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ABSTRACT: In holography, the IR behavior of a quantum system at nonzero density is
described by the near horizon geometry of an extremal charged black hole. It is commonly
believed that for systems on S3, this near horizon geometry is AdSs x S3. We show that
this is not the case: generic static, nonspherical perturbations of AdSy x S blow up at the
horizon, showing that it is not a stable IR fixed point. We then construct a new near horizon
geometry which is invariant under only SO(3) (and not SO(4)) symmetry and show that it is
stable to SO(3)-preserving perturbations (but not in general). We also show that an open set
of nonextremal, SO(3)-invariant charged black holes develop this new near horizon geometry
in the limit T"— 0. Our new IR geometry still has AdSy symmetry, but it is warped over
a deformed sphere. We also construct many other near horizon geometries, including some
with no rotational symmetries, but expect them all to be unstable IR fixed points.
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1 Introduction

A standard entry in the holographic dictionary states that the dual of a thermal state of a
field theory at temperature T and chemical potential p is described by an asymptotically
anti-de Sitter (AdS) charged black hole [1]. If the field theory is on a round sphere and pu
is constant, the black hole is given by the Reissner-Nordstrom (RN) AdS solution. Since
another tenet of holography is that the radial direction corresponds to an energy scale in
the field theory [2], the IR behavior of the theory is described by the near horizon limit of
the extremal® solution, which for RN AdS is AdSy x S™.

!By extremal, we will always refer to the T' = 0 solution. See [3] for an example where this is not the case.
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Figure 1. Illustration of stable and unstable fixed points in the RG sense.

In four bulk dimensions, AdS, x S? remains the near horizon geometry of the extremal
black hole even if one deforms the chemical potential or the boundary metric to a static,
nonspherical configuration [4]. (For smooth horizons, it has been shown that the only static
near horizon solutions in Einstein-Maxwell theory are AdSs x H where H is a space of
constant curvature, i.e., a sphere, torus, or compact Riemann surface [5]. Even though this
theorem does not apply to generic nonspherical solutions since the horizon is singular [4],
the conclusion still holds.) Intuitively, this is because the extremal horizon is infinitely far
away from any effect outside the horizon (along a static surface). From the dual field theory
perspective, AdSs x S? describes a stable IR fixed point. Note that we are not referring to
dynamical stability, but rather stability in the RG sense, which is a property of the space
of static solutions. It is widely believed that in higher dimensions, AdSs x S™ similarly
describes a stable IR fixed point.

We will show that this common belief is incorrect. For all n > 2, generic static
nonspherical perturbations of AdSs x S™ blow up on the horizon, even though the horizon
is still infinitely far away. We will construct a new near horizon geometry in D =n+2 =25
that is invariant under only SO(3) (and not SO(4)) symmetry and show that it is stable
to SO(3)-preserving perturbations. In addition, we construct an open set of nonextremal,
SO(3)-invariant black holes and show that as T'— 0, they approach our new near horizon
geometry. This shows that, within this symmetry class, our new solution is a stable IR fixed
point for four-dimensional holographic theories. Of course SO(4)-symmetry is a special
point in our class, and if one imposes it, one still flows to AdSs x S3, but this is now seen
as an unstable fixed point. This is illustrated in figure 1.

There is actually a one-parameter family of these new IR geometries which are conve-
niently labelled by the total charge (. While we do not have analytic expressions for the
new solutions, we can construct them numerically and (for small @) check them with an
analytic perturbative expansion. When @ is small, the solutions are close to AdSy x S3.
However, as ) increases, the curvature near the poles of the S? decreases so the sphere
becomes flattened. For even larger @), this curvature becomes negative. In the limit () — oo



the curvature near the poles approaches a finite negative value, so the sphere looks like two
large hyperbolic disks joined by a positive curvature ring around the equator. There is still
an AdSs factor, but now it is warped as one moves around the deformed sphere.

The solutions we find turn out to be unstable to perturbations that break the SO(3)
symmetry, so they do not describe true stable IR fixed points. It is an important open
problem to find the gravitational description of these true stable fixed points. One might
think that a reasonable approach to this problem is to first classify all possible near horizon
geometries in higher dimensions, and then study their stability. However this approach is
doomed to failure since we expect there to be an infinite number of near horizon geometries.
We show how to construct large families of them, including some with no rotational
symmetries at all. Unfortunately, the solutions we construct are all RG unstable.

2 Reissner-Nordstrom AdS is IR unstable in D =5

To study IR fixed points of four-dimensional holographic theories, we work with the D =5
Einstein-Maxwell theory
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where F' = dA, A is the Maxwell 1-form potential, L is the AdSs length scale and G5 is the

five-dimensional Newton’s constant. The equations of motion derived from this action read
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There is a unique two-parameter spherical solution to these equations (with a non-
constant areal radius) which is given by
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where d)2 is the metric on a unit radius round three-sphere and
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This is the familiar Reissner-Nordstrém AdS solution (RN AdS).

We will take |g| < gext, with
V3 3
Goxt = 5 \[ 1+ 2L—§ri, (2.5)



so that r = r4 is the largest root of f(r) = 0. The black hole event horizon is then the null
hypersurface r = r1, where f(r) vanishes. For |g| < gext, f(r) vanishes linearly and the
black hole has non-vanishing Hawking temperature

7, Dl 26 <1_ Ll ) , (2.6)
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whereas for ¢ = qext, f(r) vanishes quadratically at » = r, and the hole is said to be
extremal and has vanishing temperature. The parameter ¢ determines the total charge of
the black hole by

Tq
=1 2.7
Q="1. 27)
while its energy F, chemical potential p and entropy S are given by
3nr2 (12 4¢? q 2
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respectively. It is a simple exercise to show that all of these thermodynamic quantities
satisfy the first law of black hole mechanics

dE = Ty dS + pdQ. (2.9)

Hereafter we will focus on the extremal case. In particular, we are interested in the
near horizon geometry of the RN AdS black hole. To obtain this, we take a limit where we
zoom near the extremal horizon located at r = r. Define new coordinates p, T by

Ll T
r=ry(14+ Ap) and = AdS2 (2.10)
T4+ )\
where ) is a constant and we defined
e
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We then take the limit A — 0. The resulting line element is the Robinson-Bertotti solution
(or a five-dimensional version thereoff), which takes the familiar AdSy x S3 form

d 2
dskp = Lias, <—p2 dT? + p’;) +71d03, (2.12a)
and 5
Agrp = 3?,” pLias, T, (2.12b)
+

with p = 0 being the black hole horizon, which in this limit yields the AdSy Poincaré horizon.
The Robinson-Bertotti solution is itself a solution of the Einstein-Maxwell equations, since
it is just a particular limit of the RN AdS black hole.

This near horizon geometry, according to the standard rules of AdS/CFT [6], controls
the IR of the dual theory. For this reason zero temperature solutions such as the one above,
are often called IR geometries. To understand whether a given IR geometry is stable, in
the RG sense, we perturb the IR geometry by time-independent perturbations (h,a), where
h and a are metric and gauge field perturbations, respectively.



One might think that perturbing (2.12) is a complicated task, but it turns out that
symmetry can help us. We first note that AdSy has constant curvature. This means
we can use harmonic functions on AdSy as building blocks for constructing our generic
perturbations (h,a). For time independent perturbations, harmonic functions on AdS, take
a particularly simple form:

Oads, Sy(p) — ’Y(val)sw(p) =0 = S5p=Cp", (2.13)
AdS»
where C is a normalisation constant.
To construct perturbations (h,a) we use S,(p) as building blocks. Let I be an AdS,
index and I an index on S3. It then follows that metric perturbations with indices on the

S3 only behave as scalars under coordinate transformations on AdSs, so we take

hijS«Ap) hjj (2.14)
where h jj is a symmetric 2-tensor on S3. The metric components h 1.j» on the other hand,
behave as vectors, so we set

h[j:DIS“/(p) iLj (2.15)
where Dy is the covariant derivative on AdSs and h 7 & vector on S3.

Finally, we come to metric perturbations with indices on AdSs. These behave as
symmetric 2-tensors with respect to coordinate transformations on AdSs. Any symmetric
2-tensor can be built from a trace and traceless symmetric 2-tensor. The latter two need to
be built from S,(p). We thus set

hry =Sy hr grs + hrSry (2.16)
with
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where gy is the metric on AdSy and h 1, and lAzT are functions on S3.
We now discuss the thorny issue of gauge invariance. A generic gauge transformation &
can be written using the same procedure as above. In particular we find

Euda® = &g DrS,(p)da’ + ff S,(p) dz! , (2.18)

where és is a scalar on S® and é ; is a vector on 53. The metric perturbations will transform
under an infinitesimal transformation generated by & according to

5h = Legrn (2.19)
which induces
~ 1) ~
shy = 10 F D g (2.20a)
LAdSQ

Shy = 2£&g (2.20b)

Sh; = 2(D;és +&;) (2.20c)

Shij = (Led)jj (2.20d)



where g;; is the metric on a unit radius round 53 and D i its metric preserving covariant
derivative. We will work in a gauge where we choose ég and &; so that hr =h i=0.
For the gauge field perturbation, we have

a=asS,(p)dT, (2.21)

where Gg is a function on 3. Our perturbed gauge and metric field configurations are thus,
in our gauge, parametrised by hr, h jj and ag, which depend on the S3 angles only.

Next we repeat the procedure and decompose the remaining perturbations in terms
of spherical harmonics on the S3. These, in turn, are parametrised by a quantum number
£ € N. Since we want to study nonspherical perturbations, we are interested in £ > 0.

We are left with a linear system of homogenous, algebraic equations for the coefficients,
whose nontrivial solutions can be studied by computing the corresponding characteristic
polynomial. This reduces to a fourth-order polynomial equation in the scaling exponent -y,
with coefficients depending on ¢ and 7. All the roots of the polynomial, which provide the
non-trivial solutions to the homogenous equations, are real. We can eliminate two of the
four solutions with boundary conditions at the horizon. Since the two smallest roots are
negative, the corresponding perturbation would blow up as p — 0. We therefore discard
them as our choice of boundary conditions. The remaining two roots give the physical
scaling of the nonspherical perturbations near the p = 0 horizon. If one of them is again
negative, it cannot be removed by boundary conditions, and indicates that the perturbation
is singular on the horizon.

It is convenient to view the roots as functions of the dimensionless horizon radius
y4+ = r+/L. The largest two roots are:

1 1 1
== — A\ —12 +8/=4+12(5%2 — — -1 2.22
Y+ (4, y4) 5 [\[° N B 8\/4 + (ﬂ+ 144> e 7 (2.22a)
where
Ligs 1

Note that ), is the eigenvalue of spherical harmonics on S and L AdSs/ L? is only a function
of y4 (see eq. (2.11)).

It remains then to check whether v4 (¢, y) are positive. It turns out that v4(¢,y4)
is positive for all values of ¢ and y; but v_(¢,y+) is not. In particular, for £ = 2, y_ is
negative for all y, > 0! Since a generic linear perturbation will always contain the £ = 2
mode with some coefficient, we conclude that generic nonspherical perturbations blow up on
the AdSs x S horizon. Nonlinearly, even if one starts with a deformation on the boundary
that does not include an £ = 2 mode, it will be generated as one evolves in to smaller radius.
This means that from the standpoint of the RG flow of a dual field theory, AdS, x S is an
unstable IR fixed point.

We now comment on the £ = 0, 1 modes. In this case one has to repeat the above analysis
separately, since some of the structures that are used to decompose our perturbations with
respect to coordinate transformations on S3 turn out to vanish. A deformation with ¢ = 0
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Figure 2. The scaling exponents v_ for perturbations of AdS, x S3, as a function of y, = r, /L,
computed for several values of £ shown on the legend on the right.

corresponds to an infinitesimal deformation of the background charge. For ¢ = 1, the
calculation is more subtle. Once the dust settles, one finds a single pair of modes, with one
being negative and another positive. Again, we discard the smallest exponent based on
boundary conditions as p — 0. We thus restrict to the positive exponent, which is precisely

given by v (1, y4+) with v4 (¢, y+) given in eq. (2.22a).
For modes with ¢ > 3, v_ (¢, y4) becomes negative whenever the horizon is large enough.

v 250 = 5o =2+ 4). (2.23)

In figure 2 we plot v_ (¢, y+) for several values of £. Note that these higher ¢ modes become

The condition is:

more divergent on the horizon of a large black hole.

The instability of the near horizon geometry that we found above in D = 5 becomes
even worse in higher dimensions, where the solution is AdSy x S™. The computation detailed
above can be readily generalised to n > 3. The corresponding scaling dimensions are now

given by
_1 2)\@ 4n(n+1))\g
7:|:(£7y+)*§ 5 n—1 (n—1)2 B—l-
1/2
4(n+1) 1 /n—1\2 n—1\2 1
+—>" 04 2 —|— —_— —= 2.24
n—1 \J N)\elﬁ+ 4n? <n—|—1> +<n+1> 2’ ( 2)
with
Y3 1
By = + —— and N=L(l+n-1). (2.24b)
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Figure 3. The scaling exponents v_ for perturbations of AdS; x S°, as a function of y, =, /L,
computed for several values of £ shown on the legend on the right.

There are now more modes that are always unstable. In analogy with the D =5 (n = 3)
case, we see that for £ =n — 1, we have

v—(n—1,0)=0. (2.25a)
However,
1 (|n -5
_(2,0) = = -1 2.2
20 =5 (B -1), (2.25)

which is negative for all n > 3. In fact, for £ <n —1, v_(¢,y4) < 0 for all y; > 0. Which
mode dominates near the horizon depends on the size of the black hole. This is illustrated
in figure 3 where we plot v_(¢,y+) for n =5 and ¢ = 2,3, 4,5. Since Reissner-Nordstrom
with A = 0 corresponds to y; = r; /L = 0, this shows that the near horizon region of RN
in D > 5 is also unstable to nonspherical perturbations.

An electrically charged BTZ black hole (whose near-horizon geometry is described by
AdSy x S1) is different from the above discussion. This stems from the fact DoDpgf on S!
(for any function f) is a pure trace. Moreover, gravity has no local degrees of freedom. In
this way, three-dimensional Einstein-Maxwell theory has a lot in common with the ¢/ =1
sector of its higher-dimensional counterparts. The background reads:

2

2 1,2 dP2 2 1,2

g:2

and I
A= pdt. (2.26D)

Notice that r is an arbitrary parameter. We may again decompose perturbations in terms
of S, (p) and Fourier modes ¢ on S'. Then, we find two possible values of :

1 3 2m2 L2
’Yizfii* 14+ ——

2.27
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The boundary conditions at the horizon choose v, > 1. Thus, we see that the BTZ black
hole is RG stable. Nevertheless, it may suffer from (rather mild) tidal-force singularities as
long as 1 < v < 2.

3 A new SO(3)-invariant IR geometry

In this section we construct a new near horizon geometry which is only invariant under an
SO(3) subgroup of the SO(4) rotational symmetry. We will show that it is stable to small
SO(3)-invariant perturbations. Since charge is conserved in Einstein-Maxwell theory, we
need a near horizon geometry for each Q. For AdSy x S this just corresponds to a trivial
overall rescaling. However, our new solutions will depend nontrivially on @, so we actually
construct a one parameter family of new IR geometries.

These new geometries can be written as a warped product of AdSy with a deformed
three-sphere, where the AdS, length scale depends on the angles of the S3. The S is
deformed in such a way that preserves a round S2. In order to describe these solutions we
first introduce an angle € [0, 7] and write the metric on the unit round S® as

dQ3 = d6? + sin® 0d03 (3.1)

where dQ3 is the metric on a unit radius round S2.
We then write our full IR metric and gauge field configuration as

A2 dp?
ds? = L2 {B(e) (-Ag P+ p@) +Y2

. 2 0
H(0)%d62 + -2 d03 .
(0)*do* + @ dQs (3.2a)
and

A= —pr Ao pdt, (3.2b)

Note that the factor in parenthesis is just AdSe with the Poincare horizon at p = 0. Our
Ansatz depends on two constants, Y, and prg, that determine the size of the horizon and
charge density respectively. We have introduced a third constant Ay that just rescales t.
It will play no role in constructing the near horizon geometries, but will be useful when
we later relate these geometries to full asymptotically AdS solutions. The function B(#)
describes the warping of the AdSs, and the function H(6) describes the distortion of the
S3. The entropy, S, and total electric charge, @, of our field configuration are given by

2v73
I

T gin2 @
S — PIR -3 sin
2G5

and Q= —-Y7} 0

Gs
Note that since charge is conserved, ) can be computed at the boundary or the horizon.

de. (3.3)

The Maxwell equation is automatically satisfied using eq. (3.2b), whereas the Einstein
equation yields a pair of nonlinear ordinary differential equations

sin? @ ' ) 4 p?
( 72 B’) +2YZsin?60 | 1-— 5% —4B ) =0 (3.4a)



where / denotes differentiation with respect to # and

220\ /12 2
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Note that, as advertised, Ag does not appear in these equations of motion. Regularity at

the poles requires the boundary conditions B'(0) = B'(7) =0 and H(0) = H(w) = 1.
From eq. (3.4a) it is clear that prr is not a free parameter. Indeed, one can integrate

both sides of eq. (3.4a) and use the above boundary conditions to find the following relation

/07r sin? § [ - ggff;) - 43(9)1 d9=0. (3.5)

Thus, although our Ansatz depends on two free parameters (Y., pir) the relation above
fixes one of them, so that we only have a single parameter free.

3.1 Perturbative analytic treatment

We have not managed to find closed form solutions of egs. (3.4). We have, however, found an
analytic perturbative scheme which we can extend to whatever order in perturbation theory
we wish. The idea is the following. We have seen in section 2 that ¢ = 2 perturbations have
~v—(2,0) = 0. This suggests that there might exist a new family of near horizon geometries
with AdSy symmetry that branches off from the zero size limit of AdS, x S2. Since the zero
size limit is singular, this is an unconventional perturbation expansion. Nevertheless we
will see that it is well defined.
We thus expand

“+o0o
B(9) =Y b (9)e’, (3.6a)
=1
+(X) . .
H(O) =1+ hD (o), (3.6b)
=1
+o00 o
pha =D 20 (3.6¢)
=1
foo
v2 =35l (3.6d)
=1

where € is a book-keeping parameter, whose normalisation we choose to be
s
/ Bsin? 0 Y;—5(0)d0 = &%, (3.7)
0

where Yy(#) is a spherical harmonic on the three-sphere preserving SO(3), which we choose
to be given by

}Q(H):\/EW s that /Own(e)y%e))dezazvz and Y;(0)>0. (3.8)
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Note that H starts with 1 to satisfy our boundary conditions, and € > 0 is required since
Yf begins at order e.

Despite the fact that e = 0 corresponds to a singular solution, at each order in ¢ our
boundary conditions are sufficient to solve for each of the functions above. In particular,
for any finite value of € our perturbative expansion yields a completely smooth solution.
We carried this expansion all the way to O(e”). The first few coefficients are

— 61
T p—— b0 g) = D0c0s(20) ~61.
2(2m)1/4 14v/27
3) 588 cos(26) + 588 cos(46) + 6354
b3 (9) = ,
147+/7(27)3/4
4 23/*5in2 0 496 [2
(g = 227 50 @) = 2 12 42
() T h'(0) 29 |/ 5 sin 0,
162/4sin? 6
B (0) = ———— >~ 2891 cos(26) + 11442] ,
(0) 1029ﬁﬂ3/4[ cos(20) ]
= = VT = _ 6L i 155%5
8(2m)L/4 5627 08+/7(27)3/4
s _ 20T 5 _ 205 [2 S _ T30t
+_ﬂ—1/4’ +_? ;) +—W. ()

Note that since the solution starts with an £ = 2 perturbation, there is a reflection symmetry
about 6 = m/2 which is preserved to all orders.

With the above it is a simple exercise to compute the total charge and entropy as a
function of €. These turn out to be given by

GsQ  21n3/* N 303 ng36369\/72 15631151 3
Lz 24 7V/7(2m)1/4 343 Vo 2401+/7(2m)3/4

682434694 , 630372065550
9 9
504217 823543+/7(27)5/4

>+ 0(56)1 (3.10a)

and

615 - 574395 2l 34688917 4
14/7(2m)1/47 2744427 5488y/7(2r)3/4

39249107029154+ 309058579837106 _
301181447 421654016+/7(27)5/4

G55 _ o1/873/4,13/8_3/2

L3 b

5+O(56)] . (3.10b)

respectively. The parameter ¢, though very useful for practical implementations, has little
physical meaning. We shall see that the entropy of this novel solution is not very different
from that of an extremal RN-AdS black hole with the same total charge (). For this reason
we define

AS = 5(Q) - San(Q) (3.11)

which gives the difference in entropy between one of the solutions we are seeking to construct
and an extreme RN-AdS black hole with the same total charge Q. It is then a simple

- 11 -



exercise to compute AS as a function of £ (or alternatively, @ through eq. (3.10a)). The
final result, consistent with our O(¢”) expansion for B and H, turns out to be

1/8.5/8 3/8
G5 AS _93/871/4g T/8,9/2 _ 34682'/875/8 |, , 98712375/ £13/2 4 0(15/2)

JE 75/4 S VET 2 Y IV
. 16v2 (G5Q>9/2 L 310v/3 <G5Q> | 415279 (G5Q>2
© 44175/231/4 497 L2 480272 \ L2
G5 Q
+0 ( L52 )H (3.12)

This analytic expression works remarkably well when Q/L? < 1.

3.2 Exact numerical results

We now solve egs. (3.4) fully non-linearly using numerical methods. It is easy to see that,
at least locally, egs. (3.4) gives a one-parameter family of solutions. It might appear that
egs. (3.4) depends on two parameters, p%R and Yf, but because of the global constraint in
eq. (3.5), one of these parameters gets locked in terms of the other.

We discretize the 6 direction with a Chebyshev-Gauss-Lobatto collocation grid, and
solve the resulting equations using a Newton-Raphson method. These methods have been
reviewed in the literature in [7]. The size of the horizon is determined by Y, and the charge
@ is a monotonically increasing function of Y. We are able to construct solutions for all
Q up to about G5Q/L? ~ 3 x 10* without encountering any numerical issues. We believe
they extend to arbitrarily large Q).

In figure 4 we show AS for charges up to G5Q/L? ~ 100. Note that AS < 0 for all Q,
showing that the new IR geometries have smaller entropy than RN AdS with the same charge.

We now explore the geometry of a spatial cross section of the horizon. It is topologically
53, but is no longer round. The reflection symmetry about 6 = 7/2 that we saw in the
perturbative solution remains in the exact solutions for all (). To begin, let us try to embed
it into R*. To do this we set

Z(0),
yo =L R(H) cos b,
y3 = L R(0)sin 6y cos ¢,
ys = L R(A)sinf; sin¢,

with 0; € [0,7] and ¢ ~ ¢ + 27 the usual latitude and longitude angles on a two-sphere,
respectively. We then compare the induced metric on

4
ds* = Zdyi2 (3.13)

with that of a spatial cross section of our horizon obtained from eq. (3.2a). We thus obtain
Y+ sin 6

VH(0)

R(0) = and Z'(0)* =Y H(9)* - R'(9)*. (3.14)

~12 -
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Figure 4. The difference in entropy between the new near horizon geometries and RN AdS, as a
function of charge.

The latter equation can be solved using numerical methods. For small Y. (i.e. small @) the
horizon is only slightly distorted from a round S2, consistent with the previous perturbative
results. For sufficiently large values of Y (i.e. large Q) there is no solution to (3.14),
showing that the near horizon geometry stops being embeddable into R*. This is similar
to Kerr and Kerr-Newman black holes near extremality [8]. The isometric embedding of
the horizon for G5Q/L? ~ 1.61 is shown in figure 5. One can see that the horizon becomes
flattened like a pancake. The black dashed line shows what a perfect sphere would look
like, for comparison. The blue disks correspond to the numerical embedding obtained by
solving eq. (3.14).

In order to picture the large @ solution, we first plot R and F? on the horizon, as
a function of # for G5Q/L? = 100. This is shown in figure 6. We can see that near the
equator, i.e. § = 7/2, the Ricci scalar R is positive as expected, but R becomes negative
near the poles. In addition, we see that the electric field is stronger at the equator and
weaker near the poles.

To map out how a round sphere with uniform electric field (for small Q) evolves to
something like figure 6 (for large Q), we plot R(0), R(w/2), F?|,_, and FQ‘HZ% as one
increases (). This is shown in figure 7. One clearly sees that the curvature at the poles
decreases rapidly as @ increases from the large positive curvature of a small sphere to a
constant negative value. The curvature at the equator also decreases but settles down to a
constant positive value. The limiting behavior at large @) is

lim L2R(0) = Ry ~ —9.3913, lim L*R(r/2) = Re ~ 9.3058, (3.15a)
Q—+o0 Q—+o0
and
lim F2‘ ~ —2.5047 lim FQ‘ ~ —18.9797. (3.15b)
Q—+o0 0=0 Q—+oo =5
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Figure 5. Isometric embedding of the near horizon geometry into R*. The black dashed line shows
what a perfect sphere would look like and the blue disks represent our novel pancaked IR geometry.
This particular embedding was generated for G5Q/L? ~ 1.61.
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Figure 6. R and F? on the horizon, as a function of  for Q ~ 100.523.
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triangles) as a function of Q.

Since the horizon volume is growing with @, but the curvature is not decreasing, the horizon
must look like a large three-dimensional hyperbolic space near each pole, joined together by
a positive curvature ring around the equator.

To understand the limiting geometry more explicitly, we will change gauge. Consider

2 _ 72 42 2d7t2 d7p2 >2 [ 77 2, 2 2
ds* =L“¢{B(x) | —Agp 72 + 2 + Y7 |H(x)dx* +sin” x dQ3 (3.16)

instead of eq. (3.2a). This amounts to a simple change of coordinates. We are interested in
the large fﬂr limit of the resulting equations of motion. The advantage of this coordinate
system is that we have to solve just a single second order equation of motion for B. Indeed,
after some algebra, we find that H can be expressed in terms of B and its first derivative:

~ 1 1 B 2
H = - — <sin — +4cos B> — 12 B? cos® ,
%) 4B2+ Y2 [p} — B(1—6B)]sin?x [ X ox X X
(3.17a)
while B(y) satisfies the following second order differential equation

0 (sin?x OB 2}7_2\/ H 9 9
— | —=——| — —=—s-i 4 —3B+12B°) =0. 17b
aX(\/ﬁ@() Y X(PIR 3B + ) 0 (3.17b)

Note that near the poles, located at x = 0,7, eq. (3.17a) automatically yields H=1,asit
should from regularity. The solution we seek to construct is even around x = 7/2, so we have

0B
Ox

= 0. (3.18)

X=%
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From eq. (3.17a) we find that in order for H(7/2) not to vanish we must demand

p% =B (g) [1 - B (g) (6 + %)1 . (3.19)

The above equation, so long as B(m/2) is non-vanishing, provides a simple relation between
p¥s and B(w/2). In particular, in the large Yy limit we find

p2 =B <72T) {1 — 6B <72T)] . (3.20)

We would like to find a similar relation, in the large Yy limit, between ps and B(0).
However, it is clear from eq. (3.17a) that the expansion near xy = 0 needs to be treated with
care, since the factor of fﬁz appearing in the denominator comes multiplied by sin? . In
order to deal with this, we first change into a new variable

&= 173 sin y (3.21)

and take the large }7+ limit a posteriori, while keeping & fixed. This ensures that while we
take Y, to be large, we are zooming in to xy = 0. This procedures then yields

Pin = 7 11— 4B(0)]5(0), (3.22)

to leading order at large Y, . We have thus found a relation between B(0) and B(w/2) for
large horizons, by combining eq. (3.20) and eq. (3.22).

We can use this result to obtain analytic expressions relating R and F? at the equator
and at the poles. Let us start with R. This is a function of H(x) and its first derivative
only. However, from eq. (3.17a) we can alternatively express R as a function of B and its
first and second derivatives. By using the equation of motion for B (see eq. (3.17b)) we can
eliminate all second derivatives, thus finding an expression for R as a function of B and its
first derivative only. Finally we note that the first derivative of B vanishes at § = 0,7/2,
so we are left with an expression for R(0) and R(7/2) as a function of B(0) and B(w/2),
respectively.

We can now substitute in the above relation between B(0) and B(w/2) to obtain an
analytic relation between Ry = R(0) and R, = R(w/2), valid for large Q. The result is:

9

Ro=-——
07 128(R. + 16)

(3Re +32) (Re — 32) — (Re +32) \JOR2 + 64R, + 1024| . (3.23)
We have tested this relation with the values in eq. (3.15a) and find that it matches the
numerical results to within 0.1%.

Since F? only depends on B and pig (which is determined in terms of B via (3.20)
or (3.22)) we clearly have a relation between F? at x = 0 and at x = 7/2. But we can also
express both of them in terms of R.:

_lim LR
Y, —4o0 X=3

_ —% (Re +16) | (3.24a)

~16 —



and

2(Re + 1
Jim LQFQ‘ 3072 (R. + 16)

- . (3.24b)
¥, o0 O (BRe + 96 + IRZ + 64R, + 1024)

Using the value quoted in eq. (3.15a) for R, we find that these expressions reproduce the
values quoted in eq. (3.15b) to within 0.25%. So we see that the large @ limits of the
curvature and Maxwell field at the equator and the pole are all determined by R..

3.3 RG stability of the new IR geometries with respect to SO(3) preserving
deformations

In this section we study the RG stability of our new near horizon geometries. The analysis
developed here has a drawback: it is a linear analysis and it could well be that nonlinearities
change the overall picture. In the next section we study fully nonlinear deformations and
show that this is not the case.

Before proceeding let us briefly discuss what the expectations are. When we studied the
RG stability of AdS, x S2, we decomposed all perturbations in terms of spherical harmonics
on S3, which in turn were labelled by a quantum number ¢. For each value of ¢ we can find
a total of four scaling exponents . Two of which are eliminated via boundary conditions
at the horizon, since they turn out to always be negative. The remaining two roots are
then studied as a function of y., or equivalently (). We would like to keep this procedure
as much as possible.

However, once we break SO(4) we need to find a way to articulate what we mean by
a perturbation having a certain £. We do this by counting nodes along the 6 direction.
This allows us to make sense of ¢ beyond spherical symmetry. Note that a given standard
£-harmonic on the three-sphere does have £ nodes along the polar direction. For each value
of ¢ # 0,1 we are then supposed to find four values for the scaling exponents. We discard
the two most negative exponents, which connect to the unphysical scaling exponents when
SO(4) symmetry is restored (i.e. @ = 0). Unlike for the perturbations of AdS; x S3, we
now need to resort to solving an honest quadratic Stiirm-Liouville problem, which we will
detail next.

First, we present our perturbative Ansatz, which is a function of the scaling exponents
. We then take g = g+ h, A= A+ a, with bared quantities being our novel IR geometries,
and set

2 2
6ds? = hgpdaz®dab = p7 L2{B(9) @ (0) <—A% ,02di + dpp2>

g L2
2 2 12 sin?6 |
and
0A = aadz® = —pir Ao pr 7 qu(6) dt. (3.25b)

Note that the perturbations preserve an SO(3) symmetry. This form of the metric is
already gauged fixed, in the sense that hy and h,, are not independent components, and
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metric components of the form h,y are absent. These conditions fix both infinitesimal
reparametrisations of 6 and p, as it should. It then remains to find ¢1, ¢o, g3, g4 and ~ from
the Einstein-Maxwell equations.

The procedure is somehow tedious, so we will only present the final results. Setting
A=7(y+1), we find

2 =-2q3, (3.26a)

1
5= %{21/3 (497 +(A—2)B] sin0H3% —8pIRY2(v+1)sin0H?q,

/ 2
+3B? (2cosH —sinH') a_ [4Bsin0H'—8H (Bcosf+sinfB')] pIRq4} ,  (3.26b)
v v

H3 B?sin®0H ¢} ' ,
A
B2sin30H< Ha FlaoHrtartar e
+ (ﬁoH)\+ﬁ1+,82 )\+,33)\2) ql—i-(lio%)\—i-lﬂ +/€2)\) Aqs=0. (3.260)
sin? 6 ¢, " Y2sin20
( 72 4) - +B (@1 —Aqa) =0, (3.26d)

where aq, a1, ao, Bo, 51, B2, B3, ko, k1 and ko are functions of B, B', H, H' and 0 given
in appendix B and are independent of A, and

Ha=sin0{4Y? |pfa—(\+1-6B)B| H~3H B +6BB'H' | -12BcosOHB'.  (3.26¢)

Once ¢; and g4 are known from eq. (3.26¢) and eq. (3.26d), g2 and g3 are fixed in terms of
eq. (3.26a) and eq. (3.26b). We are thus left with solving eq. (3.26¢) and eq. (3.26d), which
should determine ¢, g4 and A. As boundary conditions we demand

71(0) = q1(m) = ¢4(0) = gi(m) =0, (3.27)

which render eq. (3.26¢) and eq. (3.26d) a quadratic Stiirm-Liouville eigenvalue problem
in A\. Note that once a solution for ¢; and g4 has been found, we still need to a posteriori
check that g3 given in eq. (3.26b) is everywhere smooth. The present work only discusses
modes for which all of the functions ¢; are smooth for 6 € [0, 7].

We solved eq. (3.26¢) and eq. (3.26d) in two different manners, which agree well with
each other in the regime where both methods are applicable. First, by using our perturbative
scheme, we determine A as a function of ¢ (see section 3.1), which gives an expansion valid
at small (). We set

+oo )
a0 =3 ¢ ) (3.28a)
=0
(@) i
au0) = q" () (3.28b)
1=0
v = Z At (3.28¢)
=0
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and solve order by order in €. The most problematic mode is the mode that goes negative
for all Q@ > 0 for AdS, x S3. This mode has ¢ = 2, which is the mode we would like to
disentangle.

To start our perturbative treatment we take

)
7@ =0, ¢¥= \f 2+ cos(20)]  and ¢f” =0. (3.29)
T

Note that qgo) (#) is an £ = 2 harmonic on a round three-sphere, as expected. One can now
proceed to solve these equations order by order in €. For instance, one finds

3/4 1/4
A — 22907 5 3686 [2 (5 5022016 2'/

~y

3pi/a 189 V7’ T 11907y/7r3/4
1) - 9 21/4 B
q 0)= NI [2 cos(460) + 2 cos(20) — 1],
&2(0) = —%[25 cos(20) + 25 cos(40) — 21 cos(66) + 166] , (3.30)
T

gy _ _224V7
q;(0) = _37773/4[2 cos(20) + 1],
02 (6) = ——2_[430 cos(20) + 1727]

4 1897

Note that the fact that v(!) > 0 indicates that at least for sufficiently small @, the mode
that used to go negative for AdS, x S2, becomes positive! We shall see that this remains
the case for all values of () we have managed to probe.

For any other perturbation with ¢ > 3 our perturbative scheme starts with nontrivial
{~yO), q§0)7 qio)(ﬁ)}, since () is non-zero at Q = 0 for any other value of £ > 3 (see figure 2).
For instance, for the £ = 3 mode we find

1 57 oL 2987, BIT05T 4
7T T 4en A T gravan 62727 (20)3 /A

We now proceed using our exact numerical solutions for the background and by solving

+0(h). (3.31)

eq. (3.26¢) and eq. (3.26d) numerically. We again use the numerical methods detailed in [7]
to do this calculation. The results are displayed in figure 8 where we track the two lowest
lying modes. These are associated with ¢ = 2 and ¢ = 3 perturbations, respectively. Recall
that for each £ > 2 perturbation of AdSs x S3, there are two physical scaling exponents 7,
which we labelled 74 (¢, y+). The perturbations we study naturally connect to ~v_(¢,0) for
f{ = 2,3. Recall that for each value of ¢, horizon boundary conditions allow us to discard
two negative values of v (which connect to the values of v that we discard when we plot
figure 2). Since the lowest scaling exponent in figure 8 remains positive, this conclusively
shows that the novel IR geometry is RG stable at the linear level to SO(3)-symmetric
deformations. Furthermore, when @ is small enough, our perturbative results in eq. (3.30)
(dashed red line) and eq. (3.31) (dotted black line) match well our exact numerical results
given by the blue disks and orange squares for ¢ = 2, 3, respectively.

We tracked the lowest lying mode all the way to G5Q/L? ~ 3 x 10* and it remains
positive, saturating at around ~ = 0.1013.
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Figure 8. The two lowest lying modes of the quadratic Stiirm-Liouville equations eq. (3.26¢) and
eq. (3.26d) governing perturbations of the new near horizon geometries. The red dashed line shows
the perturbative result displayed in eq. (3.30), whereas the black dotted line shows « given in
eq. (3.31). The blue disks have ¢ = 2 and the orange squares have ¢ = 3. In the language used in
section 2, the modes shown both connect to v_(¢,0).

3.4 RG instability of the new IR geometries with respect to SO(3) breaking
deformations

Having investigated the stability properties of the new IR geometries with respect to SO(3)-
preserving deformations, we now ask whether the new geometries are stable with respect
to deformations that break SO(3). Unfortunately, this is not the case, as we show below.
We start by presenting an Ansétze for the metric and gauge field perturbations. These
are necessarily more involved than the SO(3) symmetric case. Since we want to break the
symmetries of the round S?, we expand all perturbations in terms of standard spherical
harmonics Y, (X, @) on S2, where x € [0,7] and ¢ ~ ¢ + 2 are the standard latitude and
longitude angles on the round S2, respectively. Spherical harmonics on the S? obey

Oa, Yem + k(E+1)Yym =0, (3.32)

with £ = 0,1,2,... and |m| < k being the standard quantum numbers of the spherical
harmonics and Uy, the standard Laplacian on the round two-sphere. The sector with k =0
was studied in the previous section, and the sector with £ = 1 has to be treated separately.
For this reason, we take k& > 2 from here onward.

There are two types of gravito-electromagnetic perturbations we can build from scalar
harmonics. This is because vector harmonics on the S? can be built from Hodge duals

—90 —



of gradients of scalar harmonics (up to harmonic vectors). Perturbations built from
scalar harmonics are often called scalar derived gravito-electromagnetic perturbations,
while perturbations built from vector harmonics are often coined vector derived gravito-
electromagnetic perturbations. The former sector is the one of interest to us, since one can
easily show that vector derived gravito-electromagnetic perturbations are RG stable.

Let D be the metric preserving connection on the round two-sphere, so that D,D* =
Oq,, with lower case Greek indices running on S?, i.e. @ = {x, ¢}. We then introduce

k(k+1)

5 JaB Yem, (3.33)

Sk = Do DgYim +
where g, being the metric on the round two-sphere. By construction, S,z is traceless. We
then write the following Ansétze for the metric and gauge field perturbations

a (j 0 dtz dp2
0ds® = hgpdaz®da® = L2p7 {B(G) 15) Yiem (—AS Tt

sin?6

V202 020) Vi 00 + 503 00) i 03

5 (0 5
+2 qu <k) 0 (Do Yy m)daz® + Go(0) SE5'da™ dxﬂ} } . (3.34a)

and
0A = aad:ca = —pPIR Ao pHJY (j4(9) Ykm dt. (334b)
There are total of six functions of 6 to solve for, namely {qi, ..., gs}. After some considerable

algebra, one can express o2, §3 and g as a function of the remaining unknown functions and
their first derivatives with respect to #. We are thus left with three second order ordinary
differential equations in 6 for {qi, 41, 45 }. Regularity at the poles demands

@1(9) ~ Sink 0 él y (j4(9) ~ Sink 0 C'Q and Q5<9) ~ Sink_l 96’3 s (3.35)

where él, Cy and Cs are constants. In order to impose these, we change to a new set of
variables

G1(0) =sin*0Q1(0), G1(h) =sin®0Q2(f) and Gs(h) = sin" 16 Q3(0) (3.36)
with regularity at the poles now simply demanding
Q'1(0) = Q5(0) = @5(0) = Q' () = Qs(m) = Q}(w) = 0. (3.37)

It is possible to cast, with the above boundary conditions, the second order differential
equations for Ql, Qg and Qg as a Sturm-Liouville problem, where the combination (v + 1)
appears as the eigenvalue. This is the system we solve numerically using the numerical
methods detailed in [7].
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Figure 9. The lowest lying scaling exponent v as a function of @ for SO(3) breaking perturbations.
The dashed red line is the perturbative result (3.38) whereas the blue disks label the exact numerical
results. The agreement between the two at small charges is reassuring for both methods.

We start by using the perturbative scheme of section 3.1, which allows us to predict ~
for small enough charge Q). Indeed, for k = 2 we find that

+0(%).  (3.38)

3t - ot VaT T Tg0r st 262549357

4 23/%/7 496 \/7 , 6259984 2Y/4 . 52033540168

The fact that the first term in the € expansion of 7 is negative (note that we must take ¢ > 0
in order for our perturbative scheme to make sense) is a signal that our new geometries are
RG unstable with respect to SO(3) breaking perturbations. The question remains as to
whether for larger values of the charge (or alternatively, larger values of ¢) v will become
positive. In order to address this question we solve the problem numerically, and report
our findings in figure 9. As a dashed red line we plot our perturbative result (3.38), while
the exact numerical results are shown as blue disks. The agreement between the two at
small charges is reassuring. The fact that v remains negative for all values of the charge
is the main result of this section and shows that our SO(3) symmetric zero-temperature
geometries are RG unstable to perturbations that break SO(3). The endpoint of this SO(3)
breaking instability remains unknown and is under current investigation.

4 Approaching the new IR at low temperature

Having studied the RG stability linearly, we now proceed to a fully nonlinear treatment.
Rather than focus on the near horizon geometry as we have done so far, in this section we
construct asymptotically AdS black holes with a finite SO(3) (but not SO(4)) invariant
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deformation on the boundary. Our metric and gauge field Ansatz closely follows the ones
used in [9, 10], but adapted to D = 5.

To make progress at the nonlinear level, we use the DeTurck method. This method
was first proposed in [11, 12] and reviewed in [7, 13]. It is a very hard problem (but a very
interesting one) to work directly at zero temperature. We bypass this problem by working
at a finite temperature 7" and lower T" as much as possible. We will provide numerical
evidence in favour of flows that start at the boundary with a particular SO(3)-invariant
boundary deformation, and approach in the deep IR the solutions described in section 3.2.
Nearby deformations behave similarly, so an open set of SO(3)-invariant boundary data
exists with a near horizon geometry that approaches our novel IR solutions as T — 0.

We will insist on having a conformal boundary metric that is conformal to the Einstein
static universe. As such, we take

ds? = —dt? + L2(d6? + sin® 0d03). (4.1)
For the gauge field, we will take a chemical potential that depends on 6 € [0, 7] only, i.e.
Ay = p(0)dt. (4.2)

We will also insist that our bulk metric preserves spherical symmetry (with respect to the
S?) and be static with respect to 9/0t, so that 9/0t is hypersurface orthogonal in the bulk.

4.1 Numerical method

With the above symmetries, the most general Ansatz that we can write is given by

L? Aq(z,y) 42
2 241, Y) L0 Y¥ 2
= 5 — LT q2 4 2 A
d"=7q _y2)2{ Gy =z 4" + gy A2 9) [dy + As(w, y)dy]
2
v PRI - pand] | )
and
with
G@)—(2—yﬁ{(1—y32+(2—2¢“+f)y2—4(1—ya4ﬁﬂ (4.3c)
- -+ 3 . .
For p(6) we take
+oo
W®) = i+ e Yil6), (4.42)
=1

with Y;(#) harmonics on the three-sphere normalised so that Y;(0) = 1, and explicitly
given by

1 sin[(£+1)0]
4+1  sinf

Yi(0) (4.4b)
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The relation between 6 and x is given by
cosf = xv2 — 12 (4.5)

To gain some intuition for the above form of the metric, let us imagine for a moment
that all pp =0 for £ > 1. If we take

A1:A2:A4:A5:1, A6:(2—y2)ﬂ, A3:0 and ﬁ:ﬂ (46)

then egs. (4.3) describe a five-dimensional Reissner-Nordstrom black hole with radius
r+ = y+L and chemical potential f. To see this we do a simple change of coordinates

r+
T = W N (47)

which brings eq. (4.3) to the more familiar form

2 2
dsty = —f(r)dt? + ;1(7;) +7r3(dh* +sin®0dQ3) and A= ( — 7;;) dt,  (4.8a)
with ) ) ) .
r r r 4 4 4,1
S T s I O S iy 2 e i 4.8b
fr) =13+ T2<+L2+3H>+3MT4 (4.8b)

When using the DeTurck method, one has to choose a reference metric g that will
ultimately fix the gauge. For the reference metric g we take A;, with i = {1,...,5} as in
eq. (4.6). One then solves the Einstein-DeTurck equation, which are given by

Rap + %gab - v(a‘gb) =2 <Fa “Fye — gngchCd> ) (49)
with €2 = [T'%.(g) — I'&.(g)] g°?, where T'(g)?, are the components of the standard Christoffel
symbol associated with a metric g. Stationary solutions of the Einstein-DeTurck equation
in vacuum can be shown to coincide with genuine solutions of the Einstein equation [14, 15],
that is to say, on solutions of the Einstein DeTurck equation, £ = 0.

However, in the presence of matter, such a proof does not exist, and a priori Ricci
solitons, i.e. solutions with & # 0, cannot be ruled out. Instead, it has been first noted
in [16] that eq. (4.9) represents an Elliptic system of equations for stationary metrics of the
form eq. (4.3a), even in the presence of matter, once appropriate boundary conditions are
imposed. This allows us to show that the solutions we construct are not Ricci solitons, as
we explain below.

At the conformal boundary, located at y = 1, we demand that the metric approaches
the reference metric, so that

Ai(z,1) = Ag(x,1) = Ag(x,1) = As(z,1) =1 and Asz(z,1)=0. (4.10a)
For the Maxwell field we take instead
Ag(z,1) = p(0) (4.10b)

with p(0) given in eq. (4.4a) and z related to € as in eq. (4.5).
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At the bifurcating Killing three-sphere, located at y = 0, we demand

Al(CL‘,O) :AQ(IL’,O), Ag(l‘,O) :0,

8y y=0 ay y=0 8y y=0 8y y=0
The first condition fixes the black hole temperature to be
3+ 6y — 42
T — o+ byy —4p” ) (4.12)
67TLy+

The equation above reveals the physical meaning of y4 and ji: these are parameters that
we can use to dial the temperature. Note that these are redundant in the sense that we
have two parameters to set a single number, the temperature. Additionally, note that the
reference metric sets the gauge, and as such y; and g also control our gauge choice.

We are still left with detailing the boundary conditions at the axis of symmetry 8§ =0, 7
or equivalently z = +1. Here we want the metric to be smooth, and that is equivalent to
demanding

Ag(£l,y) = As(£1l,y), Asz(xl,y) =0,
9A1| 0| 0As|  0Ag

=L =220 =58 =288 o, 41
0T pmt1 0T |peyy O |y Oz ! (4.13)

r=%1

We thus see that our problem naturally lives on a square integration domain (x,y) €
[0,1]2. Tt is a simple exercise to show that the Einstein-DeTurck equation eq. (4.9), together
with the boundary conditions above and restricted to the line element eq. (4.3a) does
give rise to a well posed Elliptic problem, which we can now solve using the numerical
methods of [7]. Additionally, since Elliptic equations admit locally unique solutions, one
can differentiate between a Ricci soliton and a bona fide solution of the Einstein equation
by monitoring £?. Furthermore, since the (z,y) base space is manifestly positive definite
(as it should in an Elliptic problem) we can equally well monitor instead £,£%. To solve this
problem we used a pseudo-spectral collocation methods.

As we shall see, we will be interested in reaching remarkably low temperatures. At really
low temperatures, enormous gradients develop near the bifurcating Killing three-sphere. To
deal with these we discretize our equations on two Chebyshev-Gauss-Lobatto grids, which
connect at an interface 0 < y, < 1 (see [7] on more details on how to deal with patching
procedures). In our numerical simulations we take y. to be small, so that the new grid
covers most of the gradients at the horizon. Typically, y. ~ 1072 and we use not less than
50 x 50 collocation points on each subdomain. In figure 10 we show a plot of A5 (which is
the radius of the round S?, and is gauge invariant) as a function of (x,y). This particular
image was generated with 47LT = 1078, i = 1.26244, s = —0.5 and py = 0, for £ # 2 and
with y. = 1072. In the plot, large gradients near the horizon are easily identifiable and
justify the use of patching. We tried using a single domain, and it proved almost impossible
to reach such low temperatures, partially because such a large number of points was needed
that even with extended precision it was hard to run a Newton-style method to solve the
resulting discretized equations.
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Figure 10. A plot showing As(x,y) as a function of (x,y) with 47LT = 1078, = 1.26244,
o = —0.5 and py = 0, for £ # 2. In this case y. = 1072, and the patch near the horizon is
represented in red and the one away from the horizon in green.

4.2 Results

The aim of this section is show that the near horizon geometries that we constructed in
section 3.2 do appear as the IR of a class of boundary chemical potentials of the form given
in eq. (4.4a). We will first focus our attention on profiles with p, = 0 for £ # 2, and say a
few words about the general case near the end of this section.

To understand the approach to the near horizon geometries of 3.2 we need a reference,
with the most standard being the entropy. However, as we can see in figure 4, we need to
get to very large charges in order to see large deviations with respect to AdSs x S3. So,
instead of comparing directly with the entropy S, we are going to compare with AS. Recall
that AS measures the difference in entropy between a given solution and that of an extreme
Reissner-Nordstrom with the same total charge.

In figure 11 we plot AS as a function of ) for several fixed temperatures, indicated
on the figure. To generate each curve, we fix the temperature and vary g while keeping
po = —0.5. The black dashed line corresponds to AS for the T' = 0 near horizon geometry
as shown in figure 4 (for charges up to G5Q/L? ~ 2). It is clear that, as we lower T, we
approach the AS shown in figure 4.

In addition to monitoring AS, we also looked into some detail on the local horizon
geometry. In particular, we embedded spatial cross sections of our finite temperature horizons
and compared those with spatial cross sections of our zero-temperature horizons of section 3.2
(see for instance figure 5). The results of this comparison are presented in figure 12.

Finally, we make a few comments about more general profiles for p(6). So far, we
have discussed the result of just turning on s, an ¢ = 2 contribution to u(f). We have
checked that the overall picture does not change if we turn on other harmonics so long as
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Figure 11. AS as a function of ) computed for several fixed temperatures shown on the figure
caption on the right. The black dashed line shows the entropy appearing in figure 4 for the T =0
near horizon geometry (for charges up to G5Q/L* ~ 2).

|pe| < |ua] for £ # 2. This is not surprising since even when we turn on a single harmonic
at the boundary, all other harmonics are nonlinearly generated in the bulk. For all the
plots shown we have chosen s = —0.5, but we have tried other values of o < 0 and found
similar results. So we indeed have an open set of SO(3)-invariant chemical potentials that
flow to our new IR geometries. For pus > 0 we do not have enough numerical evidence to
provide a clear picture. At the moment it appears that the near horizon geometries of
section 3.2 are not approached as we lower 1" with this sign of the deformation.

5 General nonrotationally invariant near horizon geometries

We have also found novel near horizon geometries where the symmetries of the three-sphere
are completely broken. It was shown in [17] that (smooth) static near horizon geometries
must be a warped product of AdSy and a compact (D — 2)-manifold, so we keep the AdSs
symmetries. We have found no such geometries for arbitrarily small charges, i.e. near
@ = 0. However, from eq. (2.23), it is clear that novel solutions exist for ¢ > 3 that are
perturbatively close AdSy x S3. These branch from AdS, x S® precisely when y, = y5(0),
with y§ (£) given in eq. (2.23).

One might then ask how many solutions do we expect to branch from AdSs x S% at a
given y4 = y$ (¢). We can answer this by determining the number of parameters in the most
general harmonic of degree £. The most general harmonic of degree ¢ will depend on (£+1)2
parameters (this corresponds to the degeneracy of spherical harmonics on the three-sphere).
However, some of these harmonics can be related by acting with SO(4) i.e. by rotations
of the background S®. Since SO(4) has dimension 6, we can eliminate 6 parameters. This
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Figure 12. Isometric embedding of the finite temperature horizon geometry into R*. The black
dotted line shows what a perfect sphere would look like and the dashed line represents our novel
pancaked IR geometry discussed in section 3.2. The several symbols represent the embeddings
of our finite temperature solutions, whose temperatures are labeled on the right. The solution
with 47TL = 1072 has G5Q/L? ~ 1.33896, whereas the exact zero temperature solution has
G5Q/L? ~ 1.33653 (corresponding to an agreement of about 0.18%).

leaves us with (¢ + 1)2 — 6 parameters that cannot be eliminated via background rotations,
and thus with (¢ + 1)? — 6 new near horizon geometries branching out of each y4 = y< (¢).
(Note that in this section we are taking ¢ > 3.)

For even values of ¢, the story is more intricate, because it turns out that a perturbation
with an overall amplitude A cannot be mapped into a perturbation with an amplitude —A
via a background symmetry. This means that for even values of £ we expect 2[(£ + 1)% — 6]
new near horizon solutions branching out of each y, = y$ (£). For odd values of ¢, we can
use a reflection around the equator to map solutions with an amplitude A into solutions
with an amplitude —A, and as such we do expect (¢4 1)? — 6 solutions near the onset.

We now present the method we used to construct solutions with £ = 4 that break all
rotational symmetries. From the paragraphs above, we would expect 38 distinct solutions.
However, for the purposes of this section, we restrict ourselves to showing that a solution
exists that breaks all rotational symmetries. An exhaustive study that determines all of the
38 solutions is beyond the scope of this work.
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Since the spectrum is degenerate, i.e. we have more than one spherical harmonic with
the same value of £, we have to proceed using degenerate perturbation theory. The most
general harmonic with £ = 4 depends on 25 distinct parameters. Let us start by writing the
S3 in hyperspherical coordinates {x = cosf,y = cos x, ¢}

da? dy?
— x

d02 = T (1—yHde?| . (5.1)

In these coordinates, scalar spherical harmonics on the three-sphere can be written as

(1—$)§2F1 A+ ki b+ k+2; k:—{—271f P*(y) cos(m¢), m >0
Y,
W: (1—a?)32Fy (L + ki 0+ k+2k+ 3:152) Puy), m=0
Lkm
(1—22)2,F —£+k,£+k+2,k+%,17m P (y)sin(m ), m <0

(5.2)
where 2 F (a; b; ¢; z) is a Hypergeometric function, P;*(y) is an associated Legendre polyno-
mial, Py(y) = P(y) is a Legendre polynomial and

T+ 1/l k+ 1) L o =0
Negm = RS \/7 {‘[ 1 " (5.3)
STk TR F(k+ \/ﬁ it m#0

so that

27 1 1
[ [ V=2 Y@0.0) Yoy, 000 dady = 67,055,067, (540

Additionally, we have 0 < k < £ and |m| < k, which indeed gives (£ + 1)? harmonics for a
given value of ¢, as claimed above.
We now present our metric and gauge field Ansédtze for these generic configurations

2412 dp? H
ds2:L2{H1 (-”L2+p’;> +ﬁ(dx+H5dy+H6d¢)2

+ (1 —2?) L

A= —ppdt, (5.5b)

1522 (dy + Hrd$)* + (1 — y*) Hy d¢2] } , (5.52)

where H; (with i =1...7) are functions of (x,y, ¢) to be determined in what follows. The
Maxwell equation is automatically satisfied via (5.5b), but we are still left to solve the
Einstein equation. In order to solve the Einstein equation we again use the DeTurck trick
and take as our reference metric (5.5a) with Hs = Hg = H7 =0, Ho = H3 = Hy = 1 and
H; = 1. Note that the Einstein-DeTurck equation depends only on ,OIZR.

To solve the problem at the nonlinear level we used spectral methods. The idea is
to expand the metric as an infinite sum of three types of harmonic blocks: harmonic
tensors, harmonic vectors and harmonic scalars. These can be found in great detail [18]. All
boundary conditions following from regularity are automatically imposed. It then remains
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to extract the coefficients in these expansions, which we determine via a Newton-Raphson
procedure (more details on the numerical method will appear elsewhere [19]).

We solved the Einstein-DeTurck equation using both perturbative methods and fully
non-perturbative numerical solutions with the two methods agreeing well when their regime
of validity overlaps

We setup our perturbation theory as follows:

(x,y,0) = Zalh x,y,P), (5.6a)
Cir = pig = ZSICI(PI{) ; (5.6b)
1=0

with hé ) = h(o) h(o) =0, h( ) = hz(,,o) = hio) = ho and hgo) = ag. At zeroth order in €, we
find

1 ho
0T YT T 3k (5:7)

and Sho 1+ 2h
c = 2t 1+ 2 - (5.7b)

16 (1 + 3ho)”
At first order in €, we find

B =p =p =0, AV =n =n = p(a,y.¢) and BV =a(z,y,0) (5.8a)
with

Cla + 8 (1+ ho)a — %(1+3h0)CI(R) ~0, (5.8b)

CIp + 4p — 32(1 + 3ho) (1 + 2ho)a + 301(;3 (14 3hg)%> =0, (5.8¢)

where (1= D fo is the Laplacian operator on S, which in (x,%, ¢) coordinates reads

a 1
Of = ——
/ V1—22

for some function f on S3. Let us focus for a moment on eq. (5.8b). First, we note that we

@31_gﬁpmﬂ4;biﬁ{au )0, ] + @J} (5.84)

can easily remove the non-homogeneous term via a shift of the form

_ 41+ 3ho 1
a=ataT o Y (5.9)
which brings eq. (5.8b) to
a4+ 8(1+hg)a=0. (5.10)

We can now expand @ (and thus a) as a sum of spherical harmonics Yy, with a given
value of ¢ (with a total of (¢ + 1)? terms in such sum):

14 k
a= Z Z békmnkm m > Y d))a (511)

k=0m=—k
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which brings eq. (5.10) to
(L—2)(C+4). (5.12)

The above is just a restatement of eq. (2.23). At this stage, the coefficients b**™ are left
undetermined. Once we know a it is not hard to find p from (5.8¢) which yields

p=16CY) (1+3h5)> —8(1 + 3hf)a. (5.13)

Let us recap what we have achieved so far. We found that, for a particular value of ¢, first
order smooth deformations of AdSy x S? given by (5.11) and (5.13) exist, so long as hg is
given by eq. (5.12).

We will only need the equation for h(12) = s to break the degeneracy, i.e. to find the
b'k™  The equation for this particular function can be easily obtained by expanding the tt
component of the Einstein-DeTurck equation to second order in ¢, which yields

Os+8(1+hi)s =T, (5.14a)
with
32 512(1 + 3h6)% 12 32 N
_ ¢ (2) 0 (1) 0\~2
4 i o~ o 128(1+3R8)% a) -

The source term 7T in eq. (5.14a) behaves as a scalar on S3 and is quadratic in @. Since
we are assuming that @ only includes harmonics of fixed ¢, T" only includes harmonics up to
2¢. Furthermore, since T is a smooth function on S, it can also be decomposed as a sum
of harmonics, and thus we can set

2 ¢k
T=> 3> Ty, . (5.15)

7—0 k=0m=—k

Smooth solutions to eq. (5.14a) exist only if the sum (5.15) has no component with
¢ =/, otherwise there is a resonance in eq. (5.14a) and the solutions are necessarily singular.
Assuming that no such component exists, the smooth solution to eq. (5.14a) can be written as

Tékm
Yiem:
0(0+2) —8(1+hf) tkm

(5.16)

I ILLCTNE 5 3) 3

where the first term is the solution to the homogeneous equation and btk ™ are undetermined
constants. Thus the existence of smooth solutions boils down to the problem of determining
whether we can choose b*¥™ of the first order solution, so that no terms with (=1 appear
in the sum (5.15). This requirement translates into quadratic constraints amongst the b**™
and C’I%), which might or might not admit real solutions. Note that the procedure outlined
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above also works at higher orders, and indeed, the homogeneous term in (5.16) is fixed
at higher order, though the higher order constraints are linear in ptEm g0 long as there
are no further degeneracies amongst the first order b**™. As such, smooth solutions are
guaranteed to exist so long as we can determine real solutions to b**™ and CI%), and there
are no further degeneracies left in b*%™,

The constraints that we want to impose amount to:

2 pl 1
/0 [1[1 V1= 22T Ypm(z,y,¢) dpdady =0, (5.17)

where we regard ¢ as given, but k and m take the appropriate ranges. This means that
there are a total of (¢ + 1) constraints for a given value of ¢. This is precisely the number
of b'%™ variables that we have at our disposal and one might worry that the only possible
solution to the constraint above has b**™ = 0. However, we recall that the constraint will
in general also depend on C’I(Pli), which should also be determined in this procedure. Let us
attempt to evaluate the above integral. Since we are taking ¢ > 3, the first two terms in T’

do not contribute. Also, the last term will simply yield a term proportional to b**™.
Let us define the following overlap integrals?
or 1 pl >
Ay Timiion = /0 [1 L VI= 2 Yipm Y Vg dédzdy, (5.18a)

2 1 p1 )
— = —z2 Siv . Ty
Bekm;Zkﬁz;éfcm_/o /_1/_1\/ﬁYkaV Y= VY dode dy

:%[Z(Z+2)+é(é+2)_e(z+2)},4g _

kmlkmilkm " (518b)

For odd values of ¢, it is a simple exercise to show that both A and B

Lkmlkm:l ki Ckmilkm ki
vanish identically, due to parity considerations. In such a case, CI%) =0 and one has to go
one order higher to find all the b*™. We shall focus on even values of ¢ hereafter.

In terms of the symbols above, the condition (5.17) translates into

3(1 + hf) 8(3+4h€)z€: i ZK: Zk: A . ptkmptkim
32h€(1+3h€)2 0 ~ Lhkmilkmil kn

=
¢ k¢ k -
+Z Z Z Z ngm;ﬁﬁl;g};mbwmbwm _ fé)bekm_ (5.19)

Let us define the (£ 4 1)2-dimensional vector X with
X = {bZOU b@lfl bflO b@ll b€272 b@21 b€20 b€21 6522 bf@@*l b@f@} (520)
in terms of which we can recast (5.19) in the following form

ke xmxt = ol xP (5.21a)

2Explicit expressions for A can be found using the results of [20].

Lk m,ﬁfn,ék m
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1
Cix!
0.0184558 | 0.0046848 | 7.83170 x 10~7
0.0583625 | 0.0205736 | 0.0000132116

Table 1. The smallest two numerical values for 01(1}{) found for several values of £. All values
displayed in this table correspond to configurations that break all rotational symmetries.

for an appropriate choice of tensor K}y, with Gothic indices being (¢ + 1)? dimensional
and using the Einstein summation convention. Without a choice of normalisation, which
ultimately fixes €, (5.21a) admits an infinite number of solutions. We thus demand

S XX = 1. (5.21b)

The system of algebraic equations (5.21) is often referred to in the literature as a Z-
eigenvalue problem. The expansion parameter CI(}}{) plays the role of the Z-eigenvalue. Note
that just from the structure of the Z-eigenvalue, we can conclude that if {X, CI(Pl{)} isa Z-
eigenpair, so is {—X, —C’I(Fl{)}. For this reason, we will focus on values of CI(FIL) that are positive.

Unfortunately, unlike for standard eigenvalue problems, there are not many numerical
methods available to determine all Z-eigenvalues. We thus have to proceed via a standard
Newton-Raphson algorithm.

We were able to find some particular analytic solutions to the above Z-eigenvalue
problem when insisting on preserving SO(3) (recovering the results of section 3.1) or
U(1). However, the main interest of this section is to show that solutions exist that break
all rotational symmetries. We thus proceed numerically for particular values of ¢, by
randomizing our initial seeds and running a standard Newton-Raphson algorithm. In total,

we found 4, 3 and 49 non-trivial values of C’I(Pl{) for £ = 4,6, 8, respectively.

So far we have detailed a method for constructing a particular configuration {b**™ CI%) }.
However, it could be that such a configuration would still preserve some rotational symme-
tries. To see that this was not the case, we computed £L=za with = = 2?21 uDe@  where £
are the six rotational Killing fields of the round three-sphere and u(9 are some constants. If
we find configurations for which £za = 0 implies u(?) = 0, such configurations necessarily
break all rotational symmetries. Note that this statement depends on the values of b*™
we obtain by solving our Z— eigenvalue problem. Indeed, we found some configurations
which did preserve a subset of rotational symmetries of the original S3. However, for the
values quoted in table 1, we explicitly checked that all rotational symmetries are broken.
We also solved our problem fully nonlinearly using the numerical methods of [19]
and found perfect agreement with the linear calculations above. Of course, nonlinearly,

one can do better and for instance predict what C’I(é) should be for a given value of /.

For a £ = 4 configuration with C’I%)
01(12%) = —0.6321496, where at the nonlinear level we defined ¢ as

27 1 1
Zin= [ [ [ VI= Yiem(a.y.0) B,y ) dodady. (5.22a)
0 —-1J-1

= 0.0184558, our fully nonlinear calculation predicts
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with
4 k

Yo" ZimZim =€ (5.22b)

k=0m=—k

6 Discussion

We have seen that the extremal Reissner-Nordstrom AdS solution does not provide a good
dual description of the generic IR behavior of four (or higher) dimensional holographic
theories. This is because its near horizon geometry, AdS,; x S3, is unstable to static
perturbations that break SO(4). We have constructed a new family of near horizon
geometries, labelled by the charge @), and shown that they are stable to SO(3)-invariant
linearized perturbations. Moreover, they are stable to nonlinear perturbations in this
class, since they arise in the 7" — 0 limit of an open family of SO(3)-invariant AdS black
holes. Thus, following the usual holographic dictionary, under this reduced symmetry they
represent stable IR fixed points of a dual RG flow.

Although our new IR geometries have the property that perturbations go to zero at
the horizon, they are not generically completely smooth. As shown in figure 8, they go to
zero like a power law with a power v that is much less than one. This means that if we
take two derivatives to compute the curvature, certain components will diverge. In other
words, infalling observers experience diverging tidal forces at the horizon. For the solutions
constructed in section 4 that approach our new IR geometries, we have computed certain
components of the Weyl tensor on the horizon as a function of T. We find that they diverge
as T'— 0 in a way consistent with the perturbative argument in section 3.3.

This is exactly analogous to the singularities found in four-dimensional extremal black
holes [4]. The main difference is that in four bulk dimensions, the horizon geometry remains
AdSy x S? and does not get distorted. As shown in [4], all curvature scalars remain finite at
the horizon, so if one analytically continues the solution to obtain a Fuclidean black hole, it
is completely smooth. The same will be true for the five-dimensional solutions constructed
here. These singularities are only a feature of the Lorentzian solution, although they can
affect thermodynamic quantities like the specific heat.

Supersymmetric black holes in AdSs exist which are rotating and have smooth hori-
zons [21]. It would be interesting to study how their near horizon geometry responds to
small deformations of the boundary conditions. Given the results of this paper and the fact
that these deformations break supersymmetry, we expect the near horizon geometry will be
significantly altered.

An important open problem is to find the generic stable IR geometry. In appendix A
we construct another large class of SO(3)-invariant near horizon geometries which are
associated with ¢ > 2 instabilities of AdSy x S2 that only arise at large enough (. However,
all of them have at least one unstable SO(3)-invariant mode, so they are not stable RG
fixed points, even under this reduced symmetry. We have also shown how to construct a
very large class of near horizon geometries without any rotational symmetry in section 5.
These solutions exist close to AdSy x S2 when the S? is large enough. However we expect
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these solutions will also be unstable since the unstable mode of AdS, x S? should persist
for the new solutions, via continuity.

We have restricted our attention to black holes in global AdS, dual to holographic
theories on S x R. The generic IR behavior of theories on R* or 72 x R is equally interesting
and under investigation. We hope to report our results soon.
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A SO(3)-invariant near horizon geometries associated with £ > 2 modes

It is clear from eq. (2.23) that for each value of ¢ > 2, there are novel near horizon
geometries that connect smoothly to AdSy x S3. These occur precisely at y, = y5(0). In
this appendix, we construct SO(3)-invariant solutions in this class both perturbatively and
nonperturbatively. Unlike the solutions discussed in section 3, these solutions all remain
unstable to an SO(3)-invariant ¢ = 2 perturbation.

It turns out that the new solutions associated with even values of ¢ and odd values
of ¢ behave very differently. For even values of ¢, and within our symmetry assumptions,
there are exactly two solutions emerging from y, = y§ (£), whereas for odd values of £ there
exists a single family. The reason for this is that for odd ¢ we can change the sign of the
perturbation direction, i.e. of €, by doing a reflection around the equatorial plane 8 — m — 0,
which is a symmetry of the Bertotti-Robinson background solution. However, this is not
the case for even values of £. For this reason, all physical observables for odd values of £

can only depend on £2.

A.1 Perturbative expansion for particular values of £ up to £

The perturbation scheme is slightly different from that presented in eq. (3.6). The main
difference being that we are now expanding about a non-singular solution, and as such B,
p%R and Yf all have order €° terms. Also, our perturbation parameter ¢, is defined as

/ Bsin? 0Yy(0)do = <. (A1)
0

This normalisation is not possible for the £ = 2 case, because B itself starts at order ¢ in
that case. Below we list the results of our perturbations scheme for ¢ = 3,4,5,6,7,8 up
to O(eY).
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A.2 Nonlinear solutions

We have also constructed the full nonlinear solutions in the same way that we constructed
the solutions in section 3.2. In figure 13 we plot the difference in entropy between these
new solutions and RN AdS (with the same charge) as a function of Q/L? for £ =2,...,7.
The dashed coloured lines represent the perturbative expansion detailed above, while the
several symbols show the numerical data extracted non-linearly using our numerical scheme.
The colour coding used is indicated in the legend. Our numerical scheme and perturbative
results agree well near the several onsets for £ > 3. We also include the £ = 2 solutions
discussed in the body of the paper near ) = 0 for comparison. Unlike the ¢ = 2 solutions,
these new solutions do not extend to all (), but instead appear to become singular eventually.
In fact, the odd ¢ branches of solutions do not extend much beyond their onset.
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Figure 13. AS as a function of @ for the new IR geometries near their onset, for £ =2,...,7. The
several dashed lines give the perturbative expansions detailed in 3.1 and above, while the several
coloured symbols how our exact numerical data. The several values of ¢ are distinguished by colour,
and are labelled on the figure.

We have studied the RG stability of these higher ¢ near horizon geometries, following
the procedure described in section 3.3. We find that they remain RG unstable to £ = 2
perturbations, although the scaling exponent « is not very negative.

B Expressions for the equations governing the IR perturbations
in section 3.3

8p2. Y2H?
= [3B(1—4B) — 4oy , (B.1a)
_ SP%RYE sin 0.1 2 2 2 2
ar = {4v2 3B(1 - 4B) — 4oty [pfa — B(1 - 6B)| H
48p% HAB'
—9B(1-12B)B?} 4 ZHRZ 2 B.1b
( ) } * sinf ’ ( )
16p?; Y2 sin 0 H3 9
ag =~ {2V [dpfy — 3B(1 - 4B)| H” + 98"}, (B.1c)
4Y2H?
fo= 53 (7p%R - 3B) (B.1d)
2Y? (2pfg — B) sin0H? 2
br=——— 4V (501 — 3B +6B%) H? + 98" , (B.1e)
H?Y? ) o . ani
Ba = 3B {9HB (8B cosf + sinB') — 36Bsin0B'H
— 4H?sin 0 Y? [23pr —3B(5 — 143)} } : (B.1f)
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and

Bs = 4Y}sin0H? (B.1g)

28p2, Y2 H?
Ko = —”I;T; : (B.1h)
4pip Y sin 0H® 2 [ 2 2 2 :
= S5 {4v? [5pfx — 3B(1 - 2B)| H? + 9B"} , (B.1i)
16p%, Yt sin 0 H® _
o = AR+ : (B.1j)
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