Second, we propose a thresholding inner-product
based spectral method for initialization of the KSS method.
We show that it can generate a point lying in the basin of
attraction of the KSS method by deriving its clustering er-
ror rate. Our core argument is to derive a spectral bound
for a random adjacency matrix without independence struc-
ture, which could be of independent interest. In conclusion,
our work demystifies the computational efficiency of the
KSS method and provides a provable initialization scheme
for it, thus bridging the gap between theory and practice.
From a broader perspective, our work also contributes to
the literature on simple and scalable non-convex methods
with provable guarantees; see, e.g., Wang et al. (2021a;b);

Zhang et al. (2020); Gao & Zhang (2019); Boumal (2016);
Ling (2022).

Notation. Let R™ be the n-dimensional Euclidean space
and || - || be the Euclidean norm. Given a matrix A, we
use || A|| to denote its spectral norm, o;(A) its i-th largest
singular value, || A| r its Frobenius norm, and a;; its (7, j)-
th element. Given a vector @ € R", we denote by q; its
i-th element. Given a positive integer n, we denote by [n]
the set {1,...,n}. Givendy, ..., dk, let dymin = min{dy, :
k € [K]} and dyax = max{dy : k € [K]|}. Given a dis-
crete set S, we denote by || its cardinality. Given two sets
A, B C [n], the set difference between A and B denoted
by A\ Bisdefinedby A\ B ={x € A:z ¢ B}. We
use O™*4 to denote the set of all n x d matrices that have
orthonormal columns (in particular, O¢ denotes the set of
all d x d orthogonal matrices) and IIx to denote the set
of all K x K permutation matrices. Let 7 : [K] — [K]
denote a permutation of the elements in [K]. Each 7 corre-
SpOHdS toa Qﬂ— = {Qilj}lgi,jgl{ € Il such that qij; = 1
if j = m(i) and ¢;; = 0 otherwise for all ¢ € [K]. The
converse also holds. Moreover, for any U,V € O"*9,
we denote by d(U, V) = ||[UUT — VVT| the distance
between the subspaces spanned by U and V. We define
S = {a € R?: [la|| = 1} and denote by Unif(S?~')
a uniform distribution over the sphere in R?. For non-
negative sequences {ax} and {by}, we write a > by if
there exists a universal constant C' > 0 such that a;, > Cby,
for all .

2. Preliminaries and Main Results

In this section, we formally set up the SC problem in the
semi-random UoS model, introduce the KSS method for
tackling the SC problem, propose an initialization scheme
for the KSS method, and give a summary of our main re-
sults.

2.1. Semi-Random UoS Model

Definition 1. Suppose that a family of sets {Ci }<_ | is a
partition of [N]. We say that H € RN*X is a membership
matrix if hiy, = 1ifi € C and hy, = 0 otherwise. For
simplicity, we use MN*X to denote the collections of all
such N x K membership matrices.

Given an H € MN*K each row of it has exactly one 1
and (K —1) 0’s. Besides, HQ for any Q € Il represents
the same partition as H up to a permutation of the cluster
labels. We define the distance between two membership
matrices H, H' € MY *K by

de(H,H') = i H-H .
r(H,H') QﬁelglKH Qllr

Then, one can verify that the number of misclassified points
in H with respect to H' is d%(H, H') /2.
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Definition 2 (Semi-Random UoS Model!). Let Si denote
a subspace of R" of dimension dy, with U}, € O™*dk pe-
ing its orthonormal basis for all k € [K|. Let H* €
MN*E yepresent a partition of [N into K clusters, each
of which is of size Ny, for all k € [K]. Then, we say
that a collection of N > 2 points {z;}Y| is generated
according to the semi-random UoS model with parameters

(N,K,{U;}szl,H*) if
zi = Uia,, ()

where k € [K| satisfies hY;, = 1 and a; sk Unif (S%—1)
foralli € [N].

Intuitively, given an unknown partition encoded by H™*,
this model generates a collection of unlabeled observations.
Given these observations, the goal of SC is to design an
algorithm that finds the true partition, i.e., H*@Q for some
Q € Ilx. We should point out that the subspace dimen-
sions dq, ..., dg are also all unknown.

2.2. The KSS Method

In this subsection, we introduce the KSS method by inter-
preting it as an application of the alternating minimization
method to Problem (1). Such an interpretation is similar
to that in Bradley & Mangasarian (2000). By introducing
H ¢ MY*K we can reformulate Problem (1) as

N K
min YY" ha (|27 = U =) 3)

i=1 k=1
st. He MVE U, (’)"XCZ’“, forall k € [K],

where dj, for all k € [K] are candidate subspace dimen-
sions. Observe that this problem is in a form that is
amenable to the alternating minimization method (see, e.g.,
Ghosh & Kannan (2020); Hardt (2014); Zhang (2020)).
Given the current iterate (H®,UY, ..., UL) € MN*E x
Om*di ... x O"*4K | the method generates the next iter-
ate via

N
Uit e argmin ) (lz)® - U z)%) @
Ukeonxdk i=1

forall k € [K] and
Ht+1 c 7— (GH(UH-I)) , (5)
where the (4, k)-th element of G (U) € RY*K ig ||z, |2 —

|UL2;||? and T denotes the operator that for any G €
RN x K

T(G) = argmin {(G, H) : H € M"*X} . (6)

'"This model is called semi-random UoS because the subspaces
are arbitrary but data points are randomly generated.

It is worth noting that the updates (4) and (5) both ad-
mit closed-form solutions, which respectively correspond
to the subspace update step and the cluster assignment step
of the KSS method. Indeed, the update (4) is typically a
PCA problem and its solution is given by

N
U, =PCA (Z hlziz] cik> , )

i=1

where PCA(A,d) : S® x R — R"*4 is the operator that
computes the eigenvectors associated with the d leading
eigenvalues of A. Moreover, the update (5) is a special
assignment problem, whose solution is given by

1, ifk =1,
hit = . ®)
0, otherwise,

where I; € [K] satisfies ||U}5i+1Tzi|| > ||U,€+1Tzl-|\ for all
k # I;; see Lemma 5.

A natural question arising in the update (7) is how to choose
dy for all k € [K]. Generally, the KSS method assumes
that the subspace dimensions di,...,dx are known be-
forehand (Vidal, 2011), which is not practical in applica-
tions. Even if dy,...,dx are known but unequal, it is
still unknown how to find an one-to-one mapping between
{di}_, and {d}}<, due to the fact that the permutation
of clusters is unknown. To fix this issue, we propose an
adaptive strategy to choose dy, for all k € [K]. Specifi-
cally, let AL, > --- > AL be the d leading eigenvalues
of Zf\;l ht, z;z] forall k € [K], where d is an input pa-
rameter satisfying d > dpax. Then for all k € [K], we
set

it = arg max (A}Sm - /\Z(Hl)) C))
i€[d—1]
and replace (7) by
N
Ut = PCA <Z h‘;kziziT,cz’;jl) _ (10)
i=1

2.3. Initialization Method

A key ingredient in our approach is to identify a proper
initial point H that may guarantee rapid convergence of
the KSS method for solving Problem (3). Motivated by
the thresholding inner-product based scheme in Li & Gu
(2021), we propose a thresholding inner-product based
spectral method (TIPS) for initialization. Specifically,
given a thresholding parameter 7 > 0, a graph G with adja-
cency matrix A € RV*¥ is generated by

L, if (zi,2;)] > 7and i # j,
otherwise,

Y
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forall 1 < ¢ < 5 < N. Then, the initial cluster assign-
ment H is obtained by applying the k-means to the matrix
V formed by the eigenvectors associated with the K lead-
ing eigenvalues of A. Although it is NP-hard in the worst
case to compute a global minimizer of the k-means prob-
lem (see, e.g., Aloise et al. (2009)), some polynomial-time
algorithms have been proposed for finding an approximate
solution whose value is within a constant fraction of the
optimal value (see, e.g., Kumar & Kannan (2010)), i.e.,

(H°, X) e MNXE x REXE gt |HX — V|2
<(1+6) IHX - V|%, (12)

min
(H,X)EMNXKXRKXK
where 6 > 0 is a constant. We assume that we can find such
an approximate solution. We now summarize the proposed
method in Algorithm 1.

Algorithm 1 The TIPS initialized KSS method
1: Input: samples {z;}Y ,, 7>0,0 >0,d,T,K € Z
/* The TIPS initialization  x/
2: construct an adjacency matrix A € RV*Y by (11)
3: calculate V' € RV*K formed by the eigenvectors as-
sociated with the K leading eigenvalues of A
4: let (H°, X) be a (1 + 0)-approximate solution to the
k-means problem (12) with K clusters and input V'
/* The KSS method  «/
5. fort=0,1,...,7T do
6: /+ subspace update step  */
7. fork=1,...,Kdo
8.
9

Compute d." via (9) and U} via (10)

:  end for
10: /* cluster assignment step */
11:  compute H*t! via (8)
12: end for
2.4. Main Theorems

Before we proceed, we introduce a definition to capture no-
tions of affinity between pairwise subspaces and impose an
assumption on the affinity.

Definition 3. The affinity between two subspaces Sy and
Sy is defined by

min{dy,de}

> (o))"

=1

aff(Sk,Sg) = (13)

where cr,(ci) > e > a(min{d’“’df}) > 0 are the singular

vaules of UL'U, € R X e ypigh Uy, U, being respectively
orthonormal bases of Sy, and Sy. The normalized affinity
between two subspaces Sy and Sy is defined by

aff(Sk, Sg)

aff (S, S0) = L e}

(14)

For ease of exposition, we define the maximum of the nor-
malized affinities as

K= 1SI}££&£);KELH(S,€,S¢) (15)
and define
dmax Nmax
= =, 16
i dmin ) N Nmin ( )

Assumption 1. The affinity between pairwise subspaces in
the UoS model satisfies r € (0,1/2].

We remark that this affinity condition is milder than
those in the related literature. Because this assump-
tion allows the affinity aff(Sy,S¢) to be as large as
min{+/dy, v/d¢} /2, while those in the literature require
aff(Sk, S¢) < min{v/dg,/de}/\/Tog N forall 1 < k #
¢ < K. Please see the comparison in Table 1. We next
present a main theorem of this work, which shows that the
KSS method converges superlinearly and achieves the cor-
rect clustering under Assumption 1.

Theorem 1. Let {z;}Y | be data points generated ac-
cording to the semi-random UoS model with parameters
(N, K, {U;}_ |, H*). Suppose that Assumption 1 holds,
Nmin = di. 2 log N for all k € [K), and the initial point
HY ¢ MNXE satisfies

(1 - K)Nmin
5I$d\/N '

Set T = O (loglog N) and d € Z satisfying d > dmax
in Algorithm 1. Then, the following statements hold with
probability at least 1 — N~

(i) For all t € [T, it holds that

dp(H®, H*) < 17)

dr(H', H*) < x¥ "'dp (H°, H*), (18)
where k1 € (0, 1) is an absolute constant.
(ii) It holds for a permutation 7 : [K| — [K] that
H" = H*Q, (19)
and dL 35 = dy for all k € [K],
Uty =UiOy, O € 0% forallk € [K].  (20)

Before we proceed, some remarks are in order. First, while
Problem (1) is NP-hard in the worst case (Gitlin et al.,
2018), the assumption that the data points are generated
by the semi-random UoS model allows us to conduct an
average-case analysis of the KSS method. Second, a neigh-

borhood of size O (h) around each true cluster forms
Hd\/ﬁ

a basin of attraction in the UoS model, in which the KSS
method converges superlinearly. In particular, if kg4, K
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are both constant, we can see that the size of this basin
is O(v/N), which is rather large. Provided that the initial
point H? lies within this basin, the subsequent iterates are
guaranteed to converge to ground truth at a superlinear rate.
Third, if the number of iterations reaches O (log log N), the
KSS method can not only find correct clustering, but also
exactly recovers the orthonormal basis of each subspace.
This demonstrates the efficacy of the KSS method. Finally,
any method that can return a point satisfying (17) is quali-
fied as an initialization scheme for the KSS method. In this
work, we design a simple initialization scheme in the first
stage of Algorithm 1 that can provably generate a point in
the basin of attraction under the following assumption. Be-
fore we proceed, let B € RE*EK be a symmetric matrix
whose elements are given by

T/ didy

bpo = 2 — 20 | YOk
ke (aff(s;;,sg)

),v1§k,£§K, 21
where ®(z) = \/Lz_w [ exp (—%) dt denotes the cumu-
lative distribution function of the standard normal distribu-
tion. It is worth noting that by, is an approximation of the
probability of a;; = 1if z; € S} and z; € S} for all
1 <k,f < K, where a;; is given in (11); see Lemma 1.

Assumption 2. The thresholding parameter is set as

e
T Vi (%)

where ¢ > 0 is a constant. The parameter kg is a constant
and the maximum of the normalized affinities satisfying

0 Ve
’ _ 1—®(\/C
a/lidq) 1 (1 — 2(K(—\/1_)))

is also a constant. Moreover, the affinity between pairwise
subspaces satisfies

K€ (23)

aff(S;,57) 2 log N, V1<k#(<K (24)
and the subspace dimension satisfies
dmin 2 log” N . (25)

We will use this assumption in the following theorem, re-
stricting our result to the high affinity case. In general,
the clustering becomes harder as the affinity increases; see,
e.g., Soltanolkotabi et al. (2014, Section 1.3.1). Then, it is
natural to assume that x is a constant and (24) holds. We
want to also highlight that (24) implies that our subspaces
are of generally moderate dimension, which is made pre-
cise in (25) of the assumption. While this is slightly restric-
tive, it is in line with theoretical results in other subspace
clustering literature, and it also simplifies our theoretical
analysis. We leave an analysis of the low-to-moderate affin-
ity settings and low-rank subspaces to future work.

Theorem 2. Let {z;}Y | be data points generated ac-
cording to the semi-random UoS model with parameters
(N, K, {U;}_ |, H*). Suppose that Assumption 2 holds,

ka < V0og N, and r4x3% < /log N. It holds with proba-
bility at least 1 — N~ that

i

dp(H°, H*) < \/ka =

P( ) S VEakN Toe N

In particular, if both kq and Ky are constants and N is

sufficiently large, HO satisfies (17) with probability at least
1— NfQ(l)-

(26)

To put the above results in perspective, we make some re-
marks. First, according to the fact that d2.(H®, H*)/2 de-
notes the number of misclassified data points, the bound
(26) implies that the TIPS method only misclassifies
O(N/+/Tog N) points when kg, £y are constants and the
normalized subspace affinity is O(1). This automatically
satisfies (17), which requires the number of misclassified
points to be O(NN) when k4, £y are constants. Second, we
believe that the recovery error bound (26) can be improved
by enhancing the spectral bound in Proposition 1. This is
left for future research.

3. Proofs of Main Results

In this section, we sketch the proofs of the theorems in Sec-
tion 2. The complete proofs can be found in Sections B, C,
and D of the appendix.

3.1. Analysis of Initialization Method

In this subsection, our goal is to establish a recovery error
bound of the TIPS method. To begin, we estimate the con-
nection probability of data points (i.e., the probability of
a;; = 1in (11)) according to their memberships after the
thresholding procedure (11). Moreover, we show that the
connection probability of data points in the same subspace
is larger than that of data points in different subspaces.

Lemma 1. Consider the setting in Theorem 2. Let pyp € R
denote the connection probability between any pair of data
points that respectively belong to the subspaces S} and S}
foralll < k, ¢ < K. Then, it holds forall 1 < k. { < K
that

|Pke — brel S Ka/v/log N, (27)
where by is defined in (21), and
Pk — Pre 2, 1/\/Ka- (28)

Under Assumption 2, we can show that the approximate
connection matrix B is non-degenerate, which is crucial
for the analysis of the k-means error bound.
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Lemma 2. Consider the setting in Theorem 2. The matrix
B defined in (21) is of full rank and its smallest singular
value +y satisfies v > 1 — ®(/c), where c is the constant in
Assumption 2.

Next, we present a spectral bound on the deviation of A
from its mean.

Proposition 1. Consider the setting in Theorem 2. Then, it
holds with probability at least 1 — 6 K2 N~ that

IidN
— <
|4~ ELA]] S S 29)

Despite that this bound seems large, it is sufficient for prov-
ing (26). A key observation is that the entries in the i-th
column of A are independent conditioned on z;, while they
are dependent. This plays an important role in our anal-
ysis. Compared to the results in Lei et al. (2015, Theorem
5.2), this lemma provides a spectral bound for an adjacency
matrix without independence structure, which could be of
independent interest.

Equipped with Proposition 1, Assumption 2, Lemma 2, and
Lei et al. (2015, Lemmas 5.1, 5.3), we can prove Theorem
2. The complete proof is provided in Section B.4 of the
appendix.

3.2. Analysis of Subspace Update Step

In this subsection, we analyze convergence behavior of the
subspace update step in the KSS iterations. For ease of
exposition, let us introduce some further notation. Given

an H € MN*E 1et C, = {i € [N] : hiy = 1} and
ng = |Cy| for all k € [K]. GivenCy,...,Ck, let
nee =CkNC;l, Tre=— > aal  (30)
zECkﬁC*

forall k, ¢ € [K|], where a; for all i € [N] are given in the
UoS model. Given a permutation 7 : [K]| — [K] and a par-
tition {Cy,...,Cx} of [N] represented by H € MN*K,
we define the maximum of the number of misclassified
points in Cy w.r.t. C>_, K and that in C;; w.r.t. Cr(g) as

Wi(H) = max {|C\ Cos o G\ Cay |- BD)
To begin, we present a lemma that estimates the singular

values of Wy, forall 1 <k # /¢ < K.

Lemma 3. Suppose that 7 : [K| — [K] is a permutation,
Ny > di, 2 logN forall k € [K], and H € MN*K
satisfies

We(H) < %Nmm forall k € [K]. (32)

It holds with probability at least 1 — 2K /(d2;,N) for all
1<k+#/¢<K that
o, (\Il (k)k) - — L Soralli € [dyg], (33)
i - 32dk
1 501 dg dﬁ
o1 (P, <=4 — + , (34
1 (Prie) < de  4dy ( Mo (k)6 nw(k)f) G

where ¢1 > 0 is an absolute constant.

Armed with this lemma, we are now ready to show that
the distance from the subspaces generated by the update
steps to the true ones can be bounded by the number of
misclassfied data points.

H) = vazl hipziz! for some H €
- > Mg be the d leading eigenvalues

Lemma 4. Let Gy, (
MNXE qnd M\ >

of Gy, (H) for all k € [K]. Suppose that for all k € [K],
cik = arg max ()\;ﬂ- - /\k(i+1)) 35)
i€[d—1]

and

Uy, = PCA(Gy, (H),dy). (36)

Suppose in addition that 7 : [K] — [K] is a permutation,
Nuin 2 di. 2 log N forall k € [K], and e € (0,1/(8kq)]
is a constant such that

Wi (H) < eNuin for all k € [K]. 37)

Then, it holds with probability at least 1 — 2K /(d2,;,N)
that

dn(ry = di forall k € [K], (38)

X 2d 1
d(U. U;) < =2 H - H*Q.|?
> U, ) < s { G Q.

2K%(ci + ey}, (39)

where c1 is the constant in Lemma 3.

3.3. Analysis of Cluster Assignment Step

In this subsection, we turn to study convergence behavior of
the cluster assignment step in the KSS iterations. Observe
that Problem (6) is row-separable, and thus we can solve it
by dividing it into N subproblems. Specifically, for a row
of G denoted by g € RX, it suffices to consider
T(g) = argmin {(g,h) : h"1x =1, h € {0,1}*}.

Then, we can show that this problem admits a closed-form
solution, which may be not unique.
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Figure 1. Convergence performance of KSS: The x-axis is number of iterations and the y-axis is the distance from an iterate to a ground
truth, i.e., d% (H*, H*) + 1078, where H" is the k-th iterate generated by KSS.

Lemma 5. Forany g € RX, it holds that v € T (g) if and
only if v, = 1 and vy = 0 for all £ # k, where k € [K]|
satisfies gr, < go for all £ # k. Moreover, v € T(g) if and
only if Qu € T(Qg) for Q € Tlg.

Based on the above result, we can prove that the operator
T possesses a Lipschitz-like property.

Lemma 6. Suppose that g € RY is arbitrary and § > 0 is
a constant such that g, — g, > 6 for some k € K and all
¢ # k. Then, foranyv € T(g), g’ € RE, andv' € T(g'),
it holds that

2|lg — d'|
=

v - < (40)

We are now ready to show that the number of misclassified
points is bounded by the subspace distance.

Lemma 7. Let m : [K] — [K]| be a permutation such
that U = (Uy, ..., Ug) with Uy, € O™%% forall k €
[K]). Suppose that H € T (G (U)), where the (i, k)-th
element of Ga(U) € RNXK js |22 — UL 2i||. Then,
it holds for all i € [N] that

_ 2SI AU, Uf)
1 —maxer, [|U; 2
where the row vectors h;, h} € RE respectively denote the
i-throw of H and H*, and 1; € [K]| satisfies hj; =1 for
all i € [N].

The following lemma indicates that the KSS iterations di-
rectly converge to ground truth once the distance from the
current iterate to ground truth is small enough. This implies
finite termination of the KKS method.

Lemma 8. Suppose that Assumption 1 holds, Npi, =

~

dy 2 log N forall k € [K], and H* € MY *E satisfies

da(H', H*) < 2K?(c1 + 1)c1dmin, (42)

where ¢y is the constant in Lemma 3. Then, it holds with
probability at least 1 — 2K /(d%, N) — 5K?/N that

Ht+1 _ H*Qﬂ'
for some Q. € .

Equipped with the results in Sections 3.2 and 3.3, we can
prove Theorem 1. The complete proof can be found in Sec-
tion D.5 of the appendix.

4. Experiment Results

In this section, we report the convergence behavior, re-
covery performance, and numerical efficiency of the KSS
method for SC on both synthetic and real datasets. All of
our experiments are implemented in MATLAB R2020a on
the Great Lakes HPC Cluster of the University of Michigan
with 180GB memory and 16 cores. Our code is available at
https://github.com/peng8wang/ICML2022-K-Subspaces.

4.1. Convergence Behavior and Recovery Performance

We first conduct 3 sets of numerical tests, which corre-
spond to K € {3,6,9}, to examine the convergence be-
havior and recovery performance of the KSS method in
the semi-random UoS model (see Definition 2). We gen-
erate K overlapping subspaces as follows. First, we set
n = 300, d = 30, d = 25, and uniformly at random select
dy. € [d,d] for all k € [K]. Second, we arbitrarily gener-
ate an orthogonal matrix U = [uq,...,u,] € O™ and set
the shared basis as U = [u,,_s11,...,u,] for an integer
s € [0,d]. Next, we generate V}, by randomly picking up
(dr — s) columns, which are not repeated, from the first
n — s columns of U. Finally, we form U} = [V}, U] for
all k € [K], which ensures that the intersection between .S,
and Sy is at least of dimension s forall 1 < k # ¢ < K.
In each test, we generate 3 datasets by setting s = 6 and
Ny, = 500 for all £ € [K] and respectively run the KSS
method with random initialization (denoted by RI-KSS)
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and TIPS initialization (denoted by TI-KSS) by setting
T=2/ V/d on them. Then, we plot the distance of the iter-
ates to ground truth, i.e., d% (H*, H*) 4+ 1078, against the
iteration numbers in Figure 1. It can be observed that with a
proper initialization, the KSS method converges so quickly
that it finds the correct clustering within 10 iterations. This
supports the result in Theorem 1. Additionally, it exhibits a
finite termination phenomenon that corroborates the result
in Lemma 8. Moreover, it is observed in Figure 1(c) that
RI-KSS gets stuck at a local minimum while TI-KSS does

not on data 3.

Table 2. Average CPU time (in seconds) and the best clustering

accuracy of the tested methods on real datasets.

Accuracy COILIOO YaleB USPS  MNIST
KSS 0.8117 0.7154 0.8172  0.9780
SSC 0.6732  0.8277 0.6583 -
OMP 0.3393  0.8268 0.2109  0.5749
TSC 0.7343 04878 0.6693  0.8514
GSC 0.6550  0.7071  0.9522  0.6306
LRR 0.5500  0.6828 0.7129 -
LRSSC 0.5200  0.7088  0.6443 -
Time (s) COILI00  YaleB USPS  MNIST
KSS 53.53 6.90 8.85 30.53
SSC 912.25  136.36 1217.88 -
OMP 12.12 1.02 31.12 398.37
TSC 29.78 3.06 2.66 154.46
GSC 178.15 24.22  105.59 1800.00
LRR 144.25 63.31 112.56 -
LRSSC 1800.00  444.28 1800.00 -

“~ denotes out of memory.

4.2. Numerical Efficiency and Accuracy on Real Data

We now conduct experiments to examine the computational
efficiency and recovery accuracy of the KSS method on real
datasets. We also compare it with several state-of-the-art
methods: SSC in Elhamifar & Vidal (2013), SSC solved
by OMP in Youet al. (2016), TSC in Heckel & Bolcskei
(2015), GSC in Park et al. (2014), LRR in Liu et al. (2012),
and LRSSC in Wang et al. (2019). In the implementations
of SSC, OMP, LRR, and LRSSC, we use the source codes
provided by their authors. We use the real datasets COIL-
100 (S. A. Nene & Murase, 1996a), the cropped extended
Yale B (Georghiades et al., 2001), USPS (Hull, 1994), and
MNIST (LeCun, 1998). The stopping criteria for the tested
methods are given as follows. For KSS, we terminate it
when the norm of two consecutive iterates is less than 102,

>The datasets COIL-100, Yale B, and USPS are downloaded
from  http://www.cad.zju.edu.cn/home/dengcai/Data/data.html.
The dataset MNIST is downloaded from LIBSVM (Chang & Lin,
2011) at https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/.

For SSC, LRR, and LRSSC, we use the stopping criteria
in their source codes. No stopping criterion is needed for
TSC and GSC due to their one-shot nature. We set the max-
imum iteration number of KSS, SSC, LRR, and LRSSC as
200. We set the maximum running time of all tested al-
gorithms as 1800 seconds. For the implementation of KSS,
we used the TIPS initialization except for on MNIST, where
we use random initialization in Algorithm 1. More details,
including data processing, parameter settings, and test re-
sults, can be found in Section F of the appendix. Then, we
run each method 10 times. Note that if the algorithms are
initialized deterministically, the only randomness is from
the initialization for k-means in spectral clustering. To com-
pare the computational efficiency and recovery accuracy of
the tested methods, we report the average running time and
best clustering accuracy for all runs of each method in Ta-
ble 2. More experiment results can be also found in Section
F of the appendix. It can be observed that the KSS method
is in the top three in terms of both accuracy and computa-
tional efficiency for every dataset. This demonstrates the
efficiency and efficacy of the KSS method for SC.

5. Concluding Remarks

In this work, we analyzed the KSS method for subspace
clustering and provided a TIPS method for its initialization
in the semi-random UoS model. We showed that provided
an initial assignment satisfying a partial recovery condition,
the KSS method converges superlinearly and achieves cor-
rect clustering within ©(loglog N) iterations, even when
the normalized affinity between pairwise subspaces is
O(1). Moreover, we proved that the proposed initialization
method can return a qualified initial point. All these results
are demonstrated by the numerical results. A natural future
direction is to study the convergence behavior and recovery
performance of the KSS method in the noisy UoS model;
see, e.g., Heckel & Bolcskei (2015); Soltanolkotabi et al.
(2014); Tschannen & Bolcskei (2018); Wang & Xu (2013).
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Appendix

In the appendix, we provide proofs of the technical results presented in Sections 2 and 3. To proceed, we introduce some
further notations. Given a vector @ € R", we denote by diag(a) € R™*" the diagonal matrix with a on its diagonal.
Given a symmetric matrix A, we use Apmin(A) to denote its smallest eigenvalue. We respectively use 1,,, E,,, and I to
denote the n-dimensional all-one vector, n X n all-one matrix, and d x d identity matrix, and simply write 1, FE, and I

when their dimension can be inferred from the context. Given two random variables X and Y, we write X 4 Y if X and
Y are equal in distribution. We use e; to denote a standard basis with a 1 in the i-th coordinate and 0’s elsewhere. For a
vector € R"™, we denote by xg its subvector consisting of the elements indexed by the set S. We denote the cumulative
distribution function of the standard normal distribution by

O(z) = \/L?_W/ e~ T dt.

For any random vector @ ~ Unif(S?~1), it is known that there exists a standard normal random vector such that a is its
normalization. We denote such vector by a. Thus, it holds that

o

a~N0OI), a= -2 (43)
lal
Moreover, let
T T
Uy Up = U Vig (44)
be a singular value decomposition (SVD) of U;TU;, where a,(ct) > 2> a,(;;in{dk"d’f D> 0 are the singular values of
U,;*T U/ and Uy, € 0% Vi € O, Suppose that dj, > dy. We have
*T * * 2* *T
Ui U; = Uy, [ (ﬂ Vit 45)
where £, = diag (0&), e a,(ff)). Suppose to the contrary that dj, < dy. Then, we have
T * * N «T
Ui Uy =U [Z5, 0]V, (46)

where f],*;e = diag (0,(6?, e a,(j’“)). According to (13) and (44), one can verify that
aff (S, 57) = |55l - (47)

Recall that for any U,V € O"*? we use d(U,V) = |[UUT — VV7T|| to denote the distance between the subspaces
respectively spanned by U and V. Then, one can verify

AU, V)= |I-UUNV|=|T-VvVHU| =/1-02,(UTV). (48)

A. Concentration Inequalities

In this section, we present some concentration inequalities for random vectors. These inequalities play an important role in
the analysis of the proposed method. We first introduce a spectral bound on the covariance estimation for random vectors
generated by a uniform distribution over the sphere. It is a direct consequence of Vershynin (2018, Theorem 4.7.1) and
thus we omit its proof.

Lemma 9. Suppose that a1, ...,a,, € R? are i.id. uniformly distributed over the unit sphere. Then, it holds with

probability at least 1 — 2e™" that
<4 ( d+u n d+ u) 7
—d m m

& 401
- al — =1
m;aal d

where ¢1 > 0 is an absolute constant.
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We next present a bound on the deviation of the weighted sum of standard normal random variables from its mean. This is
an extension of Li & Gu (2019, Lemma 7).

Lemma 10. Let x € R? be a normal random vector such that © ~ N(0,0%1,). It holds for \i,...,\q € [0,1] with
ijl A2 > 4dandt > 0 that

d d 5
t

P E Na? —o E A >t +20 §2exp<—ﬁ>.
o

i=1 =1

Proof of Lemma 10. We define

By calculation, we obtain

Applying the concentration inequality for Lipschitz functions (see, e.g., Li & Gu (2019, Lemma 6))) to f(x) yields that

P 17(e) ~ Elf(@)| 2 ) < 26 (5 ). )

We first note that

d d
E[f(z)] < VE[f2(z)] = \|E lZ A?w%} =0 ZA?. (50)

=1

By letting X = f(x) > 0 and p = E[X], we can compute

Var (X) = E [(X — p)?] _/OOOthP(|X—;L| gt)_—/ooothPﬂX—M > t)

o] oo t2
:/ 2tP (| X — pl >t)dt§/ 4t exp (—2 )dt:4027
0 0

o2

where the forth equality and the last one follow from integration by parts and the inequality is due to (49). Thus, we have

d
— Var (f(x)) > o? <Z 22— 4) .

d

E*[f(x)] = E[f*(x)] - Var (f(z)) = E lz X}

i=1

This, together with Z?:l A? > 4, implies

(51

Plugging (50) and (51) into (49) yields the desired result. O

Equipped with the above results, we are ready to present a lemma that characterizes the properties of a uniform distribution
over the sphere. This plays an important role in the subsequent analysis.
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Lemma 11. Suppose that | X5,||p > 2 forall1 < k # ¢ < K and a; S Unif (S%~1Y) for all i € [N]. Then, it holds

with probability at least 1 — 4N ~2 that for some i € [N]and1 < k # { < K,

laall ~ V| < o, 1S5l — [Sglel < o (52)
and
[Z5ellr — o ] [Z5ellr +a
—re < Xa < —E=——o, 53
At = 1Z5eaill 4 — o (33)

where o = 2+/log N + 2.

Proof of Lemma 11. We first prove (52). Applying Lemma 10 with t = 2y/log N and A\; = 1 forall j € [d/] to @; ~
N (0, I,,) yields that

P (|llail - V| > o) <2v2. (54)

Suppose that dj, > d;. According to (45), we have X}, = {26“] . Applying Lemma 10 with t = 2y/log N and \; = cr,(cjé)
forall j € [d/] to @a; ~ N(0, I,) yields

P ([1Z%ea: ] — 1Z%llr| > @) < 2N72
This, together with | X} ,a;|| = || X},a:| and | =5, || = ||}, r, implies

P (|[Z5eaill — [Z5ellr| > o) <2N72. (55)
Suppose to the contrary that di, < dy. According to (46), we have X7 ,a; = (a,(ct) ity a,ﬁ’“)didk). Applying Lemma
10 with t = 2\/Iog NV and \; = o) forall j € [di] to [@]s ~ N'(0, Iy, ) with 5 = [dy] yields

P ([1Z%e@s] - 1Bk llpl > @) <2N72
This, together with (54), (55), and the union bound, implies (52).
We next prove (53) using (52). Using a; = a;/||@;|| and (52), we have

* = *
1=t ,a;] = 1250ai] < 1Z5ellFr +

la:| — Vdi—«
and
Y@ S | e —
X5l = H ke® I > [Z5llFr —a
”ai” \/d_l—i- o
Then, we complete the proof. ]

Then, we present a lemma that estimates the magnitudes of some crucial parameters in our analysis.

Lemma 12. Suppose that z; € RY are generated according to the semi-random UoS model such that z; € S ;- Then, for
any 1 < i # j < N and k € [K), it holds with probability at least 1 — 5K?/N that

aff (S}, S)) — a aff (S}, S;) + a

*T
Vita  SWUEals =00 o
and
<U];szi,U]:sz> < 2\/ 10gN (57)
Uzl | Vai-a

where o = 2y/log N + 2.
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Proof of Lemma 12. Suppose that (52) and (53) hold for all ¢ € [N] and k,¢ € [K], which happens with probability
1—4K2N-1 according to Lemma 11 and the union bound. We first show (56). Since z; € S} and a uniform distribution

over the sphere is rotationally invariant, we have HU,sziH = HU,:T Ufa;|| = ||U,;‘ZE}§EV,§2T(11-|| ~ ||X33,a;|. This,
together with (53) and (47), implies that for any j € [N]and ¢ € [K],

aff (S}, S;) — a < U | < aff(Sk,Sl)—i—a' (58)
Vi + a Vdy —a
We next show (57). According to z; € S; and (43), we have
*T *T *T * *T *T * — *T
(Ui 2,U; z5) _ (Up Ufai, Uy z;) Uy Ura, Up zj) (59)

AT 1T 2] el =)

By letting X be a standard normal random variable, i.e., X ~ N (0, 1), we compute

oU" z;||\/Tog N
§2\/10gN‘zj _p(ix <3 ke z‘i” -
HUe U U; zjl|

*T * = *T
(U Uja;, Uy zj)
«T
U 2l

2 N2
>P(|X] <2ylogN) > 1- e

where the equality is due to (U7 Uz a:, Ui 2))/IIU;" 2| ~ N (0,07 Uz U;" 2|2/ |U; " 22 and the first in-

equality is due to [|U; Uz U;" z;]| < U} 2;]|. This, together with (52), (59), and the union bound, implies that it holds
with probability at least 1 — K?N~1//log N thatforall 1 <i # j < N and / € [K],

T T
("2, U %) _ 2/le N

U2~ Vdi—a
This, together with (58) and the union bound, implies the desired results. o

B. Proofs in Section 3.1

According to Assumption 2, dpin = log® N, and a = 2v/Tog N + 2, there exists an ¢ < 1/y/Iog N such that
a<ceaff(S},S;) foralll1 <k #{¢ <K, a<ey/dforallke [K]. (60)
This result shall be used in the subsequent proofs again and again.

B.1. Proof of Lemma 1

Before we prove Lemma 1, we need the following lemma to estimate the probability of the event that |(z;, z;)| > T
conditioned on z;. Recall that we denote the cumulative distribution function of the standard normal distribution by

1 * ¢

Lemma 13. Suppose that z; € S for some k € [K). Then, it holds forany 1 < i # j < N that

220 (Mja)) —oN <P ([(zz) 2 7 | 2) <220 (w) +2N72, 1)
U 2l U =l

where o = 2+/log N + 2. In particular, we have

*T ] (\/d—fa)z
P |<Zi,2j>| > HUk ZJHVIOgN ‘ 2 < 2 2@ - 2kd,C
: Vi 7 (Vdy, — a)y/log N

=

+2N72, (62)
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Proof of Lemma 13. According to z; € S}, and (43), we have
T
P (|<Ziazj>| 2T ‘ Zj) =2P (<Zz'=zj> 2T ‘ Zj) =2P ((Ugai,zj) > ‘ Zj) =2P ((di,Ué‘ zj) = 7l|al| ‘ Zj)

.
> 2P (@ Ui 25) 2 7(Vdi +0) | ) — 2P (Jladl| > Vi + o)

>92 2% <@> —oN"2,
U} %]

where the first inequality is due to the union bound and the fact that a; is independent of a; and the second inequality
follows from (a@;, Uy z;) ~ N(0,[|U;" 2;]|?) and uses (54) for a; € Unif (S%~1). By the same argument, we obtain

P (|<Zz'=zj>| >T ‘ Zj) = 2P (<@i7UETZj> > 7|la| ’ Zj)

< 2P (@, Ui %) 2 7(Vdc - ) | ) + 2P (Jlaill < v - a)

T(Vdk — @)

<2-29 (
1072

) +2N72,

This, together with 7 = || U,jT z;||v/1og N //dy, yields

IU;" 2VIog N | VIog N (v — o) s
P<|<zi,zj>|sz’zj>gz—2q>< N >+2N

2 [ t log N(Vdy, —
g\/j/ exp [~ LVIBN(Vdk =) 4y oy
T | Ve N({/dp—a) 2 /dk
Vi

N \/2 WA =Y N,
7 (Vdi, — a)y/log N

O

Proof of Lemma 1. First, we prove (27). Suppose that a pair of data points z;, z; € S} for some k € [K]. According to
(61) in Lemma 13 and HU,;*szH = |la;|| = 1 due to the UoS model, we obtain

2-29 (T(\/ﬁ—i—a)) —2N2<P (|<zi,zj)| > ‘ zj) <2-29 (T(\/d_— a)) +2N2
This, together with pgr, = E []P’ (|<zi, zj)| > ‘ Zj):| , implies

228 (r(\/dy +)) = 2N"2 < iy <228 (7(/d — ) +2N 2 (63)

This, together with (21), yields that for all k € [K],
2 2(Vdi — a)? 1
Dik — b < 20 (T\/dk) — 20 (T(\/dk - a)) FoN"2<[Zexp (—%) ra+2N"2< ey ©
T

where the last inequality is due to (22) and dp,;, 2 1og3 N. By the same argument, we have pgr — bgr = —ﬁ. This,

together with (64), implies (27) for all k£ = £. Suppose that a pair of data points z; € S, z; € S; forsomel < k # ¢ < K.
Since a uniform distribution over the sphere is rotationally invariant, we have
*T *T * * * *T *
U 2zl = Ug Ugasll = U Z5 Vi a;l ~ 15505,

where the second equality is due to (44). This, together with (53) in Lemma 11 and (61) in Lemma 13, implies it holds
with probability at least 1 — 2N 2 that

2 - o (T 2T o)

1Z5llr —a

) — N2 <P (e z) 27| 2) <220 (T(\/ﬁ_o‘)(\/d—f_aw +2N72.

1Z5llF + o
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This, together with aff (S, S;) = ||X5,|lr and pre = E {]P’ (|<zi, zj)| > ‘ zj)} , further implies

T(Vdk — &) (Vdy — )
aff (S}, S7) + a

5 _ 2 (T(Vd_w a)(Vdi + o)

—4N72< <2-92p
aff(S;, ;) — a ) = PR (

) +4N72, (65)

This, together with (21), yields that forall 1 < k # ¢ < K,

por = bue = 20 (ﬁ%> - (T(g@;ﬁéﬁ; a)) AN
< \/?exp (_72(\/@—&)2(\/@—002) ( v T(\/@—a)(\/d_g—a)>

2(aff(S, ;) + a)? aff(S;,S;)  aff(S;,S;) +a

NN (1 —e)'rdyy, (1 (1- 5)2) TV dydy
/2 on [ - _

= V7P "o o2at?(s;, 5)) 1+e ) afi(S;,S;)
2¢e(3—¢e)mV/didg (1 —e)i72d3;, 1

St exp | — 2 e

T 1+e 2(1 + e)2aff*(Sy, Sy) ) aff(Sy, Sp)

_ \/?exp _l 6(3 — 5) \% dkdl S dmax 7 (66)
T 2/ (1-¢)%dmin dminv/1og N

where the third inequality is due to (60) and the last inequality follows from ¢ < 1/y/log N and the fact that

exp (—na?/2) x attains the maximum at z = 1/,/7 when = € (0,00). By the same argument, we have pr; — bre 2
d3/2 . . N
— S This, together with (64), implies (27) forall 1 < k A (¢ < K.

Next, we prove (28). Note that forany 1 < k # ¢ < K,

(Vi — 0)(V/dr — @) = (Vi + ) (aff (S, 57) + ) = v/ (Ve — afi (57, 57) ) — o (2v/d + /g +afE (S}, 7))

> /i (Ve — afi (57, 57)) — 20 (Vi + V)
1
= 1V e (67)

where the first inequality follows from aff (S}, S;) < v/d; and the second inequality uses aff (S}, S;) < 44/d¢/5 due to
(15) and dpyin 2 log3 N. For ease of exposition, let

Tpe = T(ﬁ(;;agékﬁ; a)’ yr = 7(\/dy, + ).

According to (67) and (22), we have x5, > y forany 1 < k # ¢ < K. Forall 1 < k # ¢ < K satisfying aff(S}, S}) >
T(Vd — ) (Vdy — @) /(2¢) — a, we have

Tre < 2c

and

e — > TV dydg - eVdydy > Vduin
ke Ik = 10 (aff(S,j,Sz‘) +CY) B IOmIH{\/@a \/d_l}vdmax ~ \/dmax7

where the first inequality uses (67) and the second inequality follows from (60) and (15). This, together with (63), (65),
and xgp > Yy, yields that forall 1 <k # /¢ < K,

2 x dmin
Prk — Dkt > 2 (P (20) — @ (yx)) — 6N 2 > \/;GXP <—ﬂ> (zre —yi) —6N "2 2 . (68)
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Forall 1 < k # ¢ < K satisfying aff (S}, S}) < 7(v/di, — a)(v/de — @) /(2¢) — o, we have forall 1 < k # ¢ < K,

Pk > 2 — 20 <@> —2N"2>92-20((1+e)c)— 2N 2,

Vv dmax

where the first inequality is due to (63) and (22) and the second inequality uses (60), and
pre < 2— 20 (2¢) +4N 2
Then, we have forall 1 < k #£/¢ < K,
Prk — Pre > 29 (2¢) = 2@ (1 +¢)c) —6N 2,

which is a constant due to the fact that ¢ > 0 is a constant. This, together with (68) and d,,;, = log NV, implies (28). O

B.2. Proof of Lemma 2
Proof. According to (21) and (22), we have forall 1 < k # ¢ < K,

Ved
bip = 2 — 20 (\/CZH_;) > 2 — 20(y/0) (69)
and
_9_ Vedydy B dnin \ _ o Ve )
bre = 2 2<1>( —dmaxaff(Sz,Sz)) <2-20 (K —dmax) =2-20 (,@ =) (70)

where the inequality is due to aff (S, S}) < x min{+/dy, \/Eg} forall 1 < k # ¢ < K by Assumption 2 and (15). Then,
we can decompose the symmetric matrix B into B = B + Bs, where

bITI bi2 ... bk byt 0 ... 0
B _ b 2 b B | 0 by ... O
1= . . . y 2= 35 . . .
big bog ... LEE 0 0 ... brk

2
According to (69), (70), and (23), we can verify for all k € [K],

%|bkk|— > bre| = 1—d(Ve) - 2(K - 1) (1—@( Ve >>20,

NG
ey, d

which implies that B; is a symmetric diagonally dominant matrix (see Golub & Van Loan (2013, Section 4.1.1)). Using
the result that a symmetric diagonally dominant matrix with real non-negative diagonal entries is positive semidefinite, we
can conclude that B; is positive semidefinite. On the other hand, we can see that B is a diagonal matrix with all the
diagonal elements being larger than 1 — ®(4/c). Then, we have

Hm”im1 "Bz > Hm”in1 z' Biz + ”mHim1 z" Box = Ain(B1) 4 Amin(B2) > 1 — (/).
ZT||= ZT||= x|l=

Then, we complete the proof. o

B.3. Proof of Proposition 1

Before we prove Proposition 1, we need estimate the covariance between the random variables a;, and a;;, generated by
the thresholding procedure (11) forall 1 <4 # j < N and k € [N].

Lemma 14. Suppose that z;, z;, and z;, are different points generated according to the semi-random UoS model such

that zj, € Sy for some € € |K). Suppose in addition that Assumption 2 holds, the thresholding parameter is set as in (22),
dmin 2 1og N. Then, it holds for any 1 < i # j < N with probability at least 1 — 5K>N 2 that

dm ax

< ==
|5 dminy/log N

|Elaikajk|zi, 2] — Elaix|z:]Elak 2]
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Proof of Lemma 14. Suppose that (56) and (57) hold, which happens with probability at least 1 — 5K2/N according to
Lemma 12. To simplify the notations, let

v = U 2z, ;= h forall i € [N]. 1)

Besides, for any given v; and v, let

(7 + (i, 95)|VIog N/Vdp) (Vi + o) 5 (r — (v, ) |VIog N/vde) (Vi — @)

Bij = . s Bij = (72)
T (il = i 9)) V1= (log N)dg o]
In addition, suppose that the following inequalities hold:
i|[v1og N
E[aikajﬂzi,zj] 2 (2 — 2(1) (Bij) — 2N_2) P (T S |<zj,zk>| S M ‘ Zj) (73)
‘ ‘ en
i|[v/1og N
Elairaj|2i, 2] < (2 - 2@ () +2N ) P (T < (25, z)| < [2sllv2os ¥ ‘ Zj) +
‘ vy
- [[v;llv1og N
2+2N2]P’<J7§ Zi, 2k Sl‘z- . (74)
( ) NG (25 21| j
According to Lemma 13, we obtain
d dy —
220 <W) —2N"2 < Elag|z] <2 - 20 (W) +2N"2, (75)
v; V;

22(1—‘I’(ﬁij)—N2)P<T§|<zﬂ"zk>|§%‘z]—) _2<1_®<@) +N2>

ol

P (1)l 2 7| 25) =2 (# (I ) 5 282 (< oy, )| < LAZER )

where the last inequality is due to Lemma 16, Lemma 13, and (22). By the similar argument, according to (74) and (75),
we have

Elaira;k|zi, 2] — Elaix| zi]Elajx|2;] < 2 (cp (%) —®(B};) + 2N2) P <T < [z, ze)| < 52—5\] \ zj)
w0 () v p (e = T ) s it

According to this and (76), we complete the proof.

Then, the rest of the proof is devoted to proving (73) and (74). According to (11) and z, = U ay, we have
Elowaze|zi, ) = P (20, 201 2 7, (25,20 2 7 | 20,2,

— [ 2l = nlleg a2 7| e 20| =tz ) P (a2 <t =)

— 00

1
= [P ml 2 7| gzl =tz ) dB (e ] <t | 2,)

_ /Tl]P’ (|<’Ui,ak>| . } (v, ar)| = t,Zi,Zj) dP (|<zj,zk>| <t ‘ Zj) , (77)
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where the second equality is due to the the law of total probability, the third equality uses 7 < |(z;, zx)| < 1, and the last

equality follows from v; = Ug‘Tzi forall i € [N]. Due to ||ag|| = 1 and ||9;|| = 1, we can decompose ay, into two parts
that are orthogonal:

ai = x0; + V1 — 22by, (78)

where = € R and by, € R% satisfying (by, 9;) = 0 and ||bx|| = 1. This, together with |(v;, a))| = t, implies

t = |z/]lv;]l. (79
Since ||9;|] = 1, there exists an orthogonal matrix U € 0% such that Uv; = e;. Let
bi = % (80)
and ¢j, € R%~1 such that ¢, := (Bkg, e ,Bkdz). According to Lemma 15, we obtain
Uby, ~ by (81)
such that by; = 0 and ¢;, ~ Unif (S%~2). Besides, let
w; = v; — (v;, 0;)0;. (82)
According to (78), we have
(vi, ak) = x(v;,0;) + V1 —22(v;, b)) = 2(v;,0;) + V1 — 22(w;, by), (83)
where the second equality is due to (82) and (v;,b;) = 0. According to (w;,9;) = 0, we have (UTw;,Uv;) =
<UTw1-, e1) = 0. This, together with letting u; denote the i-th column of U € O% and d; = (uQTwl-, ... ,udTwi) S
R~ we have u?'w; = 0 and ||d;|| = ||w;]|. It follows from this and (81) that
|(wi, bre)| = (UTw;, Uby)| ~ [(UTwi, bi)| = |(di, ex)]. (84)

Now, we are ready to compute the lower bound of E[a,;a x|z, z;]. According to (77), (79), (83), and (84), we have

T+ (v, 05)] t
P (i, an)] =7 |<v-,ak>|=t,zi,z»)zp(|<wi,bk>|27 LI o] = 242
J J 1 _ 2 ”vJH J

=P | |(di,cr)| > 7llvs | + tw;, &)l ‘ zi, zi | . (85)
Vvl = ¢ !

Then, let

(rllosll + t{ws, 8)]) (Ve + )
(lvsll = [(ws, 8;)]) /T 2 — £2

According to the argument in Lemma 13 with a = 2y/log N + 2, ¢, ~ Unif(S%~2), and ||d;|| = ||w;||, we obtain

P <|<dz-,ck>| s sl + o 5, zi’zj) S92 <<r|vj|| U600, 5,) w;ma)) N2
Jwil[/[lvj]]* — ¢

>2—2® (h(t)) — 2N 2, (86)

h(t) ==
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where the second inequality is due to ||w;|| > ||v;||—|(vs, D;)| > 0 according to (82) and the triangle inequality. According
to (77), (85), and (86), we have

Elaira;r|zi, zj] > /1 (2 —2® (h(t)) —2N?) dP (|<zj,Zk)| <t } Zj)

o, I VoE N
> Ve

(2 = 20 (h(t)) — 2N2) dP (|<z‘,-, z)| <t ‘ z‘,-)
Tuvjum

2/ Vi (2-2@([317-)—2N*2)dP(|<zj,zk>|gt}zj)

= (2-22(8) - 2 B (7 < [l ] < I2IVZER ), #7)

where the last inequality is because h(t) is an increasing function. Next, by letting

(Tllo; || — tl{wi, 9,)]) (Ve — @)

[[oillv1]

g(t) ==

)

we can obtain the following inequality by the same argument as (85) and (86):

g (|<’Ui,ak>| 27| (vj,ak) = t,zi,zj) <2-29 <(T|vj” = Ui, 9,)]) (Ve = a)) +2N~2

[willv/llv;]]* = ¢

<2-2d(g(t)) +2N2,
where the last inequality is due to ||w; || < ||v;||. Besides, it holds for ¢ € (1, ||v;||/Iog N //d,] that

g(t) > ﬂzl'j-

These, together with (77), imply

Elaikajk|zi, 2] < /Tl (2 -2 (g(t)) + 2N—2) dP (|<zj, zp)| <t ‘ Zj)

llv, | VIog N

:/ Vi (2—2<I>(g(t))+2N’2)d]P’(|<zj,zk>|§t‘zj)—|—

T

1
ﬁ”j“\/m (2-2®(g(t) +2N"?) dP (|<Zj= zp)| <t } Zj)

N
< (220 (3) + 2N ) B (v < (a5, 200 < LSBT | )

_ || VIog N
(2+2N2)P <|1}J”T?g <z, 2| <1 ’ zj> . (88)

O

Proof of Proposition 1. Suppose that (56) and (57) hold, which happens with probability at least 1 — 5K 2 /N according to
Lemma 12. For ease of exposition, let A := A — E[A]. Recall the definition of py and gg, for 1 < k # £ < K in Lemma
1. It follows from (11) and Lemma 1 that the (4, j)-th element of A satisfies a;; ~ Bern(p;;) such that

(89)

)k, ifzi,z5 € Sk,
Pij qre, ifz; € Sk, z; € Sz, and k 75 £.
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According to (63), (22), and dy,in 2 log N, one can verify that p;, € (0, 1) is a constant for all k¥ € [K]. According to (65)
and (22), we havefor1 < k A/ < K,

maxyz¢ aff (S, Se) + a (Vdy — a)(Vdr — «) _
Qké§2—2¢< alf(Sr. S0) + Vi — 0)? >+4N 2
<2-29 (Wci_’“\/;;")(\_/d_o’j

Now, we are devoted to bounding ||A||? = ||A2||. First, we consider the diagonal elements of A%. According to (11), we
note that a;; for all j € [n] are mutually independent conditioned on z; € RY. This, together with §;; = a;; — E[a;;] €
{1 — pi;, —pi; } and the Hoeffding’s inequality for general bounded random variables (see, e.g., Vershynin (2018, Theorem
2.2.6)), yields that

); o‘)) LAN2, (90)

al ) 2N log N .
P[> (67 —E[53)] >\/NlogN’zl- <2exp (-7 ) =2V

J=1

This, together with the union bound, yields that it holds with probability at least 1 — 2N ~! that for all i € [N],

N
> (63 —E[67])| < v/Nlog N, 1)

j=1
Due to the fact that py, € (0,1) is a constant for all & € [K] and (90), we have forall 1 < i < j < N,
E[azzj] = E[a?j] —E*[a;;] = pi; (1 — pij)

is less than some constant. According to this and (91), it holds with probability at least 1 — 2N ~! that for all i € [N],
N N
[(A%)i] = D65 < D _E[S;]| + VNlog N < N. 92)
o =

Next, we consider the off-diagonal elements of A?. According to (11), we note that a;,a;x for all k # i and k # j are
mutually independent conditioned on z;, z; € RY forall 1 < i # j < N. This, together with §;; = a;; — E[a;;] and the
Hoeffding’s inequality for general bounded random variables (see, e.g., Vershynin (2018, Theorem 2.2.6)), yields that

ANlog N B
P(| S (6wb —Eldisi])| > V2NlogN ‘ 2,z | <2exp (—Tg> — N4,

ki k#£j

According to Jensen’s inequality, Lemma 14, and E[0;10,%|2:, 2;] = Elairajk|zi, 2;] — Elaix|z:i]E[a;x|z;], we obtain for

k#ik# 7,

dm:
El0;x0k]| < E[|E[6irdik|2zi, 25 < _mex
e

These, together with the union bound, yields that it holds with probability at least 1 — 2N 2 that forall 1 < i # j < N,
dmaxN
Z 5zk5gk < Z (5ik5jk — E[5ik5jk]) + Z E[éikéjk] 5 v/2Nlog N + m
ki, k#j ki, k#j ki, k#j min g

As aresult, it holds with probability at least 1 — 2NV ~2 that for any 1 <i#j <N,

|(A%);5] = zNj&'k&k S 7dmLN , (93)
J P J ~ dmin IOgN
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Applying the union bound to (92) and (93) yields that

dnax N2
A?|| < A?); > 1(A%);P SN+ ———
| H_inel[egﬁl( )ii| + /#jl( Jil” S M

holds with probability at least 1 — 6 K2N ~!. This further implies

dmax N
[Al'S — :
dpmin v1og N

B.4. Proof of Theorem 2

Proof. Suppose that (29) holds, which happens with probability at least 1 — 6 K2N~! according to Proposition 1. Given
z; € Sf and z; € S}, recall that pre = P (|(z;, 2;)| > 7) denotes the connection probability between any pair of data
points that respectively belong to the subspaces S; and S; forall 1 < k. ¢ < K. Let B := {bpeti<ki<i, C =
H*BH*' | P := {pp}1<ni<xk.and D := H*PH*", where by is defined in (21). In addition, let U, U € R"*X be
respectively the eigenvectors of A and C' associated with the K leading eigenvalues. According to (11), one can verify
that

E[A] = D — diag(D). 94

We claim that C'is of rank K and its smallest singular value is larger than Ny,i,7y, where v > 1 — ®(c) is given in Lemma
2. Indeed, let A = diag (v/N1,...,v/Nk). Then, we have

C=H'A'ABA (H'A')".
One can verify that H* A~! has orthonormal columns and
Umin(C) > Omin (ABA) > 012111n (A) Umin(B) = Nmin’y-
According to (94) and Lemma 1, we have
E[A] = C|| = |D — C = diag(D)|| < | D~ C|| + max,_pu

Hdeax

< ||[H*|?|B - P||+1< ||[H* H*|||B-P ] < DdTmeax
< | H*|]?| [+1<| Il lF+ SN

This, together with (29), yields that

./IidN
A-C| <|A-E[A E[A] - C| S
I < [A]ll + [[E[A] HNW,

where the last inequality is due to k4 < v/log N. This, together with Lei et al. (2015, Lemma 5.1), v > 1 — ®(c), and the
fact that x4 is a constant, yields that there exists a Q € O¥ such that

A 22K N
1T -UQ|r < lA-c| s Y 95)
Nmin’y Nmin \4/ log N

According to Lei et al. (2015, Lemma 2.1), we have U = H* X for some X € RE*E with ||z — x| = \/1/Ny + 1/Ny,
where x denotes k-th row of X. By letting X' = X @, we obtain

UQ=H"X',

where ||z}, — x}|| = \/1/Ny + 1/N,. This, together with setting 6, = 1/1/Nj, in Lei et al. (2015, Lemma 5.3) and (95),
yields that

min Ni6; =12 U -UQ|%

ﬁsz
kE[K] ~ N2

SinV1og N

Vv
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where the first inequality is due to k% x4 < v/log N. This implies that there exists a Q € OX such that

o 2
HUdirszHF S Ni, forall k € [K]. "
p

Let U = HYX, where (H°, X ) is an (1 + €)-approximate solution to Problem (12). Moreover, we define T}, =
{i € C} : up, — uy > 01/2} for all k € [K], where u; denote the i-th row of U. According to (96) and Lei et al. (2015,
Lemma 5.3), we have

2 2
KkqIN Kak
d < dhv

N2, VIogN ~ \/logN’

T
SR LIU-UQIE <
Pt Ny

where the second inequality is due to (95). This implies

K N,
; N Viog N

Note that Lei et al. (2015, Lemma 5.3) ensures that the membership is correctly recovered outside of Uke[K] T3, then we
have

N,
db(H, H*) S Kaky ——e
F( ) ~ RdRN \/m
which implies (26). Then, we complete the proof. O

C. Proofs in Section 3.2

Recall that given an H € MYNXK ¢, = {i € [N] : hy = 1}, ny = |Cx| for all k € [K], and ny, = |Cx N C;| for
all k,¢ € [K]. We can verify that the number of misclassified points in {C1,...,Ck } represented by H with respect to
{Cy,...,Ci} represented by H* is | H — H*Qx-||%./2, where Q- € argmingc, |[H — H*Q| r. Moreover, we can
verify that for a permutation 7 : [K] — [K],

K K
%I\H—H*QwII%:Z D= > na o7)

k=1 t#£n—1(k) k=1 t£m(k)

and

Z Nky = % Z Z ||hZ — thWHQ, Wk(H) = max Z Nke, Z Nek 5 (98)

L:l#Am—1(k) Lil#m—1 (k) i€CrNCy LA#T—1(k) L:0#7 (k)

where Wy (H) is defined in (31). Using Lemma 9, we can present a spectral bound on the deviation of the sample
covariance of random vectors that follow a uniform distribution over the sphere from its mean.

Corollary 1. Suppose that dj, > 4log (Kd;N) for all k € [K]. For all k,{ € [K], it holds with probability at least

1—-2K/(Nd?;) that
501 dz dz
S—=\WV—+t—1 (99)
4dy < (oY) nké)

1
H‘I’M - —1I
where Wy, is defined in (30) and c¢; > 0 is an absolute constant.

de™ ™

Proof of Corollary 1. Since i € Cj, we have a; € Unif(S%~!) according to the UoS model in Definition 2. Applying
Lemma 9 to (30) with u = log (Kd;N) yields that it holds with probability at least 1 — 2/(Kd; N) that

co ( fdetlos(BEN) | de tloa(KdiN) \ _ser ([ di )
dg ) Ne 4d, Nke Nk

where the second inequality is due to d¢ > 4log(Kd?N). This, together with the union bound, implies the desired
result. (]

1
dg

H‘I’M -1,
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C.1. Proof of Lemma 3
Proof of Lemma 3. Suppose that (99) holds for all k, ¢ € [K], which happens with probability at least 1 — 2K /(Nd2,; )
according to Ny, 2 dj. = log N and Corollary 1. According to (30) and (32), we have forall k € [K],
* * * 7
ok = Cry NGl =1CEl = D 1CeNCil=Ne = Y new > Ny, — Wi(H) > g V-
b (k) Ll (k)

This, together with (99), yields that for all k € [K],

501 Sdk Sdk 501 Sdk 1
<— (Voo | € ) oo < o\
~ 4d, TN}, TN | — 2di V TN, — 32dg
where the third and last inequalities are due to Ny, 2 dj, for all k& € [K]. This, together with Weyl’s inequality, yields (33).
Again, applying (99) to W (1), for all £ # k yields

1
H\IIfr(k)k - d—kIdk

1 501 dz dl
oy — =14, || < — + .
H WET g% = ady < Na(k)e  Mo(k)e
This, together with Weyl’s inequality, yields (34). Then, the proof is completed. O

C.2. Proof of Lemma 4

Proof of Lemma 4. Suppose that (33) and (34) hold, which happens with probability at least 1 — 2K /(d?; N) according
to Lemma 3. Recall that

N
Gu,(H) = hiyziz! forall k € [K]. (100)
i=1

It follows from H € MY>*X and C;, = {i € [N] : hip = 1} that hy, = 1if i € Cj, and h; = 0 otherwise for all i € [N].
Then, we note that

K K K

T T * Tyt * T

GUﬂ(k)(H): E ziz; = E E ziz; = E E Ujaa; U; = E N (o) e Ul W) eUf
1€CH (k) =1 ’L'Gcﬂ(k) nec; =1 ’L'Gcﬂ(k) nec; =1

where the third equality is due to (2) in Definition 2 and the last equality follows from (30). To simplify the notations, we
define

Ay = U WUy forallf € [K], 6§ =0; (Gu,,, (H)) — 0is1 (Gu,,, (H)) foralli € [d—1].
On one hand, it follows from (33), g4, (\Il,r(k)k) < 04, (Ax),and 01 (Ag) < 01 (\Ilw(k)k) that

31 33
< A< .- < A) < ——. 101
32dy, — oa (Ar) < < o1(Ak) < 32dy, (101)

On the other hand, it follows from U} € O"*dk that
Tapi1(Ap) = = o (Ag) = 0. (102)
According to (30), (31), and (37), we have for all k € [K],
Mg = Cil = Y [CeNCii > Ny — Wi(H) > gNkv > Ny € Wiy (H) < eNpin- (103)
e:04£m (k) L0k
This, together with (34), yields that for all k¥ € [K] and ¢ # k,

Nrkye  Bc1 Magye  Ber _ 21nzgye 5
sa Ser o 2wkt Dy 104
ds V4 "1 S TTeq, Tz @t (104

N (kyeo1 (Prinye) <
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where the second inequality is due to 2v/af < «/p + pf for any o, 8 > 0 and p > 0. Summing up (104) for all ¢ # k
yields that for all k € [K],

nw(k)e 5c1 21e Nmin 3eNg 3eNg
—K 1) < < 105
> et (Trie) < 16 - g Ko+ 1) S e g e < S (105)
0:0£k 004k

where the second inequality is due to (103) and Ny 2 di. We now show (38). According to Gy

H)=n A +
,,(k)( w(k)k4Lk
> P Nr(k)eAg, we have for all i € [d — 1],

0; = (GUﬂ(k)( )) — Oi+1 (nw(k)kAk) + it (nﬂ'(k)kAk) — Oi+1 (GUﬂ(k) (H))

< 0i (NakAk) — Tig1 (NrpAr) + 201 Z Nr(kyeAe |
02k

< Ny (05 (Ak) — 0ig1 (Ar)) +2 Z N )e01 (Priye) (106)
GOk

where the first inequality is due to Weyl’s inequality. Plugging (101), n(x)r < Nk, and (105) into (106) yields that for all
i=1,...,dg — 1,

]\/vzC 38]\/}C 7Nk
;< <
% < 16d;, + Admin 16dk, (107)

where the second inequality is due to € < dpin/(8d)). Meanwhile, plugging (102) and (105) into (106) yields that for all
i=dp+1,...,d,

5i < 38]\/}C < 3]\/}€7
N dmin N Sdk

(108)

where the second inequality is due to € < dpin/(8dy). Note that Gy is a positive semidefinite matrix and satisfies

(k)

T * «T
oa, (Gu,,,(H)) > 04, (Ugnw(k)k‘l’w(k)kUk ) -0 Z Uingzeye¥rnyeUp
e

> Nryk0dy, (Lr(hk) Z N ()01 (¥r(iye) (109)
s

where the first inequality is due to Weyl’s inequality and the second inequality follows from oq(AUT) > o4(A),
o1(AUT) < 01(A) for A € R>*? and U € 0"*4, and 01(B + C) < 01(B) + 01(C) for B,C € R™ ", Plug-
ging (33), (103), and (105) into (109) yields for all k € [K],

217Nk 38]\/}C 217Nk 3Nk 169N;€
G H)) > — > — >
94, (G, (H)) 2 256d,  2dyin — 256dx  16dy — 256d;

(110)

where the second inequality is due to & < diin/(8d%). Applying Weyl’s inequality to Gy, (H) gives

oa+1 (Gu, ) (H)) < nroypod, 11 (Ax) + 01 Z NakyeAe | < Z N (ko1 (Wrioye) < 164,
02k C02k

where the second inequality is due to (102) and the last inequality follows from (105) and € < dp,in/(8dy). This, together
with (110), yields

169N, 3N, 121Ng

b — .
di = 256d,  16dy  256dy

This, together with (35), Axxy; = 0i (Gu,,, (H)) for all i € [d] due to the positive semidefiniteness of Gu,,, (H),
(107), and (108), implies (38).
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We next show (39). Note that

H(I - U, U; )GU,r(m( )H = Z (I = U U YU N1y ) e Uy

G0k
T
< N H(I -U, Uy )U?H 1% eell €Y nrryeor (agye) » (111)
002k L2k

where the last inequality is due to H I-UU; ’ Lo

associated with the top dy, eigenvalues of Gy, (H) that is positive semidefinite, then we have Gy, (H)Uj = U, Xy by
the eigenvalue equation, where Xy, is a diagonal matrix with the i-th diagonal element being o; (G, (H)) for all ¢ € [dy].
This, together with (110), implies Uy, = G, (H)U;CZ]_1 for all k € [K]. According to (38), we have

d(Uﬂ(k)7 Ul;k) = H(I - UI:UI@ H - H I- Uk Uk )GUﬂ(k)( )Uw(k)z;(lk)H

2564k Y 0.021, M (k)00 1 (¥ (1))
169N} ’

where the first equality uses (48) and the last inequality is due to (110) and (111). Substituting (104) into the above
inequality and summing up from k£ = 1 to k = K yield that for all k € [K],

* *T
< |a-viviHGu, ., (1) 125 < (112)

256d, 21
d(U. U;) — | K 1)
Z (k) U ) z:l 160N, 16 (14 1)es + i l%;k o (k)

2dmax
< N K?*(c1 +1)cy + Z Z Tr(k)e
min mln k 1[ E;ék
< Lmax |H — H*Qq % + K2(cr + ex
o Nmin 2dmm F
< 2dmﬁ-x 1 * 2 2
S o maxy o= |H — H*Q||7,2K(c1 + 1)e1 ¢

where the third inequality is due to (97) and Zszl Dot () ke = Zszl >0k Mr(kye- Then, we complete the proof.
O

D. Proofs in Section 3.3
D.1. Proof of Lemma 5

Proof of Lemma 5. Note that h satisfying h” 15 = 1, h € {0,1}* is a vector that has exactly one 1 and (K — 1) 0’s. We
can see that 7 (g) is to find the minimum element of g. Then, the solution follows immediately. This also implies that for
Q €llg,v € T(g) if and only if Qv € T(Qg). O

D.2. Proof of Lemma 6

Proof of Lemma 6. According to Lemma 5 and gy > g, for a k € [K] and all £ # k, we see that 7 (g) is a singleton and
{v} = T(g) satisfies vy = 1 and vy = 0 for all £ # k. Let g’ € R¥ be arbitrary and v’ € T (g’). It then follows from
Lemma 5 that v;, = 1 and vy = 0 for some k&’ € [K] and all ¢/ # k' satisfying g;, < g,. Suppose that k' = k. Then,
we have ||v — v|| = 0, and thus (40) holds trivially. Suppose to the contrary that &’ # k. Then, we have ||v — v'|| = v/2.
Moreover, we can compute

2 2 1 1
lg—g'I” > (gr — g1)" + (90 — g1)” > 5 =90 + gk —g1)? > 552-

This, together with ||v — v’|| = /2, implies the desired result (40). O
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D.3. Proof of Lemma 7

Proof of Lemma 7. Let the row vectors g;, gi € R denote the i-th row of Gg(U) and G (U*), respectively. For all
i € [N], note that I; = {k € [K] : hf, = 1}. According to the semi-random UoS model in Definition 2, we have for all
i€ [N]and{ # I,

T e — T
giv — g1, = (=il = 107" 2i012) = (=1 = 107 z01%) = U5, U7 aall® = 107" 2
=1 U 2> >1— 2|
07" 24l > 1= U7 2],
where the last equality is due to ||a;|| = 1. This, together with Lemma 5 and ||U2‘Tzi|\ < 1forall ¢ # I;, implies

{H*} =T (Gu(U")). (113)
Besides, we note that for each i € [N] and Q, € Ik,

K K

* * *T *

l9:Q% — g7 1> = Z(n Tl U 2 0?) < 3 U U gy~ U0 Pz = 3 & W U,
k=1 k=1

k=1
where the first equality is due to ng = [g,,(l) cee o On( K)}. This, together with Lemma 6 and (113), implies for all
i €[N],
A * 1 * 2”ng31? - g:” 2 Zk 1 ﬂ—(k)’ *)
IR — B Q| = I1RQF — B < < v -
1= . il - il

where the first inequality uses the fact that HQ™ € T(Gu(U)Q™) for Q € I if and only if H € T(Gu(U)) due to
Lemma 5. O

With the preparations in Sections 3.2 and 3.3, we can analyze each iteration of the KSS method as follows.

Proposition 2. Let ¢ € (O, Cfi"““ } be a constant. Suppose that Assumption 1 holds, Nyin = di, 2 log N forall k € [K],
and H' € MN*X satisfies
IH" — H*Qqll% < 2&Nunin, (114)

where Qr € argmingcr, ||[H' — H*Q| p. Then, it holds with probability at least 1 — 2K /(d%; N) — 5K?/N that

dﬂ.(k) =dy forallk € [ ],

min

< 2max 1 .
Zd Usliy Ub) < ma"{d —||H' ~H Qw||%,2K2(c1+1)c1}, (115)
and for all i € [N],
R — RIQ.| < Zd? ULty U, (116)

where the row vectors hf-“, h} € RE respectively denote the i-th row of H'™* and H*.

Proof of Proposition 2. Suppose that (33), (34), and (56) hold, which happens with probability at least 1 — 5K2/N —
2K/(d2;,N) according to Lemma 3, Lemma 12,and the union bound. According to (97), we have Wy (H?) < ||H' —
H*Q:||%/2 < &Npin. It follows from this and Lemma 4 that ch:(“,i) = dj, for all k € [K] and (115). Next, note that
I; = {k € [K] : b}, =1} forall i € [N]. This, together with (15) in Assumption 1 and (56), implies that for all ¢ € [N]

and ¢ # I;,
" 2 2 _ 2
10" 2|2 < <%) < (%) - <n+ %) < 2% < g, (117)
L — L — L —

where the third inequality is due to d, = log N for all k¥ € [K] and the last inequality is due to x < 1/2. Using this and
Lemma 7 yields (116). O
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D.4. Proof of Lemma 8

Proof of Lemma 8. Suppose that (115) and (116) hold, which happens with probability at least 1 — 2K /(d>
according to (42), Npin = dy; for all k € [K], and Proposition 2. According to (42) and (115), we obtain

~

5K2/N

min )

4dmax

min

d(Ut-l-l

(k) K2(c1 4+ 1)cy.

Mx

Uy) <

E
Il

1

This, together with (116), k < 1/2, and Nyin = dmax, yields that for all ¢ € [N],

in

16dmax

N K?(ci +1)e; < 1.

[Ri*! = hiQx| < 4Zd Ul Ui) <
k=1

Since h!t! h; € {0,1}X for all i € [N], then we have h!™! = h!Q, forall i € [N]. Thus, H'*! = H*Q,. Moreover,
due to the fact that mingen, |[H'™ — H*Q||r < |H'™! — H*Q.||r = 0, the desired result is implied. O

D.5. Proof of Theorem 1

We should point out that a technical issue occurred in our analysis is that we cannot infinitely use the result in Proposition
2 infinitely due to the union bound. Then, we study 7' = © (loglog INV) iterates.

Proof of Theorem 1. For ease of exposition, let ¢ : [K] — [K|] be a permutation such that

Q.+ € argmin |H' — H*Q||r (118)
Qellx

and the row vector h; € R¥ denote the i-th row of H € MN*X forall i € [N]. We first show (i). Suppose that ¢ < T is
a positive integer such that

|H' — H*Q||% < 2K?(c1 + 1)c1dmin.

Using Lemma 8, it holds with probability at least 1 — 2K /(d?; N) — 5K?/N that

min

H™ = H* Q. eh1.

Then, it suffices to consider that for all ¢ < 7" such that

|H' — H*Q||% > 2K?(c1 + 1)ci1dmin. (119)
We first consider ¢ = 0. According to (17), Proposition 2, and (119), it holds with probability at least 1 — 2K /(d2; N) —
5K?2/N that dﬂo(k) =dy forall k € [K],
< 2d
> AUy, Uf) < || H — H* Qo3 (120)
k=1
and for all ¢ € [N],
K
Ihi = hiQuoll < T— Z UL, Up)- (121)
Summing up (121) from i = 1to i = N gives
K K
. 2vVN .
HHl - H Qﬂ'U”F Z ﬂ.o(k)a ) < 1_,{Zd(U710(k)’Uk)' (122)

k=1 k=1
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This, together with (120) and (17), yields that

2 2dm X * *
| Y Quollp < X5 2O 50— Q= | HY — HE Qoo (123)
where
2 V 2dmax 2\/ 2dm'x 1- dminNmin 4
K= —|H® — H* Qo r < 2 (1=6) =_. (124)
1 - K lendmln 1—-x Nmindmin 5dmax Vv N 5

Now, we use mathematical induction to show that it holds for all ¢ € [T'] that

K

Zd Ut+1 JUY) < k3 Zd L 1(k)7Uk) (125)
k=1

|H™ = H* Q|| < n%‘llHt ~ H* Q| F, (126)

|H' — H* Q1| p < —Zd UL 1y Up). (127)

We first verify (125), (126), and (127) for ¢ = 1. Due to (118) and (123), we obtain
|H' - H Qi ||r < |H' — H*Quol|lr < k1| H* — H* Qo[ . (128)

Accordlng to this, (124), Proposition 2, and (119), it holds with probability at least 1 — 2K /(d?
d 15y = di forall k € [K],

N) — 5K?/N that

min

X 2d
> dU? ) < KH;ZH]HHI—H*QWIH% (129)
k=1
and for all i € [N],
|h? — h; Q|| <1 Zd (U2 1 UR). (130)

Substituting (122) with the first inequality of (128) into (129) yields that

 2ax . WN & i}
k=1
K

< Hl\/N 4dmax
T 1-x Nmindmin

K
:‘ﬂ?% Z d(U 0(k
k=1

where the second inequality follows from (128) and the equality is due to (124). Thus, (125) holds for ¢ = 1. According to
(130), repeating the arguments in (122) and (123), we obtain

|IH® = H*Qollr > d(Usos), UF)
k=1

|H? — H* Q|| ¢ < — Zd 2y UR)
and
2N  2d
H2 _ H* < max Hl _ H* 2
n Qullr < T e Qnlit
2\/N 2dmax * * *
< pi|H® = H* Qqollp|H — H* Q|| = #i||H' — H* Q| r,

T 1l-x Nmindmin
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where the second inequality is due to the equality in (123). This, together with (118), implies
|H? — H'Qn:||p < w3||H' — H*Qn|p.

Thus, (127) and (126) holds for ¢ = 1. Next, suppose that (125), (126), and (127) hold for all ¢ > 1. Then, we can show
that (128),(129), and (130) also hold for ¢ + 1 using the same arguments as those of ¢ = 1. Consequently, we can further
show that (125), (126), and (127) hold for £ 4 1 until ¢ = T" . Finally, we use mathematical induction and deduce that for all
t € [T, the desired results (125) and (126) hold with probability at least 1 — (7' + 1)(2K/(d%,,N) + 5K?/N) according
to the union bound. It follows from (123) and (126) that

gt+1

dp (H HY) < w252 &3 |H — H Q|| < &2

gt+1

“HNH® - H*Qullr =k “'dp (H°,H").

We next show (ii). It follows from T’ = log, (log((l_ﬁ) dmi”leigg(_ll/ofl(?ﬁKclmdmaxm)) + 1 that

-1 (1 = K)dminNmi
dp (HT=', H*) < x2" (L= F)dminNowin e V2.
F( ) - 5K1dmaxVIN !

This, together with Lemma 8, yields (19). According to Proposition 2, we also have d:Tr;f (lk) = d, for all k € [K]. This,
together with (19) and (2) in Definition 2, yields

UlHUL = UUE forall k € (K], (131)

By letting Oy = U} U;{(J,g)l, we have

T
070, =UL} UUr UL = I,

where the second equality is due to (131). This implies Qx € O% for all k € [K]. Then, we prove (20). (]

E. Auxiliary Lemmas

Lemma 15. Suppose that a ~ Unif(S4~1) and © € R% is a fixed vector with ||0|| = 1. Let a be decomposed as

a=zx0++1—22%b, (132)

where x € R and b € RY satisfying (0,b) = 0 and ||b|| = 1. There exists an orthogonal matrix U € O% such that
Uv = e;q. Let

~ T J—
b— % (133)

and ¢ € R4 such that ¢ = (l~72, e ,Bd). Then, it holds that Ub ~ b, where

by =0, ¢ ~ Unif(S772).

Proof of Lemma 15. According to (132) and the rotational invariance of a uniform distribution over sphere, we have

Ua —ze; -
Ub=—F—F~bD
Vv1— 22

Since (a,®) = x, then (UTa,Ud) = (UTa,e;) = x. This implies b; = 0. Moreover, since a ~ Unif(S¢~1), then
U”a ~ Unif(S?1) due to the rotational invariance of a uniform distribution over sphere. Then, let y ~ N(0, I;) such
that UTa = y/||y||. This, together with (U a, e;) = =, implies

2 _ a? Zi;ﬂ y?
Y 1— 22 .
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Then, we have

1
I\yHQ:yf—i-ny = mzyf

i#1 i#1
This, together with (133), implies that for any ¢ # 1,
(I S T
WIVi=2 S
Then, we complete the proof. O

Lemma 16. Consider the setting in Lemma 14. Suppose that v,, ©; for i € [N| are defined in (1) and f3;; is defined as in
(72) for some given v; and v;. Then, it holds that

N T(Vdy — @) 1
v - (PRr?) S e (139
and
T(Vde + ) / 1
o) S e 5

Proof of Lemma 16. Suppose that (56) and (57) hold, which happens with probability at least 1 — 5K 2N ~2 according to
Lemma 12. Let k = {¢ € [K] : h}, = 1}. It follows from (60) that

aff (S, 57) —a _ (1—c)afi(S}, 5)

(3 2 = 136
ol = = v a =N (130
This, together with (57), yields that
- 24/log N 2¢/log N
(03,8} < S=2— < 2o <efo| (137)
Vi —a = (1—¢e)Vdk
According to (22) and (60), we have
_ maxgaff (S}, S7) +a < (1 + ) maxge aff (S, S}) < l1+e¢ (138)
B (\/ dmax - a)2 o (1 - 5)2dmax - (1 - 5)2 V dmax .
We first compute
7(Vdp + @) T(Vdy — @) 1+e¢ 1+¢ Vdy
- - < 5 ;s —(1—¢)
(vl = [(vi, 9;)]) \/T = (log N)/dy [[vs]] (1—)*Vdmax \ (1 —¢) [[vil
1
S V—r (139)
Viog Nf|vi
where the first inequality is due to (60) and (138). We next compute
(0, )|/ (og N) /de(Vds + @) _ 4/Tog N(vs, 85)| _ 1 (140)

(vill = [{vi, ©5)[) /1 = (log N)/d¢ — i ™ VIog Nwi|”

where the first inequality is due to (137) and dyin > log® N and the second one follows from the second inequality of
(137) and dpmin 2 log® N. Then, we obtain

B — T(Vdr—a) _ T(Vdi +a) _1(Vde —a) 4w Bl (log N)/de(v/d + o)
’ [[vi (Jlvgl| = [(wi, 9;)]) /1 — (log N) /de [[vil (lvill = [{vi, 95)]) /1 — (log N)/dye
S . ! (141)

VIog NV v’
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where the first inequality is due to (139) and (140). Moreover, we have
T(Vdi — a) 1 (Ve — a)? T(Vde — )
@(@-)—@(7 <fe—exp (X2 ) (g, - VD
! [[vil 27 2[|v; 2 ! [[vil

[ ) (-0
- \/m P 2(V max —01)4H’Ui||2 |

|vi|
< dmax ,
~ dmin Vv 10g N

where the first inequality is due to the basic inequality for the integral, the second inequality uses the inequality of (138)
and (141), and the last inequality follows from dmin =, log N and the fact that exp (—cw2 / 2) x attains the maximum at
x = 1/+/c when z € (0, c0). The proof of (135) follows from the same argument as above.

O

F. Experiment Setups and Results in Section 4.2

In this section, we provide more implementation details and results for the experiments in Section 4.2. We use the real
datasets COIL-20 (S. A. Nene & Murase, 1996b), COIL-100 (S. A. Nene & Murase, 1996a), the cropped extended Yale B
(Georghiades et al., 2001), USPS (Hull, 1994), and MNIST (LeCun, 1998).> The information about the used real-world
datasets can be found in Table 3. Before using these datasets in the experiments, we normalize them such that each sample
has unit length. Note that the MNIST dataset contains 70000 images of handwritten digits 0-9. Following the preprocessing
technique in You et al. (2016); Lipor et al. (2021), we represent each image by a feature vector of dimension 3472 using
the scattering convolutional network (Bruna & Mallat, 2013) and reduce the dimension of each vector to 500 using PCA.

Table 3. The parameters for the real datasets: IV is the number of samples, n is the dimension of samples, and K is the number of
clusters.

Datasets N n K

COIL20 1440 1024 20
COILIOO 7200 1024 100
YaleB 2414 1024 38
USPS 9298 256 10
MNIST 70000 780 10

Since the data points in real datasets generally do not follow the semi-random UoS model in Definition 2, we cannot
guarantee good clustering performance if we directly apply the TIPS method for initializing the KSS method. Therefore,
in the implementation of the TIPS method, we improve the idea of the thresholding inner product to construct the weight
matrix A = {ai.j}lgi7j§N by
|<zi7zj>|7 if|<zi,Zj>|ZTOI‘jE'Eandi;éj,
Aij = .
/ 0, otherwise,
where 7; C [N]\ {i} with |7;| = 2 satisfies |(z;, ;)| > |(zi, zx)| forall j € T; and k ¢ T;. Introducing 7; is to ensure
that each column of A contains at least two non-zero elements. For the implementation of the KSS method, we simply set

dy = --- = dg = d, where d is given in Table 4. For all algorithms, we assume that K is known and given in Table 3. We
present the parameters of all the tested methods in Table 4.

To complement the result of recovery accuracy in Table 2, we also report the running time and clustering accuracy for all
runs of each method in Table 5.

3The datasets COIL-20, COIL-100, the cropped extended Yale B, and USPS are downloaded from
http://www.cad.zju.edu.cn/home/dengcai/Data/data.html. The dataset MNIST is downloaded from
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
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https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

K-Subspaces Method for Subspace Clustering

Table 4. Parameters setting of the tested methods in the experiments .

COIL20 COIL100 YaleB USPS MNIST
KSS (d,7) =(10,0.98) (d,7)=(10,0.98) (d,7)=(8,0.98) (d,7)=1(9,0.99) (d,7)= (18,0.98)
SSC (a,p) = (10,08)  (a.p)=(10,2)  (ap)=(10,1) (a,p) = (10,0.5) (a,p) = (10,0.8)
TSC q=4 q=3 q=4 q=>5 q=06
GSC q:25 q=15 q=20 q=20 q=20
LRR A=10" A=10"3 A=0.1 A=10"3 A=10"2
LRSSC (o,A) =(0.2,0.5) (o,N) =(1,2) (o,A) =1(0.1,1) (o,A) = (10,1) (o,A) =(0.2,0.5)
OMP q=2 q=2 q=>5 q=25 q=20

Table 5. CPU times (in seconds) and the clustering accuracy of the tested methods on real datasets over 10 runs.

Accuracy COIL20 COIL100 YaleB USPS MNIST
KSS 0.9187+0 0.8050+0.0040 0.6715+0.0253 0.8120+0.0164 0.8989+0.0796
SSC 0.9075+0.0164 0.6542+0.0165 0.8179+0.0074 0.6582+0.0002 -

OMP 0.50124+0.0168 0.3273£0.0083  0.7968+0.0216 0.1967+0.0071 0.5749+0
TSC 0.8271£0 0.7164+0.0093 0.470040.0092  0.6688+0.0002 0.8514+0
GSC 0.7896£0 0.6445£0.0084  0.6852+0.0135  0.952240.0001 0.541140.0427
LRR 0.7161£0.0064 0.5403+0.0066 0.6534+0.0146 0.7129+0.0001

LRSSC 0.8194+0 0.5035£0.0101  0.6971+0.0097  0.644040.0005 -

Time (s) COIL20 COIL100 YaleB USPS MNIST
KSS 1.3240.08 53.53+6.78 5.944+0.84 8.85+0.67 30.5287+13.15
SSC 55.37+4.99 912.25+42.12  136.36+13.64  1217.88+27.21 -

OMP 0.62+0.04 12.11+0.54 1.02+0.06 31.12+0.29 398.37+8.14
TSC 0.66£0.03 29.78£1.05 3.06£0.18 2.66£0.07 154.46+20.91
GSC 11.73+0.54 178.15£7.93 24.2240.85 105.59£7.22 1800.00+0
LRR 33.63+2.62 144.25+7.99 63.30+16.06 111.56£9.05 -
LRSSC 73.31+3.45 1800.00+0 444.28£37.95 1800.00+0 -

“~ denotes out of memory.



