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Abstract

Cracking is a primary rock-weathering mechanism in arid environments, where dry conditions
typically limit the efficacy of water-driven weathering processes. Here, we present results from a field-
based experiment in the hyper-arid and frigid Antarctic Dry Valleys (ADV) that documented recurring
periods of transient accumulation of liquid water along rock cracks during otherwise dry conditions.
This moisture was likely sourced from the deliquescence of hygroscopic salts during sub-saturated
humidity conditions. Analysis of meteorological data from 17 stations scattered throughout the ADV
revealed that near-surface atmospheric conditions across one of Earth’s driest environments can
annually support tens of such deliquescence-efflorescence cycles of hygroscopic salts, e.g., CaCl,,
NaNOs;, NaCl, and MgCl,. This deliquesced moisture may have an important role in the cracking
processes of ADV rocks. In a broader context, the results from the ADV suggest that deliquesced
atmospheric humidity may be an overlooked source of moisture available for rock weathering processes

in otherwise extremely dry deserts on Earth and possibly Mars.

1 Introduction

1.1 Rock weathering in hyper-arid environments

Rock weathering is broadly regarded as a key and often rate-limiting process in the subsequent
evolution of terrestrial landscapes. In hyperarid environments, physical disintegration, i.e., the breakup
of rocks through cracking, is typically a dominant mode of weathering because the characteristic dry
conditions in such settings limit the efficacy of water-dependent chemical, biological, and frost

weathering mechanisms (Cooke, 1981; Cooke & Smalley, 1968). When rocks or other brittle materials
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are subjected to low stresses, cracks can propagate subcriticaly (Anderson, 2005; Atkinson, 1984).
Natural stresses in arid climates are likely dominantly subcritical in magnitude and commonly attributed
to repeated cycles of thermal expansion/contraction in response to diurnal insolation dynamics (e.g.,
McFadden et al., 2005) or salt weathering (Desarnaud et al., 2016; Sperling & Cooke, 1985; Steiger et
al., 2008; Winkler & Wilhelm, 1970). Nonetheless, laboratory, as well as field-based studies, have
shown that even a slight increase in moisture can significantly increase the rates at which these
otherwise ‘dry’ rock-cracking mechanisms can operate (Eppes et al., 2020; Eppes & Keanini, 2017;
Meredith & Atkinson, 1985; Yoshitaka Nara et al., 2010, 2012; Waza et al., 1980). Here, we present
field-based evidence from one of Earth’s driest and coldest deserts that the deliquescence of
atmospheric humidity by hygroscopic salts is an effective pathway for water delivery to rock cracks.
This moisture delivery pathway to rock cracks may have an important and previously overlooked pace-

setting role in the cracking process of rocks in hyper-arid environments.

1.2 The Antarctic Dry Valleys

The Antarctic Dry Valleys (ADV) (Fig. 1) are amongst the coldest and driest ‘ice-free’ regions
on Earth (Doran et al.,, 2002; Fountain et al., 2010; Obryk et al., 2020). The mean annual air
temperatures on the valleys floors range between —15°C and —30°C, depending on the location (Obryk
et al., 2020), and precipitation is limited to less than 50 mm/yr that occurs primarily as snowfall
(Fountain et al., 2010). These hyperarid and frigid conditions have prevailed in the ADV since the Plio-
Pleistocene (Fielding et al., 2011; Scopelliti et al., 2013), resulting in one of the slowest eroding
landscapes on Earth with estimated bedrock erosion rates below 1 m/m.y. (Balco & Shuster, 2009;

Brook et al., 1995; Margerison et al., 2005; Marrero et al., 2018; Staiger et al., 2006; Sugden et al.,
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1999; Summerfield et al., 1999). As such, the ADV environment is also regarded as a prime analog site
for the present-day hyperarid and cold surface conditions on Mars (Head & Marchant, 2014; Sletten et
al., 2003; Tamppari et al., 2012). Rock weathering processes in the ADV have been previously
attributed to thermal stress mechanisms (Campbell & Claridge, 1987; Hall, 1999; Lamp et al., 2017) or
to hygroscopic salts (Campbell & Claridge, 1987; Johnston, 1973; Selby & Wilson, 1971; Wellman &
Wilson, 1965), that accumulate at or near the ADV surface due to the extremely dry conditions (Bisson
et al., 2015; Keys, 1979; Keys & Williams, 1981). The presence of up to ~30 salt phases was previously
reported in the ADV soils, including hygroscopic salts, such as NaCl, MgCl,, NaNO;, and CaCl, (Bisson
et al., 2015; Claridge & Campbell, 1977; Goudie & Cooke, 1984; Keys, 1979; Keys & Williams, 1981;

Miotke & von Hodenberg, 1983; Tamppari et al., 2012; Wilson, 1979).
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Figure 1: Annotated satellite image of the Antarctic Dry Valleys. Yellow star marks the field site near Don
Juan pond in Wright valley. The satellite image was obtained through the QuickMapServices QGIS

plugin, from ESRI server (ArcGIS/World_Imagery).

1.3 Salt deliquescence in the ADV

Deliquescence occurs when the relative humidity (RH) of the air mass exceeds the
deliquescence relative humidity (DRH) of a specific salt or a salt mixture, and atmospheric water is
absorbed and forms a brine that can further adsorb water. Efflorescence is the reverse process that
occurs when relative humidity is reduced below the efflorescence relative humidity (ERH) and
recrystallization occurs. Salt deliquescence/efflorescence dynamics have been previously documented
in the ADV soils as the appearance of transient ‘wet patches’ (Gough et al., 2016; Harris & Cartwright,
1981; Head et al., 2007; Levy, 2021; Toner et al., 2022) or ‘wet slope streaks’ (Toner et al., 2022)
during events of increased atmospheric humidity. The present study tests whether and how such

deliquescence/efflorescence dynamics can facilitate rock-cracking processes in the ADV.

2 Methods

2.1 Field experiment and laboratory analyses

A field-based 10-day experiment was performed using local meteorological measurements
(Kestrel 5500), time-lapse photography (Brinno TLC 200), and thermal imaging (FLIR SC430) of a
Ferrar Dolerite boulder with incipient cracks near the Don Juan pond in Wright Valley (Fig. 1, 2). After
the experiment, extraction of the boulders revealed light-toned salts along the rock cracks that were

embedded in the soil during the experiment (Fig. 2b, c). Mineralogical and chemical analyses of the



85 salts were performed at the Geological Survey of Israel. Salts samples taken from a crack in the boulder
86 were dissolved in distilled water, and chemical analysis for major cations was conducted using
87 inductively coupled plasma-optical emission spectrometry (Perkin Elmer, Optima 5300) and major
88 anions using ion chromatography (Dionex ICS-2000). Mineralogic analysis was performed using bulk
89 X-ray diffraction. Mineral phase identification and semi-quantification were performed using

90 HighScore Plus® software based on the ICSD database.

91 Figure 2: a) Field experiment setup near Don Juan pond (in the background, west of the experiment site)
92 in Wright Valley. White arrows mark the imaged boulder. The length of the boulder is 25 cm. Monitoring

93 equipment includes: a time-lapse optical camera used to detect wetting events, a mobile meteorological
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station, and a thermal camera. b) Image of the Ferrar dolerite boulder removed from the soil after the
experiment (white arrow). ¢) The underside of the Ferrar dolerite boulder showing accumulation of salts

in cracks.

2.2 Meteorological data

Meteorological data from 17 weather stations scattered throughout the ADV were used to
examine the occurrence of deliquescence-efflorescence conditions for NaNOs, CaCl,, NaCl, and MgCl..
The weather stations are part of the McMurdo Long Term Ecological Research Project (MCM LTER)
in the ADV. Most stations (11 out of 17) have been operating for over 20 years at 1-hour temporal
recording resolution. Analysis of these data was conducted to quantify the occurrence of supra-DRH
conditions for these salt phases in the ADV environment through time. Deliquescence conditions were
defined as the durations in a year when RH values exceed the DRH of the specific salt phase. A
Deliquescence/efflorescence cycle was defined as a period between the increase of RH above DRH to
when RH decreases below DRH. A minimum duration threshold of 3 hours and a minimum of 5%
excess humidity above DRH were used to filter out short events and those with marginal excess RH.
The DRH value of CaCl, used in the analysis refers to the hexahydrate phase - CaCl,-6H,O

(‘Antarcticite’), which was first described in the ADV (Torii & Ossaka, 1965).

3 Results

3.1 Salt deliquescence during the field experiment

Time-lapse photography revealed an accumulation of moisture along cracks in the imaged

boulder (identified visually by the darkening of the rock, Fig. 3a) during three discrete periods spanning
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between approximately 6-12 hours each (Fig. 3a, supp. Time-lapse video). Since no precipitation was
observed during the experiment, we can overrule snow melt as a potential source, although it is a
recognized source of water for rocks and soils during the austral summers (Hagedorn et al., 2010; Liu et
al., 2015). These periods of moisture stability along the boulder cracks coincided exclusively with RH
values that exceeded 35~40% but did not reach the dew point and included sub-zero air temperatures
(Fig. 3c, d). During these moisture accumulation events, RH values coincided with supra DRH
conditions for chloride salts, such as CaCl, and MgCl, (Fig. 3b, d). Chemical analysis of the salts
samples taken from a crack in the boulder shows that the major anions are C1°, SO, and (55%, 45%,
respectively) and that the major cations are Ca™, Na*, K*, Mg™, SiO,, and Sr** (71%, 23%, 3%, 2%,1%,
1% respectively). Excess of Cl- and Ca* after accounting for the complete precipitation of halite and
gypsum, which were the dominant salt phases found in X-ray diffraction, points to the presence of
CaCl, and possibly other chlorides, which is not unexpected considering the proximity of the
experiment site to the Don Juan pond — a saline lake rich in CaCl, (Dickson et al., 2013; Toner et al.,
2017). Therefore, the most likely explanation for the observed wetting events in the experiment appears
to be the deliquescence of such salts. Altogether moisture sourced from deliquesced atmospheric
humidity was found to be stable along the boulder cracks for ~25% of the otherwise ‘dry’ 10-day span

of the experiment.
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Figure 3: Moisture delivery to rock cracks via salt deliquescence. a) Images of a Ferrar dolerite boulder

during (left) and between (right) wetting events. b) Data from field measurements of air temperature vs.

relative humidity during the 10 days experiment. Black lines indicate the DRH of CaCl,6H,0, NaNQs;,

NaCl, MgCl, salts as a function of temperature. ¢c) Ambient air T (blue), and dew point (green) through

time. Note that air T does not reach the dew point during observed wetting events and that wetting events

(blue shading) persist through sub-zero temperatures. d) Relative humidity (blue) and the DRH threshold

of 35%~40% (orange). All three wetting events were initiated after supra-DRH conditions were achieved

and ended when RH declined below the DRH threshold.
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3.2 Analysis of meteorological data

Results from analysis of 17 meteorological stations in the ADV show that the conditions for
deliquescence of the salt phases that were examined, i.e., CaCl,, NaNO;, NaCl, and MgCl,, prevail on
average for 69% (range 43%-85%), 16% (range 4%-25%), 32% (range 10%-51%) and 83% (range
43%-85%) of the year, respectively (Fig. 4, Fig. supp. S1-3). In addition, the conditions for discrete
deliquescence events happen on average 55 (range 25-83), 30 (range 12-48), 50 (range 20-76), and 39
(range 15-36) times per year, respectively (Fig. 4, Fig. supp. S1-3). For simplicity, deliquescence
conditions for single-phase salt-brine systems were assumed. However, laboratory experiments show
that the DRH of salt mixtures is expected to be even lower than that of the same single salts (e.g. Yang

et al., 2002). Thus, the duration of deliquescence conditions is potentially longer than calculated herein.
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Figure 4: Results of deliquescence conditions of CaCl, in 17 meteorological stations in the ADV. The pie
plots show the time fraction of deliquescence conditions (red). The number of estimated deliquescence-
efflorescence cycles per year is marked below the station name. A full description of the stations is found at

https://mcm.lternet.edu/meteorology-data-sets#met-15.

4 Discussion

The results of the field-based experiment show evidence that salt deliquescence is an effective
mechanism of moisture delivery to the rock surface and cracks in the hyper-arid and frigid conditions of

the ADV. Deliquescence/efflorescence cycles such as those observed during the experiment (Fig. 3) are
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expected to promote rock cracking by ‘salt shattering’, which is regarded as an important weathering
mechanism in arid soils (Amit et al., 1993; A. Goudie & Viles, 1997; Andrew S. Goudie, 2013;
Rodriguez-Navarro & Doehne, 1999), including the ADV (Johnston, 1973) and Mars (Jagoutz, 2006;
Malin, 1974). Salt shattering requires that the amount of water is low enough to limit the leaching of
the salts from the surface/soils, and yet sufficient for salt-water interactions that support cycles of
dissolution and crystallization of salts that can exert local stress when confined within rock pores or
fractures (Amit et al., 1993; Desarnaud et al., 2016; Sperling & Cooke, 1985). In addition, recent studies
have demonstrated that even the rates of ‘dry’ mechanical weathering processes, such as those induced
by salt hydration or cyclic thermal stress-loading (Lamp et al., 2017; McFadden et al., 2005; Richter &
Simmons, 1974; Viles et al., 2010), may accelerate by orders of magnitude in the presence of small
amounts of moisture (Eppes et al., 2020; Eppes & Keanini, 2017). This acceleration is associated with
the weakening of bonds by water molecules at the tip of cracks that propagate slowly in response to
subcritical stresses (Atkinson, 1984; Eppes et al., 2020; Meredith & Atkinson, 1985; Nara & Kaneko,
2006; Voigtldnder et al., 2018). The delivery of moisture to the tips of cracks, via salt deliquescence,
can thus also accelerate crack propagation under external subcritical stress. The analysis of data
obtained from permanent ADV meteorological stations (Fig. 4) shows that the atmospheric conditions
that enabled the deliquescence events in our field site near the Don Juan pond are prevalent throughout
the ADV and therefore suggest that deliquesced moisture during otherwise ‘dry’ conditions can be an

important moisture delivery pathway for rock weathering throughout the ADV soil.

Laboratory experiments show that ERH can be lower than DRH for a given salt and temperature

due to a kinetic barrier for the nucleation of a crystalline phase (Gough et al., 2016; Martin, 2000). In
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our experiment, there is no evidence for the reported hysteresis between DRH and ERH. This could be
because of the heterogeneity and impurity of natural brines that can readily facilitate the nucleation of
salt crystals. Furthermore, the onset and termination of the deliquescence events that were documented
during the field experiment were not driven by diurnal oscillations in air temperature and resulting
changes in RH and instead appeared to be more closely associated with pulses of increased vapor

pressure (Fig. Supp. S4).

We thus propose that deliquescence/efflorescence cycles may be an important driver of rock
weathering in the ADV and potentially other hyper-arid regions where an accumulation of hygroscopic
salts is observed. This includes Mars, where the presence of deliquescent salts was previously suggested

(Gough et al., 2019; Toner et al., 2015).
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Figure 5: illustration of moisture delivery into rock cracks by salt deliquescence. Deliquesced moisture

(brine) within rock cracks can accelerate the propagation of cracks by weakening rock chemical bonds by
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water molecules at the tip of cracks that propagate slowly in response to subcritical stresses. Such stresses
can originate from cycles of salt crystallization (deliquescence/efflorescence cycles) and/or thermal

expansion/contraction in response to diurnal insolation dynamics.

5 Conclusion

Based on our results from a field experiment that show discrete wetting events of a rock surface
in sub-saturated air and sub-freezing conditions, following an increase in air RH, we conclude that salt
deliquescence may be an effective and overlooked mechanism of water delivery into rock cracks in
hyper-arid and cold conditions on Earth and possibly Mars as well. An analysis of data from 17
permanent meteorological stations shows that conditions for the deliquescence of several salt phases
that are found in the ADV prevail throughout the region and that such moisture delivery may be
widespread in the ADV. We suggest a dual role that salt deliquescence plays in the acceleration of rock
cracking in arid regions. The first is a source of stress load, as cycles of dissolution and crystallization
of salts exert local stress when confined within rock pores or fractures (Sperling and Cooke, 1985;
Desarnaud et al., 2016; Amit et al., 1993). The second is the acceleration of subcritical rock cracking in
the presence of even small amounts of water at the tip of cracks (Eppes et al., 2020; Eppes & Keanini,

2017; Meredith & Atkinson, 1985; Yoshitaka Nara et al., 2010, 2012; Waza et al., 1980).
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