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Entanglement phase transitions in hybrid quantum circuits describe individual quantum trajectories rather
than the measurement-averaged ensemble, despite the fact that results of measurements are not conventionally
used for feedback. Here, we numerically demonstrate that a class of generalized measurements with identical
measurement-averaged dynamics give different phases and phase transitions. We show that measurement-
averaged destruction of Bell state entanglement is a useful proxy for determining which hybrid circuit yields
the lowest-entanglement dynamics. We use this to argue that no unfolding of our model can avoid a volume law
phase, which has implications for simulation of open quantum systems.
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Hybrid quantum circuits in which measurements are in-
terspersed with unitary dynamics have been shown to yield
novel nonequilibrium phases and phase transitions [1–19]. A
core concept is that weak or infrequent measurements cut Bell
pairs in a quantum circuit and can decrease entanglement from
volume law to area law. After this was first shown numerically
in [1,3], a variety of theoretical perspectives have emerged,
including maps of the circuit dynamics to various statistical
mechanics models [4,11,12,16] and replica tricks in which the
steady state maps to the ground state of an effective Hamilto-
nian [20]. Meanwhile, classification of these phases can be
extended to include not just entanglement properties, but also
symmetry breaking, even within the volume law phase [15].

A consistent picture that emerges is that the equilibrium
properties cannot be described by the measurement-averaged
density matrix, which is a featureless infinite temperature
state. This is true despite the fact that the quantities of
interest are indeed averaged over measurements, with no
measurement-dependent feedback. It has been argued that this
arises because measurement phases and phase transitions are
only found in quantities that are nonlinear in the density ma-
trix, including Renyi entropies of the (pure state) trajectories.
A complementary perspective is that measurement phases
emerge as the n → 1 limit of n replicas, whose measurement-
averaged states encode higher moments of the probability
distribution over pure state density matrices [20].

Despite this perspective, there are nevertheless poten-
tial connections between measurement phase transitions and
quantum error correction thresholds which remain to be un-
derstood [21]. One potential connection comes from the
Lindblad equation, which is often thought of as a quantum
system that is continuously measured by its environment.
Indeed, Lindblad dynamics not only describe the equilibrium
properties of the steady state, but also its nonequilibrium
dynamics through the quantum regression formula [22–24].
Such dissipative dynamics contain information about scram-
bling [25–27], and one of the perspectives on measurement
phase transitions is in terms of a scrambling and nonscram-
bling phase [6]. There remain many important open cases,
such as in what circumstances does measurement-averaged

scrambling dynamics contain information about the underly-
ing measurement phase transition?

In this paper, we study a family of generalized measure-
ments (“unfoldings”) such that the measurement-averaged
dynamics are identical. Three conventional unfoldings that
we consider give similar entanglement phase transitions in the
steady state, but the exact value of entanglement and critical
measurement strength differs. The fourth unfolding shows
no phase transition, exhibiting a volume law phase indepen-
dent of generalized measurement strength. We discuss general
properties for such unfoldings to give different measurement
phases and what general entanglement structure emerges. This
result clarifies the applicability of measurement-averaged dy-
namics to understand scrambling and has implications for
simulations of open quantum systems, for which our results
imply that different unfoldings of the quantum master equa-
tion lead to different entanglement in the resulting trajectories.
While similar results have been seen in the context of free
fermion quantum circuits [28,29], our results generalize these
ideas to the generic nonintegrable case, where a volume-law
entangled phase is possible.

Model. We consider a quintessential model of measure-
ment phase transition, in which random 2-qubit Haar unitaries
are interspersed with on-site Z measurements, as illustrated in
Fig. 1. For the simplest case of projective measurements with
probability p, a number of papers have shown that a phase
transition exists in this model between a volume law entangled
phase at low p and an area law entangled phase at high p
[2,30,31]. We can write such measurement dynamics in the
language of Kraus operators:

MP
0 = √

p|↑〉〈↑|,
MP

1 = √
p|↓〉〈↓|,

MP
2 =

√
1 − p1.

For a generic pure state |ψ〉, each of these outcomes
is obtained with probability pj = 〈ψ j |ψ j〉, where
|ψ j〉 = Mj |ψ〉. Averaging over measurement outcomes, the
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FIG. 1. (left) Illustration of one step of our hybrid circuit model.
Boxes correspond to 2-site random unitaries drawn from the Haar
measure. Circles correspond to generalized Z measurements, defined
in the text. (right) The qubits are arranged on a ring with each
quadrant labeled A-D.

post-measurement state is given by

ρ f =
∑
j

MjρiM
†
j .

For such randomly placed projective measurements, we see
that the result is a pure dephasing channel:

ρP
f =

(
ρi,↑↑ (1 − p)ρi,↑↓

(1 − p)ρi,↓↑ ρi,↓↓

)
.

The advantage of this Kraus operator formalism is that it
can be applied to generalized measurements. For instance, a
simple description of weak measurements is given by [2]

MNP
0 = 1 + λZ√

2(1 + λ2),

MNP
1 = 1 − λZ√

2(1 + λ2),
(1)

where the superscript “NP” indicates that the measurement
is nonprojective. Considering the action on a single qubit,
we can again see this corresponds to a dephasing channel.
As shown in the Supplemental Material [32] (which includes
Ref. [33]),

ρNP
f =

⎛
⎝ ρi,↑↑

(
1−λ2

1+λ2

)
ρi,↑↓(

1−λ2

1+λ2

)
ρi,↓↑ ρi,↓↓

⎞
⎠.

Clearly the measurement-averaged dynamics match if 1 −
p = 1−λ2

1+λ2 , suggesting that generalized measurement strength
λ corresponds to an effective measurement rate

pNP
eff = 2λ2

1 + λ2
. (2)

As we will see in the next section, both projective and
nonprojective measurements behave in a similar way, pro-
ducing volume law phases at low peff and area law at high
peff . It might then be tempting to suggest that the phase
transition is indeed identical for different models of the same
measurement-averaged dynamics. However, we now show
that this is not the case by considering a third generalized
measurement protocol, which we refer to as unitary unfold-
ing. In this case, with probability q, the qubit undergoes a
unitary kick with operator Z . This is represented by Kraus

operators

MU
0 = √

qZ,

MU
1 =

√
1 − q1.

Again, this corresponds to a pure dephasing channel, with
identical measurement-averaged dynamics when

pUeff = 2q. (3)

While such unitary kicks do not collect information about
the qubit, they are valid Kraus operators and therefore we
refer to this situation as “unitary measurements” and use the
superscript “U” [34].

Note that the limit of weak continuous measurement cor-
responds to Lindblad dynamics, meaning that the strong
generalized measurements above can be generated by finite
time evolution under appropriate unfoldings of the Lindblad
equation. Therefore, we refer to these measurement-averaged
dynamics as “Lindblad equivalent” and use the term Lindblad
to refer to any such dynamics, even if the measurement am-
plitudes are not small.

Results. To confirm these predictions, we numerically ex-
amine the steady state entanglement under these measurement
protocols using exact diagonalization. The conventional mea-
sure defining the phase transition is half-system von Neumann
entanglement entropy

SAB = −Tr[ρAB log2 ρAB],

where ρAB is the reduced density matrix of subsystem AB,
which has length L/2 (see Fig. 1). In principle, SAB is propor-
tional to L in the volume law phase and O(1) in the area law
phase. However, entanglement entropy has not been found to
be a sensitive metric for the phase transition. Instead, we adopt
the tripartite mutual information as used in [31]:

I3 = SA + SB + SC + SD − SAB − SBC − SAC . (4)

While I3 is extensive (and negative) in the volume law phase,
it vanishes in the thermodynamic limit within the area law
phase, since boundary contributions cancel. Therefore, it pro-
vides much more useful finite size scaling for detecting the
phase transition on small system size.

The entanglement entropy and tripartite mutual informa-
tion are seen in Fig. 2. The unitary unfolding is not shown
explicitly, but for all p it matches the p = 0 limit of P and NP
measurements. The first thing to note is that neither SAB nor
I3 matches for the three different unfoldings. This implies that
the steady state ensembles are not microscopically equivalent,
but not necessarily that the phases of matter differ. However,
analyzing crossings of I3 clarifies that the three unfoldings in-
deed give different phases and phase transitions. Most notably,
the unitary unfolding has no phase transition, exhibiting a
volume law phase for arbitrary q = p/2. By contrast, both the
strong and weak measurements do exhibit phase transitions.
Therefore, we see, as anticipated elsewhere, that different
unfoldings of the measurement-averaged dynamics generally
give different measurement-induced phase of matter. We note
that the phase transitions are not guaranteed to be in the same
universality class because, for instance, the unitary unfolding
has no phase transition. Whether universality class of the
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FIG. 2. Comparison of tripartite mutual information [Eq. (4)] between projective (P), nonprojective (NP), and Gaussian [G, see Eq. (5)]
measurements over the same effective range of measurement rate p. Dashed lines show approximate pc from finite size crossings, which clearly
differs between measurement types.

phase transitions can differ away from the unitary limit is an
open question for future work.

Having established that different unfoldings yield different
measurement phase transitions, it is worth asking the question
of which unfolding works best to minimize entanglement,
allowing the area law phase to survive to the lowest pc. To
address this, we note that there is a general trend in the data:
nonprojective measurement consistently yields the smallest
entanglement entropy, followed by random projective, and
of course unitary measurement has the largest entanglement.
This suggests that, among the measurements considered, non-
projective would be the optimal unfolding for simulation by,
e.g., matrix product states.

Before proceeding to argue that the nonprojective mea-
surement specified in Eq. (1) is optimal, we need a simpler
way to estimate the ability of a given measurement in terms
of removing entanglement, under the assumption that a sin-
gle measurement that removes entanglement will result in
an overall lower entanglement within the many-body steady
state. We propose a simple test, namely to determine how
much entanglement is lost upon measuring one qubit in a
maximally entangled state, such as the Bell state

|ψBell〉 = |↑↑〉 + |↓↓〉√
2

.

The loss of entropy of the first qubit �SBell = S f − Si is
shown for various measurements in Fig. 3. Clearly it aligns
with the results for steady state entropy; a smaller steady state

entropy density corresponds to larger |�S|. To further test this
theory, we consider a slightly more accurate model of weak
measurement in which the histograms of measurement results
are Gaussian, distributed with a finite separation between ↑
and ↓ corresponding to the measurement strength α [30]

MG(x) = 21/2π1/4[G(x − α)|↑〉〈↑| + G(x + α)|↓〉〈↓|], (5)

where G(x) is a normalized Gaussian of mean 0 and variance
1, and x ∈ (−∞,∞) are the possible measurement outcomes.
These Gaussian measurements further support our idea, as
both the Bell state entropy loss �SBell and the steady state
entropy SAB are intermediate between nonprojective and pro-
jective measurements.

Clearly nonprojective measurements outperform random
projective measurements in producing low-entanglement tra-
jectories for the same Lindblad equation, i.e., are closer to the
optimal unfolding for stochastic Schrödinger equation sim-
ulations. To argue that the measurements labeled “NP” are
optimal, we consider the following generic family of gener-
alized measurements:

Mgen(p, x) = βp(x)[1 + xZ],

a set of nonprojective measurements weighted by the real
function βp(x) = βp(−x). As shown in the Supplemental
Material [32], the function βp is constrained by a normal-
ization condition,

∫ ∞
−∞(1 + x2)βp(x)2 = 1, and our goal of

matching the measurement-averaged dynamics, which sets∫ ∞
−∞ x2βp(x)2dx = p/2. Note that all four of the measurement

FIG. 3. (a) Entanglement loss �SBell after measurement of qubit 1 in a Bell pair and (b) steady state half-system entanglement entropy
density SAB/L. Many-body entropy SAB lines up precisely with �SBell for all measurements considered, suggesting �SBell as a useful proxy for
optimal unfolding of the measurement-averaged dynamics.
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types considered so far fall within this family with appropriate
choices of βp. In order to better understand which βp will
maximize |�SBell|, we start by noticing that, for each x, the
measurement matches MNP(λ). As seen in Fig. 3 and shown
analytically in the Appendix, Bell state entropy loss is a con-
vex function in the range x ∈ [0, 1], going from �SBell = 0
at x = 0 to �SBell = 1 at x = 1, which corresponds to a pro-
jective measurement. The precise opposite happens for x > 1,
as �S(x) = �S(1/x). Therefore, the optimal entropy loss will
be given by a δ function peaked at whatever value is necessary
to match p, i.e., the nonprojective (NP) measurement. While
this argument is specific to our class of measurements and this
particular system, we expect a similar line of logic to hold in
attempting to determine optimal unfolding of more general
Lindblad dynamics.

Discussion. We have shown explicitly that different un-
foldings of the same measurement-averaged (Lindblad-type)
dynamics give rise to different values of entanglement and
the entanglement phase transition in the equivalent hybrid
quantum circuit. We find that destruction of entanglement
in a Bell pair is a useful proxy for many-body steady state
entanglement for our class of hybrid circuits. We use this to
show that a nonprojective measurement of the form 1 ± λZ is
optimal for minimizing entanglement.

The most immediate consequences of this work are for nu-
merical simulations of open quantum systems via the stochas-
tic Schrödinger equation, particularly for entanglement-
sensitive methods such as matrix product states. Our work
suggests to use an unfolding of the form 1 + λZ for dephasing
channels, which are commonly found experimentally. We ex-
pect that a similar analysis can be applied for other Lindblad
operators as well. Interestingly, our results imply that entan-
glement complexity of the stochastic Schrödinger equation is
not equivalent to that of the Lindblad evolution, for example
by simulating the density matrix directly as a matrix product
operator. In particular, [35] showed that for unital quantum
channels—like the ones we examine here—density matrices
always flow to the area law phase and are thus efficiently
representable. This implies that, for sufficiently slow Lindblad
operators (small p), direct Lindblad evolution of the density

matrix is more efficient than stochastic evolution of even a
single pure state trajectory. The potential efficiency of density
matrix evolution over trajectories was noted in [3]; this work
adds to the picture by arguing that no trajectory unfolding can
be as efficient as density matrix evolution.

In the longer term, this work may provide an interesting
perspective on open quantum systems directly. In particu-
lar, the circuit models studied here are similar to models of
noisy quantum devices, with environment playing the role of
measurement, for which quantum error correction displays
phase transitions at finite error rate [21]. It is clear from our
results that no direct connection exists between measurement
phase transitions and error correction in general, as error
correction schemes must handle open quantum systems, e.g.,
Lindblad dynamics, whose measurement-induced phases be-
have differently for different unfoldings. However, there are
clear similarities between these schemes which remain to be
explored (cf. [36]). Further discussion of the general case in
which syndrome measurement combined with environmental
dissipation and error-correcting feedback can be interpreted
through the lens of measurement phase transitions will be the
subject of future work.
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