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Abstract
In general relativity (without matter), there is typically a one parameter family
of static, maximally symmetric black hole solutions labeled by their mass. We
show that there are situations with many more black holes. We study asymptot-
ically anti-de Sitter solutions in six and seven dimensions having a conformal
boundary which is a product of spheres cross time. We show that the number
of families of static, maximally symmetric black holes depends on the ratio,
λ, of the radii of the boundary spheres. As λ approaches a critical value, λc,
the number of such families becomes infinite. In each family, we can take the
size of the black hole to zero, obtaining an infinite number of static, maximally
symmetric non-black hole solutions. We discuss several applications of these
results, including Hawking–Page phase transitions and the phase diagram of
dual field theories on a product of spheres, new positive energy conjectures,
and more.

Keywords: black hole, Hawking–Page transition, general relativity,
AdS/CFT, phase transition, anti-de Sitter, numerical solutions

(Some figures may appear in colour only in the online journal)

1. Introduction

In four dimensions, the black hole uniqueness theorem [1, 2] shows that in the absence of mat-
ter, the only static, asymptotically flat black hole is described by the Schwarzschild solution.
With a negative cosmological constant, black hole solutions depend on a choice of conformal
metric on the boundary at infinity. If one chooses this metric to be conformal to a round S2 cross
time, the only known static black hole is given by the Schwarzschild–AdS solution. While it
has not yet been proven to be the unique static black hole, it is certainly the only static and
spherical black hole with these boundary conditions. Both of these are one parameter families
of solutions labeled by the total mass.
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In higher dimensions, it is known that black holes are less unique. In this paper we describe
an extreme form of this non-uniqueness. We show that there are asymptotically AdS boundary
conditions such that there are an infinite number of families of black holes. This happens when
the boundary metric is conformal to time cross a product of spheres: R× Sm× Sn. Curiously,
the total spatial dimension must be less than nine, m+ n< 9 (and m,n⩾ 2), for this to occur.
The solutions are all static and have maximal symmetry in the following sense. We assume
the spheres are round, so bulk solutions with maximal symmetry will have isometry group
R× SO(m+ 1)× SO(n+ 1) and depend only on a radial coordinate. We show that the number
of families of static, maximally symmetric black holes depends on the ratio, λ, of the radii of
the boundary spheres. There is a critical ratio, λc, determined by the condition that the product
metric on Sm× Sn is an Einstein metric. As λ→ λc the number of families of black holes
grows without bound, and at λ= λc there are an infinite number of such families. Most of
these families only contain small black holes. For each λ, there is a single family of solutions
that extends to arbitrarily large black holes.

In each family of black holes, one can take the size of the black hole to zero, and thus
obtain an infinite number of static, non-black hole solutions as well. Since we have a single
asymptotic boundary, in the non-black hole solutions one of the spheres must shrink to a point
in the interior. When one sphere on the boundary is much larger than the other (i.e. λ is either
very large or very small) the smaller sphere is the one that shrinks. However, when they are
comparable in size (λ∼ λc) either sphere can shrink, and it turns out that they can do so inmany
inequivalent ways. When one sphere shrinks to a point, the other sphere becomes a minimal
surface at that point. The solutions are distinguished by the size of that minimal surface.

An important precursor to this work is the paper by Aharony et al [3], who studied Euc-
lidean, asymptotically AdS solutions with conformal boundary Sm× Sn (without a time dir-
ection). They found that when m+ n< 9 (and m,n⩾ 2) the number of solutions increases as
λ→ λc, and becomes infinite at λ= λc. We first add a time direction (in both the bulk and
boundary) and find similar behavior for the non-black hole spacetimes. We then show that
one can add black holes to each of these background solutions. These black holes have hori-
zon topology Sm× Sn, and when their area goes to zero, one sphere on the horizon becomes
much smaller than the other. In this regime one expects the black hole to be unstable due to a
Gregory–Laflamme instability [4]. The stable solution should be a small black hole with Sm+n

topology. This is yet another class of black holes with the same boundary conditions but less
symmetry, which we will not discuss here.

We will study in detail two cases: S2 × S3 and S2 × S2. Since the analysis and results are
similar, we describe S2 × S3 in the main text, and S2 × S2 in an appendix. There is a simple
analytic black hole solution when λ= λc, which becomes singular when the black hole shrinks
to zero size. We discuss this solution first in section 2. We then construct several families of
black holes and non-black hole solutions numerically for various λ in sections 3 and 4, and
show that the number of such families diverges as λ→ λc. To construct the black holes, it is
convenient to analytically continue (and periodically identify) time, so the boundary becomes
S1 × S2 × S3. The black hole solutions are now simply the ones where the S1 pinches off in the
interior before either sphere. Figure 1 illustrates the three classes of solutions we will study.

There are many applications of these results which we discuss in section 5. First, we com-
pute the energy of the non-black hole solutions. Since the minimum energy solution with fixed
boundary conditions should be a smooth, static, solution with maximal possible symmetry
[5, 6], our solution with lowest energy should be the ground state. This leads to new positive
energy conjectures for asymptotically AdS gravity with boundary R× S2 × S3. We will find
that the transition between one sphere being contractible in the ground state and the other
sphere being contractible occurs at a valueλ= λt, which is slightly larger than λc. In particular,
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Figure 1. The topology of the various bulk solutions we will construct: The left column
shows the topology for a (Euclidean) black hole solution where the thermal S1 is con-
tractible. The middle column illustrates one type of non-black hole solution where the
S2 is contractible and hence has topology S1 ×R3 × S3, and the right column shows
the other non-black hole solution where the S3 is contractible and hence has topology
S1 × S2 ×R4.

there are two solutions with the same minimum energy when λ= λt. Thus, unlike most pos-
itive energy conjectures, in this case the minimum energy solution is not unique.

As a second application, we study the implications for a six dimensional dual field theory
on R× S2 × S3. The minimum energy solutions are dual to the vacuum state of this theory,
and their energy can be viewed as a Casimir energy of the field theory. We will see that this
Casimir energy is positive for very large or very small λ and is negative for λ∼ λc. The fact
that the bulk geometry changes abruptly at λt means that there is a quantum phase transition at
this point. We also compute the Euclidean action of the black hole solutions and determine the
solutions that dominate a canonical ensemble at fixed temperature T. At large T, the (unique)
large black hole with the given λ dominates, but as one lowers T, there is a Hawking–Page
phase transition to a gas of gravitons on the ground state. The numerous small black holes never
dominate the canonical ensemble. Note that there is a one parameter family of Hawking–Page
phase transitions labeled by λ.

We also study the microcanonical ensemble and determine which small black holes have
the greatest entropy for given energy. This is not reliable for very small E since we study
S2 × S3 black holes and we expect S5 black holes will have larger entropy. However, we find
an interesting ‘phase transition’ at intermediate Ewhere two different families of S2 × S3 black
holes exchange dominance. Finally, we use these solutions to learn something about confining
gauge theories on de Sitter space, and limitations of the state operator correspondence for
conformal field theories.

Before proceeding, we comment on related work. The simplest example where the ground
state is not AdS, is when the boundary contains a spatial circle such asRn× S1 orR× Tn. In this
case the ground state is the AdS soliton [7] and has negative energy. At finite temperature there
is a phase transition between a planar black hole and thermal gravitons on the AdS soliton. A
generalization of the AdS soliton where the contractible circle is replaced by a contractible
sphere (so the boundary is Rn× Sm) was constructed in [8], along with black holes with the
same conformal boundary (see also [9]). The case where the boundary topology is R× S1 × S2

was studied in [10]. A similar case with the S2 factor replaced by S3 was studied in [11].
Euclidean solutions with boundary Sm× Sn (without a time direction) were studied in [3] (see
also [12] for when m= 2 and [13] for when m= n= 2). Finally, when the boundary is R×
S2 × S2, which is the case we study in appendix D, black hole solutions were discussed in
[11], but the dependence of the solutions on the ratio of the spheres at the conformal boundary
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was not analyzed. For special ratios of the boundary spheres, Euclidean analytic solutions and
their analytic continuation to Lorentzian spacetimes were discussed in [14].

2. Analytic solutions

We are interested in vacuum solutions to general relativity with a negative cosmological con-
stant that have a conformal boundary which is a product of spheres cross time. Although most
of the solutions we study will be numerical, there is a simple analytic family of solutions with
these boundary conditions which we describe first. Since these solutions exist in all dimensions
greater than five, we begin by considering general D= d+ 1 dimensions.

We start with the usual D-dimensional Schwarzschild–AdS solution:

ds2 =−f(r)dt2 + dr2

f(r)
+ r2dΩ2

d−1, (2.1)

where

f(r) = r2 + 1−
rd0 + rd−2

0

rd−2
, (2.2)

and we have labelled the solutions by the horizon radius r0, and set the AdS radius of curvature
to one. The key observation is that this metric remains a solution if we replace the unit (d− 1)-
sphere with any other Einstein metric with the same scalar curvature, R. Given two (round)
spheres Sm and Sn with radii rm and rn, and m+ n= d− 1, their product Sm× Sn will satisfy
Rij ∝ gij if

rm
rn

=

√
m− 1
n− 1

. (2.3)

Requiring that the scalar curvature agree with the unit (d− 1)-sphere, i.e.R= (d− 1)(d− 2),
fixes the radii, so we get the solution

ds2 =−f(r)dt2 + dr2

f(r)
+ r2

[
m− 1
d− 2

dΩ2
m+

n− 1
d− 2

dΩ2
n

]
. (2.4)

The stability of this black hole has been studied [15, 16] and it was shown that it is stable for
large r0 but becomes unstable for small r0 (provided m+ n< 9). Setting r0 = 0 in f (r) yields
a solution without a black hole, but it has a (naked) curvature singularity at r= 0.

We are mainly interested in D= 7 with boundary R× S2 × S3. In this case, the critical ratio
of radii where the product of spheres has an Einsteinmetric is given by (r2/r3)2 = 1/2.Wewill
see that (2.4) is not the only family of black holes with this ratio of spheres on the conformal
boundary. In fact, we will argue that there are an infinite number of other solutions. Similarly,
we will construct many solutions without black holes with this asymptotic ratio, that have no
naked singularities. Again, there are an infinite number of them.

Since we want to consider all ratios of sphere radii, it will be convenient to choose a dif-
ferent radial coordinate than the one above. We will often choose r so that the metric on S3

is just r2dΩ2
3 . Compared to (2.4) this involves rescaling the radial coordinate (and the time

coordinate), so the constant in f (r) is no longer one. Instead we have

ds2 =−A(r)dt2 +
dr2

A(r)
+ r2

[
1
2
dΩ2

2 + dΩ2
3

]
, (2.5)
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where

A(r) = r2 +
1
2
− 2r60 + r40

2r4
. (2.6)

This black hole has a temperature

T=
1+ 3r20
2πr0

. (2.7)

To compute the Euclidean action for this (as well as our other) asymptotically AdS met-
rics, we perform holographic renormalization by adding boundary counter terms to the usual
Einstein–Hilbert action with Gibbons–Hawking–York boundary term. We explain how to do
this in appendix C. The result is

I=−
π3r0

(
5− 32r40 + 64 r60

)
128

(
1+ 3r20

) , (2.8)

where we have set G= 1.

3. Non-black hole solutions

Consider a conformal boundary R× S2 × S3 with representative metric

ds2|∂M =−dt2 +λ2dΩ2 + dΩ3. (3.1)

This describes a static product of the two spheres, each with its own spherical symmetry. We
have used conformal rescaling to make the three-sphere of unit size. The only free parameter
for the family of metrics is λ, the ratio between the two sphere radii.

We begin by finding all candidate bulk ground states in Lorentzian signature for given λ’s.
With this boundary condition, the bulk ground state is expected to have maximal symmetry,
by which we mean both time translation symmetry and SO(3)× SO(4). Now, there are two
possible ways for the bulk to have a static and smooth (non-black hole) geometry: either the
S2 or S3 must smoothly pinch off in the bulk, i.e. the size of one of the spheres must shrink to
zero.

A maximally symmetric bulk metric with contractible S2 can be written as

ds2 =−A(r)dt2 +
dr2

A(r)B(r)
+ C(r)λ2dΩ2 + r2dΩ3,

A(r) = r2 +
∞∑

n=−1

an
rn
, B(r) = 1+

∞∑
n=1

bn
rn
, C(r) = r2 +

∞∑
n=−1

cn
rn
, (3.2)

where we have specified the leading order coefficients for each of the functions to ensure the
correct boundary metric (3.1). The choice of the radial coordinate r favors S3 over S2 because
it gives the proper size of the three-sphere at any radius (in particular, S3 shrinks to zero size at
r= 0). With this choice, for the solution to have contractible S2, the two-sphere needs to shrink
to zero at some r0 > 0. In other words, the function C(r) should have the property that C(r0) = 0
for some r0 > 0 (whereasA(r) and B(r) should be positive for all r⩾ r0). The spacetime only
exists for r⩾ r0.

In appendix B, we describe our numerical algorithm for solving the Einstein equations as
a set of decoupled ordinary differential equations (ODEs). It turns out convenient to use r0
to label all the solutions. For each r0 ∈ R+, there is a unique choice of λ such that a smooth
solution (with this topology) exists. We can think of all such solutions as lying on a curve
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Figure 2. The space of static, non-black hole solutions. The blue curve corresponds
to S2-contractible solutions, and the orange curve represents S3-contractible solutions.
There are an infinite number of oscillations for small r0 and near λ≈

√
0.5. The insert

shows the first two.

in the (λ,r0) plane. Figure 2 displays this curve (blue), computed numerically. As the figure
demonstrates, there is exactly one solution for each r0.

Although r0 is a good parameter to label all the solutions, it is not a variable on the boundary
(it depends on the bulk coordinate system). Therefore, if we want to ask what bulk solutions
correspond to a given boundary geometry, λ should be regarded as the independent parameter.
From this viewpoint, figure 2 tells us something quite interesting. For small values of λ, there
is only one solution with S2 contractable; for large values of λ, no such solution exists; how-
ever, when λ is close to a special value λc =

√
0.5, there can be more than one solution for

each λ. In fact, due to the oscillatory shape of the curve, the number of solutions grows as λ
approaches this special value. Interestingly, infinitely many oscillations were found for Euc-
lidean boundaries with topology Sm× Sn (m,n⩾ 2, m+ n< 9) [3]. This figure suggests that
this also happens with the extra time direction that we have included. We provide an argu-
ment for this in appendix A. As a result of this infinite oscillation, the number of maximally
symmetric solutions for a given λ grows without bound as λ→ λc.

We can also obtain S3-contractible solutions similarly. In this case, it is more convenient to
use the following ansatz:

ds2 =−A(r)dt2 +
dr2

A(r)B(r)
+ r2 λ2dΩ2 + C(r)dΩ3. (3.3)

Our radial coordinate r now favors S2, and solutions with contractible S3 now have r0 > 0
where r0 is now related to the size of the two-sphere when S3 shrinks to zero. As a result, an
S2-contractible solution and an S3-contractible solution with the same r0 need have no relation
to each other. Nevertheless, we will abuse the notation, and again use r0 ∈ {0,∞} to label all
the solutions. The numerically computed curve in the (λ,r0) plane is shown in figure 2(orange),
superposed onto the earlier plot for S2-contractible solutions.

Similar to the case studied in [3], in the strict r0 → 0 limit, both curves approach λ→ λc.
In this limit, since r0 is the size of one of the spheres as the other sphere shrinks to zero size,
both spheres now shrink to zero size, making the curvature singular at this point. In fact, it is
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given by the r0 → 0 limit of the analytic solutions described in section 2 by (2.5) and (2.6).
This is a very convenient fact because, with an analytic expression for the singular solution,
it is possible to study perturbations analytically, which, combined with dimensional analysis,
allows us to prove the existence of an infinite number of oscillations in appendix A.

Given that there are many static, nonsingular, bulk solutions for certain λ, it is natural to ask
which one has the lowest energy. We will discuss this in section 5.1. However, before doing so,
in the next section we show that each of these solutions gives rise to a one-parameter family
of black hole solutions.

4. Black hole solutions

Wenow look for black hole solutions by going to Euclidean signature. This has the added bene-
fit of getting the temperature almost for free. For Euclidean black holes, the compactified time
circle S1 pinches off in the bulk. In the language of figure 1, they are the first type of solutions.

To begin with, we choose the following ansatz:

ds2 =A(r)dτ 2 +
dr2

A(r)B(r)
+ C(r)λ2dΩ2 + r2dΩ3, (4.1)

where A(r0) = 0 for some r0 > 0 and C(r⩾ r0)> 0. We have again used the same notation,
r0, even though it now has a new definition: the size of the three-sphere at the black hole
horizon. The solutions are obtained by solving the Einstein equation numerically as before. To
be concrete, we describe a procedure of conveniently solving them in section B.3.

There are a two-parameter family of black hole solutions, and it is convenient to label them
by r0 and the temperature T. In figure 3, we show lines of constant λ in this space. The analytic
solution with λ= λc is shown in dashed emerald green. Recall from section 2 that the two
spheres for the analytic branch have fixed ratio of radii everywhere in the bulk, including in
particular at the horizon. Therefore, r0, the size of the three-sphere at the horizon, is a good
indicator of the area of the horizon (∼r50). This branch starts at arbitrarily small r0 where
the black hole is arbitrarily hot, grows to a minimum temperature at a scale comparable to the
AdS radius, and keeps growing to arbitrarily large size with again arbitrarily high temperature.
Thus, the analytic branch is similar to the familiar case of black holes with conformal boundary
S1 × Sd−1. Indeed, for most values of λ, there is only a one-parameter family of solutions with
similar behavior.

However, for λ close to λc, there are multiple families of solutions that show up at small r0
and high T. This is shown in figure 4, where we have replaced T with β = 1/T, and focused
on the small r0 region. The analytic solution with λ= λc is again shown in dashed emerald
green. But as can be seen in the figure, there are many other branches of solutions with this
same λ (shown as solid emerald lines). In fact, there are infinitely many more branches. Each
of these numerical branches intersects the analytic branch exactly once (at least for the ones
verified numerically). They all start at infinite temperature (β= 0) and zero r0. They then grow
in r0 with decreasing temperature. After they reach some minimum temperature, they increase
in temperature again ending at β= 0 and finite r0.1 We provide a sketch for this in figure 5
based on extrapolation of the numerical results and an argument which we give at the end of
this section.

1 It may seem strange to have black holes approach infinite T at fixed r0, but remember we have chosen coordinates
that favor S3. As the size of the three-sphere (r0) grows along such a branch, the two-sphere shrinks to zero size, so
the black hole is indeed becoming small when β→ 0.
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Figure 3. Temperature versus r0 for various λ. The dashed curve corresponds to the
analytic solution.

Figure 4. Inverse temperature versus r0 for various λ. The dashed curve corresponds
to the analytic solution. The plot focuses on small r0 and λ≈ λc. Several branches of
solutions with the same λ are now visible.

We have just described the solutions at the special λ= λc. Interestingly, this value is not
just special due to the existence of the analytic solution, but it is the only value for which the
branches of solutions intersect in the β-r0 plot. This can be seen in figure 4 and is illustrated
in figure 5. The solutions for the special λc separates the solution space into infinitely many
subregions, or ‘cells’. Neighboring regions always have opposite signs of λ−λc.

Let us now be more specific about the types of cells in figure 5. The first special cell is the
uppermost one. It contains one branch of solutions for each value of λ > λc. Each of these
branches starts at r0 = 0 with infinite temperature (as expected for black holes with zero area)
and extends all the way to infinite r0. As λ→∞, the curves moves up towards the grey region
but never reaches it. The second special cell is the one at the lower right corner of this figure.
This contains one branch of solutions for each value of λ < λc. Each of these branches starts
at some finite r0 with infinite temperature (see footnote 1). These branches also extend to
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Figure 5. A sketch of the solution space, not to scale and zoomed in on the small-r0 side
for visibility. The solutions for the special sphere ratio λ= λc have been highlighted
in emerald. They separate the solution space into infinitely many ‘cells’. The coloring
correlates with λ. For very large (small) λ, there is only one solution near the upper
rim (lower right corner) of the figure. For λ∼ λc, there can be more than one branch,
residing in a subset of cells in a chequered fashion. Moving to the lower left corner, the
color range narrows (closer to green), meaning that λ needs to be very close to λc to
have solutions in those cells. There are no solutions in the grey region.

infinite size. Put together, these two special cells (along with the analytic branch) contain
all the branches that have arbitrarily large black holes. All other branches have a maximum
horizon size, which we now describe.

Above the analytic branch, there are infinitely many cells besides the special one. Each
branch in these cells start at (r0 = 0,β = 0), grows in r0 to some maximum value, and comes
back to (r0 = 0,β = 0). Along the whole branch, the size of S2 stays nonzero and finite. The
two end points of each of these branches are identified with two non-black hole solutions we
found in section 4, both with contractible S3. Similarly, below the analytic branch, there are
again infinitely many cells besides the special one. As is clear from the figure, r0 remains
positive and finite for all these solutions. Similar to the discussion of the numerical solutions
with λ= λc above, a feature hidden from the view is that the size of the S2 on the horizon goes
to zero as β→ 0 at r0 > 0. The solution again reduces to one of the non-black hole solutions
in these limits, both now with contractible S2. Therefore, for λ ̸= λc, the branches that do not
reach large black holes connect two non-black hole solutions with the same topology. Contrast
this with any of the numerical branches at λ= λc: each of those branches connects two non-
black hole solutions with different topology since the S3 pinches off at one end and the S2

pinches off at the other.
Finally, we now extend the numerical evidence that the number of families of black holes

increases as λ→ λc, and argue that there are an infinite number families when λ= λc. This
is simple once we have established the infinite number of non-black hole solutions, which we
do in appendix A. Basically, we want to put a small black hole in each one. Actually, as we
now explain, we really put a small black brane wrapped around the noncontractible sphere.
Start with any S2-contractible non-black hole solution, and let r0 be the radius of the S3 at that
point. Then at each point on S3 one can add a small four-dimensional Schwarzschild black hole
with radius rh ≪ r0. This produces a large change in the metric near the horizon, but only a
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small change for r≈ r0, so the asymptotic ratio of spheres is very similar to the non-black hole
solution. Since the curvature on the S3 is small compared to the curvature near the horizon,
it looks locally like a three-dimensional black brane. Similarly, we can do the same thing
when S3 pinches off, adding a small five-dimensional black hole at each point of the minimal
S2. At least when adding very small black holes, different non-black hole solutions will give
rise to different black holes by following this procedure, thus generating infinitely many one-
parameter families of black hole solutions. Numerically, we saw that all of these one-parameter
families (except the ones that extend to infinite size) connect at finite mass in pairs, but that at
most reduces the number of families by a half, which is still infinite. Thus, we have established
that an infinity of black holes do exist.

5. Applications

5.1. Positive energy conjectures

Boundary conditions for general relativity that allow a well defined notion of total energy
should have the property that there is a minimum energy solution consistent with those bound-
ary conditions. The minimum energy solution is the gravitational ground state of the system.
A series of positive energy theorems have been proven which show that standard boundary
conditions indeed have such minimum energy solutions, which are often unique. For asymp-
totically AdS solutions with the usual boundary condition, R× Sd−1, positive energy was first
proven in four dimensions [17], and later extended to higher dimensions [18]. Uniqueness of
global AdS using the positive energy theoremwas shown in four dimensions [19] and extended
to dimensions up to seven [20].

We have computed the total energy of our solutions using the method described in
appendix C. We find that the lowest energy solution for each λ is essentially given by the
blue and orange curves in figure 2 up to the point where they first have equal energy. All the
oscillations at small r0 result in solutions with higher energy. The lowest energy for each λ is
shown in figure 6. Notice that the energy becomes large and positive for both large and small
λ, but is negative for λ∼ λc. The lowest energy S2 contractible solutions meet the correspond-
ing S3 contractible solutions at λ= λt ≈ 0.72 which is slightly larger than λc.2 The energy of
some of the other solutions is shown in the insert. The solutions corresponding to smaller r0
in figure 2 have energies approaching E=−5π 2/256, in a narrow range around λc. This is
because they approach the singular analytic solution as r0 → 0, which has this energy.

One expects the minimum energy solution to be static and highly symmetric [5, 6]. So
our solution with lowest energy should be the ground state. This leads to new positive energy
conjectures for asymptotically AdS gravity with boundary R× S2 × S3:

Conjecture. Consider complete six dimensional initial data for the Einstein equation with
Λ< 0, which has a conformal boundary S2 × S3. Then its energy E will satisfy E⩾ Emin where
Emin is the minimum energy shown in figure 6. Furthermore, the only solutions with E= Emin

are the ones we have constructed numerically.

This is really a one parameter family of conjectures, since it should hold for every ratio of
the sphere radii, λ. Since we have found two solutions with the same minimum energy when
λ= λt, if this conjecture is true, then one has an unusual situation where the ground state is
not unique.

2 This matches the value at which the Euclidean action of the two types of solutions agree when the conformal
boundary is S 2 × S3 without the time direction [3].
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Figure 6. Energy for two families of ground state solutions in AdS7. The blue curve cor-
responds to solutions where S2 shrinks to zero in the bulk and the orange curve corres-
ponds to ones with S3 shrinks to zero. The insert shows the energy of the first oscillation
of solutions in figure 2.

Similar conjectures can be made in other dimensions. We construct the solutions with S2 ×
S2 boundaries in appendix D.

The existence of a positive energy conjecture would have implications for holography, and
we discuss some of them in sections 5.2 and 5.6.

5.2. Quantum phase transition

We now turn to consequences for a dual six dimensional conformal field theory (CFT) on
R× S2 × S3 using gravitational holography. In holography, it is important that there is a posit-
ive energy theorem in the bulk, so the dual CFT has a stable vacuum state. The lowest energy
solutions discussed above are dual to the vacuum state of the boundary CFT at this λ. The
value of the energy can be interpreted as a Casimir energy. It is clear from figure 6 that the
Casimir energy depends on λ, and becomes large when one sphere is much bigger than the
other.

A quantum phase transition is one that happens at zero temperature. To check whether our
theory predicts a quantum phase transition, we only need to consider the lowest energy, zero
-temperature solutions discussed above. (Since all our black holes have a finite temperature,
they do not enter this discussion.)

As can be seen from figure 6, the bulk dual of the vacuum state changes qualitatively at
λ= λt from one where the S2 is contractible to one where the S3 is contractible. Since there
is a discontinuity in the gradient as the two curves cross, this predicts a first-order quantum
phase transition for the boundary CFT as λ is varied. In other words, for a holographic CFT
on S2 × S3, the vacuum depends on the relative size of the spheres and changes qualitatively
at λ= λt.

5.3. Canonical ensemble

In a canonical ensemble, one fixes the temperature T and looks for the state that minimizes the
free energyF≡−T lnZ= E− TS. Using a saddle point approximation, the partition function is

11
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Figure 7. The Euclidean action of the black holes as a function of λ at two different
temperatures. At each temperature, there is a minimum value of λ below which there
can be no black holes. Similarly, for each λ, the black hole solution stops existing below
a certain temperature, which can be seen from the fact that the tip of the curves moves
to the right as temperature is lowered. There is also a global minimum temperature
(T ≈ 0.5) below which no black hole exists for any λ. These features are also visible in
the phase diagram figure 8.

given by Z= e−I, where I is the Euclidean action for the bulk saddle. Therefore, the free energy
can be easily computed from the action via F=−T lnZ= I/β, where β is the periodicity of
the Euclidean time, now equated to the inverse temperature.

We have computed the renormalized Euclidean action using the method described in
appendix C. We show how the action depends on λ in figure 7 for two different temperatures.
Notice that the behavior is very different in the two plots. On the left we show the behavior at
high T where the action for the large black hole becomes very negative. The upper curve shows
the action for the small black hole. The other branches of small black holes that appear near
λc have actions that are close to this upper curve and never dominate the canonical ensemble.
On the right of figure 7, we consider a temperature close to the minimum allowed black hole
temperature. This is not possible for small λ since the S2 will pinch off before the S1 when
λ is small. (In fact, a global minimum temperature for black holes exists since for low T, the
boundary S1 becomes so large that the S3 pinches off before the S1.) We see that for T near its
minimum value, the action now grows with λ for both large and small black holes.

By comparing the actions of the black hole solutions with a gas of gravitons on the non-
black hole solutions, we can construct the phase diagram. This is shown in figure 8. As we can
see, the quantum phase transition extends vertically to some finite temperature. At each λ, there
is a Hawking–Page phase transition, whose critical temperature depends onλ. According to the
figure, the Hawking–Page phase transition seems to happen above the minimum temperature
for a black hole solution to exist. The curve of minimum temperature asymptotes to some finite
value around 1/2, which is the global minimum temperature across all λ.

5.4. Microcanonical ensemble

In a microcanonical ensemble, the energy is fixed, and the state with the largest entropy will
be the most likely configuration. In holography, since entropy is given by S= A/4 (at leading
order in G), where A is the area of the horizon, for any given energy, a black hole will always
be preferred over non-black hole states. In the usual story where the boundary is a (d− 1)-
sphere cross time, there is only one black hole at any given energy (above the ground state), so
there is no competition (at leading order in G). In our case we have multiple candidates—an
important ingredient for a microcanonical phase transition.

12
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Figure 8. Phase diagram for the canonical ensemble with conformal boundary S1 ×
S2 × S3. The blue line demarcates a transition between black holes and non-black holes,
and the orange line separates two ground states. The gray dashed curve is the minimum
temperature curve below which there are no black holes.

Figure 9. Entropy-energy plot for the analytic black hole solutions (shown in orange)
and the first numerical branch of black holes (shown in blue) at the critical λ=

√
0.5.

The insert shows that they cross at some finite E, so the analytic solutions stop being
dominant when the energy is lowered below that value.

In figure 9, we plot the energy on the horizontal axis and entropy (A/4) on the vertical for the
special λ= λc. At any fixed energy, we take the candidate with the largest entropy. Restricting
to the set of solutions we are considering, the figures show that the analytical branch dominates
at large energy. However, as energy is lowered, a numerical branch enters and intersects with
it. This means that the analytic branch will stop being dominant.

The other numerical branches havemuch smaller r0 and requiremuchmore accuracy to plot,
but we know some of their limits. First of all, in the zero-entropy limit, the solution reduces
to a non-black hole solution. From figures 2 and 6, the infinite oscillations go up in energy
with smaller r0, which translates to the fact that smaller black holes (or the smaller numerical
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branches) start at a larger value on the horizontal axis in figure 9. The smaller branches also
have smaller maximum area, so they will not reach as high as the first numerical branch along
the vertical direction. Therefore, we expect these to lie within the envelope of the first numer-
ical branch. Since we only take the one with maximum entropy, they will not compete with
the first numerical branch.

In conclusion, when λ= λc there is a change in dominance between the analytic branch
and the first numerical branch in the microcanonical ensemble, and we may describe this as a
‘microcanonical phase transition’. We expect a similar phase transition for λ close to λc.

However, as the entropy approaches zero, one of the spheres on the horizon becomes much
smaller than the other. In this regime, one expects a Gregory–Laflamme instability, and a new
branch of black holes with S5 topology will have greater entropy with the same energy. These
solutions will break the SO(3)× SO(4) symmetry and we have not studied them in detail. It
is likely that they dominate the microcanonical ensemble only at low energy, so even if the
above crossover between S2 × S3 black holes turns out to be subdominant to S5 black holes,
there will still be a crossover between the S5 black holes and the analytic S2 × S3 black holes
at higher energy.

5.5. Confining gauge theories on de Sitter

As another application of the Euclidean solutions, let us remark that these solutions can be
analytically continued in more than one way to obtain different Lorentzian solutions. Instead
of analytically continuing the thermal circle to Lorentzian time, we can analytically continue
one of the spheres to de Sitter space. The resulting bulk solution will now have a conformal
boundary containing a de Sitter factor, and hence describe a quantum field theory in de Sitter
space. This idea has been explored in e.g. [14, 21–28].

We now apply this analytic continuation to one of our boundary spheres, say the three-
sphere. The CFT geometry S1 × S2 × S3 then gets analytically continued to S1 × S2 × dS3,
where S1 should now be considered as a Scherk–Schwarz compactification rather than a
thermal one, with anti-periodic boundary conditions for the fermions. Instead of a CFT on
S1 × S2 × dS3, the Scherk–Schwarz compactification allows one to study confining gauge the-
ories on S2 × dS3. The phase diagram we obtained for S1 × S2 × S3 now implies that there are
three phases for such theories. The bulk saddle with a contractible S3 now analytically contin-
ues to a topological black hole. This describes a deconfined plasma phase. The bulk saddle with
a contractible S1 analytically continues to a generalization of the bubble of nothing with an
extra factor of S2.3 Since the Scherk–Schwarz circle is contractible in the bulk, this describes
a confining phase. The analogue of these two types of saddles were studied in [30]. However,
we also have a third type of phase where S2 is contractible. This analytically continues to a
solution with topology S1SS ×R3 × dS3. This is also a confined phase, although the SS circle
does not shrink in the bulk. The infrared floors of these confining bulk solutions have different

3 As pointed out in [29], although this is often called a ‘bubble of nothing’ in AdS, this is really a misnomer. In
asymptotically flat spacetime, although a boundary at large radius is S1 × Sd−1, there is a clear distinction between
the circle and the sphere since the circle remains a finite size and the sphere becomes large. So when the circle
pinches off, there is a ‘hole’ in the asymptotically flat space. However in AdS, both the circle and sphere become
large asymptotically, and there is no reason to prefer one over the other. So if the circle pinches off, one still has a
complete asymptotically hyperbolic surface without any holes. The key difference is just that the spacetime now has
a minimal S3 rather than a minimal S1.
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dimensions. One may interpret them as having different numbers of degrees of freedom in
the IR. Similar phase structures were also studied in [12] for S2 × dSn and T2 × dSn. Ours is
more like their latter case due to the presence of three phases, but in our case we have unequal
dimensions for the two possible IR floors, leading to two distinct confining phases.

Instead of S3 → dS3, we can also analytically continue S2 → dS2. The same argument then
implies that there are different phases for confining gauge theories on S3 × dS2. Similarly, we
can apply the same argument for the S2 × S2 example in appendix D. We also expect this to
hold in higher dimensions (both the sphere dimension and de Sitter dimension) and lower ones,
i.e. for confining gauge theories on S1 × S2 → S1 × dS2 [10].

5.6. Non-existence of a state-operator map

Positive energy theorems are important in general relativity since they identify the minimum
energy solutions for given boundary conditions. Holographically, in addition to providing
vacuum energies in the dual CFT, they have further implications. We now discuss a possible
implication of this for the state-operator map for CFTs on R× S2 × S3.

A state-operator map, as the name suggests, gives a map between states of the Hilbert space
and operators. It exists for two-dimensional CFTs on arbitrary Riemann surfaces, but for CFTs
in higher dimensions, the map is not always defined. For CFTs on Rd (d > 2), the map exists
between local operators and states on a sphere Sd−1. However, for other topology, the story is
less clear. In [31], the possibility of a state-operator map for three-dimensional CFTs on T3

was studied. In this case, one can consider whether a line operator can be mapped to a state on
T2. As they argue, to have a valid state-operator map, a necessary condition is to produce the
vacuum with a compact Euclidean manifold.

Using holography, it was argued that the positive energy conjecture for boundaries with
topology T3 (which has the AdS4 soliton [7] as the unique ground state) implies no state-
operator correspondence for states on T2. To see this, consider the AdS4 soliton, which is a
static Lorentzian solutionwith a global timelikeKilling vector fieldwith topologyR×R2 × S1.
The Euclideanization of the time-direction gives a non-compact solution with the same topo-
logy. The Euclidean geometry that prepares the state at t= 0 is obtained by cutting the geo-
metry in half, i.e. replacing R with R−. However, the boundary of this half soliton is R− × T2

which is the standard way to construct the CFT ground state and is not compact. If the con-
jecture is correct, no other geometry has the same energy and therefore no compact Euclidean
geometry can prepare the vacuum state.

We now argue that, with the new conjectured positive energy theorems for boundaries with
spatial topology of S2 × S3, a similar argument would imply no state-operator correspondence
for states on S2 × S3. According to the conjecture, the bulk ground state is prepared by cut-
ting the solutions in half, which has topology R− ×R3 × S3 (for λ < λt) or R− × S2 ×R4 (for
λ > λt). The boundary of either manifold is simply R− × S2 × S3 which is non-compact and
prepares the CFT vacuum state. Since the bulk lowest-energy solution is unique (for λ ̸= λt),
there is no compact six-dimensional Euclidean manifold that prepares the vacuum state, there-
fore disproving the existence of such a state-operator map.

In fact, taking the conjecture to the more general situation of a product of an arbitrary
number of spheres, it would seem that the state-operator map is forbidden for a large class of
topology in higher dimensional CFT. It would be interesting to further explore the relations
between positive energy theorems and the existence of a state-operator map on spaces with
more general topology.
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6. Discussion

We have studied Euclidean solutions in general relativity with a negative cosmological con-
stant that have a conformal boundary S1 × S2 × S3 with symmetry U(1)× SO(3)× SO(4).
Both black holes and non-black holes have been found, and the dependence of the number of
solutions on the ratio λ between the radii of the two spheres at infinity has been discussed.

At each λ, the non-black hole solution with lowest energy is considered to be the ground
state. We then conjectured that this is the unique ground state among all bulk solutions with
given boundary metric, except at λt ≈ 0.72 where there are two solutions with the same energy,
in which case we conjecture that they are the only two ground states. A better understanding
of this exceptional case may shed light on the uniqueness of ground states in general relativity.
Moreover, it could be interesting to perform some numerical tests of these positive energy
conjectures similar to those done in [10]. These non-black hole solutions have an interesting
dependence on λ, in that the number of them becomes arbitrarily large as λ goes to a critical
ratio λc =

√
0.5. This generalizes the phenomenon found in [3] where the boundary metric

is S2 × S3 without a time direction. Curiously, this only happens when the total dimension of
the two spheres is smaller than nine. It would be interesting to investigate more generally the
criteria for when the oscillations in figure 2 can happen and for what topology4.

We next studied black hole solutions where we found that the number of one-parameter
families of solutions depends on λ and the number goes to infinity as λ→ λc. This demon-
strates an extreme form of black hole non-uniqueness in higher dimensional general relativity
even with no matter fields. There are many potential directions for its generalization: adding
angular momentum and/or charge will make the phase structure more non-trivial, and allow
one to investigate whether the extremal limits of the infinity of black holes exhibit unusual
behavior. One could also consider replacing the spheres by two compact negatively curved
spaces. There is again a simple analytic solution when the product is an Einstein space. Are
there infinitely many others?

We have not studied the stability of the black hole or non-black hole solutions, and this
should be investigated. For the non-black hole solutions, at every extremum of λ in figure 2 a
small change in r0 does not change λ. This means there is a static zero mode5. Usually a zero
mode arises when a stable mode transitions to an unstable mode (or vice versa). Thus starting
at large r0 where there is only one solution for the given λ and we expect it to be stable, the
solutions between the first and second extrema are likely to be unstable. At the second extrema,
we either add a second unstable mode or remove the unstable mode we had. So it is not clear
if the solutions between the second and third extrema are stable, but the solutions between
the third and fourth extrema are probably unstable, etc. For the black hole solutions, we have
already mentioned that they are unstable when one sphere on the horizon is much smaller than
the other. However it is possible that there are additional instabilities.

The holographic implications of these bulk solutions were then investigated. These include
a three-phase diagram for the CFT in a thermal ensemble and for confining gauge theories
on de Sitter, a phase transition in the microcanonical ensemble, and no state-operator corres-
pondence. Most of the infinite solutions never become dominant in either the canonical or
microcanonical ensemble. With the usual boundary topology R× Sd−1, going to the microca-
nonical ensemble places small black holes that do not dominate in the canonical ensemble in

4 A good starting point might be the spaces Tp,q which are S1 bundles over S 2 × S 2 and admit an Einstein metric. We
thank Igor Klebanov for this suggestion.
5 We thank Toby Wiseman for pointing this out.
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the spotlight [32]. However, in our case, there is just not enough spotlight for infinitely many
saddles, even with the microcanonical ensemble. It is an interesting open question whether the
infinity of solutions for a product of spheres plays a role in any (holographic) gravitational
path integral. If the answer if yes, then we can say that the CFT senses their presence in the
bulk via some appropriate bulk computation. Said differently, one should try to understand
whether these infinitely many non-dominating saddles mean anything in the CFT, other than
provide exponentially small corrections.

Another feature worth mentioning is that the one-parameter family of Hawking–Page trans-
itions all seem to happen above the minimum temperature for which black hole solutions exist
(only checked numerically up to some large λ). Therefore, the free energy is desirably con-
tinuous at the transition which is then necessarily (at least) first order. This suggests that there
may be some protection mechanism of the gravitational path integral that always make the
thermal saddle take over before the temperature is lowered to the point where black holes are
forbidden. It would be interesting to check whether this is true with more general boundary
topology and/or extra matter fields. More generally, one may wonder whether this protection
mechanism is ubiquitous in gravitational path integrals: saddles with different topology always
switch dominance continuously in free energy.

Finally, we comment on another potential direction. The boundary geometries have been
chosen to be maximally symmetric for simplicity. However, investigating how bulk quantities
(in particular the energy [33, 34]) respond to perturbations in the shape of the boundary spheres
can lead to important observations, so it might be worth exploring such perturbations in our
case also. In particular, a large class of less symmetric Einstein metrics on S2 × S3 are now
known (see e.g. [35]), and could be the starting point of such investigations.
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Appendix A. Argument for an infinity of non-black holes

An infinity of solutions was found in [3] when the conformal boundary is a product of spheres
without the extra time dimension. We show in this appendix that the argument generalizes
to our case with the extra dimension, where the Euclidean solutions they found become static
Lorentzian solutions, which we refer to as non-black holes. We consider Sm× Sn wherem⩽ n.
The singular non-black hole solution can be obtained by taking r0 → 0 in our family of analytic
solutions (2.4) followed by coordinate rescaling, giving

ds2 =−A(r)dt2 +
dr2

A(r)
+ r2

[
m− 1
n− 1

dΩ2
m+ dΩ2

n

]
, (A.1)

where

A(r) = r2 +
n− 1

m+ n− 1
. (A.2)
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Making a coordinate transformation

r= sinhz

√
n− 1

m+ n− 1
, (A.3)

we move to the gauge similar to that used in [3]:

ds2 =−g2
s (z)dt

2 + dz2 + f 2s(z)dΩ
2
m+ h2

s (z)dΩ
2
n , (A.4)

where

gs(z) =

√
n− 1

m+ n− 1
coshz,

fs(z) =

√
m− 1

m+ n− 1
sinhz, (A.5)

hs(z) =

√
n− 1

m+ n− 1
sinhz.

Smooth solutions where one of the spheres pinches off at r0 ≪ 1 will look very different
near r0, but we expect that for z≫ r0, it will be just a small perturbation of this singular metric.
So we start by studying these perturbations.We consider the same perturbation as in [3], except
now we have an extra perturbation in time:

δf(z) =
1
m
fs(z)a(z), δh(z) =−1

n
hs(z)a(z), δg(z) = gs(z)b(z), (A.6)

With this ansatz, the Sm and Sn components of the linearized Einstein equation give:

− (m− 1)sinh(2z)b ′(z)
4(b(z)− 1)(m+ n− 1)

+
m− 1

2 m(b(z)− 1)(m+ n− 1)
×F = 0

− (n− 1)sinh(2z)b ′(z)
4(b(z)− 1)(m+ n− 1)

+
n− 1

2 n(b(z)− 1)(m+ n− 1)
×F = 0.

(A.7)

where

F = a ′(z)
[
sinh2(z)b ′(z)+ (b(z)− 1)((m+ n+ 1)sinh(2z)− 2 tanh(z))

]
+ 2(b(z)− 1)sinh2(z)a ′ ′(z)+ a(z)(sinh(2z)b ′(z)

+4(b(z)− 1)(m+ n− 1)) . (A.8)

Eliminating a(z), the equations give b ′(z) = 0. This implies the perturbation in gtt is just a
multiple of itself, which can be redefined away by rescaling t. We therefore set b(z) = 0. Elim-
inating b(z) (or setting it to zero), equation (A.7) reduce to

sinh2(z)a ′ ′(z)+ [(m+ n+ 1)sinh(z)cosh(z)− tanh(z)]a ′(z)

+ 2(m+ n− 1)a(z) = 0, (A.9)

which is solved by

a±(z) = 2F1

[
1
2
α±,

1
2
α±;α± +

1
2
(m+ n+ 1) ; tanh2(z)

]
tanhα±(z), (A.10)

whereα± ≡− 1
2

(
m+ n− 1±

√
(m+ n− 1)(m+ n− 9)

)
.We next repeat the argument in [3]

to show the existence of infinitely many oscillations. When m+ n< 9, a± are complex and a
general real solution can be written as a(z) = (a0 · a+(z)+ a∗0 · a−(z)) where a0 is a complex
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constant. The asymptotic ratio of the sphere radii, λ, can be worked out directly from themetric
and is given by λ= λc+ δλ where

δλ

λc
=

(
1
m

+
1
n

)
(a0 · a+(∞)+ a∗0 · a−(∞)) . (A.11)

Without loss of generality, consider now the smooth nonlinear solution where Sm shrinks
to a point before Sn so the topology of spacetime is Rm+2 × Sn (or S1 ×Rm+1 × Sn in Euc-
lidean signature) and define r0 to be the radius of the minimal Sn. For r0 much smaller than
the AdS length, the solution around z∼ r0 is determined by r0, the only length scale in this
region. However, for z≫ r0, the solution resembles a small perturbation of the singular solu-
tion. Define a0(r0) to be the value of a0 such that the metric due to the linear perturbation a(z)
behaves similar to the solution with small r0 for z≫ r0. From (A.10), for r0 ≪ z≪ 1,

a±(z)∼ zα± =⇒ a0(r0)∼ r−α±
0 , (A.12)

where the dependence on r0 follows from the fact that a(z) is dimensionless and hence can
only depend on the dimensionless ratio z/r0. Therefore,

δλ(r0)∼ r
m+n−1

2
0 cos

(√
(m+ n− 1)(9−m− n) logr0 +ϕ

)
, (A.13)

for some phase ϕ. This shows that there are an infinite number of oscillations in figure 2.

Appendix B. Numerical procedure for solving the Einstein equation

In this appendix we provide an algorithm for finding the solutions numerically. Following [10],
we begin by rewriting the components of the Einstein equation in a more user-friendly form.
In AdS7, the Einstein equation is given by

Gab = Rab−
1
2
gabR=−λgab = 15gab. (B.1)

B.1. S2 contractible

For S2-contractible solutions, we take the ansatz (3.2). From the Gtt component, we have

6 C
(
−10r2 + rBA ′ +A(rB ′ + 2B)− 2

)
+ 2 rC ′ (rBA ′ +A(rB ′ + 6B))

= r2
(
AB

(
C ′2 − 4 CC ′ ′)

C
+

4
λ2

)
,

(B.2)

and the component on the three-sphere (which we will denote GS3) gives us

C
(
−60r2 + 2r2BA ′ ′ +A ′ (r2B ′ + 8rB

)
+ 4A(rB ′ +B)− 4

)
= r2

(
AB

(
C ′2 − 4 CC ′ ′)

C
+

4
λ2

)
− 2 rC ′ (2 rBA ′ +A(rB ′ + 4B)) .

(B.3)

Subtracting (B.2) from (B.3) allows us to solve for C ′:

C ′ =−
C
(
r2A ′B ′ + 2 rB (A ′ + rA ′ ′)− 2A(rB ′ + 4B)+ 8

)
2 rB (rA ′ − 2 A)

. (B.4)
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Next, the component on the two-sphere gives us

C 2
(
2r2BA ′ ′ + r2A ′B ′ + 12rBA ′ + 6rAB ′ + 12AB− 12

)
− r2ABC ′2

= rC (60rC − 2rABC ′ ′ −C ′ (2 rBA ′ + rAB ′ + 6AB)) ,
(B.5)

and the Grr component is given by

rBC ′ (2C (6 A+ rA ′)+ rAC ′)

C
= 6C

(
10r2 −B (2A+ rA ′)+ 2

)
+

4r2

λ2
.(B.6)

Subtracting (B.5) twice and (B.6) once from (B.2), together with the substitution of C ′

from (B.4), we obtain an expression for B in terms of A and its derivatives only:

B =
2
(
A ′ + 3r2A ′ − 6 rA

)
−AA ′ − rAA ′ ′ + rA ′2 . (B.7)

Next, substitute (B.7) and its derivatives with respect to r into the Einstein equation.
From (B.2), we will get an expression for A ′ ′ ′ in terms of A and C up to their second
derivatives. From (B.5), we substitute A ′ ′ ′ we just derived and obtain an expression for
A ′ ′(r,A,A ′,C,C ′,C ′ ′). From (B.6), with the substitution of A ′ ′ and A ′ ′ ′, we will obtain
A ′(r,A,C,C ′,C ′ ′). Taking the derivative ofA ′ and equating it toA ′ ′(r,A,A ′,C,C ′,C ′ ′)with
substitution of A ′ returns a third order non-linear ODE for C:(

3λ 2C
(
5r2 + 1

)
+ r2

)

×



r3 C ′4
(
3λ2r2C ′

+λ
2C ′ − 3r

)
+ 36 λ

2rC4
(
3C ′

+ rC ′ ′ − r2C(3)
)

+ r2CC ′2
(
15λ2r2C ′2

+ 11λ2C ′2
+ 3rC ′ ′

(
3λ2r2C ′

+λ
2C ′

+ r
)
− 15rC ′

)

+2rC2


r3 C ′ ′2

+ 3 λ
2C ′3

(
1− 12r2

)
+λ

2 C ′2
(
3r4C(3)

+ r2C(3) − 3r3C ′ ′ − 4rC ′ ′
)

− r2C ′
(
3λ2C ′ ′2

(
3r2 + 1

)
− 11C ′ ′

+ rC(3)
)



+6 C3

 r2
(
C ′ ′ − 2 λ

2C ′ ′2
(
2r2 + 1

)
− rC(3)

)
− 3 λ

2C ′2
(
3r2 + 1

)
+ rC ′

(
λ

2C(3)
(
r3 + r

)
+λ

2C ′ ′
(
13r2 − 3

)
+ 3

)




= 0. (B.8)

The boundary conditions for solving (B.8) are as follows. Since we have a third order
equation, we have to specify C and its first two derivatives at one point r0. We set C(r0) = 0 so
r0 is the point where the S2 pinches off. Evaluating (B.8) at r= r0 yields a condition relating
C ′(r0) and C ′ ′(r0), so there is one remaining parameter. This is fixed by requiring C(r)→ r2

for large r. In this way, we obtain a unique solution for each choice of r0.
Once we solved for C, it is numerically convenient to solve for A using a second order

coupled differential equation of C and A, obtained as follows. First, obtain B(r,A,A ′,C,C ′)
through eliminating A ′ ′ and C ′ ′ using (B.2), (B.5) and (B.6). Then, substitute the
expression of B(r,A,A ′,C,C ′) and its derivative with respect to r into (B.2) to obtain
A ′ ′(r,A,A ′,C,C ′,C ′ ′). Finally, substituting the expression of B, B ′ andA ′ ′ we derived from
previous steps into (B.5) gives

2 CA ′ (3λ2r2C ′ +λ2C ′ − 6λ2rC − r
)
+

A
r2 C ′ + 3rC

×

 3λ2r4C ′3 +λ2r2C ′3 − 3r3C ′2 − 72λ2rC3

+2rC
(
3λ2C ′2 + r2C ′ ′ − 5rC ′)

+6λ2C 2
(
C ′ ′ (5r3 + r

)
−C ′ (r2 − 3

))
− 12rC 2

= 0. (B.9)
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Note that this is a linear, first order ODE for A(r). Requiring A(r)→ r2 for large r and sub-
stituting the numerically obtained C(r) into (B.9) gives the numerical answer for A(r).

B.2. S3 contractible

For S3-contractible solutions, we take the ansatz (3.3). Obtaining the equation for C in the S3-
contractible case is very similar to what we did for S2-contractible solutions. Subtracting the
Gtt component from GS2 allows us to solve for C ′:

C ′ =
C
(
λ2
(
2 A(rB ′ + 2 B)− r2 (2 BA ′ ′ +A ′B ′)

)
− 4
)

3 λ2 rB (rA ′ − 2 A)
. (B.10)

Next, subtracting three copies ofGS3 and one copy ofGrr from two copies ofGtt, together with
the substitution of C ′ given in (B.10) allow us to solve for B:

B =− A ′ + 6λ2r2A ′ − 12λ2rA
λ2 (AA ′ + rAA ′ ′ − rA ′2)

. (B.11)

Then, substitute (B.11) back into the Einstein equation, and eliminate A ′ ′ ′, A ′ ′ and A ′ with
steps similar to appendix B.1 returns again a third order ODE for C:(

C+ 3λ2r2 + 15λ2r2C
)

×



3r3C ′4
(
C ′

+ 6λ2r2C ′ − 8λ2r
)
− 48λ2rC4

(
r2C(3) − 2C ′

)
+ r2CC ′2

(
9C ′2

+ 3rC ′ ′
(
6λ2r2C ′

+ C ′
+ 8λ2r

)
− 18λ2r2C ′2 − 40λ2rC ′

)
+4C3 ×

 2C ′2
(
6λ2r2 − 1

)
−C ′ ′2

(
3λ2r4 + 2r2

)
− 4λ2r3C(3)

+ rC ′
(
8 λ

2
+ C(3)

(
r− 3 λ

2r3
)
+ C ′ ′

(
39 λ

2r2 − 2
))



+ rC2 ×


12λ2r3C ′ ′2 − 4C ′3

(
36λ2r2 + 1

)
+ rC ′2

(
32λ2

+ 3C(3)
(
6λ2r3 + r

)
+ C ′ ′

(
6λ2r2 − 11

))
− r2C ′

(
−68λ2C ′ ′

+ 9C ′ ′2
(
6λ2r2 + 1

)
+ 12λ2rC(3)

)




= 0. (B.12)

Again, setting C (r0) = 0, evaluating (B.12) at r= r0 and requiring C → r2 for large r gives a
unique solution for each r0. Once we solved for C, we follow steps similar to appendix B.1 to
solve for A. Through eliminating A ′ ′, B and B ′, we obtain a first order equation for A(r):

rCA ′C ′ (4C+ 3rC ′)(C ′
(
6λ2r2 + 1

)
− 4λ2r(3C+ 1)

)

+ AC ′ ×


4rC

(
3λ2r2C ′ ′ + C ′2

(
2− 6λ2r2

)
− 9λ2rC ′

)
+4 C2

(
C ′ ′

(
15λ2r3 + r

)
+ C ′

(
2− 15λ2r2

)
− 4λ2r

)
+3r

(
rC ′2

(
6λ2r2C ′ + C ′ − 8λ2r

)
− 16λ2C3

)
= 0, (B.13)

which has a unique solution with A(r)→ r2.

B.3. Black hole

The ansatz we used to solve for the black hole solutions (4.1) is identical to the S2-contractible
one, except that we now use Euclidean signature. This will not change the behavior of the
Einstein equation, so we can use all the equations in appendix B.1.
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Substituting (B.4), (B.7) and its derivative into Grr allows us to solve for C in terms of A:

λ2C =−8r2
(
A ′ (3r2 + 1

)
− 6rA

)(
A(A ′ + rA ′ ′)− rA ′2)3

÷



−8r3
(
3r2 + 1

)2A ′6 (3A ′ + rA ′ ′)− 1692r2A5A ′2

+36r2A5 (r4A(3)2 − 15r2A ′ ′2 + 2r2A(3) (7A ′ + 9rA ′ ′)− 66rA ′A ′ ′)
+4r2AA ′4

 6r2A ′ ′2 (3r2 + 1
)2

+ 3A ′2 (99r4 + 32r2 + 1
)

+A ′
(
3rA ′ ′ (51r4 + 32r2 + 5

)
−A(3) (3r3 + r

)2)


+8rA2A ′2


3A ′3 (−57r4 + 7r2 + 2

)
− 3r3A ′ ′3 (3r2 + 1

)2
−rA ′2 (rA(3) (3r2 + 1

)
+A ′ ′ (324r4 + 81r2 − 1

))
+r2A ′A ′ ′ (3r2 + 1

)(
rA(3) (3r2 + 1

)
− 2A ′ ′ (9r2 + 2

))


+12rA4


18r2A ′A ′ ′2 (2− 5r2

)
+ 6A ′3 (52r2 + 7

)
+3r3A ′ ′2 (rA(3) (3r2 + 1

)
+A ′ ′ (7r2 + 5

))
+rA ′2 (A ′ ′ (141r2 + 67

)
− rA(3) (81r2 + 13

))
+r2A ′ (−r2A(3)2 (3r2 + 1

)
− 2rA ′ ′A(3) (24r2 + 7

))



+A3



2r3A ′2A ′ ′A(3) (−9r4 + 12r2 + 5
)

+9r4A ′ ′4 (3r2 + 1
)2 − 12A ′4 (138r4 + 76r2 + 3

)
−6r3A ′A ′ ′2 (3r2 + 1

)(
rA(3) (3r2 + 1

)
+

(
r2 + 1

)
A ′ ′)

+r2A ′2
(
r2A(3)2 (3r2 + 1

)2
+A ′ ′2 (1161r4 + 30r2 − 35

))
+12rA ′3 (rA(3) (42r4 + 17r2 + 1

)
+A ′ ′ (228r4 − 41r2 − 5

))





.
(B.14)

Now, with substitution of (B.7) and its derivative, we can equate (B.4) and the derivative
of (B.14) to obtain a fourth order ODE forA(r). We can solve this fourth order ODE directly to
obtainA(r) and use (B.14) to obtain C(r). The boundary conditions needed areA(r0),A ′(r0),
A ′ ′(r0) andA(3)(r0), so together with r0 there are five independent parameters. However, they
must satisfy four constraints. First, A(r0) = 0 and requiring A(r)→ r2 removes two degrees
of freedom. Also, generically A(4)(r0) is divergent, and requiring regularity there removes
another degree of freedom by putting a constraint on the combination of boundary conditions,
which can be found by evaluating the ODE at r0, giving

A(3) (r0) =
5
(
1− 3 r20

)
A ′ ′ (r0)

3
(
3r30 + r0

) +

(
27 r40 + 20 r20 + 5

)
A ′ (r0)(

3r30 + r0
)

2

+
4 A ′ ′ (r0) 2

3 A ′ (r0)
. (B.15)

At this point, two degrees of freedom remain, which can be identified as temperature and r0.
However, since C(r) is determined from A(r) according to (B.14), generic temperature and
r0 do not lead to the correct asymptotic behavior for C(r), and requiring C(r)→ r2 removes a
further degree of freedom. Therefore, for fixed λ, there is only one degree of freedom.

Although we have presented a complete algorithm for obtaining all the solutions, in prac-
tice, solving a fourth order ODE leads to large numerical error.We now describe a method with
better accuracy by dealing with C(r) first. According to (B.8), one can obtain C(r) by solving
a third order ODE. The function A(r) is then obtained by solving the first order ODE (B.9),
with C(r) known numerically. The constraints on the boundary conditions can be obtained as
follows.
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Evaluate (B.9) at the location of horizon r= r0 to obtain a constraint on C(r0):
r0 + 6λ2r0C(r0)−λ2

(
3r20 + 1

)
C ′(r0) = 0. (B.16)

Then, evaluating (B.14) at r0 gives us:

A ′ ′ (r0) =−
(
9 r20C (r0)+ 3C (r0)+ r20

)
A ′ (r0)(

3 r30 + r0
)
C (r0)

. (B.17)

Finally, take the derivative of (B.4) and evaluate it at r= r0. Using (B.7), (B.15), (B.17) and
its derivative gives us the constraint:

C ′ ′(r0) =
(6r0C(r0)+ r0)

2

2
(
3r20 + 1

)2 C(r0) . (B.18)

In terms of the degrees of freedom, for any given r0, we see that C ′(r0) and C ′ ′(r0) are fixed in
terms of C(r0) according to (B.16) and (B.18) respectively. So the only degree of freedom (for
any given r0) is C(r0), but this is removed by requiring C(r)→ r2. ForA, there is no degree of
freedom remaining because A(r)→ r2 uniquely fixed the solution due to it being first order.
Therefore, the only thing one can vary is r0, and of course λ (which changes the ODEs). The
temperature comes out as an output since it is fixed by A ′(r0).

Appendix C. Numerical holographic renormalization

For asymptotically AdS spacetimes, the renormalized Euclidean action is given by6 [36–38]:

I= lim
rc→∞

[Ibulk(rc)+ Ibdry(rc)+ ICT(rc)] , (C.1)

where

Ibulk(rc) =− 1
2κ

ˆ
Mc

√
g(R− 2Λ) (C.2)

is the Einstein–Hilbert action with a cosmological constant evaluated up to a radial cutoff, rc,

Ibdry(rc) =− 1
κ

ˆ
∂Mc

√
hK (C.3)

is the Gibbons–Hawking–York boundary action required for a good variational principle, eval-
uated on the cut-off surface, and

ICT(rc) =
1
κ

ˆ
∂Mc

√
h

[
(d− 1)+

1
2(d− 2)

R+
1

2(d− 4)(d− 2)2

×
(
RabRab− d

4(d− 1)
R2

)
+ · · ·

] (C.4)

is the counter term required to cancel the divergences near the AdS boundary, also evaluated
on the cut-off surface. Here, R and Rab are the Ricci scalar and Ricci tensor for the induced
metric hab on the cut-off surface, and R is the Ricci scalar for the bulk metric gab. The dots in
the counter terms represent terms not needed in dimensions less than eight. We have also used
κ= 8πGN and K=∇ana with na being the outward pointing normal vector of the boundary.

6 We use the convention Rabcd = (Γa
bd,c +Γe

bdΓa
ec)− (c↔ d) which differs from some of the references.
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The number of terms needed in practice depends on the dimension. For AdS6, the terms
shown are sufficient, but for AdS7, an additional term is required to cancel potential logarithmic
divergences:

IlogCT(rc) =− 1
κ

ˆ
∂Mc

√
h

[
1
64

(
1
2
RRabRab− 3

50
R3 −RacRbdRabcd

+
1
5
RabDaDbR− 1

2
Rab□Rab+

1
20

R□R
)
log(rc)

]
.(C.5)

For this expression to be exact, we just need grr ∼ 1/r2 at leading order for large r. This is
related to the Fefferman-Graham radial coordinate z where gzz = 1/z2 by r= 1/z plus sub-
leading corrections, which all go to zero as rc →∞.

To obtain the renormalized energy for the ground states (non-black hole solutions), we just
need to replace Mc by Σc which is any constant-t hypersurface with rc > 0 removed. To see
this, notice that energy is related to the Euclidean action by E= I/β. Since static non-black
hole solutions do not have dependence on β, division by β is equivalent to excluding the time
integral in the expressions.

One technical hurdle in performing this renormalization numerically is that infinities do
not cancel out due to large numerical errors. Following [3], we tame this as follows. First, we
rewrite the surface terms (both boundary and counter terms) as bulk integrals:

Ibdry + ICT =

ˆ rc

∂r(Ibdry + ICT)dr. (C.6)

This turns the full action into an integral on Mc. Since the total action (C.1) is finite, the
integrand of

´
dr cannot diverge, either. The trick then is to obtain a finite integrand before

performing the r-integration. At large r, the integrand decays to zero. One can therefore cut
off the tail of the integrand at some r for large enough r. For better accuracy, one can use the
fact that the integrand decays with a specific power (worked out by substituting the asymp-
totic series expansion of the metric into (C.1)). The coefficient of this leading power can be
found frommatching to the numerical solution. Therefore, above some large r, one can replace
the integrand by an expression that can be integrated analytically. Either way, the problem of
numerical errors building up at large r is circumvented.

Appendix D. A lower-dimensional example: S2×S2

It is not uncommon for physical phenomena to occur in even but not odd number of dimensions
or vice versa. The details of the interesting results discussed in the main sections of the paper
certainly depend on the dimension, but as a first step in generalizing them, we investigate
whether the main features occur for odd-dimensional boundary CFTs by looking at an example
in one lower dimension, namely AdS6 with conformal boundary R× S2 × S2:

ds2|∂M =−dt2 +λ2dΩ2 + dΩ̃2. (D.1)

Conveniently, given that both spheres are of the same dimension, we can take the first sphere
to pinch off without loss of generality (for non-black hole solutions). We again find an oscil-
latory behaviour for these non-black hole solutions, as shown in figure 10. The oscillations
are about the critical ratio for S2 × S2, which by symmetry is λ= λc = 1. The other family of
solutions where the second sphere pinches off can be obtained by relabelling and conformal
rescaling, with the effect of λ→ 1/λ.
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Figure 10. Non-black hole solutions in AdS6 with the first sphere contractible. There
are an infinite number of oscillations for small r0 and λ≈ 1. The insert shows the first
two.

Figure 11. Energy for the two families of ground states in AdS6. The blue curve corres-
ponds to solutions with the first 2-sphere pinching off and the orange curve corresponds
to the second 2-sphere pinching off. The two types of ground states switch dominance
at λ= 1. The oscillatory behaviour of the solutions with smaller r0 is reflected in an
oscillation in the energy plot, but they have higher energy and do not dominate.

Figure 11 shows the energy for these non-black hole solutions. The two curves are related
by relabelling: E(λ) = Ẽ(1/λ)/λ, where Ẽ(λ) is the lowest energy solution where the first
sphere is contractible and E(λ) is when the second sphere is contractible7.

For black holes, numerical solutions were found in [11] where the two-parameter family of
solutions were labeled by the size of each of the spheres at the horizon. Here we focus on their
dependence on λ and study the number of one-parameter families of solutions at any given
λ. Just as in the main text, we find a growing number of solutions near λc. Again, there is an
analytic branch at this special ratio, given by

ds2 =−A(r)dt2 +
dr2

A(r)
+ r2

[
dΩ2

2 + dΩ̃2
2

]
, (D.2)

7 Due to the absence of a conformal anomaly in odd dimensions, the energy does not receive extra correction.

25



Class. Quantum Grav. 39 (2022) 225014 G T Horowitz et al

Figure 12. Inverse temperature versus r0 for various λ. The dashed curve corresponds
to the analytic solution. Several branches of solutions with the same λ are visible.

Figure 13. Phase diagram for AdS6 in the thermal ensemble with S1 × S2 × S2 bound-
ary conditions. The blue curve demarcates a transition between black holes and non-
black holes, and the orange line separates two ground states, where the solution with the
first S2 contracting dominates at small λ and the second S2 at large λ. The gray dashed
curve is the minimum temperature curve for a black hole solution to exist.

where

A(r) = r2 +
1
3
− r30 + 3r50

3r3
. (D.3)

Figure 12 shows a few branches of solutions for several λ.
In the canonical ensemble, the phase diagram is similar to that of AdS7 and shown in

figure 13. We can see that there are again three phases, corresponding to three types of bulk
configurations. The line separating the black hole from the rest is a one-parameter generaliza-
tion of the Hawking–Page phase transition. The critical temperature depends on λ. The vertical
line separating the two types of non-black hole solutions is independent of the temperature. At
zero temperature, this is a quantum phase transition.

In the microcanonical ensemble, we look at the entropy versus energy plot figure 14. There
is again clear evidence for a phase transition, but the numerics are not accurate enough to
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Figure 14. Entropy-energy plot for the analytic black hole solutions (shown in orange)
and the first numerical branch of black holes (shown in blue) at the critical λ= 1.

determine if the two families of solutions cross or become tangent. So it is not clear if the
transition is first or second order.
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