

Salt deliquescence along boulder cracks in the Antarctic Dry Valleys: An overlooked source of moisture for rock weathering processes

1 M. Ben-Asher^{1,2}, A. Mushkin^{2,6}, N. Lensky^{2,7}, R. Amit², M. C. Eppes³, D. D. Ming⁴, E. Shelef⁵, R. S.
2 Sletten⁶.

3 ¹EDYTEM laboratory, Université Savoie Mont Blanc, CNRS, Le Bourget-du-Lac, 73376, France

4 ²Geological Survey of Israel, Jerusalem 9550161, Israel

5 ³Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte,
6 North Carolina 28223, USA

7 ⁴Johnson Space Center, Houston, TX, USA.

8 ⁵Geology and Environmental Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

9 ⁶Department of Earth & Space Sciences, University of Washington, Seattle, WA, 98195, USA

10 ⁷Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.

11 Corresponding author: Matan Ben-Asher (matan.ben-asher@univ-smb.fr)

12 Keywords

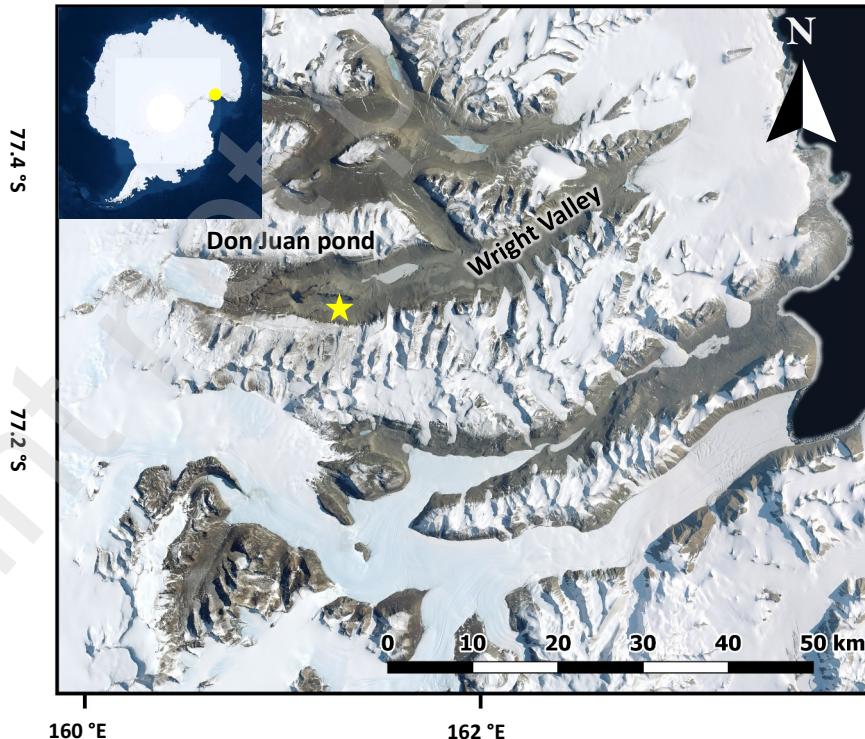
13 Salt deliquescence; subcritical cracking; salt shattering; Antarctic Dry Valleys.

Abstract

Cracking is a primary rock-weathering mechanism in arid environments, where dry conditions typically limit the efficacy of water-driven weathering processes. Here, we present results from a field-based experiment in the hyper-arid and frigid Antarctic Dry Valleys (ADV) that documented recurring periods of transient accumulation of liquid water along rock cracks during otherwise dry conditions. This moisture was likely sourced from the deliquescence of hygroscopic salts during sub-saturated humidity conditions. Analysis of meteorological data from 17 stations scattered throughout the ADV revealed that near-surface atmospheric conditions across one of Earth's driest environments can annually support tens of such deliquescence-efflorescence cycles of hygroscopic salts, e.g., CaCl_2 , NaNO_3 , NaCl , and MgCl_2 . This deliquesced moisture may have an important role in the cracking processes of ADV rocks. In a broader context, the results from the ADV suggest that deliquesced atmospheric humidity may be an overlooked source of moisture available for rock weathering processes in otherwise extremely dry deserts on Earth and possibly Mars.

27 1 Introduction

28 1.1 Rock weathering in hyper-arid environments


Rock weathering is broadly regarded as a key and often rate-limiting process in the subsequent evolution of terrestrial landscapes. In hyperarid environments, physical disintegration, i.e., the breakup of rocks through cracking, is typically a dominant mode of weathering because the characteristic dry conditions in such settings limit the efficacy of water-dependent chemical, biological, and frost weathering mechanisms (Cooke, 1981; Cooke & Smalley, 1968). When rocks or other brittle materials

34 are subjected to low stresses, cracks can propagate subcritically (Anderson, 2005; Atkinson, 1984).
35 Natural stresses in arid climates are likely dominantly subcritical in magnitude and commonly attributed
36 to repeated cycles of thermal expansion/contraction in response to diurnal insolation dynamics (e.g.,
37 McFadden et al., 2005) or salt weathering (Desarnaud et al., 2016; Sperling & Cooke, 1985; Steiger et
38 al., 2008; Winkler & Wilhelm, 1970). Nonetheless, laboratory, as well as field-based studies, have
39 shown that even a slight increase in moisture can significantly increase the rates at which these
40 otherwise ‘dry’ rock-cracking mechanisms can operate (Eppes et al., 2020; Eppes & Keanini, 2017;
41 Meredith & Atkinson, 1985; Yoshitaka Nara et al., 2010, 2012; Waza et al., 1980). Here, we present
42 field-based evidence from one of Earth’s driest and coldest deserts that the deliquescence of
43 atmospheric humidity by hygroscopic salts is an effective pathway for water delivery to rock cracks.
44 This moisture delivery pathway to rock cracks may have an important and previously overlooked pace-
45 setting role in the cracking process of rocks in hyper-arid environments.

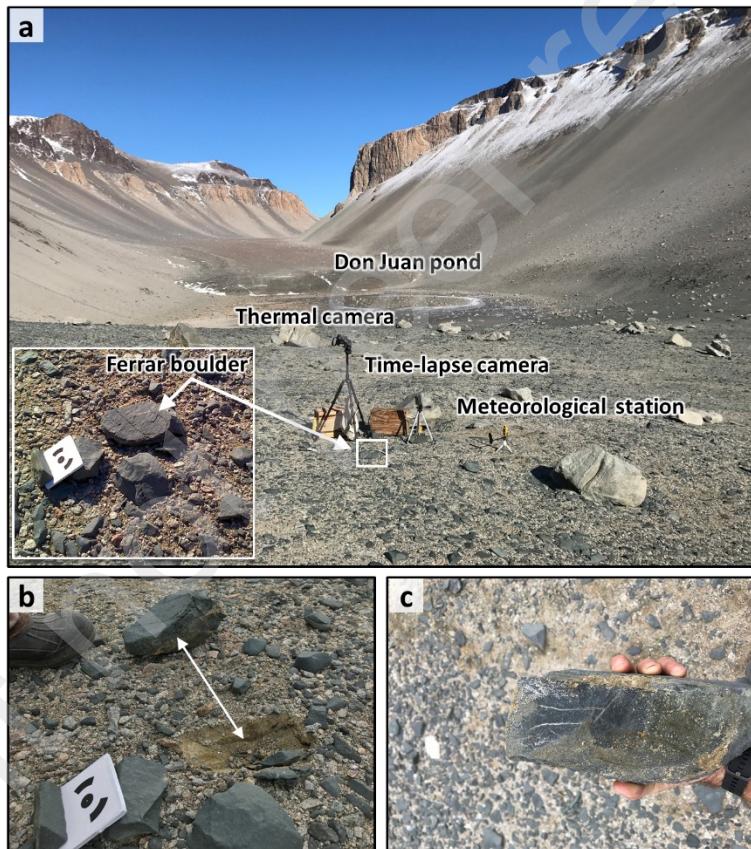
46 1.2 The Antarctic Dry Valleys

47 The Antarctic Dry Valleys (ADV) (Fig. 1) are amongst the coldest and driest ‘ice-free’ regions
48 on Earth (Doran et al., 2002; Fountain et al., 2010; Obryk et al., 2020). The mean annual air
49 temperatures on the valleys floors range between -15°C and -30°C , depending on the location (Obryk
50 et al., 2020), and precipitation is limited to less than 50 mm/yr that occurs primarily as snowfall
51 (Fountain et al., 2010). These hyperarid and frigid conditions have prevailed in the ADV since the Plio-
52 Pleistocene (Fielding et al., 2011; Scopelliti et al., 2013), resulting in one of the slowest eroding
53 landscapes on Earth with estimated bedrock erosion rates below 1 m/m.y. (Balco & Shuster, 2009;
54 Brook et al., 1995; Margerison et al., 2005; Marrero et al., 2018; Staiger et al., 2006; Sugden et al.,

55 1999; Summerfield et al., 1999). As such, the ADV environment is also regarded as a prime analog site
56 for the present-day hyperarid and cold surface conditions on Mars (Head & Marchant, 2014; Sletten et
57 al., 2003; Tamppari et al., 2012). Rock weathering processes in the ADV have been previously
58 attributed to thermal stress mechanisms (Campbell & Claridge, 1987; Hall, 1999; Lamp et al., 2017) or
59 to hygroscopic salts (Campbell & Claridge, 1987; Johnston, 1973; Selby & Wilson, 1971; Wellman &
60 Wilson, 1965), that accumulate at or near the ADV surface due to the extremely dry conditions (Bisson
61 et al., 2015; Keys, 1979; Keys & Williams, 1981). The presence of up to ~30 salt phases was previously
62 reported in the ADV soils, including hygroscopic salts, such as NaCl, MgCl₂, NaNO₃, and CaCl₂ (Bisson
63 et al., 2015; Claridge & Campbell, 1977; Goudie & Cooke, 1984; Keys, 1979; Keys & Williams, 1981;
64 Miotke & von Hodenberg, 1983; Tamppari et al., 2012; Wilson, 1979).

65 **Figure 1: Annotated satellite image of the Antarctic Dry Valleys. Yellow star marks the field site near Don**
66 **Juan pond in Wright valley. The satellite image was obtained through the QuickMapServices QGIS**
67 **plugin, from ESRI server (ArcGIS/World_Imagery).**

68 **1.3 Salt deliquescence in the ADV**


69 Deliquescence occurs when the relative humidity (RH) of the air mass exceeds the
70 deliquescence relative humidity (DRH) of a specific salt or a salt mixture, and atmospheric water is
71 absorbed and forms a brine that can further adsorb water. Efflorescence is the reverse process that
72 occurs when relative humidity is reduced below the efflorescence relative humidity (ERH) and
73 recrystallization occurs. Salt deliquescence/efflorescence dynamics have been previously documented
74 in the ADV soils as the appearance of transient ‘wet patches’ (Gough et al., 2016; Harris & Cartwright,
75 1981; Head et al., 2007; Levy, 2021; Toner et al., 2022) or ‘wet slope streaks’ (Toner et al., 2022)
76 during events of increased atmospheric humidity. The present study tests whether and how such
77 deliquescence/efflorescence dynamics can facilitate rock-cracking processes in the ADV.

78 **2 Methods**

79 **2.1 Field experiment and laboratory analyses**

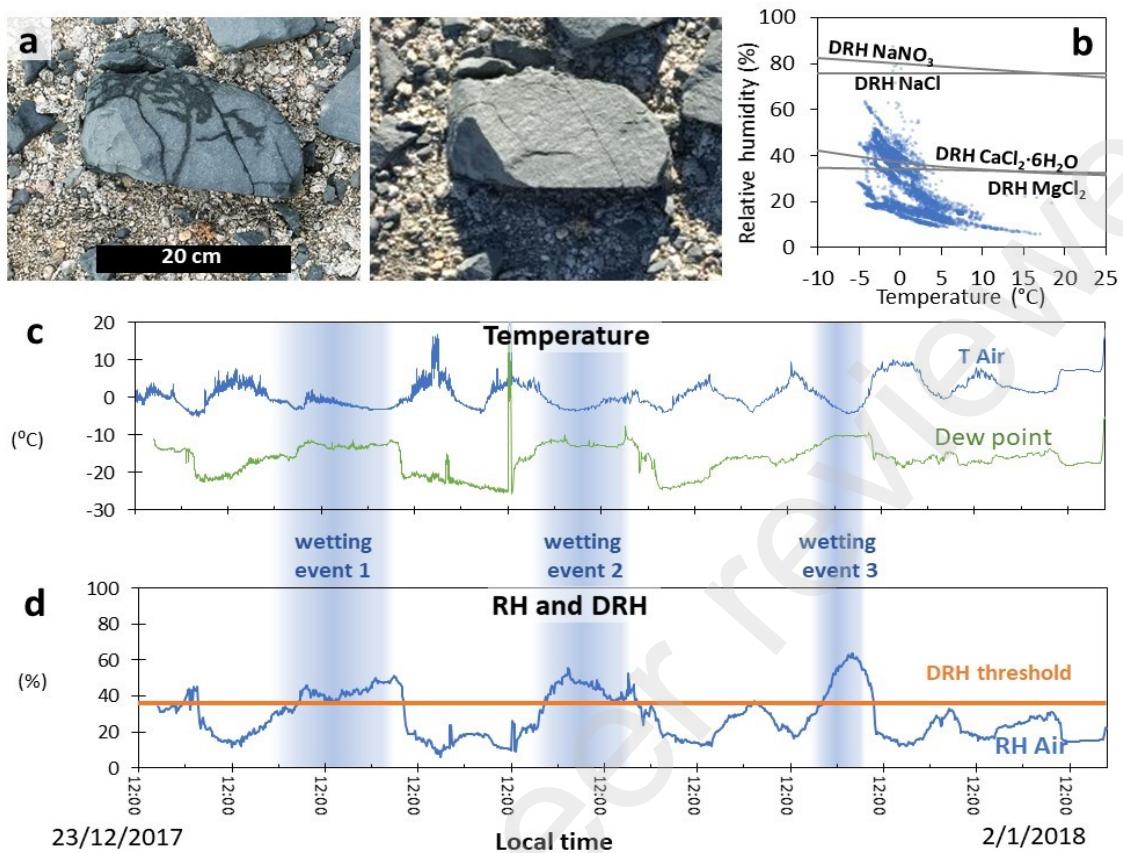
80 A field-based 10-day experiment was performed using local meteorological measurements
81 (Kestrel 5500), time-lapse photography (Brinno TLC 200), and thermal imaging (FLIR SC430) of a
82 Ferrar Dolerite boulder with incipient cracks near the Don Juan pond in Wright Valley (Fig. 1, 2). After
83 the experiment, extraction of the boulders revealed light-toned salts along the rock cracks that were
84 embedded in the soil during the experiment (Fig. 2b, c). Mineralogical and chemical analyses of the

85 salts were performed at the Geological Survey of Israel. Salts samples taken from a crack in the boulder
86 were dissolved in distilled water, and chemical analysis for major cations was conducted using
87 inductively coupled plasma-optical emission spectrometry (Perkin Elmer, Optima 5300) and major
88 anions using ion chromatography (Dionex ICS-2000). Mineralogic analysis was performed using bulk
89 X-ray diffraction. Mineral phase identification and semi-quantification were performed using
90 HighScore Plus® software based on the ICSD database.

91 **Figure 2: a) Field experiment setup near Don Juan pond (in the background, west of the experiment site)**
92 **in Wright Valley. White arrows mark the imaged boulder. The length of the boulder is 25 cm. Monitoring**
93 **equipment includes: a time-lapse optical camera used to detect wetting events, a mobile meteorological**

94 station, and a thermal camera. b) Image of the Ferrar dolerite boulder removed from the soil after the
95 experiment (white arrow). c) The underside of the Ferrar dolerite boulder showing accumulation of salts
96 in cracks.

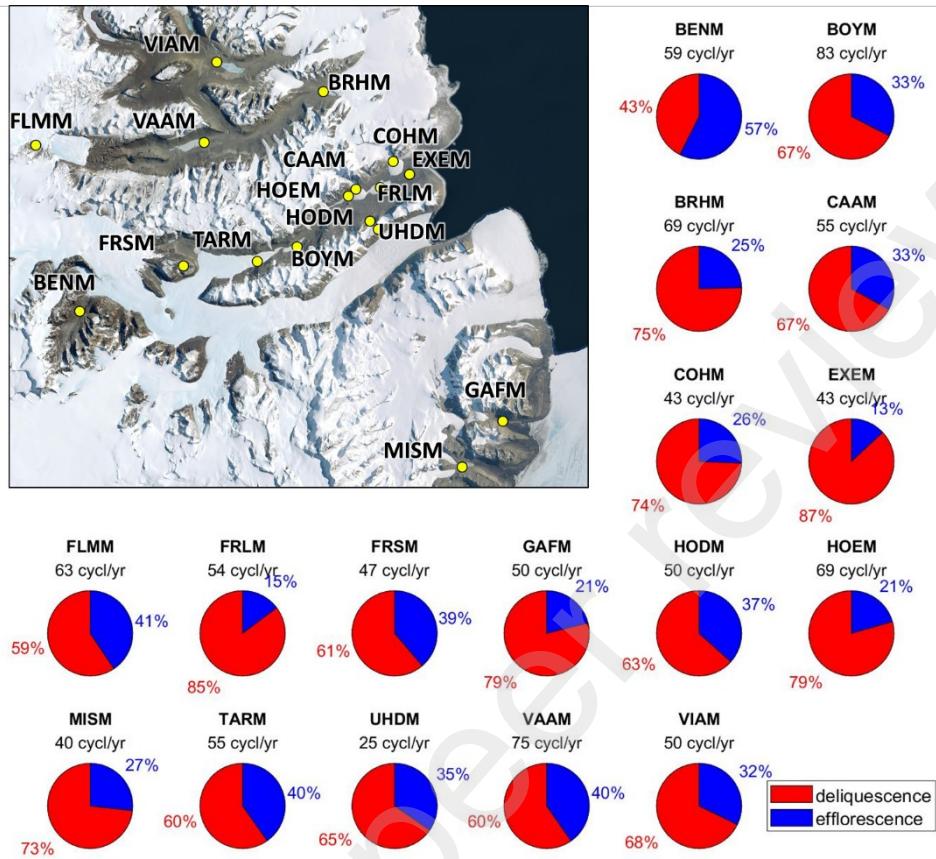
97 **2.2 Meteorological data**


98 Meteorological data from 17 weather stations scattered throughout the ADV were used to
99 examine the occurrence of deliquescence-efflorescence conditions for NaNO_3 , CaCl_2 , NaCl , and MgCl_2 .
100 The weather stations are part of the McMurdo Long Term Ecological Research Project (MCM LTER)
101 in the ADV. Most stations (11 out of 17) have been operating for over 20 years at 1-hour temporal
102 recording resolution. Analysis of these data was conducted to quantify the occurrence of supra-DRH
103 conditions for these salt phases in the ADV environment through time. Deliquescence conditions were
104 defined as the durations in a year when RH values exceed the DRH of the specific salt phase. A
105 Deliquescence/efflorescence cycle was defined as a period between the increase of RH above DRH to
106 when RH decreases below DRH. A minimum duration threshold of 3 hours and a minimum of 5%
107 excess humidity above DRH were used to filter out short events and those with marginal excess RH.
108 The DRH value of CaCl_2 used in the analysis refers to the hexahydrate phase - $\text{CaCl}_2 \cdot 6\text{H}_2\text{O}$
109 ('Antarcticite'), which was first described in the ADV (Torii & Ossaka, 1965).

110 **3 Results**

111 **3.1 Salt deliquescence during the field experiment**

112 Time-lapse photography revealed an accumulation of moisture along cracks in the imaged
113 boulder (identified visually by the darkening of the rock, Fig. 3a) during three discrete periods spanning


114 between approximately 6-12 hours each (Fig. 3a, supp. Time-lapse video). Since no precipitation was
115 observed during the experiment, we can overrule snow melt as a potential source, although it is a
116 recognized source of water for rocks and soils during the austral summers (Hagedorn et al., 2010; Liu et
117 al., 2015). These periods of moisture stability along the boulder cracks coincided exclusively with RH
118 values that exceeded 35~40% but did not reach the dew point and included sub-zero air temperatures
119 (Fig. 3c, d). During these moisture accumulation events, RH values coincided with supra DRH
120 conditions for chloride salts, such as CaCl_2 and MgCl_2 (Fig. 3b, d). Chemical analysis of the salts
121 samples taken from a crack in the boulder shows that the major anions are Cl^- , SO_4^{2-} and (55%, 45%,
122 respectively) and that the major cations are Ca^{+2} , Na^+ , K^+ , Mg^{+2} , SiO_2 , and Sr^{+2} (71%, 23%, 3%, 2%, 1%,
123 1% respectively). Excess of Cl^- and Ca^+ after accounting for the complete precipitation of halite and
124 gypsum, which were the dominant salt phases found in X-ray diffraction, points to the presence of
125 CaCl_2 and possibly other chlorides, which is not unexpected considering the proximity of the
126 experiment site to the Don Juan pond – a saline lake rich in CaCl_2 (Dickson et al., 2013; Toner et al.,
127 2017). Therefore, the most likely explanation for the observed wetting events in the experiment appears
128 to be the deliquescence of such salts. Altogether moisture sourced from deliquesced atmospheric
129 humidity was found to be stable along the boulder cracks for ~25% of the otherwise ‘dry’ 10-day span
130 of the experiment.

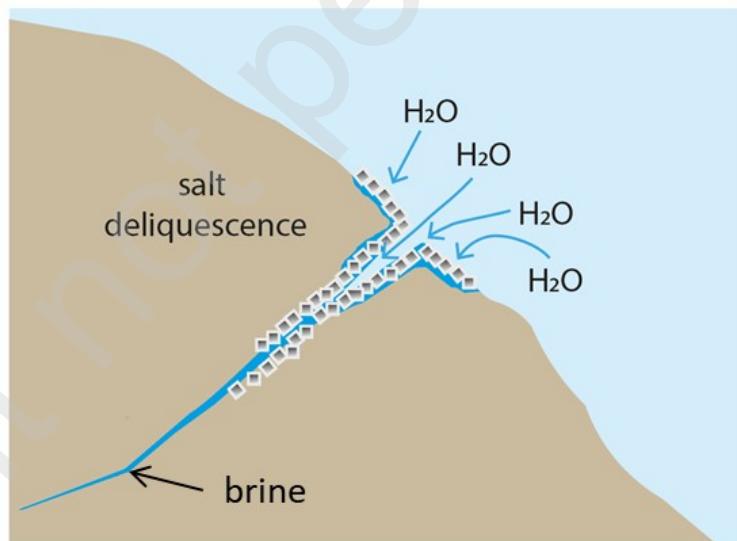
131 **Figure 3: Moisture delivery to rock cracks via salt deliquescence. a)** Images of a Ferrar dolerite boulder
 132 **during (left) and between (right) wetting events. b)** Data from field measurements of air temperature vs.
 133 relative humidity during the 10 days experiment. Black lines indicate the DRH of $\text{CaCl}_2 \cdot 6\text{H}_2\text{O}$, NaNO_3 ,
 134 NaCl , MgCl_2 salts as a function of temperature. **c)** Ambient air T (blue), and dew point (green) through
 135 time. Note that air T does not reach the dew point during observed wetting events and that wetting events
 136 (blue shading) persist through sub-zero temperatures. **d)** Relative humidity (blue) and the DRH threshold
 137 of 35%~40% (orange). All three wetting events were initiated after supra-DRH conditions were achieved
 138 and ended when RH declined below the DRH threshold.

139 **3.2 Analysis of meteorological data**

140 Results from analysis of 17 meteorological stations in the ADV show that the conditions for
141 deliquescence of the salt phases that were examined, i.e., CaCl_2 , NaNO_3 , NaCl , and MgCl_2 , prevail on
142 average for 69% (range 43%-85%), 16% (range 4%-25%), 32% (range 10%-51%) and 83% (range
143 43%-85%) of the year, respectively (Fig. 4, Fig. supp. S1-3). In addition, the conditions for discrete
144 deliquescence events happen on average 55 (range 25-83), 30 (range 12-48), 50 (range 20-76), and 39
145 (range 15-36) times per year, respectively (Fig. 4, Fig. supp. S1-3). For simplicity, deliquescence
146 conditions for single-phase salt-brine systems were assumed. However, laboratory experiments show
147 that the DRH of salt mixtures is expected to be even lower than that of the same single salts (e.g. Yang
148 et al., 2002). Thus, the duration of deliquescence conditions is potentially longer than calculated herein.

149 **Figure 4: Results of deliquescence conditions of CaCl_2 in 17 meteorological stations in the ADV. The pie**
 150 **plots show the time fraction of deliquescence conditions (red). The number of estimated deliquescence-**
 151 **efflorescence cycles per year is marked below the station name. A full description of the stations is found at**
 152 [**https://mcm.lternet.edu/meteorology-data-sets#met-15.**](https://mcm.lternet.edu/meteorology-data-sets#met-15)

153 **4 Discussion**


154 The results of the field-based experiment show evidence that salt deliquescence is an effective
 155 mechanism of moisture delivery to the rock surface and cracks in the hyper-arid and frigid conditions of
 156 the ADV. Deliquescence/efflorescence cycles such as those observed during the experiment (Fig. 3) are

157 expected to promote rock cracking by ‘salt shattering’, which is regarded as an important weathering
158 mechanism in arid soils (Amit et al., 1993; A. Goudie & Viles, 1997; Andrew S. Goudie, 2013;
159 Rodriguez-Navarro & Doehne, 1999), including the ADV (Johnston, 1973) and Mars (Jagoutz, 2006;
160 Malin, 1974). Salt shattering requires that the amount of water is low enough to limit the leaching of
161 the salts from the surface/soils, and yet sufficient for salt-water interactions that support cycles of
162 dissolution and crystallization of salts that can exert local stress when confined within rock pores or
163 fractures (Amit et al., 1993; Desarnaud et al., 2016; Sperling & Cooke, 1985). In addition, recent studies
164 have demonstrated that even the rates of ‘dry’ mechanical weathering processes, such as those induced
165 by salt hydration or cyclic thermal stress-loading (Lamp et al., 2017; McFadden et al., 2005; Richter &
166 Simmons, 1974; Viles et al., 2010), may accelerate by orders of magnitude in the presence of small
167 amounts of moisture (Eppes et al., 2020; Eppes & Keanini, 2017). This acceleration is associated with
168 the weakening of bonds by water molecules at the tip of cracks that propagate slowly in response to
169 subcritical stresses (Atkinson, 1984; Eppes et al., 2020; Meredith & Atkinson, 1985; Nara & Kaneko,
170 2006; Voigtländer et al., 2018). The delivery of moisture to the tips of cracks, via salt deliquescence,
171 can thus also accelerate crack propagation under external subcritical stress. The analysis of data
172 obtained from permanent ADV meteorological stations (Fig. 4) shows that the atmospheric conditions
173 that enabled the deliquescence events in our field site near the Don Juan pond are prevalent throughout
174 the ADV and therefore suggest that deliquesced moisture during otherwise ‘dry’ conditions can be an
175 important moisture delivery pathway for rock weathering throughout the ADV soil.

176 Laboratory experiments show that ERH can be lower than DRH for a given salt and temperature
177 due to a kinetic barrier for the nucleation of a crystalline phase (Gough et al., 2016; Martin, 2000). In

178 our experiment, there is no evidence for the reported hysteresis between DRH and ERH. This could be
179 because of the heterogeneity and impurity of natural brines that can readily facilitate the nucleation of
180 salt crystals. Furthermore, the onset and termination of the deliquescence events that were documented
181 during the field experiment were not driven by diurnal oscillations in air temperature and resulting
182 changes in RH and instead appeared to be more closely associated with pulses of increased vapor
183 pressure (Fig. Supp. S4).

184 We thus propose that deliquescence/efflorescence cycles may be an important driver of rock
185 weathering in the ADV and potentially other hyper-arid regions where an accumulation of hygroscopic
186 salts is observed. This includes Mars, where the presence of deliquescent salts was previously suggested
187 (Gough et al., 2019; Toner et al., 2015).

188 **Figure 5: illustration of moisture delivery into rock cracks by salt deliquescence. Deliquesced moisture**
189 **(brine) within rock cracks can accelerate the propagation of cracks by weakening rock chemical bonds by**

190 **water molecules at the tip of cracks that propagate slowly in response to subcritical stresses. Such stresses**
191 **can originate from cycles of salt crystallization (deliquescence/efflorescence cycles) and/or thermal**
192 **expansion/contraction in response to diurnal insolation dynamics.**

193 **5 Conclusion**

194 Based on our results from a field experiment that show discrete wetting events of a rock surface
195 in sub-saturated air and sub-freezing conditions, following an increase in air RH, we conclude that salt
196 deliquescence may be an effective and overlooked mechanism of water delivery into rock cracks in
197 hyper-arid and cold conditions on Earth and possibly Mars as well. An analysis of data from 17
198 permanent meteorological stations shows that conditions for the deliquescence of several salt phases
199 that are found in the ADV prevail throughout the region and that such moisture delivery may be
200 widespread in the ADV. We suggest a dual role that salt deliquescence plays in the acceleration of rock
201 cracking in arid regions. The first is a source of stress load, as cycles of dissolution and crystallization
202 of salts exert local stress when confined within rock pores or fractures (Sperling and Cooke, 1985;
203 Desarnaud et al., 2016; Amit et al., 1993). The second is the acceleration of subcritical rock cracking in
204 the presence of even small amounts of water at the tip of cracks (Eppes et al., 2020; Eppes & Keanini,
205 2017; Meredith & Atkinson, 1985; Yoshitaka Nara et al., 2010, 2012; Waza et al., 1980).

206 **Acknowledgments**

207 This work was supported by the United States - Israel Binational Science Foundation (BSF),
208 grant number: 2018610.

210 Amit, R., Gerson, R., & Yaalon, D. H. (1993). Stages and rate of the gravel shattering process by salts
211 in desert Reg soils. *Geoderma*, 57(3), 295–324. [https://doi.org/10.1016/0016-7061\(93\)90011-9](https://doi.org/10.1016/0016-7061(93)90011-9)

212 Anderson, T. L. (2005). *Fracture Mechanics: Fundamentals and Applications*. CRC Press.

213 Atkinson, B. K. (1984). Subcritical Crack Growth in Geological Materials. *Journal of Geophysical*
214 *Research*, 89(B6), 4077–4114. <https://doi.org/10.1029/jb089ib06p04077>

215 Balco, G., & Shuster, D. L. (2009). Production rate of cosmogenic ^{21}Ne in quartz estimated from ^{10}Be ,
216 ^{26}Al , and ^{21}Ne concentrations in slowly eroding Antarctic bedrock surfaces. *Earth and*
217 *Planetary Science Letters*, 281(1–2), 48–58. <https://doi.org/10.1016/j.epsl.2009.02.006>

218 Bisson, K. M., Welch, K. A., Welch, S. A., Sheets, J. M., Lyons, W. B., Levy, J. S., & Fountain, A. G.
219 (2015). Patterns and Processes of Salt Efflorescences in the McMurdo region, Antarctica. *Arctic,*
220 *Antarctic, and Alpine Research*, 47(3), 407–425. <https://doi.org/10.1657/AAAR0014-024>

221 Brook, E. J., Brown, E. T., Kurz, M. D., Ackert, R. P., Raisbeck, G. M., & Yiou, F. (1995). Constraints
222 on age, erosion, and uplift of Neogene glacial deposits in the Transantarctic Mountains
223 determined from in situ cosmogenic ^{10}Be and ^{26}Al . *Geology*, 23(12), 1063–1066.
224 [https://doi.org/10.1130/0091-7613\(1995\)023<1063:COAEAU>2.3.CO;2](https://doi.org/10.1130/0091-7613(1995)023<1063:COAEAU>2.3.CO;2)

225 Campbell, I. B., & Claridge, G. G. C. (1987). Antarctica: Soils, Weathering Processes and Environment.
226 *Develop*, 16.

227 Claridge, G. G. C., & Campbell, I. B. (1977). The salts in Antarctic soils, their distribution and
228 relationship to soil processes. *Soil Science*, 123(6), 377–384.
229 <https://doi.org/10.1097/00010694-197706000-00006>

230 Cooke, R. U. (1981). Salt weathering in deserts. *Proceedings of the Geologists' Association*, 92(1), 1–
231 16. [https://doi.org/10.1016/S0016-7878\(81\)80015-6](https://doi.org/10.1016/S0016-7878(81)80015-6)

232 Cooke, R. U., & Smalley, I. J. (1968). Salt weathering in deserts [10]. *Nature*, 220(5173), 1226–1227.
233 <https://doi.org/10.1038/2201226a0>

234 Desarnaud, J., Bonn, D., & Shahidzadeh, N. (2016). The Pressure induced by salt crystallization in
235 confinement. *Scientific Reports*, 6(1), 30856. <https://doi.org/10.1038/srep30856>

236 Dickson, J. L., Head, J. W., Levy, J. S., & Marchant, D. R. (2013). Don Juan Pond, Antarctica: Near-
237 surface CaCl₂-brine feeding Earth's most saline lake and implications for Mars. *Scientific
238 Reports*, 3(4), 1–8. <https://doi.org/10.1038/srep01166>

239 Doran, P. T., McKay, C. P., Clow, G. D., Dana, G. L., Fountain, A. G., Nylen, T., & Lyons, W. B.
240 (2002). Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986–
241 2000. *Journal of Geophysical Research Atmospheres*, 107(24), ACL 13-1-ACL 13-12.
242 <https://doi.org/10.1029/2001JD002045>

243 Eppes, M. C., & Keanini, R. (2017). Mechanical weathering and rock erosion by climate-dependent
244 subcritical cracking. *Reviews of Geophysics*, 55(2), 470–508.
245 <https://doi.org/10.1002/2017RG000557>

246 Eppes, M. C., Magi, B., Scheff, J., Warren, K., Ching, S., & Feng, T. (2020). Warmer, Wetter Climates
247 Accelerate Mechanical Weathering in Field Data, Independent of Stress-Loading. *Geophysical*
248 *Research Letters*, 47(24), 1–11. <https://doi.org/10.1029/2020GL089062>

249 Fielding, C. R., Browne, G. H., Field, B., Florindo, F., Harwood, D. M., Krissek, L. A., et al. (2011).
250 Sequence stratigraphy of the ANDRILL AND-2A drillcore, Antarctica: A long-term, ice-
251 proximal record of Early to Mid-Miocene climate, sea-level and glacial dynamism.
252 *Palaeogeography, Palaeoclimatology, Palaeoecology*, 305(1–4), 337–351.
253 <https://doi.org/10.1016/j.palaeo.2011.03.026>

254 Fountain, A. G., Nylen, T. H., Monaghan, A., Basagic, H. J., & Bromwich, D. (2010). Snow in the
255 McMurdo Dry Valleys, Antarctica. *International Journal of Climatology*, 30(5), 633–642.
256 <https://doi.org/10.1002/joc.1933>

257 Goudie, A.S, & Viles, H. A. (1997). *Salt weathering hazard*. wiley.

258 Goudie, A. S., & Cooke, R. U. (1984). Salt efflorescences and Saline lakes; a distributional analysis.
259 *Geoforum*, 15(4), 563–582. [https://doi.org/10.1016/0016-7185\(84\)90025-3](https://doi.org/10.1016/0016-7185(84)90025-3)

260 Goudie, A. S. (2013). *Arid and semi-arid geomorphology*. Cambridge university press.

261 Gough, R. V., Chevrier, V. F., & Tolbert, M. A. (2016). Formation of liquid water at low temperatures
262 via the deliquescence of calcium chloride: Implications for Antarctica and Mars. *Planetary and*
263 *Space Science*, 131, 79–87. <https://doi.org/10.1016/j.pss.2016.07.006>

264 Gough, R. V., Primm, K. M., Rivera-Valentín, E. G., Martínez, G. M., & Tolbert, M. A. (2019). Solid-
265 solid hydration and dehydration of Mars-relevant chlorine salts: Implications for Gale Crater and
266 RSL locations. *Icarus*, 321(July 2018), 1–13. <https://doi.org/10.1016/j.icarus.2018.10.034>

267 Hagedorn, B., Sletten, R. S., Hallet, B., McTigue, D. F., & Steig, E. J. (2010). Ground ice recharge via
268 brine transport in frozen soils of Victoria Valley, Antarctica: Insights from modeling $\delta^{18}\text{O}$ and
269 δD profiles. *Geochimica et Cosmochimica Acta*, 74(2), 435–448.
270 <https://doi.org/10.1016/j.gca.2009.10.021>

271 Hall, K. (1999). The role of thermal stress fatigue in the breakdown of rock in cold regions.
272 *Geomorphology*, 31(1–4), 47–63. [https://doi.org/10.1016/S0169-555X\(99\)00072-0](https://doi.org/10.1016/S0169-555X(99)00072-0)

273 Harris, H. J. H., & Cartwright, K. (1981). Hydrology of the Don Juan Basin, Wright Valley, Antarctica.
274 In L. D. McGinnis (Ed.), *Antarctic Research Series* (Vol. 33, pp. 161–184). Washington, D. C.:
275 American Geophysical Union. <https://doi.org/10.1029/AR033p0161>

276 Head, J. W., Marchant, D., Dickson, J., Levy, J., & Morgan, G. (2007). Slope streaks in the Antarctic
277 Dry Valleys: Characteristics, candidate formation mechanisms, and implications for slope streak
278 formation in the Martian environment. *Lunar Planet. Sci.*, XXXVIII.

279 Head, J. W., & Marchant, D. R. (2014). The climate history of early Mars: Insights from the Antarctic
280 McMurdo Dry Valleys hydrologic system. *Antarctic Science*, 26(6), 774–800.
281 <https://doi.org/10.1017/S0954102014000686>

282 Jagoutz, E. (2006). Salt-induced rock fragmentation on Mars: The role of salt in the weathering of
283 Martian rocks. *Advances in Space Research*, 38(4), 696–700.
284 <https://doi.org/10.1016/j.asr.2005.07.070>

285 Johnston, J. H. (1973). Salt weathering processes in the McMurdo Dry Valley regions of South Victoria
286 Land, Antarctica. *New Zealand Journal of Geology and Geophysics*, 16(2), 221–224.
287 <https://doi.org/10.1080/00288306.1973.10431454>

288 Keys, J. R. (1979). Distribution of salts in the McMurdo region, with analyses from the saline discharge
289 area at the terminus of Taylor Glacier. *Publication of the Geology Department, Victoria
290 University of Wellington*, 14.

291 Keys, J. R., & Williams, K. (1981). Origin of crystalline, cold desert salts in the McMurdo region,
292 Antarctica. *Geochimica et Cosmochimica Acta*, 45(12), 2299–2309.
293 [https://doi.org/10.1016/0016-7037\(81\)90084-3](https://doi.org/10.1016/0016-7037(81)90084-3)

294 Lamp, J. L., Marchant, D. R., Mackay, S. L., & Head, J. W. (2017). Thermal stress weathering and the
295 spalling of Antarctic rocks. *Journal of Geophysical Research: Earth Surface*, 122(1), 3–24.
296 <https://doi.org/10.1002/2016JF003992>

297 Levy, J. (2021). Episodic basin-scale soil moisture anomalies associated with high relative humidity
298 events in the McMurdo Dry Valleys, Antarctica. *Antarctic Science*, 33(5), 533–547.
299 <https://doi.org/10.1017/S0954102021000341>

300 Liu, L., Sletten, R. S., Hagedorn, B., Hallet, B., McKay, C. P., & Stone, J. O. (2015). An enhanced
301 model of the contemporary and long-term (200 ka) sublimation of the massive subsurface ice in

302 Beacon Valley, Antarctica. *Journal of Geophysical Research: Earth Surface*, 120(8), 1596–
303 1610. <https://doi.org/10.1002/2014JF003415>

304 Malin, M. C. (1974). Salt weathering on Mars. *Journal of Geophysical Research*, 79(26), 3888–3894.
305 <https://doi.org/10.1029/jb079i026p03888>

306 Margerison, H. R., Phillips, W. M., Stuart, F. M., & Sugden, D. E. (2005). Cosmogenic ^{3}He
307 concentrations in ancient flood deposits from the Coombs Hills, northern Dry Valleys, East
308 Antarctica: Interpreting exposure ages and erosion rates. *Earth and Planetary Science Letters*,
309 230(1–2), 163–175. <https://doi.org/10.1016/j.epsl.2004.11.007>

310 Marrero, S. M., Hein, A. S., Naylor, M., Attal, M., Shanks, R., Winter, K., et al. (2018). Controls on
311 subaerial erosion rates in Antarctica. *Earth and Planetary Science Letters*, 501, 56–66.
312 <https://doi.org/10.1016/j.epsl.2018.08.018>

313 McFadden, L. D., Eppes, M. C., Gillespie, A. R., & Hallet, B. (2005). Physical weathering in arid
314 landscapes due to diurnal variation in the direction of solar heating. *Bulletin of the Geological
315 Society of America*, 117(1–2), 161–173. <https://doi.org/10.1130/B25508.1>

316 Meredith, P. G., & Atkinson, B. K. (1985). Fracture toughness and subcritical crack growth during
317 high-temperature tensile deformation of Westerly granite and Black gabbro. *Physics of the
318 Earth and Planetary Interiors*, 39(1), 33–51. [https://doi.org/10.1016/0031-9201\(85\)90113-X](https://doi.org/10.1016/0031-9201(85)90113-X)

319 Miotke, F. D., & von Hodenberg, R. (1983). *Salt fretting and chemical weathering in the darwin
320 mountains and the dry valleys, victoria land, antarctica. Polar Geography and Geology* (Vol. 7,
321 p. 122). Taylor & Francis Group. <https://doi.org/10.1080/10889378309377191>

322 Nara, Y., & Kaneko, K. (2006). Sub-critical crack growth in anisotropic rock. *International Journal of*
323 *Rock Mechanics and Mining Sciences*, 43(3), 437–453.
324 <https://doi.org/10.1016/j.ijrmms.2005.07.008>

325 Nara, Y., Hiroyoshi, N., Yoneda, T., & Kaneko, K. (2010). Effects of relative humidity and temperature
326 on subcritical crack growth in igneous rock. *International Journal of Rock Mechanics and*
327 *Mining Sciences*, 47(4), 640–646. <https://doi.org/10.1016/j.ijrmms.2010.04.009>

328 Nara, Y., Morimoto, K., Hiroyoshi, N., Yoneda, T., Kaneko, K., & Benson, P. M. (2012). Influence of
329 relative humidity on fracture toughness of rock: Implications for subcritical crack growth.
330 *International Journal of Solids and Structures*, 49(18), 2471–2481.
331 <https://doi.org/10.1016/j.ijsolstr.2012.05.009>

332 Obryk, M. K., Doran, P. T., Fountain, A. G., Myers, M., & McKay, C. P. (2020). Climate From the
333 McMurdo Dry Valleys, Antarctica, 1986–2017: Surface Air Temperature Trends and Redefined
334 Summer Season. *Journal of Geophysical Research: Atmospheres*, 125(13).
335 <https://doi.org/10.1029/2019JD032180>

336 Richter, D., & Simmons, G. (1974). Thermal expansion behavior of igneous rocks. *International*
337 *Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts*, 11(10), 403–411.
338 [https://doi.org/10.1016/0148-9062\(74\)91111-5](https://doi.org/10.1016/0148-9062(74)91111-5)

339 Rodriguez-Navarro, C., & Doehne, E. (1999). Salt weathering: Influence of evaporation rate,
340 supersaturation and crystallization pattern. *Earth Surface Processes and Landforms*, 24(2–3),
341 191–209. [https://doi.org/10.1002/\(sici\)1096-9837\(199903\)24:3<191::aid-esp942>3.0.co;2-g](https://doi.org/10.1002/(sici)1096-9837(199903)24:3<191::aid-esp942>3.0.co;2-g)

342 Scopelliti, G., Bellanca, A., Monien, D., & Kuhn, G. (2013). Chemostratigraphy of the early Pliocene
343 diatomite interval from MIS AND-1B core (Antarctica): Palaeoenvironment implications.
344 *Global and Planetary Change*, 102, 20–32. <https://doi.org/10.1016/j.gloplacha.2013.01.001>

345 Selby, M. J., & Wilson, A. T. (1971). The origin of the Labyrinth, Wright Valley, Antarctica. *Bulletin
346 of the Geological Society of America*, 82(2), 471–476. [https://doi.org/10.1130/0016-7606\(1971\)82\[471:TOOTLW\]2.0.CO;2](https://doi.org/10.1130/0016-
347 7606(1971)82[471:TOOTLW]2.0.CO;2)

348 Sletten, R. S., Hallet, B., & Fletcher, R. C. (2003). Resurfacing time of terrestrial surfaces by the
349 formation and maturation of polygonal patterned ground. *Journal of Geophysical Research E:
350 Planets*, 108(4), 1–10. <https://doi.org/10.1029/2002je001914>

351 Sperling, C. H. B., & Cooke, R. U. (1985). Laboratory simulation of rock weathering by salt
352 crystallization and hydration processes in hot, arid environments. *Earth Surface Processes and
353 Landforms*, 10(6), 541–555. <https://doi.org/10.1002/esp.3290100603>

354 Staiger, J. W., Marchant, D. R., Schaefer, J. M., Oberholzer, P., Johnson, J. V., Lewis, A. R., &
355 Swanger, K. M. (2006). Plio-Pleistocene history of Ferrar Glacier, Antarctica: Implications for
356 climate and ice sheet stability. *Earth and Planetary Science Letters*, 243(3–4), 489–503.
357 <https://doi.org/10.1016/j.epsl.2006.01.037>

358 Steiger, M., Linnow, K., Juling, H., Gölker, G., Jarad, A. E., Brüggerhoff, S., & Kirchner, D. (2008).
359 Hydration of $MgSO_4 \cdot H_2O$ and Generation of Stress in Porous Materials. *Crystal Growth &
360 Design*, 8(1), 336–343. <https://doi.org/10.1021/cg060688c>

361 Sugden, D. E., Summerfield, M. A., Denton, G. H., Wilch, T. I., McIntosh, W. C., Marchant, D. R., &
362 Rutherford, R. H. (1999). Landscape development in the Royal Society Range, southern Victoria
363 Land, Antarctica: Stability since the mid-Miocene. *Geomorphology*, 28(3–4), 181–200.
364 [https://doi.org/10.1016/S0169-555X\(98\)00108-1](https://doi.org/10.1016/S0169-555X(98)00108-1)

365 Summerfield, M. A., Sugden, D. E., Denton, G. H., Marchant, D. R., Cockburn, H. A. P., & Stuart, F.
366 M. (1999). Cosmogenic isotope data support previous evidence of extremely low rates of
367 denudation in the Dry Valleys region, southern Victoria Land, Antarctica. *Geological Society
368 Special Publication*, 162(1), 255–267. <https://doi.org/10.1144/GSL.SP.1999.162.01.20>

369 Tamppari, L. K., Anderson, R. M., Archer, P. D., Douglas, S., Kounaves, S. P., McKay, C. P., et al.
370 (2012). Effects of extreme cold and aridity on soils and habitability: McMurdo Dry Valleys as
371 an analogue for the Mars Phoenix landing site. *Antarctic Science*, 24(3), 211–228.
372 <https://doi.org/10.1017/S0954102011000800>

373 Toner, J. D., Catling, D. C., & Sletten, R. S. (2017). The geochemistry of Don Juan Pond: Evidence for
374 a deep groundwater flow system in Wright Valley, Antarctica. *Earth and Planetary Science
375 Letters*, 474, 190–197. <https://doi.org/10.1016/j.epsl.2017.06.039>

376 Toner, J. D., Sletten, R. S., Liu, L., Catling, D. C., Ming, D. W., Mushkin, A., & Lin, P.-C. (2022). Wet
377 streaks in the McMurdo Dry Valleys, Antarctica: Implications for Recurring Slope Lineae on
378 Mars. *Earth and Planetary Science Letters*, 589, 117582.
379 <https://doi.org/10.1016/j.epsl.2022.117582>

380 Toner, J. D., Catling, D. C., & Light, B. (2015). Modeling salt precipitation from brines on Mars:
381 Evaporation versus freezing origin for soil salts. *Icarus*, 250, 451–461.
382 <https://doi.org/10.1016/j.icarus.2014.12.013>

383 Torii, T., & Ossaka, J. (1965). Antarcticite: A new mineral, calcium chloride hexahydrate, discovered in
384 Antarctica. *Science*, 149(3687), 975–977. <https://doi.org/10.1126/science.149.3687.975>

385 Viles, H., Ehlmann, B., Wilson, C. F., Cebula, T., Page, M., & Bourke, M. (2010). Simulating
386 weathering of basalt on Mars and Earth by thermal cycling. *Geophysical Research Letters*,
387 37(18), 1–5. <https://doi.org/10.1029/2010GL043522>

388 Voigtländer, A., Leith, K., & Krautblatter, M. (2018). Subcritical Crack Growth and Progressive Failure
389 in Carrara Marble Under Wet and Dry Conditions. *Journal of Geophysical Research: Solid*
390 *Earth*, 123(5), 3780–3798. <https://doi.org/10.1029/2017JB014956>

391 Waza, T., Kurita, K., & Mizutai, H. (1980). The effect of water on the subcritical silicate rocks crack
392 growth in silicate rocks. *Tectonophysics*, 1967, 25–34.

393 Wellman, H. W., & Wilson, A. T. (1965). Salt Weathering, a Neglected Geological Erosive Agent in
394 Coastal and Arid Environments. *Nature*, 205(4976), 1097–1098.
395 <https://doi.org/10.1038/2051097a0>

396 Wilson, A. T. (1979). Geochemical problems of the Antarctic dry areas. *Nature*, 280(5719), 205–208.
397 <https://doi.org/10.1038/280205a0>

398 Winkler, I. M., & Wilhelm, E. J. (1970). Salt Burst by Hydration Pressures in Architectural Stone in
399 Urban Atmosphere. *Geological Society of America Bulletin*, 81, 567–572.

400 Yang, L., Pabalan, R. T., & Browning, L. (2002). Experimental determination of the deliquescence
401 relative humidity and conductivity of multicomponent salt mixtures. *Materials Research Society
402 Symposium - Proceedings*, 713, 135–142. <https://doi.org/10.1557/proc-713-jj11.4>

403