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Abstract

While most visual working memory studies use static stimuli with unchanging features, objects
in the real-world are often dynamic, introducing significant differences in the surface feature
information hitting the retina from the same object over time (e.g., changes in orientation,
lighting, shadows). Previous research on dynamic stimuli has shown that change detection is
improved if objects obey rules of physical motion, but it is unclear how memory for visual
features interacts with object motion. In the current study, we investigated whether object motion
facilitates greater temporal integration of continuously changing surface feature information. In a
series of experiments, participants were asked to report the final color of continuously changing
colored dots that were either moving or stationary on the screen. We found that the reported
colors “lagged behind” the physical states of the dots when they were in motion. We also
observed that the precision of memory responses was significantly higher for stimuli in the
moving condition compared to the stationary condition. Together, these findings suggest that
memory representation is improved — but lagged — for moving objects, consistent with the idea

that object motion may facilitate integration of object information over longer intervals.



Introduction

Visual working memory is an active temporary storage system for manipulating and holding in
mind visual information (Cowan, 2008; Schurgin, 2018). One of the main characteristics of
visual working memory is its limited capacity, as we can only actively retain a relatively small
amount of visual information for a short duration of time (e.g., Ma, Husain & Bays,

2014). Since the limited capacity of working memory is related to important cognitive functions
such as fluid intelligence, reading comprehension, and attentional control (Alloway & Alloway,
2010; Daneman & Carpenter, 1980; Fukuda et al., 2010; Kane et al., 2001), understanding how
visual working memory is limited and how it functions to hold in mind visual objects has been a
major focus of research (Cowan, 2001; Ma, Husain & Bays, 2014; Luck & Vogel, 2013). In the
real-world, visual objects are embedded in rich scene contexts, and many objects are not static:
they move, and while they move the visual feature information hitting an observer’s retina
drastically changes. For example, as a car drives by in front of you, the color of the car’s surface
constantly changes as a result of varying viewing angles, lighting, and or shadows (Figure 1).
However, each of these aspects of visual objects has generally been studied in isolation, without
asking about how they interact or may support the formation of visual memory representations.
In the current work, we ask how motion affects memory for continuously changing visual
features (e.g., the color of the car as it moves past) and how this is affected by whether a single
object is being tracked and remembered or more than one object is being tracked and

remembered.



 —

Figure 1. An illustration of varying object features over time and space. Even though the location of the
black box on the car’s surface remains the same, the color of the spot vastly changes around as the car
drives by due to changes in viewpoints, lightings, or shadows. However, we are able to integrate the
varying feature information into one single object representation.

Visual working memory for static stimuli

The majority of research on visual working memory has focused on extremely simplified
situations, rather than more realistic, dynamic moments common in everyday life: studies
primarily consider only stationary, non-changing simple features (e.g., colored circles, oriented
bars; e.g., Luck & Vogel, 1997; Harrison & Tong, 2009, etc.). Even in the case of studies
focusing on visual working memory for more realistic objects, most studies have focused on
memory for stationary, non-changing objects (e.g., Hollingworth, 2004), often presented without
any scene context on a white background (e.g., Brady & Stoermer, 2021; Starr, Srinivasan, &

Bunge, 2020).

Studies using simple stimuli like colors and orientations have led to important conclusions
regarding visual working memory capacity that are relevant to the real-world scenario where an
object is both moving and changing in features. Continuous reproduction studies, where
participants must report the exact color or orientation of a stimulus after a brief delay (e.g.,
Wilken & Ma, 2004; Zhang & Luck, 2008) have been particularly influential in understanding

how visual objects are represented. Such studies show that the strength of working memory is



strongly dependent on how many items are held in mind: participants can reproduce a color more
accurately when only holding 1 color in mind than when holding 2 or 3 colors in mind (Zhang &
Luck, 2008; Bays et al., 2009). Memory is also strongly dependent on delay: holding in mind
information for longer results in weaker memories (Schurgin et al., 2020; Rademaker et al.,

2018).

Representations of moving or changing objects

By contrast to such studies of static stimuli, our ability to concurrently track multiple moving
objects has been extensively studied using the multiple object tracking paradigm (Pylyshyn &
Storm, 1988; Scholl, 2009). Multiple object tracking, like visual working memory, is subject to a
severe capacity limit (e.g., Scholl, 2009), but also reveals unique aspects of attempting to hold in
mind stimuli in motion. Of particular relevance to the case of continuously changing stimuli, it
has generally been found that when participants are required to track positions of moving stimuli
on the screen, observers’ position representations lag behind that of the current locations of those
stimuli so that when asked to report the final position of the target, they generally would report a
position slightly before the ending point (Howard et al., 2011). This perceptual lag in tracking is
also found when observers are tracking multiple dynamically changing features of stimuli that
are not in motion (i.e., continuously changing spatial frequencies or orientations): analogous to
the spatial locations, participants are biased toward the past state when asked to report the final
state of the target feature, particularly when tracking multiple items at once (Howard &

Holcombe, 2008).

These results show that people are affected by past states of an object even when cued to report
the object’s final state. This could be because people are lagged in sampling objects, as it has
generally been interpreted in the literature on multiple object tracking (e.g., as evidence of serial
processing, Howard & Holcombe, 2008). However, such effects could also arise if participants’
visual systems are purposefully integrating information over time. For example, in the case of a

car driving past, our goal is indeed to integrate over time, as the car in fact has a single color and



our goal is to extract this and maintain color constancy rather than to attempt to remember each
feature separately at each moment in time (Shevell & Kingdom, 2008). When explicitly
prompted to compute a perceptual average over time, participants are accurately able to do so
(Albrecht & Scholl, 2009), suggesting that integration is a natural aspect of the way we deal with
continuously changing stimuli. Even when not explicitly instructed, visual working memory
representations can be biased through integration with other perceptual inputs, especially when
they are similar (Fukuda et al., 2022). In theory, these accounts should be distinct in that
integration should also come with increased precision by being able to integrate multiple
representations: participants should not only be lagged but also more precise if they are
integrating over time, compared to a situation with little integration over time (as in ensemble

perception models: Alvarez, 2011).

At a broad level, this ability to treat spatiotemporally defined objects as unified entities in our
mind, and integrate the information presented on them into one single object representation, has
often been termed an object file and has been extensively studied (Scholl, 2001; Kahneman,
Treisman & Gibbs, 1992; Spelke et al., 1995; Flombaum, Scholl & Santos, 2009; Flombaum &
Scholl, 2006; Schurgin & Flombaum, 2017). By contrast to the multiple object tracking
literature, however, nearly all object file studies present discrete information at two different
moments in time (e.g., first one letter, then later another), asking about object-specific preview
benefits, rather than exploring more naturalistic scenarios (e.g., the driving car) where motion
and feature changes both occur smoothly over time. Abrupt onsets may ‘reset’ attention,
resulting in different patterns of attentional engagement and in different memory biases than
attempting to remember a particular moment in a smoothly varying stimulus (Callahan-Flintoft,

Holcombe & Wyble, 2020).

The current studies
Given the current state of the literature, there remains a critical gap in our understanding of how

object motion interacts with smooth changes in visual features. Specifically, do participants



integrate visual information over time to a different extent when they are tracking 1 vs. 2 objects,
or is the tendency to report past information a result of lag in sampling objects in a serial
manner? Are participants lagged in their reports to the same extent when there are both object
motion and visual feature changes occurring at once (as they tend to do in the natural world) as

when the two are decoupled?

In order to investigate these questions, we ran a series of visual working memory experiments
where participants had to track either 1 or 2 colored dot stimuli that were continuously changing
their colors during each trial. After a short delay, we then asked participants to report the final
color of one of the dots. To investigate how motion impacts the memoranda, these dots
sometimes moved around the screen and sometimes remained stationary during the encoding
time depending on the condition. We hypothesized that when objects are in motion, integration
of changing features over time (e.g., into an ‘object file’) will be more prominent than when
objects are stationary. This integration should make the memory representation more biased
towards the past (i.e., more lagged behind the current state) as more past features are being
incorporated, but at the same time, integration may make memories more precise, as many noisy

samples can be averaged together, potentially canceling out some amount of noise (Figure 2).

Our results show that object motion can induce increased lag in representation but higher
precision in memory report, demonstrating that participants are integrating information over time
rather than simply lagged in their representation of the objects. Our results also point to a role for
motion in visual working memory representations: in particular, they suggest an interaction
between integrating features over time and object motion, where objects in motion are integrated

over longer time windows.
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Figure 2. A demonstration of our hypothesis. A) When an object is stationary and therefore facilitates less
integration of changing colors, the final color report will be less biased towards the previous colors. B) If
the object is in motion, integration will happen over a longer time period, resulting in biased final color
reports towards the past states.

Experiment 1

Methods

Participants. 30 undergraduate students from University of California San Diego were recruited
to participate in the study in exchange for course credit. All participants gave informed consent

and reported normal or corrected-to-normal color vision.

Stimuli. All colors were drawn from a fixed luminance circle in CIE L*a*b space (identical to
that used by Suchow et al., 2013; Schurgin et al., 2020). The colored dots presented during the
display started at a random point on the color wheel and continuously changed in a clockwise
direction on the color wheel at a speed of 120 degrees-of-color per second. The dots appeared at
random locations along preset half circular pathways around the fixation point to control
eccentricity. In the moving condition, they then bounced back and forth along the half circular
pathways at 2.7 radian per second. In the stationary condition, dots stayed at the same locations
throughout the trial. In order to create some randomness in the motion path, the dots

stochastically changed their direction at the %4, 2, and % intervals of the trial. This random



motion was implemented to reduce predictability of association between dots’ locations and

colors.

Procedure. Participants were presented with two dots on the screen each trial, one on the left
side and the other on the right side. At set size 1, one of the dots was presented black while the
other had an initial color. At set size 2, both dots had initial colors. During the stimulus display,
only the colored dots smoothly changed their colors while the black dots in the set size 1 trials

remained constant and did not have to be remembered.

There were two different motion conditions: a moving condition where the dots moved along the
preset circular paths and a stationary condition where the dots stayed at the same position
throughout the trial. The display time was randomly jittered from 2.5 seconds to 3.5 seconds in
order to prevent any temporal expectation for when the trial would end, since only the final color
needed to be remembered. After the stimulus display, the dots disappeared from the screen, and
there was a 1 second delay. After the delay, participants reported the final color of one of the
dots using a continuous color wheel (For illustration, see Figure 3). To assess possible motion
silencing of color change (Suchow & Alvarez, 2011), after the color report, participants were
asked to judge how fast the colors were changing using a Likert scale from 1 (not changing
much) to 4 (changing very fast). All conditions were counterbalanced and randomly intermixed.
Participants were instructed to maintain eye fixation in the center of the screen throughout the
experiment. The entire experiment consisted of 240 trials and each participant went through 10

practice trials beforehand to familiarize themselves with the experiment procedure.



!As we expected participants’ memories would integrate information across multiple time points, model-based
analysis (e.g., by fitting the TCC model: Schurgin et al., 2020) would not be appropriate, unless we knew the exact
level of weighting of each lag of color in the final representation. For static stimuli, the circular standard deviation is
strongly related to model-based memory strength (Schurgin et al., 2020 supplement), so we used this as our primary
measure of memory.
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Figure 3. Experimental procedure. On each trial two dots were presented on the screen, one on the left
and one on the right side. In set size 1, one of the dots was black and remained black during the entire
duration of the trial while in set size 2 both dots had colors. In the stationary condition the dots did not
move and in the moving condition the dots moved along preset circular paths around the fixation cross.
After a 1 second delay, participants reported the final color of the probed dot by clicking their response on
a color wheel.

Analysis. Color error was calculated by taking the angle in degrees that participants reported and
subtracting the target color from the reported color using circular color distance: [Reported
Color] - [Target Color]. For instance, if the target color was 45 degrees and the participant
reported 30 degrees, the color error for that trial would be -15. Because the colors were always
changing in a clockwise direction along the color wheel, negative color error value indicates a
lag (participant reported the past color) while positive color error value indicates an extrapolation

(participant reported the future color).

Precision of memory is analyzed by calculating the circular standard deviation of the error
distribution. Smaller standard deviation value indicates higher precision of memory'. Precision
specifically refers to the narrowness of the error distribution and higher precision means errors
have less variance overall. Perceptual lag is indexed by looking at the overall mean shift of the
distribution from the zero error mark (for illustration, see Figure 4). Again, negative shift

indicates a lag towards past colors while positive shift indicates a possible future extrapolation.

!As we expected participants’ memories would integrate information across multiple time points, model-based
analysis (e.g., by fitting the TCC model: Schurgin et al., 2020) would not be appropriate, unless we knew the exact
level of weighting of each lag of color in the final representation. For static stimuli, the circular standard deviation is
strongly related to model-based memory strength (Schurgin et al., 2020 supplement), so we used this as our primary
measure of memory.






Standard deviation and mean shift values were computed for each participant and compared
using 2x2 ANOVA with motion condition (stationary vs. moving) and set sizes (set size 1 vs. set

size 2) as factors.

Color speed judgment was calculated separately for each condition by averaging the responses

and compared using 2x2 ANOV A with motion condition and set sizes as factors.
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Figure 4. An illustration of the data analysis procedure. Color errors were calculated and plotted so that
the error distribution is centered around 0 (where there was no error at all in the report) and negative error
indicates bias towards the past colors. Precision is indexed by the circular standard deviation of the error
distribution in a way that lower standard deviation reflects higher memory precision.

Results

An ANOVA on circular standard deviation — our measure of memory precision — yielded main
effects of both motion vs. static, F(1, 29) =4.69, p = 0.039, and set size 1 vs 2, F(1, 29) =51.29,
p <0.001. For mean shifts, we found a main effect of motion, F(1, 29) = 55.56, p <0.001, and an
interaction between set size condition and motion condition, F(1, 29) = 6.44, p = 0.017. Overall,
participants were both more precise and more lagged when the objects were moving, and this

was particularly true at set size 2 (Figure 5).

An ANOVA on color speed judgment scores yielded a main effect of set size, F(1, 29) = 14.07, p

=0.001, and an interaction between set size condition and motion condition, F(1, 29) =7.45, p =



0.01 (Figure 6). Overall, participants rated colors to be changing faster in moving dots than
stationary dots, but this difference is more prominent at set size 1. This means that motion
silencing is unlikely to be playing a role in the current paradigm as the results are against the

prediction that motion should silence the perception of changing colors.

Follow up t-tests on the mean shifts for each of the conditions showed significant differences for
the set size 1 moving condition (t(29) = 4.95, p<0.001) and set size 2 moving condition (t(29) =
6.34, p<0.001) compared to 0 (no mean shift at all), but no significant differences for the set size
1 stationary condition (t(29) = 1.62, p =0.116) and set size 2 stationary condition (t(29) =1.13, p
=10.269).

Overall, then, we found evidence in line with the idea that participants are integrating
information over time in moving objects, rather than simply lagged in their representation of
these objects: not only were they lagged in their reported colors, but these color representations
were more precise, as you’d expect if people were integrating information across multiple time
points. This also interacted with set size in a way that the mean shift was much more prominent
for the set size 2 moving condition. Standard deviation was larger for set size two conditions

than set size one conditions, as expected with increased set size.

Experiment 2

This experiment served as a replication of Experiment 1, with one minor change. In Experiment
1, participants could have inferred the color change direction from the response color wheel, as
colors always changed in one direction along the color wheel. To address this, we varied the
color change direction in Experiment 2: Colors could either smoothly change clockwise or

counterclockwise along the color wheel.



Method

Participants. 30 undergraduate students from Dartmouth College were recruited to participate in
the study in exchange for course credit. All participants gave informed consent and reported

normal or corrected-to-normal color vision.

Stimuli. In half the trials colored dots changed their colors clockwise along the color wheel and
in other half colors changed counterclockwise. All other stimuli set up were identical to

Experiment 1.

Procedure. Other than color change directions, the experimental procedure was identical to

Experiment 1.

Analysis. Color errors were calculated such that negative values indicate lag towards the past by
flipping trials where the colors changed counterclockwise. All other data analysis was identical

to Experiment 1. Color speed judgments were not collected for this experiment.

Results

An ANOVA on circular standard deviation, our measure of memory precision, yielded main
effects of both motion condition, F(1, 29) = 11.397, p =0.002, and set size, F(1, 29) = 29.56, p <
0.001. For mean shifts, we found a main effect of motion, F(1, 29) =126.36, p < 0.001, but no
significant interaction between set size condition and motion condition, F(1, 29) = 0.63, p =0.43

(Figure 5).

One sample t-tests on the mean shifts for each of the conditions showed significant differences
for the set size 1 moving condition (t(29) = 11.10, p<0.001), set size 2 moving condition (t(29) =
7.47, p<0.001), and set size 1 stationary condition (t(29) = 3.30, p = 0.0026) compared to 0, but

no significant differences for the set size 2 stationary condition (t(29) = 1.80, p = 0.08).



Overall, this set of results provided a strong replication of Experiment 1: Mean shifts were
significantly more negative while standard deviations were significantly smaller in the moving
conditions compared to the stationary conditions. Mean shifts in stationary conditions were also

not significant against the baseline.

Experiment 3

While Experiment 1 and 2 both showed consistent data patterns, they both used identical motion
and color change speeds. In order to ask if the effects generalize beyond these particular
parameters, in Experiment 3 we significantly varied the stimuli motion and color change speeds

and asked if the same patterns arose

Method

Participants. 30 undergraduate students from University of California San Diego were recruited
to participate in the study in exchange for course credit. All participants gave informed consent

and reported normal or corrected-to-normal color vision.

Stimuli. The color changed more slowly than previous experiments at 60 degrees per second
along the color wheel (half the speed of the previous experiments). For the motion condition, the
speed of dots randomly changed between 1.5 radian per second and 3.9 radian per second in
effort to make the motion less coherent and predictable than it had been in Experiments 1 and 2.

All other stimuli set up were identical to Experiment 1.

Procedure. Experimental procedure was identical to Experiment 1.

Analysis. Data analysis was identical to Experiment 1.



Results

An ANOVA on circular standard deviation, our measure of memory precision, showed a main
effect of set size, F(1, 29) =94.65, p <0.001, and a significant interaction between set size and
conditions, F(1, 29) = 7.61, p < 0.05, but not a significant main effect of motion condition, F(1,
29)=2.60, p=0.117. For mean shifts, we found the main effect of motion, F(1, 29) =72.81, p <
0.001, but no significant interaction was found between set size condition and motion condition,

F(1, 29) = 3.80, p = 0.06 (Figure 5).

ANOVA on color speed judgment scores yielded a main effect for set sizes, F(1, 29) =10.44, p =
0.003, and an interaction between set size condition and motion condition, F(1, 29) =17.89, p <
0.001 (Figure 6). Again, a similar pattern of data was observed as Experiment 1 where color

changing speed was reported to be faster in moving condition for set size 1 but not in set size 2.

One sample t-tests on the mean shifts for each of the conditions showed significant differences
for the set size 1 moving condition (t(29) = 6.27, p<0.001), set size 2 moving condition (t(29) =
6.78, p<0.001), set size 1 stationary condition (t(29) = 2.55, p=0.016), and the set size 2

stationary condition (t(29) = 2.40, p = 0.02) compared to 0.

Overall, Experiment 3 mostly replicates the previous experiments’ results in both mean shifts
and standard deviations. Here, there was no significant main effect of motion condition in
standard deviations, but a significant interaction was found where set size 1 moving condition

yielded a significantly higher precision than set size 1 stationary condition.
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Figure 5. Mean shift and circular standard deviation data for each experiment.



4

L

3% ]

Color Speed Score

Experiment 1 B)

Set Size 2

Color Speed Score

Set Size 1

4

L

[§%]

Experiment 3
Set Size 1 Set Size 2

I Moving Condition
[N Stationary Condition

Figure 6. Color change speed judgment scores for A) Experiment 1 and B) Experiment 3. Participants
rated how fast the colors were changing using a Likert scale 1~4 with 4 being the fastest.

Experiment 1

Set Size 1
600 600
400 400
g g
-
: |
£ ]
200 ’ 200
. I III
-180 -100 0 100 180 -180
Errors .
Experiment 2
600 600
400 400
-~ -
2 2
g I g
£ £
200 |I 200
0 - ,,,-II I.!=7_ 0
-180 -100 0 100 130 -180
Errors .
Experiment 2
600 600
400 400
5 )
|
H H
200 I 200
0 — _lI Il!!- 0
0

=180

=100

100 180

Errors

-180

____=__=--lIII III-==_=__
0

Set Size 2

-100 100

Errors

-100

II
___=___--.lII ‘II.!-
0 100
Errors

=100

Il
S—— -IIIII‘II.I=
0
s

Error

Figure 7. Error distribution of each experiment by condition.

. Moving Condition
. Stationary Condition

180

180



General Discussion

While many visual working memory studies use static, unchanging stimuli, objects in the real
world are often constantly changing in both their locations and features. Here we found that
visual working memory representations of dynamically changing stimuli are more biased
towards the past when the objects are moving compared to when they are stationary. This aligns
with our hypothesis that when objects are in motion, their feature information is more naturally
integrated over time into a single object file, and that this increased incorporation of past features
makes the memory representations lag behind the current state. Critically, we also found that
object motion resulted in more precise memory reports compared to static objects. This again
aligns with our hypothesis that increased feature integration for moving objects would result in
reduced noise in memory representations as multiple noisy representations of features get
averaged, by contrast to existing hypotheses that such lags represent evidence of serial
processing and delayed sampling. Moreover, such effects were robust over low-level visual
changes in stimuli such as more vs. less random motion patterns and slower vs. faster color
changes. The combination of larger memory lag and higher memory precision suggest the role of

object motion is that of facilitating more feature integration of dynamically changing stimuli.

Previous studies using dynamic stimuli have found that tracking the changing features result in
perceptual lags where observers’ representation lags behind the current state of the stimuli
(Howard & Holcombe, 2008; Howard et al., 2011). One suggested mechanism of this result was
that serial processing of each stimulus is contributing to delays in observers’ ability to update the
continuously changing feature state, resulting in lagged reports (Howard & Holcombe, 2008).
However, such serial processing cannot account for our findings in increased precision when the
dynamic stimuli are in motion. However, this precision gain can be explained by increased

temporal integration of the features in the moving condition. Prior works in ensemble perception



has shown that observers can accurately judge the average information of multiple items (e.g.,
Ariely, 2001; Chong & Treisman, 2005), and that the uncorrelated noises can be cancelled out
through the process of averaging multiple noisy inputs, leading to more precise ensemble
representation than individual item representation (e.g., Alverez, 2011; Brezis et al., 2015; Baek
& Chong, 2020). Similarly, more temporal integration in the moving condition in our task could
also result in more ‘“‘samples” of each individual feature representation as part of the final object
representation, with noise cancelling out, resulting in higher precision observed in our current

data.

Unlike the previous investigations that showed perceptual lags when tracking dynamic stimuli,
here we also find that stationary dynamic colored dots resulted in a slight, non-significant
positive bias towards the direction of the color rotation. While this may seem contradictory to
previous results, Howard & Holcombe (2008) also report that the perceptual lag was not equally
strong for all types of features. For instance, tracking changing spatial periods resulted in much
larger perceptual lag than tracking rotating orientations. Another study by Callahan-Flintoft et al.
(2020) used stationary dynamic color dots very similar to our paradigm and showed that when
observers are asked to report the color at a specific cued time reports are biased towards the
colors that follow the cue. Although our paradigms did not have a cue but rather asked observers
to report the final state, it could be possible that in the stationary conditions participants inferred
from the smooth color changing and reported colors that are slightly biased towards the future
colors in the direction of the color change. Such biases are completely gone when the stimuli are

in motion and representation lags become a lot more prominent.

Why is temporal integration so much more prominent when stimuli are in motion? Theories
based on the idea of “object files” may be useful to helping explain such findings. In real-world
vision, we encounter an overwhelming amount of visual information that is changing around

from moment to moment. Nevertheless, we are able to maintain a stable visual percept in such a



noisy environment. One strategy our visual system takes to do this is to simplify the world by
forming enduring representations of a few objects and integrating the information about these
objects over time, a process often referred to as an ‘object file’ (e.g., Kahneman et al., 1992).
Representations that are formed into an object file have certain privileges such as allocation of
attention and priming effects (Blaser, Pylyshyn & Holcombe, 2000). This can also be
advantageous when establishing invariant object perception. For instance, we are able to
recognize objects despite dramatic variations (Li & DiCarlo, 2008; Cox et al., 2005). Similarly,
when features of the object (i.e., colors) change due to varying environmental aspects of the
object such as viewpoints or lighting, we are able to integrate the changing features into the
single object file. Previous works have shown that spatiotemporal continuity has an important
role in creating such enduring object files (e.g., Spelke et al., 1995; Gao & Scholl, 2008) and
may also be important for creating robust, invariant long-term memories of real-world objects
(Schurgin & Flombaum, 2017). This explains that motion in our experiments induced more
enduring object files for the dynamic color dots, ultimately resulting in color integration over a
longer range of time periods than the static color dots. Other works have shown that such
continuous motion has been found to improve color constancy (Wener, 2007) and also result in
more bias towards past states of stimuli (Liberman et al., 2016). This is consistent with the
finding in our experiment that the effects were less robust in Experiment 3, where both motion
direction and speed change more sporadically, interrupting the continuity that helps facilitate the

representation of a stable object file.

One concern in current experiments is that the stationary condition and motion condition are
inherently different in their low-level aspects and motion may naturally induce additional
cognitive processes during the task. For example, moving stimuli are known to induce
representational momentum where observers project the representation forward towards future
(e.g., Kelly & Freyd, 1987), potentially influencing how colors and object positions are bound in

the memory representation. However, such perceptual differences between moving and



stationary stimuli would not predict higher precision in memory reports for the moving stimuli.
Rather, tracking the moving objects while concurrently tracking the changing features would
require more attentional resources and therefore would predict an overall impairment on the
working memory task. Generally, motion is known to make object recognition harder as it limits
the viewing time of the object at a specific location. Many other works investigating multiple
identity tracking have shown that identity information (i.e., objects’ features) is not well encoded
when tracking their motion (e.g., Scholl et al., 1999; Horowitz et al., 2007; Bahrami, 2003).
While these studies are largely dealing with much more cognitively demanding situations than
ours (i.e., tracking more than two items), another work by Saiki (2003) has shown that color
change detection suffers when stimuli are are moving even at set size 2. By contrast to such a
prediction, we find that memory precision was significantly higher when the dynamically
changing stimuli were in motion. Future investigations could aim to control for the low-level
differences between the two conditions by employing other manipulations that can effectively
break the continuous object perception. For instance, other studies have shown that past stimuli
features have less influence on the later features if the object features are changing randomly
without any continuous trajectory (Callahan-Flintoft et al., 2020) or when the stimuli do not
follow a continuous motion trajectory (Liberman et al., 2016). Similarly, we expect that the main
effects observed in our study would be reduced if either the stimuli features or the motion is less

continuous.

Additionally, we collected participants’ subjective ratings of the color changing speeds for
Experiments 1 and 3 to investigate whether the “motion silencing” effect was present in our
study. Motion silencing refers to an illusion where changing features of stimuli do not appear
changing when they are in motion (Suchow & Alvarez, 2011). While further investigations on
motion silencing have shown that visual crowding is required (Turi & Burr, 2013), we wanted to
ensure that the current results did not arise due to observers not seeing the color changes in the

motion conditions. Our results showed that observers rated colors to be changing faster in set



size 2 compared to set size 1. For set size 1 conditions, observers found moving colored dots to
be changing faster, but this pattern was not found for set size 2 conditions. It may be that motion
silencing was present for set size 2 conditions and thus resulted in elimination of motion induced
color speed bias observed in the set size 1 conditions. Nevertheless, overall our data shows that
the motion silencing effect is not likely to be the main driver of the perceptual lag and increased

precision we found in the motion condition.

Taken together, we find that motion in dynamically changing stimuli can facilitate more
enduring object files, resulting in increased integration of the changing features. Such integration
process is reflected by more lagged but also more precise memory representations for moving
stimuli. This can support our ability to maintain stable memory representations in drastically
changing visual environments. Overall, these results suggest the role of motion and object files

for supporting the creation of robust memory representations.
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