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Abstract

Cracking is a primary rock-weathering mechanism in arid environments, where dry conditions

typically limit the efficacy of water-driven weathering processes. Here, we present results from a field-

based experiment in the hyper-arid and frigid Antarctic Dry Valleys (ADV) that documented recurring

periods of transient accumulation of liquid water along rock cracks during otherwise dry conditions.

This moisture was likely sourced from the deliquescence of  hygroscopic salts  during sub-saturated

humidity conditions. Analysis of meteorological data from 17 stations scattered throughout the ADV

revealed  that  near-surface  atmospheric  conditions  across  one  of  Earth’s  driest  environments  can

annually  support  tens  of  such  deliquescence-efflorescence  cycles  of  hygroscopic  salts,  e.g.,  CaCl2,

NaNO3,  NaCl,  and MgCl2.  This  deliquesced moisture  may have  an  important  role  in  the  cracking

processes of  ADV rocks.  In a  broader context,  the results  from the ADV suggest  that  deliquesced

atmospheric humidity may be an overlooked source of moisture available for rock weathering processes

in otherwise extremely dry deserts on Earth and possibly Mars. 

1 Introduction

1.1 Rock weathering in hyper-arid environments

Rock weathering is broadly regarded as a key and often rate-limiting process in the subsequent

evolution of terrestrial landscapes. In hyperarid environments, physical disintegration, i.e., the breakup

of rocks through cracking, is typically a dominant mode of weathering because the characteristic dry

conditions  in  such  settings  limit  the  efficacy  of  water-dependent  chemical,  biological,  and  frost

weathering mechanisms (Cooke, 1981; Cooke & Smalley, 1968). When rocks or other brittle materials
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are  subjected to  low stresses,  cracks can propagate  subcriticaly  (Anderson,  2005;  Atkinson,  1984).

Natural stresses in arid climates are likely dominantly subcritical in magnitude and commonly attributed

to repeated cycles of thermal expansion/contraction in response to diurnal insolation dynamics  (e.g.,

McFadden et al., 2005) or salt weathering (Desarnaud et al., 2016; Sperling & Cooke, 1985; Steiger et

al.,  2008; Winkler & Wilhelm, 1970).  Nonetheless,  laboratory,  as well  as field-based studies,  have

shown  that  even  a  slight  increase  in  moisture  can  significantly  increase  the  rates  at  which  these

otherwise ‘dry’ rock-cracking mechanisms can operate  (Eppes et al., 2020; Eppes & Keanini, 2017;

Meredith & Atkinson, 1985; Yoshitaka Nara et al., 2010, 2012; Waza et al., 1980). Here, we present

field-based  evidence  from  one  of  Earth’s  driest  and  coldest  deserts  that  the  deliquescence  of

atmospheric humidity by hygroscopic salts is an effective pathway for water delivery to rock cracks.

This moisture delivery pathway to rock cracks may have an important and previously overlooked pace-

setting role in the cracking process of rocks in hyper-arid environments.   

1.2 The Antarctic Dry Valleys

The Antarctic Dry Valleys (ADV) (Fig. 1) are amongst the coldest and driest ‘ice-free’ regions

on  Earth  (Doran  et  al.,  2002;  Fountain  et  al.,  2010;  Obryk  et  al.,  2020).  The  mean  annual  air

temperatures on the valleys floors range between −15°C and −30°C, depending on the location (Obryk

et  al.,  2020),  and precipitation  is  limited  to  less  than  50 mm/yr  that  occurs  primarily  as  snowfall

(Fountain et al., 2010). These hyperarid and frigid conditions have prevailed in the ADV since the Plio-

Pleistocene  (Fielding  et  al.,  2011;  Scopelliti  et  al.,  2013),  resulting  in  one  of  the  slowest  eroding

landscapes on Earth with estimated bedrock erosion rates below 1 m/m.y.  (Balco & Shuster, 2009;

Brook et al., 1995; Margerison et al., 2005; Marrero et al., 2018; Staiger et al., 2006; Sugden et al.,
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1999; Summerfield et al., 1999). As such, the ADV environment is also regarded as a prime analog site

for the present-day hyperarid and cold surface conditions on Mars (Head & Marchant, 2014; Sletten et

al.,  2003;  Tamppari  et  al.,  2012).  Rock  weathering  processes  in  the  ADV  have  been  previously

attributed to thermal stress mechanisms (Campbell & Claridge, 1987; Hall, 1999; Lamp et al., 2017) or

to hygroscopic salts (Campbell & Claridge, 1987; Johnston, 1973; Selby & Wilson, 1971; Wellman &

Wilson, 1965), that accumulate at or near the ADV surface due to the extremely dry conditions (Bisson

et al., 2015; Keys, 1979; Keys & Williams, 1981). The presence of up to ~30 salt phases was previously

reported in the ADV soils, including hygroscopic salts, such as NaCl, MgCl2, NaNO3, and CaCl2 (Bisson

et al., 2015; Claridge & Campbell, 1977; Goudie & Cooke, 1984; Keys, 1979; Keys & Williams, 1981;

Miotke & von Hodenberg, 1983; Tamppari et al., 2012; Wilson, 1979). 
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Figure 1: Annotated satellite image of the Antarctic Dry Valleys. Yellow star marks the field site near Don

Juan pond in  Wright  valley.  The  satellite  image  was  obtained  through the  QuickMapServices  QGIS

plugin, from ESRI server (ArcGIS/World_Imagery).

1.3 Salt deliquescence in the ADV

Deliquescence  occurs  when  the  relative  humidity  (RH)  of  the  air  mass  exceeds  the

deliquescence relative humidity (DRH) of a specific salt or a salt mixture, and atmospheric water is

absorbed and forms a brine that can further adsorb water.  Efflorescence is the reverse process that

occurs  when  relative  humidity  is  reduced  below  the  efflorescence  relative  humidity  (ERH)  and

recrystallization occurs. Salt deliquescence/efflorescence dynamics have been previously documented

in the ADV soils as the appearance of transient ‘wet patches’ (Gough et al., 2016; Harris & Cartwright,

1981; Head et al., 2007; Levy, 2021; Toner et al., 2022) or ‘wet slope streaks’  (Toner et al., 2022)

during  events  of  increased  atmospheric  humidity.  The  present  study  tests  whether  and  how  such

deliquescence/efflorescence dynamics can facilitate rock-cracking processes in the ADV. 

2 Methods

2.1 Field experiment and laboratory analyses

A  field-based  10-day  experiment  was  performed  using  local  meteorological  measurements

(Kestrel 5500), time-lapse photography (Brinno TLC 200), and thermal imaging (FLIR SC430) of a

Ferrar Dolerite boulder with incipient cracks near the Don Juan pond in Wright Valley (Fig. 1, 2). After

the experiment, extraction of the boulders revealed light-toned salts along the rock cracks that were

embedded in the soil during the experiment (Fig. 2b, c). Mineralogical and chemical analyses of the
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salts were performed at the Geological Survey of Israel. Salts samples taken from a crack in the boulder

were  dissolved  in  distilled  water,  and  chemical  analysis  for  major  cations  was  conducted  using

inductively  coupled  plasma-optical  emission  spectrometry  (Perkin  Elmer,  Optima 5300)  and major

anions using ion chromatography (Dionex ICS-2000). Mineralogic analysis was performed using bulk

X-ray  diffraction.  Mineral  phase  identification  and  semi-quantification  were  performed  using

HighScore Plus® software based on the ICSD database.

Figure 2: a) Field experiment setup near Don Juan pond (in the background, west of the experiment site)

in Wright Valley. White arrows mark the imaged boulder. The length of the boulder is 25 cm. Monitoring

equipment includes: a time-lapse optical camera used to detect wetting events, a mobile meteorological
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station, and a thermal camera. b) Image of the Ferrar dolerite boulder removed from the soil after the

experiment (white arrow). c) The underside of the Ferrar dolerite boulder showing accumulation of salts

in cracks.

2.2 Meteorological data

Meteorological  data  from 17  weather  stations  scattered  throughout  the  ADV were  used  to

examine the occurrence of deliquescence-efflorescence conditions for NaNO3, CaCl2, NaCl, and MgCl2.

The weather stations are part of the McMurdo Long Term Ecological Research Project (MCM LTER)

in the ADV. Most stations (11 out of 17) have been operating for over 20 years at 1-hour temporal

recording resolution. Analysis of these data was conducted to quantify the occurrence of supra-DRH

conditions for these salt phases in the ADV environment through time. Deliquescence conditions were

defined as the durations in a  year when RH values exceed the DRH of the specific  salt  phase.  A

Deliquescence/efflorescence cycle was defined as a period between the increase of RH above DRH to

when RH decreases below DRH. A minimum duration threshold of 3 hours and a minimum of 5%

excess humidity above DRH were used to filter out short events and those with marginal excess RH.

The  DRH  value  of  CaCl2 used  in  the  analysis  refers  to  the  hexahydrate  phase  -  CaCl2·6H2O

(‘Antarcticite’), which was first described in the ADV (Torii & Ossaka, 1965).

3 Results

3.1 Salt deliquescence during the field experiment

Time-lapse  photography  revealed  an  accumulation  of  moisture  along  cracks  in  the  imaged

boulder (identified visually by the darkening of the rock, Fig. 3a) during three discrete periods spanning
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between approximately 6-12 hours each (Fig. 3a, supp. Time-lapse video). Since no precipitation was

observed during the experiment,  we can overrule snow melt  as a potential  source,  although it  is  a

recognized source of water for rocks and soils during the austral summers (Hagedorn et al., 2010; Liu et

al., 2015). These periods of moisture stability along the boulder cracks coincided exclusively with RH

values that exceeded 35~40% but did not reach the dew point and included sub-zero air temperatures

(Fig.  3c,  d).  During  these  moisture  accumulation  events,  RH  values  coincided  with  supra  DRH

conditions for chloride salts,  such as CaCl2 and MgCl2 (Fig.  3b,  d).  Chemical analysis of the salts

samples taken from a crack in the boulder shows that the major anions are Cl -, SO4
-2, and (55%, 45%,

respectively) and that the major cations are Ca+2, Na+, K+, Mg+2, SiO2, and Sr+2 (71%, 23%, 3%, 2%,1%,

1% respectively). Excess of Cl⁻ and Ca⁺ after accounting for the complete precipitation of halite and

gypsum, which were the dominant salt phases found in X-ray diffraction, points to the presence of

CaCl2 and  possibly  other  chlorides,  which  is  not  unexpected  considering  the  proximity  of  the

experiment site to the Don Juan pond – a saline lake rich in CaCl2 (Dickson et al., 2013; Toner et al.,

2017). Therefore, the most likely explanation for the observed wetting events in the experiment appears

to  be  the  deliquescence  of  such  salts.  Altogether  moisture  sourced  from  deliquesced  atmospheric

humidity was found to be stable along the boulder cracks for ~25% of the otherwise ‘dry’ 10-day span

of the experiment. 
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Figure 3: Moisture delivery to rock cracks via salt deliquescence. a) Images of a Ferrar dolerite boulder

during (left) and between (right) wetting events. b) Data from field measurements of air temperature vs.

relative humidity during the 10 days experiment. Black lines indicate the DRH of CaCl2·6H2O, NaNO3,

NaCl, MgCl2 salts as a function of temperature. c) Ambient air T (blue), and dew point (green) through

time. Note that air T does not reach the dew point during observed wetting events and that wetting events

(blue shading) persist through sub-zero temperatures. d) Relative humidity (blue) and the DRH threshold

of 35%~40% (orange). All three wetting events were initiated after supra-DRH conditions were achieved

and ended when RH declined below the DRH threshold.
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3.2 Analysis of meteorological data

Results from analysis of 17 meteorological stations in the ADV show that the conditions for

deliquescence of the salt phases that were examined, i.e., CaCl2, NaNO3, NaCl, and MgCl2, prevail on

average for 69% (range 43%-85%), 16% (range 4%-25%),  32% (range 10%-51%) and 83% (range

43%-85%) of the year, respectively (Fig. 4, Fig. supp. S1-3). In addition, the conditions for discrete

deliquescence events happen on average 55 (range 25-83), 30 (range 12-48), 50 (range 20-76), and 39

(range  15-36)  times  per  year,  respectively  (Fig.  4,  Fig.  supp.  S1-3).  For  simplicity,  deliquescence

conditions for single-phase salt-brine systems were assumed. However, laboratory experiments show

that the DRH of salt mixtures is expected to be even lower than that of the same single salts (e.g. Yang

et al., 2002). Thus, the duration of deliquescence conditions is potentially longer than calculated herein.
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Figure 4: Results of deliquescence conditions of CaCl2 in 17 meteorological stations in the ADV. The pie

plots show the time fraction of deliquescence conditions (red). The number of estimated deliquescence-

efflorescence cycles per year is marked below the station name. A full description of the stations is found at

https://mcm.lternet.edu/meteorology-data-sets#met-15.

4 Discussion

The results of the field-based experiment show evidence that salt deliquescence is an effective

mechanism of moisture delivery to the rock surface and cracks in the hyper-arid and frigid conditions of

the ADV. Deliquescence/efflorescence cycles such as those observed during the experiment (Fig. 3) are
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expected to promote rock cracking by ‘salt shattering’, which is regarded as an important weathering

mechanism in  arid  soils  (Amit  et  al.,  1993;  A.  Goudie  & Viles,  1997;  Andrew S.  Goudie,  2013;

Rodriguez-Navarro & Doehne, 1999), including the ADV (Johnston, 1973) and Mars  (Jagoutz, 2006;

Malin, 1974).  Salt shattering requires that the amount of water is low enough to limit the leaching of

the salts  from the surface/soils,  and yet  sufficient  for  salt-water  interactions that  support  cycles  of

dissolution and crystallization of salts  that can exert local stress when confined within rock pores or

fractures (Amit et al., 1993; Desarnaud et al., 2016; Sperling & Cooke, 1985). In addition, recent studies

have demonstrated that even the rates of ‘dry’ mechanical weathering processes, such as those induced

by salt hydration or cyclic thermal stress-loading (Lamp et al., 2017; McFadden et al., 2005; Richter &

Simmons, 1974; Viles et al., 2010), may accelerate by orders of magnitude in the presence of small

amounts of moisture (Eppes et al., 2020; Eppes & Keanini, 2017). This acceleration is associated with

the weakening of bonds by water molecules at the tip of cracks that propagate slowly in response to

subcritical stresses (Atkinson, 1984; Eppes et al., 2020; Meredith & Atkinson, 1985; Nara & Kaneko,

2006; Voigtländer et al., 2018). The delivery of moisture to the tips of cracks, via salt deliquescence,

can  thus  also  accelerate  crack  propagation  under  external  subcritical  stress.  The  analysis  of  data

obtained from permanent ADV meteorological stations (Fig. 4) shows that the atmospheric conditions

that enabled the deliquescence events in our field site near the Don Juan pond are prevalent throughout

the ADV and therefore suggest that deliquesced moisture during otherwise ‘dry’ conditions can be an

important moisture delivery pathway for rock weathering throughout the ADV soil.

Laboratory experiments show that ERH can be lower than DRH for a given salt and temperature

due to a kinetic barrier for the nucleation of a crystalline phase (Gough et al., 2016; Martin, 2000). In
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our experiment, there is no evidence for the reported hysteresis between DRH and ERH. This could be

because of the heterogeneity and impurity of natural brines that can readily facilitate the nucleation of

salt crystals. Furthermore, the onset and termination of the deliquescence events that were documented

during the field experiment were not driven by diurnal oscillations in air temperature and resulting

changes in RH and instead appeared to be more closely associated with pulses of  increased vapor

pressure (Fig. Supp. S4).  

We thus propose that deliquescence/efflorescence cycles may be an important driver of rock

weathering in the ADV and potentially other hyper-arid regions where an accumulation of hygroscopic

salts is observed. This includes Mars, where the presence of deliquescent salts was previously suggested

(Gough et al., 2019; Toner et al., 2015). 

Figure 5: illustration of moisture delivery into rock cracks by salt deliquescence. Deliquesced moisture

(brine) within rock cracks can accelerate the propagation of cracks by weakening rock chemical bonds by
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water molecules at the tip of cracks that propagate slowly in response to subcritical stresses. Such stresses

can  originate  from  cycles  of  salt  crystallization  (deliquescence/efflorescence  cycles)  and/or  thermal

expansion/contraction in response to diurnal insolation dynamics.

5 Conclusion

Based on our results from a field experiment that show discrete wetting events of a rock surface

in sub-saturated air and sub-freezing conditions, following an increase in air RH, we conclude that salt

deliquescence may be an effective and overlooked mechanism of water delivery into rock cracks in

hyper-arid  and  cold  conditions  on  Earth  and  possibly  Mars  as  well.  An analysis  of  data  from 17

permanent meteorological stations shows that  conditions for the deliquescence  of several salt phases

that  are  found in  the  ADV  prevail  throughout  the  region and that  such moisture  delivery may be

widespread in the ADV. We suggest a dual role that salt deliquescence plays in the acceleration of rock

cracking in arid regions. The first is a source of stress load, as cycles of dissolution and crystallization

of salts exert local stress when confined within rock pores or fractures (Sperling and Cooke, 1985;

Desarnaud et al., 2016; Amit et al., 1993). The second is the acceleration of subcritical rock cracking in

the presence of even small amounts of water at the tip of cracks (Eppes et al., 2020; Eppes & Keanini,

2017; Meredith & Atkinson, 1985; Yoshitaka Nara et al., 2010, 2012; Waza et al., 1980). 
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