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1 Introduction

In recent years there has been significant progress in understanding how in the gauge/gravity
duality [1–3] the semiclassical bulk physics is encoded in the boundary theory. Drawing
on [4, 5], it was shown [6, 7] that if one has access to a subsystem of the boundary, one can
then reconstruct local operators inside a bulk region known as the entanglement wedge [8].
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However, this reconstruction of bulk operators assumes the knowledge of the classical geo-
metric background. To obtain a more complete understanding of the holographic encoding
of the bulk physics, one would like to characterise which states of the boundary field theory
are dual to classical geometries, and for all such cases, decode the bulk metric directly from
the boundary data.

Intuition from the scale/radius duality suggests that the deeper in the bulk we wish
to see, the more non-local (in a suitable sense) the CFT probe we need. One particularly
convenient class of boundary observables are built from lightlike objects. Perhaps the sim-
plest and most accessible ones are the ‘bulk-cone singularities’ [9] whereby endpoints of null
geodesics through the bulk (which can be used to reconstruct the conformal metric in the
bulk region probed by such geodesics, cf. e.g. [10, 11]) are visible directly in the singularities
of boundary correlators. This can be generalized to the so-called ‘bulk-point singularities’
of Landau diagrams corresponding to n-particle scattering [12], used for the construction
of the ‘light-cone cuts’ [13–15], which offer a much more elegant extraction from much
more complicated and harder-to-access CFT data. However to reach even deeper, into
causally inaccessible regions, one needs a CFT probe implemented by a spacelike construct
in the bulk. One particularly natural such geometrical object is a codimension-2 extremal
surface.1 Knowing the proper areas for a family of such surfaces can be inverted to extract
the bulk metric (including the conformal factor), again within the bulk regions reached by
such surfaces.2

Having given a bulk motivation for codimension-2 extremal surfaces as providing a par-
ticularly natural and deep probe of the bulk geometry, it is intriguing to note that even from
the CFT viewpoint, such surfaces arise very naturally, in the context of holographic entan-
glement entropy. Here a key role was played by the celebrated RT/HRT formula [19, 20]
(collectively shortened to HRRT), which computes the von Neumann entropy of boundary
subsystems in terms of the area of certain bulk surfaces. This “geometrisation” of corre-
lations [21], which more recently has also been observed for other information quantities
(such as for example [22, 23]), seems to indicate that from the boundary point of view, a
possible characterisation of bulk geometric states could be formulated in terms of certain
features of their entanglement structure. Motivated by this, we would like to use the HRRT
formula to extract as much information as possible about the entanglement structure of
geometric states in holography.

In general, one way to investigate the entanglement structure of a given class of states
utilizes an analysis of constraints, which typically take the form of inequalities satisfied by
certain information quantities. Since we are interested in the implications of the HRRT
formula, here we will focus on inequalities satisfied by linear combinations of von Neumann
entropies of various boundary subsystems.

1From the purely geometrical level, the motivation is that higher-dimensional surfaces probe deeper
(when comparing amongst various-dimensional bulk extremal surfaces anchored within a fixed-radius region
of the boundary of a given asymptotically-AdS spacetime) [16].

2Early proof of principle was carried out in e.g. [17] and an argument for uniqueness of the recovered
metric in 4-dimensions was given in [18], which also reviews further approaches to bulk metric reconstruction.
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Two important examples of these classes of inequalities are subadditivity (SA) and
strong subadditivity (SSA), the saturation of either of which has a clear implication for the
entanglement structure of a given density matrix. The saturation of SA, or equivalently
the vanishing of the mutual information, is associated with the absence of any form of
correlation between a specified pair of subsystems, and the corresponding factorisation of
the density matrix. As we will see, this fact will play a central role in our construction.
The saturation of SSA on the other hand is associated with a particular entanglement
structure, commonly known as quantum Markov chain, which is central for the theory of
quantum error correction and recovery maps [24].3,4

It is important to notice that while the saturation of SA and SSA is associated with
specific entanglement structures, the inequalities themselves do not characterise any par-
ticular structure because they are satisfied by all quantum states. For restricted classes
of states, however, the von Neumann entropies of various subsystems might satisfy addi-
tional inequalities. This can be easily seen for example for the case of classical probability
distributions, where the von Neumann entropy reduces to the Shannon entropy, which in
addition to the inequalities mentioned above also satisfies monotonicity.

The fact that in holography the entanglement structure of geometric states is con-
strained, beyond that of arbitrary quantum states, became evident with the work of [26],
which proved an inequality known as monogamy of mutual information (MMI).5 It is then
interesting to ask what are all other such inequalities, and a systematic search was initi-
ated in [27]. This work introduced the notion of the holographic entropy cone (HEC) and
proved that this cone is polyhedral for an arbitrary number of parties N, implying that
for any N there exists only a finite number of non-redundant6 inequalities which define
the facets. It also derived a set of new inequalities for five parties, which was later proved
to be the complete set in [28]. For more than five parties, it was shown in [29] that the
holographic entropy cone is indeed contained in the quantum one [30] for any N, but the
detailed structure of the HEC remains mostly unknown.7

One limitation of [27] is that, while it offered a tool that can be used to prove if a given
inequality is valid (via so-called contraction maps), it did not provide a constructive way of
deriving such candidate inequalities in the first place, or even determine if they correspond
to facets at all.8 A step forward in this direction was accomplished by [32], in the form

3See [25] for a discussion of this property in QFT.
4The fact that saturation of SSA will not play a fundamental role in our characterization of geometric

states is related to the fact that by MMI (see below) such saturation can only be achieved when SA is also
saturated (see [26] for more details).

5It is straightforward to see that outside the holographic setting, this inequality can be violated, for
example, by a 4-party GHZ state.

6An inequality is non-redundant if it is not implied by other inequalities.
7A new family of inequalities for every odd N was also found in [27], and argued to be non-redundant

with respect to SA and SSA and among themselves. However it remains unclear whether they genuinely
are all facets of the HEC for every N. Computational efforts to construct the complete HEC for N = 6 are
also ongoing [31]. At the time of writing, more than 4122 orbits of extreme rays and 182 orbits of facets
have been found.

8Indeed, the proof-by-contraction method is unable to ascertain that a given inequality is not valid. In
other words, while the method provides a sufficient condition for an inequality to be valid, it remains an
open question whether it is also necessary [32].
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of two systematic algorithms for the construction of the HEC for any number of parties.
These algorithms were devised so as to recursively converge towards tighter inequalities,
terminating with the finding of all facets of the HEC as one of its outputs. However, even
if one were able to somehow find explicit formulae for all the facet inequalities of the HEC,
it would still remain totally obscure where they come from and what they mean.

A first attempt at circumventing this limitation was presented in [33, 34], which intro-
duced the notion of proto-entropies and holographic entropy polyhedron. Motivated by the
physical requirement of cut-off independence, this work suggested focusing more on topo-
logical features of the relevant RT surfaces, specifically their connectivity, rather than on
their actual areas. This ultimately translated the search for the inequalities into the search
of certain generating configurations, called building blocks, making the problem more com-
binatorial in nature. One of the features of this approach is that any inequality found by
this procedure is guaranteed by construction to be a facet of the polyhedron. Intuitively,
one can think of this procedure as being akin to deriving the facets of a polyhedral cone
by first finding its extreme rays. In the present paper we continue in this direction. By
combining some of the techniques of [27] based on graph models of holographic entangle-
ment with the ideas of [33, 34] based on connectivity of entanglement wedges, we take
a significant step towards the derivation of the HEC for an arbitrary number of parties.
However in doing so, we will also slightly change our perspective on the problem.

As evident from these earlier works, one of the main problems one has to face while
trying to derive the facets of the HEC is the complexity of the combinatorics, which is typ-
ically characterised by a doubly exponential scaling in the number N of parties involved.
In addition, the explicit form of the inequalities might be highly dependent on N, which
can make it extremely hard to find a convenient parametrization of all the inequalities.
And even if one could circumvent these complications, it is far from clear how to interpret
the inequalities, for example by searching for explicit structures of density matrices which
are ruled out by them. Ultimately, if there exists a general lesson to be learned about
the entanglement structure of geometric states, it might be very hard to understand what
it is merely by looking at a very large number of complicated and seemingly unrelated
expressions. For all these reasons we will not look for an explicit derivation of the inequal-
ities. Instead, we will argue that the holographic entropy cone can be derived, at least in
principle, from the solution to a much simpler problem.

For any density matrix on a given number of parties N, and an arbitrary purification
of it, one can consider a pair of subsystems (possibly composite and possibly including the
purifier) and compute their mutual information to determine whether these subsystems
are correlated or not. One can then repeat this analysis for any pair of subsystems to
determine what was called in [35] the pattern of marginal independence (PMI) of the density
matrix. Any PMI, specifying which pairs of subsystems are marginally independent (i.e.
have vanishing mutual information) and which are not, can be viewed as a linear subspace
in a certain vector space called the entropy space. In particular, the PMI is the supporting
subspace of a face of a cone, the subadditivity cone (SAC), built only from the instances of
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SA for that N.9 With this structure in hand, one can conversely ask for which PMI does
there exist a density matrix corresponding to it. This was dubbed in [35] the marginal
independence problem, and for the restricted class of states corresponding to geometric
states in holography, the holographic marginal independence problem (HMIP).

The main goal of this work is to argue that the HEC can be fully reconstructed from
the solution to the HMIP, and that the solution to this problem amounts to establishing
which extreme rays of the SAC can be realized by geometric states. Importantly, as we will
explain, if one wants to construct the HEC for a given number of parties N, it will not in
general be sufficient to know the solution to the HMIP for the same number of parties. We
will argue however that there always exists a finite Nmax(N) such that the N-party HEC
can be constructed from the solution of the Nmax-party HMIP.

We will not be able to provide a definite proof that this reconstruction is possible, but
we will formulate and discuss certain conjectures on graph models realizing the extreme
rays of the HEC which imply that this is the case, and provide evidence in their support.
We stress that the focus of this work however is not on any specific algorithm for an
explicit reconstruction of the HEC, but rather on the possibility of the reconstruction
from only the seemingly limited information contained in the solution to the HMIP. A
conclusive proof of such a possibility would in fact amount to the proof of a deep equivalence
between the information contained in the set of all holographic entropy cones (for all
values of N) and in the set of all PMIs that can be realized in holography. Any deeper
question about constraints on the entanglement structure of geometric states should then
be formulated in terms of these more fundamental objects. Furthermore, since for the
reason mentioned above this equivalence would in general not be attained for any specific
value of N, the significance of certain specific objects which are manifestly N-dependent
(like the holographic entropy inequalities) should be questioned, as these objects might be
significantly affected by structural artifacts of the formulation.

A priori it might seem surprising that all the holographic entropy inequalities can be
derived from a simpler structure which only involves SA — after all, SA is a universal
relation which does not ‘know about’ holography. Intuitively, one can imagine that this is
ultimately related to the fact that in quantum field theory the values of the entropies are
typically immaterial because of the cut-off dependence, and that the saturation of SA (at
leading order in N) is sensitive solely to the connectivity of the entanglement wedge. And
even though certain ‘balanced’ combinations of entropies such as the mutual information
can be often ascribed a finite value independent of the cutoff [36], such numerical data
can typically be ‘dialed’ by for example deforming the state or the subsystem specification.
Since the HEC is specified by the limit to which such dialing can be pushed, it should not
involve rescalable numerical values. In other words, for delimiting the HEC, it should only
matter whether such finite quantities are zero or non-zero, which is indeed borne out in our
results. Even if the starting point in the development of our framework will be the graph
models from [27], where the edge weights can be dialed at will, any dependence on a specific

9Said more explicitly, the supporting subspaces of the facets of the SAC are the hyperplanes of vanishing
mutual information (i.e. the saturation of some instance of SA), and their intersections then form the
supporting subspaces of the faces of the SAC.
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choice will be effectively modded out by the fact that we will formulate all our results purely
in terms of equivalence classes of graph models inspired by the proto-entropies of [33, 34].

The structure of the paper is as follows. In section 2 we review some of the basic
definitions which were already used in previous works. In section 3 we introduce the main
tools which will be used in later sections, in particular the notion of an equivalence class of
graph models, specified by a min-cut structure on a topological graph model of holographic
entanglement, and of its corresponding min-cut subspace. Section 4 reviews the concept of
marginal independence from [35], and establishes a connection between patterns of marginal
independence and min-cut subspaces for a certain class of tree graphs. Section 5 analyses
how min-cut structures and subspaces transform when one varies the number of parties,
and generalizes the results for tree graphs from section 4. All these tools will then be used in
section 6, where we introduce our conjectures and discuss what evidence we have to support
them, how they are related to each other, and their implications for the derivation of the
holographic entropy cone. We conclude in section 7 with a discussion of the main questions
that still need to be answered in order to obtain a full characterization of the holographic
entropy cone for an arbitrary number of parties, and comments on other future directions.
For convenience, in table 1 we specify our font conventions and collect the notation for the
main constructs we use, organized by what spaces they live in, with reference to the place
in the main text where they are first defined. Throughout the text we will occasionally
decorate various symbols to stress particular choices of the corresponding objects which
satisfy additional requirements or have important additional features.

symbol definition reference

Colors, collections of colors and colorings:
N number of parties section 1
D number of polychromatic subsystems section 2.1

[N + 1] set of colors, including the purifier (N + 1) section 2.1
` single color (possibly the purifier) section 2.1

I, J, . . . polychromatic subsystem that does not include the purifier section 2.1
I, J, . . . polychromatic subsystem that might include the purifier section 2.1
β coloring of boundary regions / boundary vertices section 2

Graph constructs:
E number of edges in a graph G = (E, V ) section 2.3

we or w(e) weight of an edge e section 2.3
∂V ⊆ V set of “boundary” vertices section 2.3
GN topological graph model of holographic entanglement section 2.3
G̃N graph model of holographic entanglement section 2.3

U ⊆ V an arbitrary cut section 2.3
UI I-cut section 2.3

C(UI) or CI set of cut edges of an I-cut UI eq. (2.11)
U∗I or U∗I α min-cut for I section 2.3

UI set of min-cuts for I section 3
m min-cut structure on a topological graph model definition 2

– 6 –
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Objects in entropy space RD:
SI von Neumann entropy of subsystem I section 2.1
S entropy vector section 2.1

HECN N-party holographic entropy cone section 2.2
SACN N-party subadditivity cone definition 8
S S-cell definition 4
S min-cut subspace definition 5
P pattern of marginal independence (PMI) definition 9
π map that gives the PMI of a graph model section 4.1

Π(P) matrix of MI instances that determine a PMI eq. (4.6)

Objects in the space of edge weights RE:
w weight vector section 2.3
W W-cell section 3.2
W subspace specified by degeneracy equations section 3.3

wW weight vector in W section 3.5
xW extreme ray of W section 3.5
ΓI incidence vector eq. (3.5)
Γ map from W-cell to S-cell section 3.2

Geometric constructs:
Fd d−dimensional face of a cone section 3.5
Fd interior of a face Fd section 3.5
Fd minimal supporting linear subspace of a face Fd section 3.5

Recolorings:
β↓ recoloring that reduces N section 5.1
φ coarse-graining induced by the recoloring β↓ section 5.1

ΦN→N′ projection associated to the coarse-graining φ eq. (5.4)
β↑ recoloring that increases N section 5.2

m
x

N′ set of fine-grainings of a min-cut structure m to N′ parties eq. (5.20)

Table 1. A reference table summarizing the main notation and terminology used. To facilitate
orientation, we typically reserve sans-serif font for natural numbers, mathcal for geometrical regions,
mathbb for linear subspaces, bold face letters for vectors, mathscript for sets, and mathfrak for more
complicated but important constructs.

2 Basic definitions and notation

In this section we briefly review some of the main definitions, most of which were already
used in previous works [27, 30, 32–34, 37]. In section 2.1 we introduce the concept of
entropy cones in quantum mechanics. In section 2.2 we review the holographic set-up, the
definition of the holographic entropy cone and the concept of proto-entropies. In section 2.3
we review the basic definitions of the graph models of holographic entropies. Finally, in
section 2.4 we list some useful immediate consequences of the main definitions. For more
details the reader is referred to the original works.
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2.1 Entropy cones

Consider a Hilbert space which is a tensor product of N factors,

H := H1 ⊗H2 ⊗ · · · ⊗ HN, (2.1)

and a density matrix ρ acting on it. For any non-empty subset I ⊆ [N] := {1, 2, . . . ,N} of
these factors, the von Neumann entropy is defined as

SI := S(ρI) = −Tr (ρI log ρI) , (2.2)

where
ρI := TrH[N]\I ρ, with HI :=

⊗
`∈I
H`, (2.3)

is the reduced density matrix, or marginal, for the subsystem I. The entropy vector corre-
sponding to the density matrix ρ is the ordered10 collection of entropies of all its marginals,
namely,

S(ρ) = {SI for all I}. (2.4)

The vector space where entropy vectors live is RD, where D = 2N − 1, and will be referred
to as entropy space. The labeling of the Hilbert space factors in eq. (2.1) will be called a
coloring, the subscripts ` ∈ [N] are referred to as colors and any non-empty set of colors I
is a polychromatic index.

For a fixed number of parties N, the collection of all entropy vectors for all possible
Hilbert spaces and density matrices was shown by [30] to be a convex cone11 known as the
N-party quantum entropy cone (QECN).12 By construction, the QECN is clearly symmetric
under an arbitrary permutation of the N parties, as can be seen by just permuting Hilbert
space factors. In fact, it exhibits a larger symmetry group of permutations of [N + 1], as
we now explain.

For a density matrix ρ, a purification is any pure state |ψ〉 in an enlarged Hilbert space

H := H1 ⊗H2 ⊗ · · · ⊗ HN ⊗HN+1 (2.5)

such that
ρ = TrHN+1 |ψ〉 〈ψ| . (2.6)

We will refer to the additional auxiliary subsystem HN+1 as the purifier13 and denote a
non-empty subset of [N + 1] by an underlined index I. Occasionally we will take com-
plements of (not necessarily underlined) polychromatic indices, and we will always define

10We will follow our previous convention of ordering the entropies first by cardinality of I and then
lexicographically, though the actual order will not play a significant role in what follows. In all specific
examples, we will use alternate (and more conventional) notation of letters A,B,C, . . . instead of numbers
1, 2, 3, . . . to denote colors, with the letter O reserved for the purifier.

11A closed convex cone is a set of vectors such that for any two vectors v1,v2 in the set, the conical
combination αv1 + βv2 (where α, β ≥ 0) also belongs to the set.

12More precisely, it is the topological closure of this set which is a convex cone, while the set itself has a
more complicated structure.

13The purifier will often be referred to as color N + 1.
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these complements with respect to the set [N+1].14 Since for any pure state the entropy of
a subsystem is equal to the entropy of its complement, the entropies of all the subsystems
of |ψ〉 are already encoded in the entries of S(ρ).15 Any permutation of the N +1 factors in
eq. (2.5) will map an N-party entropy vector to another N-party entropy vector, resulting in
the extended symmetry mentioned above. In what follows, when we consider permutations
of entropy vectors or inequalities, we will always mean permutations of [N + 1].

For N = 2, 3, the QECN is known to be a polyhedral cone and can therefore be specified
by a finite set of inequalities.16 In the N = 2 case, the facets are given by the permutations
of subadditivity (SA),17

S1 + S2 ≥ S12, (2.7)

while for N = 3 there exists a new inequality known as strong subadditivity (SSA),18

S12 + S23 ≥ S2 + S123. (2.8)

It is important to notice that for N = 3, the permutations of eq. (2.8) constitute only a
proper subset of the full set of facet-defining inequalities of the cone. The additional facets
correspond to certain particular instances of SA. For example, one can easily verify that
eq. (2.7) specifies a facet while the “lift”

S1 + S23 ≥ S123 (2.9)

does not, being just the sum of eq. (2.7) and eq. (2.8).19 For N ≥ 4 the QECN is essentially
unknown; however, for any N, one can easily construct an “outer bound” (a larger cone
that contains it) by considering all instances of SA for all possible pairs of disjoint subsets
of [N + 1]. For any given N, these define the N-party subadditivity cone (SACN), an
object which will play a central role in our derivation of the holographic entropy cone (see
also [35]).20

2.2 Holographic constructions

Having introduced an N-party entropy space and the QECN therein, we now consider
the construct of an entropy cone in the context of holography. A natural splitting of the

14Note that according to this definition the set of non-underlined indices is not closed under this operation,
however to simplify the notation we will write the complement of I as I{ instead of I{.

15By convention, given a pair of complementary subsystems (I, I{) we have SI = SI{ and we denote the
entropy of each of them by the index which does not include the purifier.

16A polyhedral cone is said to be pointed when it does not contain any non-trivial linear subspace, and
in what follows all polyhedral cones that we will consider will be pointed. Any pointed polyhedral cone can
equivalently be described as the conical hull (the set of all possible conical combinations) of the set of its
extreme rays.

17These include the Araki-Lieb inequality S1 + S12 ≥ S2.
18Its permutations include weak monotonicity S12 + S23 ≥ S1 + S3.
19Geometrically, the saturation of this weaker inequality eq. (2.9) corresponds to a hyperplane which

intersects the boundary of the HEC only along a lower dimensional subspace.
20The reader might already wonder if one could not derive a more stringent bound by also including SSA.

This is of course correct, but as we will see it is SA, rather than SSA, which plays a more fundamental role.
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Hilbert space is achieved21 by partitioning the space on which the CFT lives, which we now
specify in more detail to indicate the generality of the setup. Consider a (not necessarily
connected) asymptotically AdS manifoldM with M boundaries, ∂M =

⋃M
m=1 ∂Mm.22 For

each boundary component ∂Mm, consider a Cauchy slice Σm and a partition of it into an
arbitrary number of connected regions Aim. Given a number of parties N, we introduce a
surjective coloring of these regions

β : {Aim : ∀m, i} → [N + 1]. (2.10)

In other words, each Hilbert space factorH`, which we label by a color, is associated to some
collection of these regions. Given a polychromatic index I, the set of regions which under
β receive a color ` ∈ I is the preimage β−1(I), and will be referred to as the subsystem
associated to I (or even more simply the subsystem I).23 A choice of such a manifold,
Cauchy slice, partition and a coloring defines what we will call an N-party holographic
configuration, denoted by CN.24

Using the HRT prescription [20], we can associate an entropy vector S(CN, g) to any
given holographic configuration.25 However, notice that typically the entropies will not be
finite, which occurs whenever an extremal surface is anchored on the AdS boundary, in
other words when the corresponding region admits an entangling surface.26 To circumvent
this problem, [27] introduced a cut-off surface, making all the entropies finite at the expense
of associating to a configuration an entropy vector Sε(CN, g) which is now cut-off dependent.

Given a number of parties N, one can consider the set of all possible (finite) entropy
vectors, for all possible N-party configurations and choices of cut-off. It is then easy to
show [27] that this set has the structure of a convex cone, and is known as the N-party
holographic entropy cone (HECN).27 Note that despite being called “holographic”, the
construction of this cone is purely geometric, and in using the HRT formula we implicitly
assumed that for anyM the bulk dynamics is dual to the evolution of a tensor product of
M copies of a holographic CFT living on ∂M. In what follows we will always make this
assumption, leaving the analysis of this subtlety to future work.28

21Even if strictly speaking the Hilbert space of a QFT does not factorize, we assume that this splitting
is a valid approximation, see [38] and references therein for more details on this issue.

22The dimension ofM will not play any role.
23We use similar notation and terminology for indices I which include the purifier.
24Throughout our construction, we will be working in the regime where the holographic dual describes

a classical bulk spacetime, i.e., we will not consider stringy or quantum corrections; see the discussion in
section 7 for additional comments.

25The second argument in S(CN, g) is a shorthand meant to indicate the dependence on the bulk spacetime
metric gab. Although it may seem more natural to use the CFT quantity ρ, we choose to leave this implicit
(as describing any density matrix which gives the bulk gab) to emphasize that in the present context the
entanglement entropy is given by a geometrical construct (namely the relevant set of extremal surfaces).

26The only case where this does not happen is when each Cauchy surface Σm is not partitioned at all,
and each region Am is then the entire Σm.

27In [27] the definition was given for the static case, but the same formulation pertains also in the
dynamical case. The reader who is already familiar with these constructions is reminded that this is
however not the case for the proof of polyhedrality.

28See [39] for more details regarding this issue.
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While the use of a cut-off is a convenient computational tool in defining the cone,
one might worry that it could render the resulting construct intrinsically ill-defined. In
particular, would the cone be meaningful if its building blocks required a specification of a
cut-off? Fortunately, we can circumvent this subtlety by realizing the cone’s extreme rays by
configurations where none of the minimal surfaces is anchored to the boundary, specifically
by the bulk geometry corresponding to multi-boundary wormholes and subsystems covering
the entire connected pieces of the boundary [27]. In such configurations the corresponding
HRT surface areas are therefore finite, with no need for cut-offs.

While this proof makes it clear that the “static” HEC is a physically well motivated
object to study, the construction has some limitations. First of all, one would like to ex-
tend the result to the “covariant” HEC (see [40–43] for discussions in this direction), which
is not even known to be polyhedral.29 Second, it would be interesting to understand to
what extent the properties of the HEC, even in the static case, depend on multibound-
ary wormhole solutions and on the choice of configurations where all entropies are finite.
Finally, it is interesting to investigate how specific substructures of the cone (for example
certain internal regions or portions of its boundary) are related to different holographic
configurations, especially the more typical ones which have divergent entropies.

Motivated by this, the work of [33] introduced the concept of proto-entropy and proto-
entropy vector, as manifestly cut-off independent objects associated to a configuration and
a metric. Given an arbitrary boundary region A (not necessarily connected), consider
a minimal extremal surface ξA whose area computes the entropy of A. Such extremal
surface can be composed of multiple disjoint pieces, which may or may not be anchored
on the boundary. The proto-entropy of A is then simply defined as the formal sum of the
connected components of ξA. In practice, one should just imagine the HRT prescription
without the area functional, with the sum of areas of connected surfaces replaced by a
formal sum of the surfaces themselves. The convenience of this construction is that all
surfaces are now treated on the same footing, irrespective of whether they are anchored to
the boundary (and therefore have infinite area) or not, and no cut-off is ever introduced.
Given a pair (CN, g), its proto-entropy vector is then defined as the ordered collection of
the proto-entropies of the boundary subsystems.

Using this formulation, [33, 34] suggested an approach to the derivation of new holo-
graphic entropy inequalities where it is the connectivity of the entanglement wedges, rather
than the area of the surfaces, that plays a central role. While in the present work we will
focus on the graph models of [27] rather than on proto-entropies, the approach to the re-
construction of the HEC presented here will follow the same intuition. We leave a more
detailed analysis of the relationship with proto-entropies, and in particular between the
HEC and the holographic entropy polyhedron to future work [44].

29While there is no well-established definition of such a covariant HEC, the intent is to characterize
the entropy vectors for all configurations in all physical time-dependent holographic spacetimes. Since the
same subtlety mentioned above and explored in [39] is likely more severe in the time-dependent context, we
again retreat to geometrical definition, as a collection of entropy vectors given by the HRT prescription, in
spacetimes where the latter applies. Most simplistically, we would then restrict to classical bulk spacetimes
obeying the NEC.
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2.3 Graph models

In the previous subsection we gave a definition of a holographic configuration in the most
general scenario, where the bulk spacetime is dynamical. We will now restrict to static
spacetimes, such that the entropies are computed by minimal (rather than extremal) sur-
faces. In this case, given a pair (CN, g), the minimal surfaces define a partition of the bulk
time slice, and we can conveniently describe the configuration by a graph constructed as
follows [27].

To each region in the partition of the bulk time slice we associate a vertex. If a region
is adjoining to the boundary, we label the vertex by the color of the adjoining boundary
region. If two vertices correspond to two adjoining regions of the bulk time slice, they are
connected by an edge. Any such edge corresponds to a piece of a minimal surface and will
carry a weight equal to its area.30 Note that such graphs can get quite complicated; for
example, even in a simple configuration with regions specified by symmetric distribution of
disks on a spatial slice of R2,1, two correlated regions would correspond to a planar graph
with 4 vertices and 3 edges, while a graph encoding four pairwise-correlated regions would
be a non-planar one with 43 vertices and 90 edges. However, we will not need to consider
the specific details of such graphs.

The convenience of this representation stems from the fact that it suggests how to
formulate an alternative, but equivalent, definition of the (static) HEC which is entirely
based on graphs, without the need to consider more explicit holographic configurations as
introduced above. In essence, one first defines a “graph model” of holographic entangle-
ment, with a prescription for how to compute an entropy vector starting from it, and then
proves that the set of entropy vectors realized by such graph models is equal to the HEC.31

Since these graph models are the main tool that we will use in the rest of the paper, we
now review their original definition in detail.

Consider an undirected graph G = (V,E) with vertex set V and edge set E of unordered
pairs of vertices.32 With a slight (but by now well-established) abuse of notation, we denote
a set of boundary vertices by ∂V ⊆ V . We will refer to the other vertices (if any33) in V as
the bulk vertices. Analogously to what we discussed for configurations, to each boundary
vertex we assign a color via the coloring β : ∂V → [N+1] and β−1(I) is the preimage of the
subsystem I. A graph G together with a specification of boundary vertices and a coloring β
defines a topological graph model of holographic entanglement, which will be denoted by GN.

30Pieces of RT surfaces which reach the boundary will correspond to edges with infinite weights. If
necessary, one can again imagine introducing a cut-off, and work with a graph having all edge weights
finite.

31Given an arbitrary graph model one can convert it into a “canonical form” using certain entropy-
preserving transformations (explicitly reviewed in appendix A). One then shows that the entropy vector of
any graph model in canonical form can be explicitly realized by a multiboundary wormhole configuration.
See [27] for more details.

32For simplicity the graph is also assumed to be simple (it is not a multigraph) and loopless (i 6= j for
all (i, j) ∈ E), although without these restrictions the entropy cone would remain unchanged.

33As pointed out by [32], the restriction to only ∂V = V corresponds to the study of the cut function,
which when written as a vector is well known to span a polyhedral cone whose facets are the subadditive
inequalities [45, 46].
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If this structure is further endowed with a weight map w : E → R>0, we will call it a
graph model of holographic entanglement, and denote it by G̃N. We will often think of the
map w as a weight vector w = w(E) in the space of weights RE (where E := |E|), consisting
of all weights we := w(e) for all e ∈ E with some ordering.

Any subset U ⊆ V characterizes a bipartition or cut of G, which defines a set of cut
edges C(U) ⊆ E as

C(U) := {(v, v′) ∈ E : v ∈ U, v′ ∈ U {} (2.11)

(where U { := V \ U is the complementary set of vertices). For a graph model G̃N, the cut
weight of a cut U is defined as the total weight of its edges

‖C(U)‖ :=
∑

e∈C(U)
w(e). (2.12)

For any non-empty I ⊆ [N], a set U ⊆ V is a cut homologous to I, or an I-cut, if it
contains precisely the boundary vertices colored by I, i.e. if U ∩ ∂V = β−1(I). We will
denote an arbitrary I-cut by UI and to simplify the notation, we will occasionally denote
the corresponding set of cut edges by CI (as a shorthand for C(UI)). The minimum cut
weight among all I-cuts gives the entropy SI of the associated subsystem, i.e.,

SI := min
UI

‖C(UI)‖ . (2.13)

Any I-cut UI with minimum cut weight ‖C(UI)‖ = SI is a min-cut for I and will be denoted
by U∗I (similarly, we will occasionally denote the set of cut edges for a min-cut by C∗I ).
Notice that from the definition it immediately follows that the complement of a min-cut
U∗I is a min-cut for the complementary subsystem I{. Min-cuts however are not necessarily
unique, as for holographic configurations. We will come back to this “degeneracy” in later
sections, since it will play an important role.

2.4 Basic properties of min-cuts

Here we collect some basic results about min-cuts that will be useful later.
For a given topological graph model GN, consider an arbitrary subsystem I,34 an

arbitrary I-cut UI, and the induced subgraph35 GN [UI], with vertex set UI and boundary
vertices ∂V ∩ UI with the coloring inherited from GN. In the special case of a min-cut
U∗I , this subgraph is the natural analog of the entanglement wedge (or more precisely
the homology region) for the subsystem I. However, as we now show, each connected
component of a min-cut U∗I has to be connected to the boundary, i.e. it has to contain at
least one boundary vertex:36

34Throughout this subsection we use non-underlined indices I rather than I to simplify the notation, but
all lemmas obviously also hold for subsystems that include the purifier.

35The induced subgraph G[U ] of a graph G = (V,E) is the graph G[U ] = (U,F ) with vertex set U ⊂ V

and edges F ⊆ E connecting only vertices in U .
36We are ignoring the trivial case where GN is disconnected and some of its connected components do

not include any boundary vertices. However it should be clear that even in these cases, such disconnected
components are never cut by a min-cut.
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Lemma 1 (Topological minimality). If the induced subgraph GN [UI] of a topological graph
model GN on the vertices of a I-cut UI is disconnected, and there is a connected component
which does not include any of the boundary vertices of GN, then the cut UI cannot be a
min-cut for any graph model G̃N on GN.

Proof. Denote by U∅
I a connected component of GN [UI] such that U∅

I ∩ ∂V = ∅. Then
U ′I = UI \ U∅

I is a new I-cut on GN such that∥∥C(U ′I)
∥∥ < ‖C(UI)‖. (2.14)

Hence UI cannot be a min-cut.

The second basic property of min-cuts is the graph version of the property of HRRT
known as “entanglement wedge nesting”, which states that entanglement wedges of nested
regions must themselves be nested. We will state this property without proof (see [32] for
more details):

Lemma 2 (Nesting). For any graph model G̃N, subsystems I,K with K ⊂ I, and min-cut
U∗I for I, there exists a min-cut U∗K for K such that U∗K ⊂ U∗I .

Notice that in case of degeneracy, the inclusion U∗K ⊂ U∗I need not necessarily hold for
all choices of min-cut pairs.

Using this lemma, one can immediately derive the following result:

Lemma 3 (No-crossing). For any graph model G̃N, and subsystems I,K with I ∩K = ∅,
there exist min-cuts U∗I and U∗K such that U∗I ∩ U∗K = ∅.

Proof. Consider the subsystem I{. Since I∩K = ∅, it follows that K ⊂ I{ and by lemma 2
there exists min-cuts U∗

I{
and U∗K such that U∗K ⊂ U∗

I{
. The complement of U∗

I{
is then a

min-cut U∗I such that U∗I ∩ U∗K = ∅.

Finally, we mention another property which is closely related to nesting and will be
particularly useful in later proofs:

Lemma 4 (Min-cut decomposition). For any graph model G̃N, if the induced subgraph
G̃N [U∗I ] for a min-cut U∗I is composed of two disjoint components,

G̃N [U∗I ] = G̃N [UJ]⊕ G̃N [UK]

with I = J ∪K, then UJ and UK are min-cuts for the corresponding subsystems.

Proof. Proceed by contradiction. Suppose UJ is not a min-cut, so an actual min-cut U∗J
for J has

∥∥∥C(U∗J )
∥∥∥ < ‖C(UJ)‖. By hypothesis the union U∗J ∪ UK defines a cut for I. By

subadditivity,37
∥∥∥C(U∗J ∪ UK)

∥∥∥ ≤ ∥∥∥C(U∗J )
∥∥∥+‖C(UK)‖ < ‖C(UJ)‖+‖C(UK)‖, where we used

minimality in the last step. But by the disjointness assumption, the right-hand side equals
‖C(U∗I )‖. Hence U∗J ∪ UK is a cut for I of smaller weight than the claimed min-cut U∗I , a
contradiction (and the same argument of course also applies to K).

37Phrased more generally, this follows from the fact that the min-cut function on a graph is submodular.
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An alternate way of stating lemma 4 is that if the set of cut edges for a min-cut U∗I
can be split into two sets of cut edges for cuts of subsystems bipartitioning I, then each
set corresponds to a min-cut for that subsystem. Note that this statement can be trivially
iterated when G̃N [U∗I ] is composed of multiple disjoint components.

The min-cut decomposition also makes an immediate connection to SA saturation: if
G̃N [U∗I ] = G̃N

[
U∗J

]
⊕ G̃N [U∗K] with I = J ∪ K, then SI = SJ + SK, so J and K have no

mutual information and are fully decorrelated.38

3 The min-cut subspace of a graph model

In the previous section we reviewed the definition of a graph model of holographic entan-
glement and how an entropy vector is associated to it. We now begin to consider coarser
objects associated to graph models. This will be a recurring theme throughout this work,
and we will consider an even coarser object in section 4.

In section 3.1 we introduce the notions of a “min-cut structure” and its corresponding
“W-cell” in the space of edge weights. These allow us to organize graph models into
equivalence classes, and we will introduce the main objects associated to an equivalence
class, namely the “S-cell” and its “min-cut subspace”. These subspaces will then be used
in section 6 to resolve the structure of the holographic entropy cone. The definition is not
entirely new, as variations of it were already used previously. Here we sharpen this notion
and explore its properties in much greater detail, highlighting in particular the role played
by “degeneracy”, namely the possible coexistence of alternative min-cuts which compute
the entropy of a subsystem.

In section 3.2 and section 3.3 we then explain how the S-cell and min-cut subspace
of an equivalence class of graph models can be determined from the W-cell. While in
section 2 we have defined weights as strictly positive, in some cases it will be useful to
consider extremal situations where some of them vanish, and we clarify how to deal with
this type of situations in section 3.4. In section 3.5, we present certain important properties
of W-cells, S-cells and min-cut subspaces which will be used in later proofs. Finally, in
section 3.6, we explain how for disconnected graphs all these constructs can be obtained
from those of the connected “building blocks”.

Additional important properties of the objects introduced in this section, related to
how these transform under recoloring of boundary vertices in a graph, will be analysed in
section 5.39

3.1 Equivalence classes of graph models

Consider a graph model of holographic entanglement G̃N, as defined in section 2.3. As we
anticipated above, the min-cut U∗I for an arbitrary subsystem I is not necessarily unique.

38The existence of such decomposition of the induced subgraph G̃N [U∗I ] is also a necessary condition for
the mutual information to vanish, as we will review later in section 4.2 (see lemma 9).

39In the discussion, section 7, we will also briefly comment on the relation between the min-cut subspaces
defined here, and similar construct introduced in [33, 34] for proto-entropies and the definition of the
holographic entropy polyhedron.
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We denote the set of min-cuts for I by UI. A subsystem indexed by I will be said to
be generic (degenerate) if UI has cardinality equal to (greater than) one. If UI has more
than one element, every U∗I ∈ UI is referred to as a degenerate min-cut, in the sense that
any such cut achieves the minimum weight among all possible cuts for I.40 Similarly, we
introduce the following terminology for graph models

Definition 1 (Generic and degenerate graph models). A graph model is generic if every
subsystem is generic, while it is degenerate if at least one subsystem is degenerate.

Notice that a “general” graph model may or may not be “generic” according to this
definition. The motivation for this choice of terminology is that random graph models
typically do not have any degeneracy.

For an arbitrary graph model G̃N we define its min-cut structure as follows

Definition 2 (Min-cut structure of a graph model). The min-cut structure m(G̃N) of a
graph model G̃N is the collection of its min-cut sets for all polychromatic indices, i.e.

m(G̃N) := {UI for all I} (3.1)

Any two graph models on the same topological graph model GN will be considered
equivalent if their min-cut structures are equal. This equivalence relation allows us to or-
ganize all such graph models into a finite set of equivalence classes, each one corresponding
to a distinct min-cut structure m. We write such an equivalence class as a pair (GN,m),
stressing the dependence on both the min-cut structure and the underlying topological
graph model. Occasionally, we will also write (GN,m)[G̃N] to stress that (GN,m) is not
an arbitrary equivalence class, but the class specified by the representative graph model
G̃N. Any element of a class is specified by a choice of weights consistent with the min-cut
structure m, and it will be convenient to associate to each equivalence class a region in the
space of edge weights RE

>0.

Definition 3 (W-cell). The W-cell W(GN,m) ⊂ RE of the min-cut structure m on the
topological graph model GN is the set of weight vectors of all graph models G̃N in the class
(GN,m).

In what follows, when the specification a topological graph model GN is clear from context,
and we only need to keep track of the dependence of a W-cell on a min-cut structure m,
we will simply write Wm instead of W(GN,m).

Given a topological graph model GN, one may want to specify a min-cut structure
on it more abstractly, by directly listing the min-cut sets UI without referring to graph
models and explicit choices of edge weights. Notice however that an arbitrary choice of
cuts for each index I is not necessarily a meaningful min-cut structure, since there may not
exist a choice of weights that make all these cuts (and no others) minimal (for example
by violating some of the lemmas in section 2.4). We will comment more explicitly on this
point in the next section.

40Notice that the cardinality of UI is bounded by 1 ≤ |UI| ≤ 2|V |−(N+1), since only the |V | − (N + 1) bulk
vertices can be optionally included in the I-cut.
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Each equivalence class will also be associated to a specific region of entropy space,
called the S-cell of (GN,m), defined as follows

Definition 4 (S-cell). The S-cell S(GN,m) ⊂ RD of the min-cut structure m on the topo-
logical graph model GN is the set of entropy vectors of all graph models G̃N in the class
(GN,m).

By definition, each S-cell is contained in the HEC, since it is a set of entropy vectors
that can be realized by graph models. As we will see, different S-cells can have different
dimensions, and clearly the union of all S-cells that can be obtained from all possible
topological graph models and min-cut structures is the whole HECN. However, the set
of all S-cells does not form a partition of the HECN since a given entropy vector can in
general belong to multiple S-cells.41 Furthermore, the relation between equivalence classes
and S-cells is not a bijection, since the same S-cell can be associated to distinct equivalence
classes.42

Having introduced the notion of an S-cell, we now consider a linear subspace of entropy
space which is naturally associated to it. Specifically, we define the min-cut subspace of a
class (GN,m) as follows

Definition 5 (Min-cut subspace). The min-cut subspace S(GN,m) of the min-cut structure
m on the topological graph model GN is the minimal linear subspace which contains the S-cell
S(GN,m), i.e.

S(GN,m) := Span(S(GN,m)) (3.2)

Notice that even the relation between S-cells and min-cut subspaces is not a bijection, since
different S-cells can give the same min-cut subspace.43

Having introduced the main definitions, we will now proceed to explain how, given
a topological graph model and a min-cut structure, one can compute the S-cell and the
min-cut subspace explicitly. We will start from the slightly simpler case of generic graphs
and then extend the analysis to situations where some min-cuts are degenerate.

3.2 Min-cut structures without degeneracy

Given a topological graph model GN, and a generic min-cut structure m, we can determine
the W-cell of (GN,m) as follows. To each edge of GN we associate a weight variable we
(rather than a weight value as in a graph model G̃N). For any polychromatic index I, we
can consider all cuts UI, and the min-cut structure m specifies which one is the min-cut
U∗I . The minimality of U∗I translates into a set of linear inequalities in the weight variables,
which take the form

‖C(U∗I )‖ < ‖C(UI)‖ ∀UI 6= U∗I . (3.3)
41This can easily happen for example with disconnected graph models. We will comment on this type of

situation in more detail in section 3.5.
42For example one can start from a class (GN,m) and add new vertices to GN to obtain a new topological

graph model G′N such that the min-cut structure m and the sets of cut edges C∗J for all subsystems remain
unchanged (a trivial way to do so is by adding a disconnected component of only bulk vertices).

43This situation can also easily be realized with disconnected graphs, see section 3.5.

– 17 –



J
H
E
P
0
9
(
2
0
2
2
)
1
9
0

The collection of all these inequalities in eq. (3.3), for all polychromatic indices I, combined
with the condition that each edge weight must be non negative

we > 0 ∀ e ∈ E (3.4)

specifies a polyhedral cone in RE
>0. The cone structure follows from the inequalities being

homogeneous, and since there are at least E linearly independent ones (those in eq. (3.4)),
the cone is pointed. Furthermore, since all the inequalities are strict, the (non-empty)
solution corresponds to the interior of this cone, and the cone is full-dimensional.44 This
is the W-cell W(GN,m).

As we mentioned earlier, an arbitrary choice of min-cut for each subsystem I does not
necessarily correspond to a meaningful min-cut structure. This is because the system of
inequalities described above could have no solutions, in which case the W-cell is just the
empty set. In the following we will always ignore these situations, and whenever we consider
a min-cut structure on a certain topological graph model, we will implicitly assume that
its W-cell is non-trivial.

Having shown how to determine the W-cell W(GN,m) explicitly, we will now explain
how to derive the corresponding S-cell S(GN,m) in entropy space. Notice that for any graph
model G̃N, each entropy SI is computed by a sum of weights, each one with unit coefficient,
cf. eq. (2.12). For each subsystem I we introduce an incidence vector ΓI ∈ {0, 1}E,

ΓeI :=

1 if e ∈ C(U∗I )
0 otherwise

(3.5)

which specifies which edges participate in the cut. We can then write the entropy as

SI = ΓeI we (3.6)

where the D×E matrix ΓeI represents a linear map Γ : RE → RD. The map which associates
entropy vectors to weight vectors of fixed topological graph and min-cut structure is the
restriction Γ|W of Γ to the W-cell W(GN,m). The S-cell is the image of this restricted
map45

S(GN,m) = Im Γ|W (3.7)

and the min-cut subspace is

S(GN,m) = Span(Im Γ|W) = Im Γ (3.8)

where the last equality follows from the fact that, as explained above, Span(W) = RE.
In conclusion, in the case of a generic min-cut structure m on a topological graph model

GN, the min-cut subspace is simply the column space of the matrix Γ.
44The linear span of the vectors inside the cone is the full space.
45Equivalently, one could also define the S-cell as the image of W under the unrestricted map Γ, i.e.,
S = Γ(W), but we preferred the option in the main text because the matrix Γ is specified by the min-cut
structure, which is only defined within W.

– 18 –



J
H
E
P
0
9
(
2
0
2
2
)
1
9
0

3.3 Min-cut structures with possible degeneracy

We will now generalize the previous construction to the case where some min-cuts could
be degenerate. We start again by determining the W-cell of a given min-cut structure m

and topological graph model GN.
For each degenerate subsystem I, we label the min-cuts U∗I in the set UI with an upper

index α ∈ {1, 2, . . . , |UI|}. The W-cell is now specified by the following set of inequalities

‖C(U∗I
α)‖ < ‖C(UI)‖ ∀UI 6= U∗I

α, ∀α (3.9)

for each polychromatic index,46 together with the strict positivity of the weights (3.4), and
crucially a set of degeneracy equations

‖C(U∗I
α)‖ = ‖C(U∗I

β)‖ ∀ I, ∀α, β (3.10)

Like in the generic case, the W-cell is the interior of a polyhedral cone, but now with a
crucial difference. Since all inequalities are strict, denoting by W the proper linear subspace
of RE which corresponds to the solution of the degeneracy equations (3.10), we have

Span(W(GN,m)) = W (3.11)

rather than the full space.
To find the S-cell we can proceed similarly to generic case. For each degenerate sub-

system I, we first choose a “representative” min-cut U∗I
α, by a specific choice of α. We

denote a choice of min-cuts for all I schematically by {α}. With this choice we can then
construct an incidence vector ΓαI for each polychromatic index I, and as before a linear
map Γ{α} : RE → RD. Different choices of representatives will in general give different
linear maps, however once restricted to the W-cell, all these maps have the same image,
the S-cell of m, i.e.,

S(GN,m) = Im Γ{α}|W ∀ {α} (3.12)

To see this, consider an arbitrary weight vector w ∈ W and two maps Γ{α} and Γ{α′}

for two different choices of representative min-cuts. We want to show that for any such
choices

Γ{α}(w) = Γ{α′}(w) (3.13)

which we can rewrite as
(Γ{α} − Γ{α′})(w) = 0 (3.14)

For a row I of the matrix that appears in the equation above we should then have

(ΓαI − Γα′I )(w) = 0 (3.15)

If the choice of representatives for the subsystem I in {α} and {α′} was the same, eq. (3.15)
is trivial. Otherwise it is precisely one of the degeneracy equations that specify W, and it
is therefore also satisfied by w.

46For each generic subsystem, there is just a single index α ∈ {1}.
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Figure 1. The graph model G̃3 which generates the extreme ray of the HEC3 corresponding to
the 4-party perfect state. The boundary vertices are ∂V = {A,B,C,O}, and there is a single bulk
vertex, σ. Our drawing conventions for this and all subsequent figures will be to use colors for the
boundary vertices (black for the purifier O), and to display all bulk vertices in gray.

As for the generic case, the min-cut subspace of a min-cut structure with degeneracies
is again defined as the span of the S-cell. Unlike the generic case however, the min-cut
subspace is now generally not equal to the image of any of the unrestricted maps Γ{α}.47

Hence
S(GN,m) = Span(Im Γ{α}|W) ⊆ Span(Im Γ{α}) (3.16)

and typically S(GN,m) ⊂ Span(Im Γ{α}).
Using this construction it is straightforward to prove the following result, which pro-

vides a more direct way to determine the min-cut subspace of an arbitrary class (GN,m)
when one is not interested in the W-cell or the S-cell.

Lemma 5. For any class (GN,m) and choice of Γ{α}, the min-cut subspace of (GN,m) is
the image of W under Γ{α}

S(GN,m) = Γ{α}(W) (3.17)

Proof. Since the min-cut subspace is defined as the linear span of the S-cell, S contains
some basis BS of S. And by eq. (3.16), there exists a collection of vectors in W which are
mapped to BS, therefore Γ{α}(W) ⊇ S for any {α}. On the other hand, the W-cell is full
dimensional in W, i.e., its linear span is W. Therefore, any w ∈ W can be written as a linear
combination of a basis BW ⊆ W , which is mapped inside S by Γ{α}, implying Γ{α}(W) ⊆ S.
Combining the two inclusions, Γ{α}(W) = S.

Notice that in the generic case, where W = RE, eq. (3.17) reduces to eq. (3.8). Because
of eq. (3.12), the specific choice of min-cut representatives for a min-cut structure is often
immaterial, and in what follows we will often drop the explicit dependence of Γ{α} on such
a choice, writing simply Γ.

We conclude this subsection with an explicit example of these constructs. Consider
the graph model G̃3 in fig. 1. The indicated choice of weights on the underlying topological

47It is tempting to guess that the min-cut subspace of a degenerate min-cut structure is the intersection
of all the images of the unrestricted maps for all choices of representatives, i.e., that S =

⋂
{α} Im Γ{α}.

This however is not entirely clear and we leave this question for future work.
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graph model G3 specifies the following min-cut structure

UA = {{A}} UAB = {{A,B}, {A,B, σ}} UABC = {{A,B,C}}
UB = {{B}} UAC = {{A,C}, {A,C, σ}}
UC = {{C}} UBC = {{B,C}, {B,C, σ}}

(3.18)

The degenerate subsystems are AB, AC and BC, and they give rise to the following
degeneracy equations

wAσ + wBσ = wCσ + wOσ

wAσ + wCσ = wBσ + wOσ

wBσ + wCσ = wAσ + wOσ

(3.19)

The solution of the degeneracy equations is the 1-dimensional subspace W ⊆ R4 generated
by the vector (1, 1, 1, 1). The W-cell is the ray w(1, 1, 1, 1), with w > 0, and its image under
the map (the rows are labeled by the entropies in the order (A,B,C,AB,AC,BC,ABC),
and the columns by the weights in the order (Aσ,Bσ,Cσ,Oσ))

Γ =



1 0 0 0
0 1 0 0
0 0 1 0
1 1 0 0
1 0 1 0
0 1 1 0
0 0 0 1


(3.20)

fixed by the choice of representatives

U∗AB = {A,B}
U∗AC = {A,C}
U∗BC = {B,C} (3.21)

is the S-cell
S = λ (1, 1, 1, 2, 2, 2, 1), λ > 0 (3.22)

which is the 4-party “perfect state”48 extreme ray of the HEC3. In this example the min-
cut subspace is therefore 1-dimensional. We will see momentarily that this is always the
case for graph models realizing the extreme rays of the HEC.

3.4 Vanishing weights

Up to this point we have only considered situations where all the weights in a graph model
are strictly positive. However, one may wonder if there could be any issue when allowing
some of the weights to vanish, and in this subsection we explore this situation carefully. The
upshot is that if some of the weights vanish in a graph model, all our previous definitions

48This is the pure state on four parties which is absolutely maximally entangled, i.e., the state such that
each subsystem has maximal entropy.

– 21 –



J
H
E
P
0
9
(
2
0
2
2
)
1
9
0

and constructions should be applied to a new graph where all edges with vanishing weight
have been deleted.

Consider a topological graph model GN, and suppose that instead of specifying a min-
cut structure by a choice of edge weights, we instead try to specify it by a list of min-cut
sets for all polychromatic subsystems, which we denote by m̆. Any such choice will specify
a region W̆ of the space of edge weights RE via a set of min-cut inequalities (3.9) and
degeneracy equations (3.10), together with the condition of strict positivity of the edge
weights (3.4). However, as already mentioned before, this region can be empty, in which
case m̆ would not correspond to a valid min-cut structure on GN. For a random choice of
min-cut sets, this would typically be the case, since the min-cut sets would easily violate
some of the basic properties of min-cuts reviewed in section 2. However, it can also happen
that the only reason why W̆ is empty is that some of the degeneracy equations are forcing
some of the edge weights to vanish.

Consider now a bipartition (E0, E>) of the edge set E and the following constraints
on the weights

we = 0 ∀ e ∈ E0

we > 0 ∀ e ∈ E> (3.23)

Suppose that the new regionW specified by (3.23), and precisely the same min-cut inequal-
ities and degeneracy equations that participated in the specification of W̆, is non-empty.
According to our definition, even if W is non-empty, it is not a W-cell for any min-cut
structure on GN, since some weights vanish. However, W can also be specified by an equiv-
alent set of inequalities and equations that can be obtained by simply canceling the terms
we for all e ∈ E0 from all the original min-cut inequalities and degeneracy equations that
defined W̆, and by also removing the corresponding equations from eq. (3.23).

Consider now a new topological graph model G̊N obtained by simply deleting all edges
in E0 from GN. The space of weights for G̊N is now RE−|E0|

>0 and eq. (3.23) imposes that all
remaining weights are strictly positive. Furthermore for each min-cut U∗I

α in m̆ we have

‖C(U∗I
α)‖ −

∑
e∈E0(I,α)

we = ‖C̊(U∗I
α)‖ (3.24)

where
E0(I, α) = C(U∗I

α) ∩ E0 (3.25)

and C̊(U∗I
α) is the set of cut-edges for the min-cut U∗I

α on the new graph G̊N. The equations
and inequalities obtained by cancelling the vanishing weights can then be reinterpreted as a
set of min-cut inequalities and degeneracy equations for a min-cut structure m̊ = m̆ on the
new graph, and the region W is therefore the W-cell W(G̊N, m̊). We will see an example
of this reduction procedure in the next section.

Finally, let us briefly comment on the extreme situation where W̆ is the 0-dimensional
region that only contains the origin of RE. In this case the reduction we just described
simply produces a new topological graph model G̊N with no edges, whose space of weights
is now R0

>0 = {0}. In this space there is only a single W-cell W, which is simply the
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entire space. The corresponding min-cut structure is generic only in the case where all
the vertices in G̊N are boundary vertices. Otherwise, the min-cut structure is “maximally
degenerate” in the sense that any subset of the bulk vertices can be included in the min-cut
of each polychromatic subsystem.

3.5 Main properties of W-cells, S-cells and min-cut subspaces

In this subsection we comment on a few important properties of W-cells, S-cells and min-
cut subspaces which will be used in later proofs. We begin with a simple observation about
the set of W-cells associated to a given topological graph model:

Lemma 6. For any topological graph model GN, the set of W-cells associated to all the
min-cut structures that can be specified on GN forms a partition of the space of weights
RE
>0.

Proof. Given a topological graph model GN, any choice of weight vector w ∈ RE
>0 specifies

a min-cut structure uniquely.

Recall that any W-cell is the interior of a pointed polyhedral cone whose linear span
is the subspace W determined by the degeneracy equations. We now want to consider the
boundary of such a cone, and in particular its extreme rays. For a given W-cell W we
denote its closure by W. A d-dimensional face Fd of W is defined as the intersection of W
with a hyperplane H such thatW is contained entirely in one of the half-spaces specified by
H (including H itself). According to this definition, each face is again a closed polyhedral
cone, and we denote its interior49 by Fd. Notice in particular that the 1-dimensional faces
are also closed; they are closed extreme rays, since they contain the origin.

In general it is not clear if the interior of a face is by itself a W-cell for some min-cut
structure,50 but we will prove that this is the case for certain extreme rays. We denote
a closed extreme ray of W by xW and its interior (the corresponding open ray) by xW .
Moreover, we will say that a ray (either closed or open) is nowhere-zero if all the components
of any vector in its interior are strictly positive. We then have the following lemma:

Lemma 7. For any class (GN,m) and a nowhere-zero extreme ray xW of W(GN,m), there
exists a min-cut structure m′ on GN whose W-cell is xW .

Proof. Consider a class (GN,m) and a nowhere-zero extreme ray xW ∈ Wm, where we have
introduced the shorthand notation Wm = W(GN,m). We denote by F1 the 1-dimensional
linear subspace generated by xW . Since xW is nowhere-zero, by lemma 6 there exists a
unique min-cut structure m′ whose W-cell Wm′ contains xW . Suppose now that xW is
not a W-cell by itself, i.e., that Wm′ 6= xW . Then there exists at least another open ray
w ∈ Wm′ which corresponds to the same min-cut structure m′ of xW . In general the facets
of W are supported by two different types of hyperplanes. Some correspond to degeneracy
equations for min-cuts in m, and others are facets of RE

≥0. However by the assumption
49We define the interior with respect to the subspace topology.
50Indeed, the structure of the set of W-cells for a given topological graph model is an interesting object

to study. We leave this problem for future work.
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that xW is nowhere-zero, it follows that F1 is completely determined by the degeneracy
equations only. Since any ray that is not contained in F1 would violate at least one of these
equations, it must be that w = λxW with λ > 0, and xW is the whole W-cell of m′.

Using this lemma, we can then show that if a class (GN,m) has a 1-dimensional min-
cut subspace, we can always find another class such that the min-cut subspace is preserved
and the new W-cell is just a single ray.

Lemma 8. For any class (GN,m) such that S(GN,m) is 1-dimensional, there exists a class
(ĜN, m̂) such that

S(ĜN, m̂) = S(GN,m) (3.26)

and W(ĜN, m̂) is a single ray.

Proof. Consider an arbitrary class (GN,m) such that the min-cut subspace is 1-dimensional,
and suppose its W-cell Wm is not a single ray. Since S(GN,m) is 1-dimensional, the S-cell
on the other hand is just a single ray, which we denote by S. For any choice of Γ (fixed by
a choice of representative min-cuts in m) we then have

Γw = λwS ∀w ∈ Wm (3.27)

where λw > 0 is a scaling factor that depends on w. By linearity this implies that

Γw′ = λw′S ∀w′ ∈ ∂Wm (3.28)

where ∂Wm =Wm\Wm denotes the boundary ofWm, and λw′ ≥ 0 is a new rescaling factor
which depends on w′. Notice that in general λw′ can now vanish. However, any w ∈ Wm

can be written as a conical combination of the extreme rays of Wm. Therefore, since for
any w we have λw > 0, there must exist at least one extreme ray xWm ∈ ∂Wm such that if
we apply eq. (3.28), with w′ = xWm , we have λw′ > 0.

We now consider one the extreme rays which satisfy this condition, and we have to
distinguish two cases, depending on whether xWm has some vanishing components or not.

If xWm has no vanishing components, it follows from lemma 7 that it is by itself a W-cell
Wm̂ for some min-cut structure m̂ on GN. Furthermore, by eq. (3.28), xWm is mapped by
Γ to the same S-cell as all other weight vectors in Wm. Therefore (ĜN, m̂), with ĜN = GN,
has the same min-cut subspace as (GN,m).

On the other hand, if xWm has one or more vanishing components, we can first use the
reduction described in section 3.4 (we simply delete the edges with vanishing weights) to
obtain a new graph ĜN and a new ray x̂Wm which has no vanishing weights. Since x̂Wm is
determined by all the original degeneracy equations and inequalities that determined xWm ,
now adapted to the new graph, it is still an extreme ray of the closure of a W-cell Wm̂ for
a min-cut structure m̂ on ĜN, and therefore by lemma 7 a W-cell by itself. Finally, we just
need to verify that any new map Γ̂ defined for Wm̂ on ĜN will map x̂Wm̂

to the same S.
To see this, notice that starting from our initial choice of Γ for the class (GN,m), we can
obtain a valid choice of Γ̂ for (ĜN, m̂) by deleting the columns corresponding to the edges
that we have removed from GN. The equality

Γ̂ x̂Wm̂
= Γ xWm (3.29)

– 24 –



J
H
E
P
0
9
(
2
0
2
2
)
1
9
0

1

1

1σ

A

B

O

(a)

1

1

σ

A

B

O

(b)

1σ

A

B

O

(c)

Figure 2. An example illustrating lemma 8 and the reduction described in section 3.4 for vanishing
weights. The graph (a) is our starting point. The graphs in (b) and (c) are obtained by deleting
from (a) the edges that correspond to the vanishing entries of the extreme rays of the closure of the
W-cell specified by (a), cf. eq. (3.33).

then simply follows from the fact that the columns which have been removed from Γ are
precisely the columns which were multiplied by the vanishing components of xWm .

As an example of this lemma and the reduction procedure for vanishing weights pre-
sented in section 3.4, consider the graph model in fig. 2a. The min-cut structure specified
by the chosen weights is

UA = {{A}, {A, σ}}, UB = {{B}}, UAB = {{A,B}, {A,B, σ}} (3.30)

and there is only one degeneracy equation (it is the same for the indices A and AB)

wAO + wAσ = wAO + wOσ (3.31)

The solution to this degeneracy equation is the 2-dimensional subspace

W = (0, 1,−1)⊥ ⊂ R3 (3.32)

where we ordered the weights according to (AO,Aσ,Oσ). The W-cell is the interior of the
following polyhedral cone in W (written as embedded in R3

>0)

cone {(0, 1, 1), (1, 0, 0)} (3.33)

Its image under the map

Γ =

1 1 0
0 0 0
1 0 1

 (3.34)

fixed by the choice of representatives U∗A = {A} and U∗AB = {A,B, σ}, is the S-cell, which
is just the single ray (it is the extreme ray of the HEC2 corresponding to a Bell pair for
the subsystem AO)

S = λ (1, 0, 1), λ > 0 (3.35)

since both elements of eq. (3.33) are mapped to the same vector by eq. (3.34).
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We then have a situation where an equivalence class has a 1-dimensional min-cut
subspace and a 2-dimensional W-cell, and we can therefore apply lemma 8. The extreme
rays of the closure of this W-cell are given in eq. (3.33), and since neither of them is nowhere-
zero, we first need to apply the reduction described in section 3.4. Deleting from the graph
in fig. 2a the edges corresponding to the vanishing entries of the vectors in eq. (3.33), we
obtain the graphs shown in fig. 2b and fig. 2c. The non-zero entries of the same vectors
specify the weights of the remaining edges. The W-cell of the min-cut structure for the
graph in fig. 2c is obviously 1-dimensional (since E = 1), in agreement with lemma 8.
On the other hand, for the graph in fig. 2b, the space of edge weights is 2-dimensional.
However, there is still a degeneracy, since there are two options for the min-cut for A,
namely {A} and {A, σ}. Therefore, also for this graph, the W-cell is 1-dimensional, again
in agreement with lemma 8. Notice that the generators of these 1-dimensional W-cells are
obtained by deleting the vanishing components of the vectors in eq. (3.33), and thus are
simply (1, 1) and (1). Finally, the new maps Γ̂ for the new min-cut structures on the new
graphs in fig. 2b and fig. 2c are respectively

Γ̂ =

1 0
0 0
0 1

 and Γ̂ =

1
0
1

 (3.36)

which are obtained by deleting the columns of Γ from eq. (3.34) which correspond to the
vanishing components of the vectors in eq. (3.33). It is then immediate to verify that once
applied to the aforementioned generators of the new 1-dimensional W-cells, these maps give
the same S-cell (3.35) as the original graph from fig. 2, and therefore also the same-min-cut
subspace.

Similarly to W-cells, S-cells also correspond to the interior of a polyhedral cone, and
it is again interesting to explore situations where an (open) extreme ray of the closure
of an S-cell is an S-cell by itself.51 We will not answer this question in general, but we
will construct a class of examples where this is the case,52 starting from the prototypical
situations where S-cells are 1-dimensional, i.e., graph models realizing the extreme rays of
the HEC.

Let us begin by first proving a basic fact about a given graph model G̃N and the face53

of the HECN that contains the entropy vector of G̃N:

Theorem 1. Given a graph model G̃N and a face Fd of the HECN such that the entropy
vector S(G̃N) belongs to Fd, the minimal supporting linear subspace Fd of Fd contains the
min-cut subspace S(GN,m)[G̃N].

51Notice that since S-cells do not form a partition of the HEC, an (open) extreme ray of the closure of
an S-cell can in principle be an S-cell by itself, even if it is also in the interior of a different S-cell. This
type of questions, like the one mentioned in footnote 50, is related to investigations of substructures of the
HEC which are beyond the scope of this work.

52One can construct these examples by building disconnected graphs starting from graph realizations of
the extreme rays of the HEC (see below).

53Recall that a face can have any dimension 0 ≤ d ≤ D.
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Proof. Given a graph model G̃N, all entropy vectors in the S-cell S of (GN,m)[G̃N] can
be realized by simply varying the weights in G̃N, so clearly S ⊆ HECN. Furthermore, S
is an open set, since it is the image under a linear map of an open set in the space of
weights (the W-cell). By definition, a face Fd of the HECN is Fd = H ∩ HECN, where H
is a certain hyperplane in RD such that the HECN is entirely contained in one of the two
half-spaces specified by H and in H itself. Since S is open, and by assumption Fd ∩ S is
non-empty, it must be that S ⊂ Fd, otherwise there would exist elements of S on both
sides of H, contradicting the fact that S ⊆ HECN and Fd is a face of the HECN. Therefore
S = Span(S) ⊂ Span(Fd) = H.

This immediately leads to the following corollary:

Corollary 1. A graph model G̃N realizes an extreme ray of the HECN only if the min-cut
subspace S(GN,m)[G̃N] is 1-dimensional.

Proof. This is just Theorem 1 applied to the specific case where the face F1 is an extreme
ray of the HECN.

This result will play a central role in the reconstruction of the HEC discussed in
section 6. It can be seen to be equivalent to Theorem 2(b) of [32], where it was proven
using a different setting wherein 1-dimensional min-cut subspaces constitute the extreme
rays of a polyhedral cone whose facet description is known. Because of this, were the
converse of corollary 1 to hold, it would provide an explicit derivation of the HEC via direct
computation of its extreme rays. Unfortunately though, the converse of corollary 1 is in
fact false. Namely, a graph model with a 1-dimensional min-cut subspace is not guaranteed
to yield an extreme ray of the HEC, as also shown by [32] through a counterexample in
appendix B therein.54 An example of corollary 1 is instead the graph model G̃3 from
section 3.3 which realizes the 4-party perfect state extreme ray of the HEC3 (cf. fig. 1).

3.6 Disconnected graphs

In this subsection we comment on the construction of a topological graph model and
min-cut structure (GN,m) via the disjoint union of simpler building blocks, and show how
the W-cell, S-cell and min-cut subspace of the new graph can be obtained from those of
its components. Conversely, the same analysis also clarifies how given an arbitrary class
(GN,m) where GN is disconnected, one can decompose these structures according to the
connected components of GN.

Let us begin with the simple situation where we consider an arbitrary collection of k
N-party topological graph models and min-cut structures

{(GiN,mi) , ∀i ∈ [k]} (3.37)

where the boundary vertices of all topological graph models in the collection are colored
with the same set of colors [N + 1]. We then construct a new topological graph model

GN =
⊕
i∈[k]

GiN (3.38)

54See [32] for more details on how corollary 1 can nonetheless be used to construct the HEC.
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and min-cut structure

m =

 ⋃
i∈[k]

UiI for all I

 (3.39)

The space of weights of the new graph is the direct sum of the weight spaces of the individual
graphs

RE =
⊕
i∈[k]

REi (3.40)

and since the weights on any given graph can be varied independently from those of the
others, the W-cell is also a direct sum55 of W-cells

W(GN,m) =
⊕
i∈[k]
W(GiN,mi) (3.41)

The new S-cell on the other hand is not the direct sum of the individual S-cells, because
the W-cells are not mapped to orthogonal subspaces of entropy space. However, since
the weights can still be varied independently, the S-cell is the Minkowski sum56 of the
individual S-cells

S(GN,m) = +
i∈[k]
S(GiN,mi) (3.42)

and the min-cut subspace is simply the sum of the individual subspaces

S(GN,m) = +
i∈[k]

S(GiN,mi) (3.43)

In the particular case where the individual graphs realize 1-dimensional min-cut sub-
spaces, or equivalently where their S-cells are single rays, the S-cell of the composite graph
is simply the conical hull of such rays.57 A special instance of this construction is when the
individual S-cells correspond to extreme rays of the HECN. For example, by considering
the full list of extreme rays one can construct a new graph whose S-cell is the interior
of the HECN. But by taking different collections of extreme rays, one can also use this
procedure to construct graphs whose S-cells overlap, clarifying as we anticipated in the
previous section that S-cells do not form a partition of the HECN.58 Moreover, the same
type of construction can also be used to generate graphs with different S-cells but same
min-cut subspace, for example by considering two collections of extreme rays which span
the supporting subspace of a given face of the HECN.

We now want to extend this construction to more general situations, where the bound-
ary vertices of each building block may be colored by a different set of colors. Notice that

55The direct sum of cones is the special case of the Minkowski sum (see below) where the individual cones
are contained in orthogonal subspaces.

56The Minkowski sum of two sets of vectors X,Y is the set of sums x + y for all x ∈ X, y ∈ Y .
57As exemplified for corollary 1, for each component graph there is only a single free variable, i.e., a

global rescaling of the weights. The fact that the rays are open and the rescaling factors have to be strictly
positive implies that the resulting S-cell is an open set (as it should be).

58For this last construction the cone has to be non-simplicial, i.e., the number of extreme rays should be
strictly larger than its dimension, which happens to be the case for any N ≥ 4.
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in the most general scenario the sets of colors of any two building blocks may or may not
intersect, even if the boundary vertices of the two topological graph models are labeled by
the same number of colors.59 To deal with this type of situations, it will be convenient to
transform all the building blocks in such a way that their boundary vertices are labeled by
precisely the same set of colors. This operation however changes the number of parties,
and therefore the dimension of entropy space of a given building block. Because of this,
before we can apply the procedure described above, we first need to make sure that we are
working in the same space, and we will achieve this by embedding the entropy space of a
building block into the entropy space of the entire collection in a precise way.60

At same time, the transformation of a given building block should be designed in such
a way that the relevant data is not altered in any way, i.e., the same embedding should
map the S-cell and min-cut subspace of the original building block to the new the S-cell
and min-cut subspace obtained after the transformation. Since this simple construction
will be particularly useful in later sections, we explain it in detail for a single graph.

Consider a topological graph model GN (which by itself does not have to be connected),
and suppose we want to use it as a building block in a collection that comprises N′ colors,
with N′ > N. We define:

Definition 6 (Standard lift of a topological graph model). The standard lift of a topological
graph model GN to N′ parties, with N′ > N, is the topological graph model G′N′ obtained
from GN by first labeling by N′ + 1 all the boundary vertices in GN which were initially
labeled by N + 1, and then adjoining N′ − N disconnected boundary vertices labeled by the
new colors in {N + 1, . . . ,N′}.

A standard lift of a topological graph model GN to N′ parties is naturally associated
to the following embedding of RD into RD′

Definition 7 (Standard embedding). Given N and N′ > N, the standard embedding of RD

into RD′ is the embedding specified by the following equations

SI′ =

SI′∩[N] ∀ I′ s.t. I′ ∩ [N] 6= ∅
0 otherwise

(3.44)

We leave it as an exercise for the reader to verify that given a topological graph model
GN and its standard lift to N′ parties, the S-cell of any min-cut structure, is the standard
embedding of the S-cell for the equivalent min-cut structure on GN. Notice that this also
implies the analogous result for min-cut subspaces.

Given an arbitrary collection of building blocks, we can then apply the standard lift
procedure to each one of them, to obtain a new (equivalent) collection where all building

59For example, we could have a topological graph model G2 = G1
2 ⊕ G2

2 where the boundary vertices of
G1

2 are labeled by {A,B,O} and those of G2
2 by {A,C,O}. Furthermore, if we imagine that the collection

of building blocks is the set of connected components of a larger topological graph model that we want to
decompose, there is only a single purifier, which does not even need to appear in each component.

60Of course this step is only necessary in the composition of building blocks, and not when we want to
analyse the components of a given, disconnected, topological graph model.
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blocks have precisely the same set of colors. The W-cells, S-cells and min-cut subspaces of
the various min-cut structures can then be obtained as described above. Finally, given the
results of this subsection, in what follows we will typically focus our attention on connected
graphs (most notably in section 4.3). It should however always be clear that we can use
the construction presented here to generalize any result obtained for connected graph to
this more general scenario.

4 Min-cut subspaces from marginal independence

In the preceding section we have defined a particular subspace of the entropy space: the
min-cut subspace of a graph model. This subspace provides a key construct to characterize
the structure of the HEC since it naturally encapsulates the facets, as well as the extreme
rays, of the cone. In the present section, we consider another class of subspaces of the
entropy space: the “patterns of marginal independence” (PMI). As we will see, these new
subspaces typically contain the min-cut subspaces properly, and one may expect them to
be too coarse. Instead, it will turn out that these subspaces are the ones that distill the
essential information.

We begin by briefly reviewing in section 4.1 the formal definition of “patterns of
marginal independence” from [35]. We then define “holographic PMIs” for min-cut struc-
tures on topological graph models in section 4.2. Finally in section 4.3 we show that when
a topological graph model has the topology of a tree and all boundary vertices have a
different color, the min-cut subspace for any min-cut structure coincides with the PMI. A
more general analysis of the relation between min-cut subspaces and PMIs, which involves
recolorings of boundary vertices, will be carried out in section 5.

4.1 Review of marginal independence and PMIs

Consider an arbitrary N-partite quantum system, described for convenience by a pure state
|ψ〉 on a Hilbert space with N + 1 tensor factors, cf. eq. (2.5). Given two non-overlapping
subsystems I,K we can measure the total amount of correlation between the corresponding
marginals ρI, ρK by evaluating their mutual information61

I(I : K) := SI + SK − SI∪K . (4.1)

If and only if the mutual information vanishes, the two subsystems are independent and
we have the factorization

ρI∪K = ρI ⊗ ρK . (4.2)

For any given N-partite state, it is straightforward to determine which pairs of subsystems
(I,K) are independent, since one simply has to compute all possible instances of the mutual
information.

Conversely, one can imagine specifying a certain pattern of independences by listing
which pairs of subsystems are independent and which pairs are not (notice that a pattern is

61By non-overlapping we mean I∩K = ∅. Notice that if I∪K = [N + 1] the mutual information reduces
to twice the entropy of either subsystem.
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“complete”, in the sense that each instance of the mutual information is demanded to either
vanish or not). For a given pattern, one can then ask if there exists a density matrix which
realizes it. This problem was first introduced in [35] and dubbed the marginal independence
problem.

One obvious restriction to the set of realizable patterns simply comes from the linear
dependences among various instances of the mutual information. Since the total number
of instances is greater than the dimension of entropy space, the instances are linearly
dependent. Writing a particular instance as a linear combination of other instances

I(I : K) =
∑
α

cα I(Iα : Kα) (4.3)

one immediately sees that if
I(Iα : Kα) = 0 ∀α (4.4)

then it must be that I(I : K) = 0. This type of implications restricts the set of meaningful
patterns, since a pattern that requires all instances in eq. (4.4) to vanish and I(I : K) to be
non-vanishing clearly can never be realized.

A separate kind of restriction comes from physical constraints such as subadditivity.
To see how instances of SA constrain the set of possibly realizable patterns, we can rewrite
eq. (4.3) as

I(I : K) =
∑
α+

cα+ I(Iα+ : Kα+) +
∑
α−

cα− I(Iα− : Kα−), (4.5)

where cα+ (cα−) refer to the positive (negative) coefficients cα. Suppose now that we
partially specify a pattern by requiring that all cα+ terms in eq. (4.5) vanish. Since SA
implies that for any state each instance of the mutual information is non-negative, the only
way to satisfy eq. (4.5) without violating SA is by also requiring that all other instances
appearing in eq. (4.5) vanish.

Given the above fundamental restrictions,62 [35] defined the marginal independence
problem by only considering patterns of independences which are consistent with linear
dependences among the instances of the mutual information, and all the instances of SA.
Geometrically, one can think of these consistent patterns as corresponding to the faces
of the polyhedral cone in entropy space defined by subadditivity. More precisely, one
first defines the subadditivity cone (SAC) as follows (we already mentioned this object in
section 2.1 but we repeat the precise definition here for convenience)

Definition 8 (SAC). The N-party subadditivity cone (SACN) is the polyhedral cone in RD

obtained from the intersection of all the half-spaces specified by the inequalities I(I : K) ≥ 0
for all pairs (I,K) of non-intersecting subsystems.

One then defines the patterns of marginal independence (PMI) as specific linear sub-
spaces of the entropy space which naturally characterize the instances of vanishing mutual
information:

62There are of course further physical restrictions such as SSA, but it will turn out that considering just
SA is particularly useful.
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Definition 9 (Pattern of marginal independence). A pattern of marginal independence
(PMI) is the supporting linear subspace P of a face of the subadditivity cone.

The reason behind this definition is the following: any PMI is now a geometric object,
corresponding to the intersection of a certain set of hyperplanes of the form I(I : K) = 0,
and by construction this set respects the linear dependences among the hyperplanes in
the sense described above. Furthermore, since we are only considering subspaces that
correspond to faces of the SA cone, any PMI is guaranteed to contain a region of entropy
space (the face) such that all entropy vectors in this region respect all instances of SA.
All naive patterns which do not respect the linear dependences among the instances of the
mutual information, or that do not include any (non-trivial) region of entropy space whose
elements respect all instances of SA, are automatically excluded. Notice in particular that
all 1-dimensional PMIs are generated by the extreme rays of the SACN.

Even if definition 9 excludes a large set of meaningless patterns, it does not guarantee
that each PMI contains at least one entropy vector that can be realized by a density matrix.
We will say that a PMI P is realizable if there exists a density matrix ρ such that the entropy
vector S(ρ) belongs to P but not to any lower dimensional subspace P′ ⊂ P. Notice that
the fact that a PMI is realizable does not imply that each vector S ∈ P (even within the
intersection of P and the SAC) is the entropy vector of some density matrix. For any PMI
P realized by a density matrix ρ, we will denote by π the map which associates P to ρ,
P = π(ρ). Furthermore, for any PMI P, we denote by Π(P) the matrix such that

Ker Πᵀ = P (4.6)

In other words, the columns of Π are the coefficients of the instances of the vanishing
mutual information in P. For example, for N = 3, the 1-dimensional PMI generated by the
perfect state extreme ray of eq. (3.22) corresponds to the matrix

Π =



1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1
−1 0 0 0 0 −1
0 −1 0 0 −1 0
0 0 −1 −1 0 0
0 0 0 1 1 1


(4.7)

Occasionally we will informally say that an instance of the mutual information I(I : K) is
“in a PMI P”, meaning that I(I : K) = 0 is one of the hyperplanes that determine P, or
equivalently, that the vector normal to this hyperplane is one of the columns of Π(P).

In general, the marginal independence problem asks which PMIs are realizable by a
given class of states. In the context of the present work, the states of interest are the
geometric states in holographic theories. We will argue in section 6 that the solution to
this holographic marginal independence problem (HMIP) provides sufficient information to
reconstruct the holographic entropy cone. But in order to do this, we first need to clarify
what we mean by “holographic PMI” and then to establish a connection between PMIs
and min-cut subspaces of graph models.
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4.2 Patterns of marginal independence for graph models

Having reviewed the definition of a pattern of marginal independence for arbitrary quantum
states, we will now introduce a similar definition for graph models, and explain some of its
basic properties.

As for quantum states, any graph model G̃N gives an entropy vector, and it is therefore
straightforward to determine the corresponding PMI, defined as follows

Definition 10 (PMI of a graph model). Given a graph model G̃N, its PMI P = π(G̃N) is
the N-party PMI of smallest dimension that contains the entropy vector S(G̃N).

However, we are as usual interested in min-cut structures on topological graph models,
rather than in specific graph models, but in order to be able to work with PMIs of min-cut
structures, we first need to check that this is a well defined concept. Let us first recall the
necessary and sufficient conditions for an instance of the mutual information to vanish in
a graph model:63

Lemma 9. Given a graph model G̃N and two subsystems I and K with I ∩ K = ∅, the
mutual information I(I : K) vanishes if and only if there exist min-cuts U∗I , U∗K and U∗I∪K
such that

G[U∗I∪K] = G[U∗I ]⊕G[U∗K] (4.8)

This implies that the vanishing of any instance of the mutual information is “detected”
by the min-cut structure and that one can therefore think of a PMI as being determined
directly by the min-cut structure, specifically:

Corollary 2. For any topological graph model GN and min-cut structure m we have

π(G̃N) = π(G̃N
′) ∀ G̃N, G̃N

′ ∈ (GN,m) (4.9)

Proof. Given (GN,m) consider any two graph models G̃N and G̃N
′ in (GN,m) and any

instance I(I : K) which vanishes for π(G̃N). By lemma 9 there exist min-cuts WI, WK and
WI∪K in m such that eq. (4.8) holds, and by the same lemma I(I : K) is also one of the
instances that vanish for π(G̃N

′).

Having shown that the PMI of a min-cut structure is a well defined concept, from now
on we will always work with these objects and denote them by π(GN,m)

π(GN,m) := π(G̃N) for any G̃N ∈ (GN,m) (4.10)

Nevertheless, recall that not all PMIs are realizable holographically (or even by arbitrary
quantum states). This prompts us to introduce the definition of a holographic PMI as one
which can be realized by a graph model G̃N. In terms of equivalence classes we define it as
follows:

Definition 11 (Holographic PMI). A PMI P is holographic if there exists a topological
graph model GN and a min-cut structure m such that

P = π(GN,m) (4.11)

63For holographic configurations this is a well known consequence of the HRRT formula.
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Γ =



1 1 0 1 0 0 0
1 0 1 0 1 0 0
0 1 1 0 0 1 0
0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 0 1 1 0
0 0 0 1 1 1 0


Γ =



1 1 0 1 0 0 0
1 0 1 0 1 0 0
0 1 1 0 0 1 0
0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 0 1 1 0
0 0 0 0 0 0 1



Figure 3. An example of two graph models, with the same underlying topological model but dif-
ferent (generic) min-cut structures, corresponding to the same PMI but different min-cut subspaces.
The min-cut structures are specified by the Γ matrices, where the rows are labeled by polychromatic
indices (A,B,C,AB,AC,BC,ABC) and the columns by the edges (AB,AC,BC,Aσ,Bσ,Cσ,Oσ).
In both cases the PMI is the full entropy space R7 (since no mutual information vanishes), but the
graph on the left has the 6-dimensional min-cut subspace S = (1, 1, 1,−1,−1,−1, 1)⊥, while for
the graph on the right S = R7. Note that the 6-dimensional min-cut subspace of the graph on the
left is the hyperplane defined by the vanishing of the tripartite information, corresponding to the
saturation of MMI.

Having defined the PMI of a class (GN,m), a natural question to ask is how is such a
PMI related to the min-cut subspace. In general we have the following inclusion relation:

Lemma 10. For any class (GN,m), the PMI π(GN,m) is the lowest dimensional N-party
PMI that contains the min-cut subspace

S(GN,m) ⊆ π(GN,m) (4.12)

Proof. Given a class (GN,m), corollary 2 implies that any graph model G̃N in this equiva-
lence class has the same PMI, π(G̃N) = π(GN,m). One then has the inclusion S(GN,m) ⊂
π(GN,m), and since S(GN,m) is the linear span of S(GN,m), that S(GN,m) ⊆ π(GN,m).
Furthermore, by definition 10, it also follows that π(GN,m) is the lowest dimensional N-
party PMI such that this inclusion holds.

Let us now denote by V and P the min-cut subspace and PMI of (GN,m) respectively.
One may wonder if there could exist another topological graph model G′N and min-cut
structure m′ such that π(G′N,m′) = P, while S(G′N,m′) 6= V. This can easily happen, as
exemplified in fig. 3. On the other hand, the opposite is not possible, as clarified by the
following corollary:
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G̃N 7−→ (GN,m) 7−→ S 7−→ S 7−→ P

organization of
graph models into
an equivalence class

construction of
the S-cell from an
equivalence class

linear span
of the S-cell

PMI of smallest
dimension that
contains S

Figure 4. A summary of the various constructs that we have associated to graph models. Starting
from a graph model G̃N, each map along this chain associates to an object a coarser one. As we
have exemplified throughout the text, none of these maps is injective.

Corollary 3. Given any two classes (GN,m) and (G′N,m′)

S(GN,m) = S(G′N,m′) =⇒ π(GN,m) = π(G′N,m′) (4.13)

Proof. By lemma 10, the PMI of a class (GN,m) is the lowest dimensional N-party PMI that
contains the min-cut subspace S(GN,m), and is therefore uniquely fixed by such subspace.

As a consequence of corollary 3, a PMI P is completely determined by a min-cut
subspace, and it is interesting to ask in what cases the min-cut subspace and PMI coincide.
We will see in the next subsection that this is the case at least for a particular class of
topological graph models called “simple trees”.

But before we proceed to the next section, let us briefly pause to summarize the list of
coarser and coarser objects that along the way we have introduced and associated to graph
models. The landscape of these constructs and the maps between them is shown in fig. 4.
We stress that, as we have clarified with various examples, none of these maps is injective.

4.3 The min-cut subspace of a simple tree graph

Having introduced the notion of the pattern of marginal independence for a min-cut struc-
ture on a topological graph model, we will now show that for a particular class of such
models that we call simple trees, the pattern of marginal independence is equal to the
min-cut subspace.

The key attribute of such graphs, as we argue below, is that each edge defines a cut for
some subsystem, and can thus be naturally associated to the corresponding polychromatic
index.64 This will allow us to view any relation between the edge weights, which determines

64There is a simple exception that, as we will shortly explain, is irrelevant.
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AB CD

CDE
EABCDE

A B C D

EO

Figure 5. An example of a simple tree graph G5, with explicit edge labeling and orientation
indicated.

the min-cut subspace, purely in terms of subsystem entropies; this in turn can be recast in
terms of mutual informations, and hence related to the PMI. Let us start from the basic
definition

Definition 12 (Simple tree graph). A topological graph model GN with the topology of a
tree is simple if each boundary vertex is labeled by a different color.

On a given simple tree, consider an arbitrary edge e ∈ E, and the partition of the
vertex set into the two complementary subsets U and U { separated by e. If both U and U {

contain at least one boundary vertex, then e corresponds to a bipartition (I, I{) of [N + 1]
given by

β(∂V ∩ U) = I (4.14)

By convention we define U to be the subset that does not include the purifier, and simply
write β(∂V ∩ U) = I (not underlined). The subsystem I associated to an edge via this
prescription will be denoted by I(e). For an arbitrary tree graph and choice of e, one may
also have β(∂V ∩U) = ∅. This can happen if one or more leaves are not boundary vertices.
In this case we write I(e) = ∅, with a little abuse of notation since in this case I is not a
proper polychromatic index according to our definition. While we take into account this
possibility for the sake of completeness, notice that by topological minimality (cf., lemma 1)
no edge e with I(e) = ∅ can belong to the set of cut edges for any min-cut.

With this convention at hand, it is also convenient to introduce a canonical orientation
of the edges of the tree which will induce an inclusion relation among the indices I(e).
Specifically, denoting by vN+1 the boundary vertex of the graph labeled by the purifier, and
by vL an arbitrary leaf, we consider the path from vN+1 to vL and orient the edges to turn
it into a directed path which starts at vN+1 and ends at vL . We will denote such a directed
path by P(vN+1 , vL). By repeating this procedure for all leaves, we fix an orientation for the
whole graph.

Using this orientation, we can then introduce a partial order on the set of edges. Given
e, f ∈ E we say that e < f if there exists a leaf L such that e, f ∈ P(vN+1 , vL) and e precedes
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f . We then have

e < f ⇒ I(e) ⊇ I(f)
e, f incomparable ⇒ I(e) ∩ I(f) = ∅ (4.15)

where the equality I(e) = I(f) can be attained if e and f are the edges adjoining to a
degree-2 bulk vertex.65 An example of a simple tree graph with the explicit edge labeling
and orientation is shown in fig. 5.

This relation between edges and “homologous” subsystems allows us to conveniently
translate the description of any I-cut from the usual one based on vertices to a new one
based on edges. Specifically, from the assumption of simplicity it follows that:

Lemma 11. On a simple tree GN, a non-empty collection of edges X ⊆ E is the set of
cut-edges C(UI) for an I-cut UI, where

I = I(X) = 4
e∈X

K(e) (4.16)

and 4 denotes the symmetric difference.66

Proof. Given a simple tree GN and a non-empty collection of edges X, we start by con-
structing a cut U such that C(U) = X. Consider an edge e ∈ X and a leaf vL such that
e ∈ P(vN+1 , vL). Starting from vN+1 , we follow the path P(vN+1 , vL) and label each vertex by
U or U { as follows. We label vN+1 by U { then we follow the path and continue labeling
the vertices by U { until we reach an edge in X. After we cross the edge we label all the
vertices by U until we reach another edge in X. We proceed in this fashion, alternating
between U { and U each time we cross an edge in X until we reach vL . Then we repeat the
same procedure following other paths, until we have labeled all the vertices in the graph.

Having constructed the desired cut, we now need to determine I(X) = β(U ∩∂V ). For
a color ` ∈ [N], denote by v̀ the (unique by simplicity) vertex in GN labeled by `. From
the construction of U described above, it follows that ` ∈ I(X) if and only if the path
P(vN+1 , v̀ ) includes an odd number of edges in X. Furthermore, the index K(e) associated
to an edge e can be seen as the set of colors labeling the boundary vertices that follow e in
any path P(vN+1 , v̀ ) that includes e. Therefore, a color ` appears in the expression at the

65Note that the implication in eq. (4.15) applies in reverse as well, however most polychromatic subsystems
do not have an associated edge (since a simple N-party tree graph has at most 2N−1 edges, as compared to
D = 2N − 1 polychromatic subsystems). In particular, two subsystems I(e) and I(f) can never be crossing
(i.e. have a non-empty intersection which is a proper subset of both).

66For any pair of sets (X,Y ), the symmetric difference is the disjunctive union

X4Y = (X \ Y ) ∪ (Y \X) = (X ∪ Y ) \ (X ∩ Y ) = Y4X

Since the symmetric difference is associative, we can iterate this straightforwardly, so that for n-ary sym-
metric difference of a collection of sets we have just the elements which are in an odd number of the sets in
that collection. For example, for n = 3

4
V ∈{X,Y,Z}

V = X4Y4Z = (X \ (Y ∪ Z)) ∪ (Y \ (X ∪ Z)) ∪ (Z \ (X ∪ Y )) ∪ (X ∩ Y ∩ Z) .
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right hand side of eq. (4.16) if and only if the path P(vN+1 , v̀ ) includes an odd number of
edges in X, concluding the proof.

Using this translation from a description in terms of vertices to one in terms of edges,
we can then prove a useful property of min-cuts on simple tree graphs which is reminiscent
of lemma 4.

Lemma 12 (Min-cut decomposition for simple trees). Let GN be a simple tree with a
min-cut structure m, I a subsystem, and C∗I the set of edges for some min-cut. Then any
X ⊆ C∗I is the set of edges C∗K = X for a min-cut for the subsystem K = K(X) given by
eq. (4.16).

Proof. By lemma 11, X ⊆ C∗I specifies a K-cut for K = K(X), so we just need to show it
is minimal. Notice that, similarly, Y = C∗I \X specifies a J-cut for J = J(Y ), and that by
assumption C∗I = X ∪ Y are the min-cut edges for I = I(X ∪ Y ) = K(X)∆J(Y ). To show
that X are min-cut edges for K, assume for contradiction that its actual min-cut edges are
X ′, with weight ‖X ′‖ < ‖X‖. Then since I = K(X ′)∆J(Y ), X ′ ∪ Y specifies an I-cut, and
its weight gives the desired contradiction ‖X ′ ∪ Y ‖ < ‖C∗I‖.

In the particular case where a cut involves two edges, this in turn implies a particularly
useful connection to the vanishing of an instance of the mutual information:

Lemma 13. Given a simple tree GN, a min-cut structure m and any pair of edges e, f ∈ E,
if {e, f} = C∗I(e)4I(f) (for some choice of representative min-cut in case of degeneracy), then

SI(e) + SI(f) − SI(e)4I(f) (4.17)

is an instance of the mutual information in the PMI of (GN,m).

Proof. By lemma 12 we have {e} = C∗I(e) and {f} = C∗I(f) (again for some choice of
representatives in case of degeneracy) and the combination in eq. (4.17) vanishes. Therefore
all we need to show is that there exists a choice of underlined indices J,K such that the
expression in eq. (4.1) is equal to eq. (4.17). If e and f are incomparable, cf. eq. (4.15),
then I(e) ∩ I(f) = ∅ which implies I(e)4I(f) = I(e) ∪ I(f) and we can choose J = I(e)
and K = I(f). If e < f (if f < e simply swap e and f in what follows), then I(e) ⊃ I(f)
which implies I(e)4I(f) = I(e) \ I(f) and we can choose J = I(e){ and K = I(f).

Notice that as exemplified in fig. 6 the implications of lemma 12 and lemma 13 are
stronger than what would follow from a straightforward iteration of lemma 4.

We are now ready to establish the anticipated connection between min-cut subspaces
and PMIs for simple tree graphs. As usual we will discuss the case of generic min-cut
structures first, and then extend the proof to min-cut structures that might include degen-
eracies.

In the generic case, the proof will proceed by showing that due to the tree topology and
simplicity, the set of vanishing instances of the mutual information completely determine
the min-cut structure.
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L1 : ACDE

L2 : ACD, CDE, AE, A, CD, E

L3 : B, ABCD, AB, ABCDE

L4 : BCD, ABE, BCDE, BE

Figure 6. An example of a simple tree with a choice of min-cut for ACDE, showing the different
implications of lemma 4 and lemma 12. The min-cut for ACDE is specified by its set of cut edges
C∗ACDE , shown in red in the figure. We have labeled each edge e in the graph by the corresponding
polychromatic index I(e). The right panel shows the full list of subsystems whose min-cuts are
fixed by C∗ACDE according to lemma 12, each one corresponding to a subset of C∗ACDE (including
our starting choice L1). The min-cut for each subsystem in L2 can equivalently be obtained by a
straightforward application of lemma 4 (after some iteration). For the subsystems in L3 it is still
sufficient to use lemma 4, but one also needs to consider min-cuts for complementary subsystems,
which include the purifier (for example, the min-cut for B is fixed by the fact that the min-cut for
BEO, which is the complement of the min-cut for ACD, is disconnected). Even complementarity
however is not sufficient to determine the min-cuts for the subsystems in L4 using lemma 4. Notice
that we also have for example I(AB : E) = 0, which follows from lemma 13 again via lemma 12,
but which is not implied by lemma 4 (since ABE is in the set L4).

Lemma 14. For any simple tree GN, and any generic min-cut structure m on GN, the
min-cut subspace S(GN,m) and the pattern of marginal independence π(GN,m) coincide.

Proof. Consider an arbitrary simple tree GN and an arbitrary, but generic, min-cut struc-
ture m. We denote by S and P the min-cut subspace and PMI of (GN,m) respectively, and
by Γ the linear map defined in eq. (3.6). To show that S and P coincide we only need to
show that S ⊇ P, since by lemma 10 we have S ⊆ P.

To show that S ⊇ P, we will prove that S⊥ ⊆ P⊥, where ⊥ denotes the orthogonal
complement of a linear subspace. Since GN is a simple tree, and m is generic, the matrix
which represents the map Γ can be put schematically in the following form

Γ =

Γ̃ 0 0
1 0 0
0 1 0

 (4.18)

simply by permuting its rows and columns. Here the first, second and third columns of
this block matrix correspond respectively to the subsets of edges which participate in at
least two cuts in m, precisely one cut, or no cut at all.

To see that Γ can be put into this form, consider a subsystem I and the set of cut edges
C∗I . If this set contains at least two edges, we put the row corresponding to the entropy
SI into the top row block in eq. (4.18). In the particular case where no such subsystem I
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exists, Γ takes the particularly simple form(
1 0

)
(4.19)

corresponding to the two bottom rows in eq. (4.18). And if all edges participate in at least
one cut, we have Γ = 1. When Γ̃ is non-trivial, the second row in eq. (4.18) is guaranteed
to exist by lemma 12, since each single edge in C∗I is the min-cut for the corresponding
subsystem given by lemma 11. The third row and second column, as well as the third
column in eq. (4.18) may be present or not, depending on the specific case. Their presence
or absence however does not affect the essence of the rest of the proof.

Since S = Im Γ, we have S⊥ = Ker Γᵀ, and the generators of S⊥ are the columns of
the matrix  1

−Γ̃ᵀ

0

 (4.20)

where again the last row may or may not be present depending on the specific form of Γ.
In order to show the inclusion S ⊇ P, it is therefore sufficient to show that each column of
this matrix is a linear combination of the columns of the matrix Π(P) which specifies the
PMI (GN,m).

In the particular case where Γ̃ is trivial we have Ker Γᵀ = {0}, implying that S = RD.
Since in this case each entropy is computed by a cut of a single edge, by lemma 9 none
of the instances of the mutual information vanish, therefore P = RD = S and the theorem
holds.

Going back to the more general case, the labeling by polychromatic indices of the rows
in each block of eq. (4.20) is fixed by the construction of Γ. A column q in eq. (4.20) is the
vector normal to the hyperplane in RD corresponding to the equation

SI =
∑

e∈C(U∗
I

)
SK(e) (4.21)

where I is the polychromatic index labeling the row q in the block 1 of eq. (4.20). In words,
these equations say that each entropy SI such the set C∗I contains more than one edge, is
equal to the sum of the entropies of the subsystems “homologous” to the edges in the set.
This follows already from lemma 12, but eq. (4.20) says that these equations correspond
precisely to the generators of S⊥.

We can then rewrite eq. (4.21) as follows

0 = (SK(e1) + SK(e2) − SK(e1)4K(e2))
+ (SK(e1)4K(e2) + SK(e3) − SK(e1)4K(e2)4K(e3))
+ . . . (4.22)

where by lemma 13 each term in brackets can be recognized as an instance of the mutual
information, cf. eq. (4.1). Furthermore, any such instance is guaranteed to belong to the
PMI of (GN,m) by lemma 12, since the entropies that we added and subtracted in eq. (4.22)
all correspond to subsystems homologous to subsets of the edges in C∗I . This shows that
S⊥ ⊆ P⊥, completing the proof.
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Finally, we extend this result to arbitrary (not necessarily generic) simple tree graphs.
The central idea behind this generalization is again that because of the tree topology, all
degeneracy equations correspond to new instances of the mutual information that vanish.

Theorem 2. For any simple tree and min-cut structure, the PMI and the min-cut subspace
coincide.

Proof. As in the proof of lemma 14, we only need to show that S ⊇ P, since by lemma 10
S ⊆ P, and we will again show that S⊥ ⊆ P⊥.

If the min-cut structure is degenerate, the matrix Γ is not uniquely specified. However,
as we discussed in section 3.3, we can chose a representative min-cut for each degenerate
subsystem, and while the specific Γ will depend on the representatives, the min-cut subspace
will not depend on this choice.

Suppose now that we make a choice of representatives for all degenerate subsystems,
and therefore of Γ. We can imagine to determine a “partial” PMI by looking only at a
single min-cut for each subsystem as specified by this choice, i.e., we determine the set of
instances of the mutual information that vanish according to this subset of the min-cuts.
We will denote this partial PMI by PΓ to stress the dependence on this choice. We can
then ignore the degeneracies and follow step by step the proof of lemma 14 to show that
(Span Γ)⊥ ⊆ P⊥Γ .

Because of the degeneracies however, (Span Γ)⊥ ⊆ S⊥ and P⊥Γ ⊆ P⊥. In order to show
that S⊥ ⊆ P⊥, we will show that each degeneracy equation adds a new (not necessarily
linearly independent) generator to (Span Γ)⊥, and that this generator can be written as a
linear combination of the generators in P⊥, i.e., that each generator of S⊥ which is not in
(Span Γ)⊥ is also in P⊥.

To see this, we can again follow a similar argument to the one we used in the proof of
lemma 14. A degeneracy equation for a subsystem I is an equation of the form∑

e∈C∗α
I

we =
∑

f ∈C∗β
I

wf (4.23)

where we used the more compact notation C∗αI = C(U∗I
α). Using lemma 12 we can translate

this equation into an equation for the entropies∑
e∈C∗α

I

SJ(e) =
∑

f ∈C∗β
I

SK(f) (4.24)

which can be seen as a new generator in S⊥. Since both sides of this equation compute SI,
we can also think of eq. (4.24) as a combination of the following two equations

SI =
∑

e∈C∗α
I

SJ(e)

SI =
∑

f ∈C∗β
I

SK(f) (4.25)

But each of these equations is of the form eq. (4.21) and can therefore be rewritten as
in eq. (4.22). All instances of the mutual information which appear in this decomposition
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belong to the PMI, therefore the new generator of S⊥ corresponding to eq. (4.24) is a linear
combination of the generators of P⊥. Repeating this construction for each degeneracy
equation we obtain that S⊥ ⊆ P⊥, concluding the proof.

We stress that while the simple tree structure is a nice sufficient condition for the
equivalence between PMIs and min-cut subspaces, it is by no means necessary. This equiv-
alence is central in our arguments about the reconstruction of the HEC, and it would be
interesting to extend it to a larger class of topological graph models and min-cut structures.
While we leave this question for future work, in section 6 we will discuss in more detail
what kind of generalization of theorem 2 is necessary to achieve the reconstruction, and
will see examples of graphs with highly non-trivial topology whose min-cut subspaces and
PMIs coincide.

5 Varying the number of parties

Up to this point, we have been working with topological graph models and min-cut struc-
tures for an arbitrary, but fixed, number of parties N. However, in order to uncover some
of the deepest relations between min-cut subspaces and PMIs, it is crucial to vary the
number of parties and analyse how the various constructs that we have introduced thus far
transform under this operation.

As we will see, the subtle behavior of min-cut subspaces and PMIs under recolorings
is in stark contrast with the simple behavior of entropy vectors. This should perhaps
make even more evident the fundamental differences between an analysis of holographic
constraints based on entropy vectors and graph models, from one which purely relies on
equivalence classes, like the one advocated here for the HEC, or the one based on proto-
entropies for the holographic entropy polyhedron [34].

In section 5.1 we will analyse coarse-grainings, i.e., transformations that reduce the
number of parties, and their effect on W-cells, S-cells and min-cut subspaces. The conse-
quences of the opposite transformations, namely fine-grainings, will be discussed in sec-
tion 5.2. Our convention will be to denote by N the original number of parties and by
N′ the new number of parties, both for coarse-grainings and fine-grainings. Recolorings of
boundary vertices that reduce, respectively increase, the number of parties will be denoted
by β↓ and β↑.

5.1 Coarse-grainings of equivalence classes

Given an N-party density matrix ρN and a purification |ψ〉N+1 in a Hilbert space of the
form eq. (2.5), consider a partition of the set [N + 1] into N′ + 1 (non-empty) parts, with
N′ < N. Each element of the partition is an N-party polychromatic index I which we
recolor by a monochromatic index `′ ∈ [N′ + 1]. We capture this coarse-graining by a map
φ̂ : `′ 7→ I, which also tells us which polychromatic indices I ⊆ [N + 1] correspond to the
coarse-grained ones I′ ⊆ [N′ + 1] through

φ̂ : I′ 7→
⋃
`′ ∈ I′

φ̂(`′) (5.1)
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This partition of [N + 1] and redefinition of the polychromatic indices corresponds to
a redefinition of the Hilbert space H in eq. (2.5) into a new Hilbert space H′ with N′ + 1
factors, each of which is a collection of the original factors in H. For an N-party density
matrix ρ acting on H as in eq. (2.1), this transformation gives a new N′-party density
matrix ρ′ acting on a Hilbert space H′, obtained from H′ by ignoring the new factor that
contains the original HN+1 factor (the purifier) in H′.

We now want to apply such a transformation to an entropy vector, and to do so we
need to use non-underlined indices. Notice that in general a coarse-graining as defined in
eq. (5.1) can map the N-party purifier N + 1 to an arbitrary N′-party color, not necessarily
to the N′-party purifier N′ + 1. Since our convention is that non-underlined polychromatic
indices should not include the purifier, we introduce a new map φ that not only implements
a coarse-graining as in eq. (5.1), but also such that when it acts on an index I′ it replaces
φ̂(I′) with [φ̂(I′)]{ if φ̂(I′) includes the original N + 1 subsystem.

The entropy vector of the new density matrix S′(ρ′) can then be obtained from the
entropy vector S(ρ) of the original density matrix simply as

S′I′ = Sφ(I′) (5.2)

At the level of entropy vectors, we can therefore think of this transformation as a map

ΦN→N′ : RD → RD′ S 7→ S′ = ΦN→N′ S (5.3)

where D′ = 2N′ − 1 and ΦN→N′ is the D′×D matrix

(ΦN→N′)I′K :=

1 if K = φ(I′)
0 otherwise

(5.4)

This linear map will be referred to as a color-projection in what follows.67

A coarse-graining of a graph model is defined similarly. Given G̃N one introduces a
recoloring by a new coloring map β↓ : ∂V → [N′ + 1]. The recoloring β↓ induces a coarse-
graining of polychromatic indices φ as described above, and the new entropy vector S′(G̃N′)
is then obtained from S(G̃N) via the color-projection defined in eq. (5.4)

S′(G̃N′) = ΦN→N′ S(G̃N) (5.5)

To see this, simply notice that the recoloring does not change the topology of the graph
or the weights, and any min-cut of a coarse-grained subsystem I′ is a min-cut for the
corresponding original subsystem φ(I′).

Given the simplicity of the transformation rule for an entropy vector, one may be
tempted to conclude that the same transformation also applies to min-cut subspaces. In-
stead, as we will see, the dimension of a min-cut subspace can even increase under coarse-
graining, and this unexpected behavior is another example of a situation where a crucial
role is played by the structure of degeneracies.

67Technically, the map defined in eq. (5.4) is not a projection, since it is not an endomorphism of entropy
space. However we will still use this terminology since one can simply consider an embedding of RD′

into
RD, in which case eq. (5.4) would be a projection.
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To understand how this can happen, and in what situations min-cut subspaces do
transform analogously to entropy vectors, we need to consider the effect of a coarse-graining
on a min-cut structure. As already mentioned above, a recoloring β↓ only affects the
labeling of the boundary vertices of a topological graph model, not its topology, and the
space of edge weights therefore is the same, before and after the coarse-graining. For a class
(GN,m) and a coarse-graining φ induced by a recoloring β↓ , the new min-cut structure m′

on the new topological graph model GN′ can be expressed in terms of the original coloring as

m′ = {UI′ = Uφ(I′) for all I′} ⊂ m (5.6)

In words, one can think of deriving m′ from m by simply removing all min-cut sets UI for
all subsystems I that are “projected out” by the coarse-graining, i.e., such that there is no
I′ with φ(I′) = I, and then relabeling the elements of m′ by the new polychromatic indices.

Notice that an immediate consequence of eq. (5.6) is that the relation between the
subspaces corresponding to the solutions to the degeneracy equations in m and m′ (cf.
eq. (3.10)) is given by

W′ ⊇ W (5.7)

This simply follows from the fact that any equation that appears in m′ also appears in m,
but in general, not vice versa.

From the transformation rule of the min-cut structures we can also derive the relation
between the maps Γ and Γ′ from RE to RD and RD′ . In particular, since we are especially
interested in the behaviour of degeneracies, we need to clarify if and how the relation
between these maps can be affected by different choices of representative min-cuts. This is
the content of the next lemma

Lemma 15. For any class (GN,m), coarse-graining φ to a new class (GN′ ,m
′) induced by

a recoloring β↓, and choice of map Γ for m, there exists a choice of map Γ′ for m′ such that

Γ′ = ΦN→N′ Γ (5.8)

Proof. Given a class (GN,m) consider the map Γ{α} specified by a choice of representative
min-cuts U∗I

α for all N-party polychromatic indices I. By eq. (5.6) it follows that

U∗I′
α := U∗φ(I′)

α

is a choice of representative min-cuts for all the coarse-grained polychromatic indices I′.
Notice that the index α did not change, since for the subsystems which are not removed by
the coarse-graining, any possible choice of min-cut in m is a valid choice of min-cut in m′.

Recall now the definition of the matrix Γ given in eq. (3.5). Using for m′ the choice of
representatives induced by the choice for m just described, the matrix Γ′ can be obtained
from Γ as follows. We first delete the rows corresponding to the subsystems I which are
removed by the coarse-graining, and then permute the remaining rows according to the
relabeling fixed by β↓. But this is precisely the transformation performed on Γ by the
matrix ΦN→N′ defined in eq. (5.4).
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Figure 7. The coarse-graining (5.10) of the perfect state graph model G̃3 from fig. 1.

We are now ready to discuss a general situation where the transformation of min-cut
subspaces under coarse-grainings is well behaved, and completely determined by the map
ΦN→N′ between entropy spaces. The next result shows that this is the case whenever
eq. (5.7) is saturated.

Theorem 3 (Color-projections of min-cut subspaces). For any class (GN,m) and coarse-
graining φ induced by a recoloring β↓ to a new class (GN′ ,m

′)

W′ = W =⇒ S′ = ΦN→N′ S (5.9)

Proof. For a given class (GN,m) consider one of the maps Γ defined in eq. (3.6) (as usual for
some choice of representative min-cuts). For any coarse-graining φ to a new class (GN′ ,m

′),
lemma 15 guarantees that there exists a choice of representative min-cuts for m′ such that
the corresponding map Γ′ is related to Γ via eq. (5.8). In general the relation between W
and the min-cut subspace is given by lemma 5. Therefore by the assumption that W′ = W
we have

S′ = Γ′(W′) = (ΦN→N′ Γ)(W) = ΦN→N′ (Γ(W)) = ΦN→N′ S

completing the proof.

A straightforward consequence of this theorem is that min-cut subspaces of generic
min-cut structures are always well behaved under coarse-grainings

Corollary 4. For any class (GN,m) and coarse-graining φ induced by a recoloring β↓, if
m is generic then eq. (5.9) holds.

Proof. Given a (GN,m), if m is generic we have W = RE, since the W-cell W(GN,m) is full
dimensional. By eq. (5.6) a coarse-graining cannot introduce new degeneracies. Therefore
the W-cell of the coarse-grained min-cut structure also spans RE, and theorem 3 applies.

We have seen that the saturation of eq. (5.7) is a sufficient condition for min-cut
subspaces to transform according to eq. (5.9). On the other hand, if the inclusion (5.7)
is strict, which can happen if some degeneracy equations are “lost” under the coarse-
graining, the relation between the min-cut subspaces is more complicated, and depends
on the details of the graph, the min-cut structure and the recoloring. In fact, as already
mentioned earlier, the dimension of the min-cut subspace can even grow, which can easily
happen for coarse-grainings of highly degenerate min-cut structures.
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As a simple example of this non-trivial behavior, consider the graph models depicted
in fig. 7. The one on the left is the graph that we have already seen before, which realizes
the N = 3 perfect state, while the one on the right is obtained via the coarse-graining to
N′ = 2 specified by

φ̂(A′) = AB φ̂(B′) = C φ̂(O′) = O (5.10)

The entropy ray obtained from this coarse-graining of G̃3 can be directly computed from
the ray in eq. (3.22), obtaining

S(G̃2) = λ (2, 1, 1), λ > 0 (5.11)

However we do not want to simply derive the new entropy ray, but also the min-cut subspace
of the new topological graph model and min-cut structure. After the recoloring, the only
degenerate min-cut that remains from eq. (3.18) is

UA′ = {{A′1, A′2}, {A′1, A′2, σ}} (5.12)

(where A′1, A′2 denote the two original A,B boundary vertices that have now been recolored)
and the only degeneracy equation left from eq. (3.19) is

w
A′1σ

+ w
A′2σ

= w
B′σ + w

O′σ (5.13)

The solution to this degeneracy equation is the 3-dimensional subspace

W′ = (1, 1,−1,−1)⊥ ⊂ R4 (5.14)

where we ordered the weights according to (A′1σ,A′2σ,B′σ,O′σ). The W-cell is the interior
of the following polyhedral cone in W′ (written as embedded in R4

>0)

cone {(1, 0, 0, 1), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 1, 0)} (5.15)

Its image under the map

Γ =

1 1 0 0
0 0 1 0
0 0 0 1

 (5.16)

fixed by the choice of representative U∗A′ = {A′1, A′2} is the S-cell, which is the interior of
the following polyhedral cone in R3

cone {(1, 0, 1), (1, 1, 0)} (5.17)

This can easily be recognized as the facet of the HEC2 = SAC2 supported by the min-cut
subspace (or equivalently, PMI), I(B′ : O′) = 0. Notice that the straightforward projection
of the perfect state entropy ray from eq. (3.22) given in eq. (5.11) is just one of the rays
on this facet and has no particular meaning.

The example we just discussed also shows that, like for the min-cut subspace, the
dimension of the PMI of a topological graph model and min-cut structure can similarly
grow under coarse-graining. Indeed, the reader can easily verify that the PMI of the graph
model G̃3 of fig. 1 is 1-dimensional, while the coarse-grained graph has a 2-dimensional PMI.
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5.2 Fine-grainings of equivalence classes

For fine-grainings of density matrices and graph models we can proceed similarly as for
coarse-grainings. We consider the case of a state |ψ〉N+1 in a Hilbert space H as in eq. (2.5),
such that some of the factors admit a tensor product structure into “finer components”,
giving a new Hilbert space H′. An N-party density matrix ρ acting on H in eq. (2.1) can
then be seen as a new N′-party density matrix ρ′, with N′ > N, acting on H′. From ρ′ we
can then compute the entropy vector S′(ρ′), which in general will depend on the details
of the initial density matrix ρ. For any fine-graining however, we can always chose an
appropriate coarse-graining φ that “undoes” it. No matter what the details of the initial
density matrix ρ are, the entropy vectors will then be related by this coarse-graining as
usual

S = ΦN′→N S′ (5.18)

As in the case of coarse-grainings, fine-grainings of graph models can be defined simi-
larly to fine-grainings of density matrices. For a given graph model G̃N realizing an entropy
vector S we consider a boundary recoloring β↑ : ∂V → [N′ + 1], which will specify a new
fine-grained graph model G̃N′ from which we obtain a new entropy vector S′. We can then
“undo” the fine-graining with a coarse-graining φ specified by a boundary recoloring β↓

β↓ = β (5.19)

where β is simply the initial coloring of G̃N. The entropy vectors before and after the
fine-graining induced by β↑ will then be related as in eq. (5.18).

For fine-grainings of min-cut structures on topological graph models on the other hand,
we again need to be more careful. Given a class (GN,m), a boundary recoloring β↑ gives
a new topological graph model GN′ , but in general this does not automatically induce a
fine-graining, since the new min-cut structure might be incomplete. The reason is that
in general m does not specify the min-cuts for all subsystems I′, and the fine-grainings
induced by β↑ on different graph models G̃N ∈ (GN,m) can correspond to different min-cut
structures.

To take this indeterminacy into account, we define the set m
x

N′ of min-cut structures
m′ for GN′ that reduce to the original min-cut structure m on GN when we undo the
fine-graining, specifically

m
x

N′
:= {m′ : UI = Uφ(I) for all I} (5.20)

where φ is the coarse-graining induced by the recoloring β↓ given in eq. (5.19). Notice
that for any (GN,m) and recoloring β↑, this set is non-empty. The existence of at least
one min-cut structure in m

x
N′ is obvious: simply consider any graph model G̃N ∈ (GN,m),

apply the recoloring β↑ and determine the min-cut structure m′ of the new graph model
G̃N′ . We then define a fine-graining of (GN,m) as follows:

Definition 13 (Fine-graining of a class (GN,m)). A fine-graining of a class (GN,m) is a
pair (β↑,m′) of a recoloring β↑ and a min-cut structure from m

x
N′ .
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We stress the fundamental difference between a fine-graining of a graph model as
defined above, and a fine-graining of an equivalence class as defined here. Given a class
(GN,m) and a choice of representative G̃N, any recoloring β↑ will automatically specify
a fine-graining of G̃N, but in general this is only one of the possible fine-grainings of the
class (GN,m) according to definition 13. In fact, for a fixed recoloring β↑, the induced
fine-graining of different choices of representatives will in general correspond to different
fine-grainings of (GN,m). Importantly, this can even happen when the min-cut subspace
of (GN,m) is 1-dimensional, and one may be inclined to think that a graph model and its
equivalence class are essentially the same object. As we will see (and exemplify) in what
follows, the reason for this unexpected behavior is that even when the min-cut subspace is
1-dimensional, the W-cell can be higher dimensional.

As usual, a choice of representative of an equivalence class is a convenient way to
specify a min-cut structure, and in section 6 we will often resort to fine-grainings of graph
models. However, the reader should always remain aware of the fundamental difference
highlighted here, and of the possibility of alternative fine-grainings of an equivalence class
specified by a choice of graph model.

Let us now continue our analysis of the set of possible fine-grainings of a topological
graph model and a min-cut structure. We have seen in the previous subsection that in
certain situations min-cut subspaces are well behaved under coarse-grainings, in the sense
that they transform under the same projection which determines a coarse-grained entropy
vector. Given a class (GN,m), and a recoloring β↑, it is then natural to ask under what
conditions there exists a fine-graining, i.e., a choice of a new min-cut structure m′ ∈ m

x
N′ ,

such that theorem 3 applies.
To answer this question, and understand the origin of some of the properties of fine-

grainings mentioned above, we first need to analyse in more detail the effect of a recoloring
β↑ on the set of W-cells for a topological graph model GN. As we have seen, a recoloring
does not change the topology of GN, and in particular its set of edges, therefore the space
of edge weights RE

>0 is unaffected by the recoloring and we can compare W-cells before and
after it. Their relation is captured by the following lemma

Lemma 16 (Refinement of W-cells). Given a class (GN,m) and any recoloring β↑, the set
of W-cells Wm′ for all m′ ∈ m

x
N′ is a partition of Wm.

Proof. Given a class (GN,m) and any recoloring β↑, consider a min-cut structure m′ ∈ m
x

N′

and the corresponding W-cell Wm′ . Denoting by φ the coarse-graining induced by the re-
coloring β↓ determined by eq. (5.19), it follows from eq. (5.20) that all inequalities (3.9)
and degeneracy equations (3.10) that specify the W-cell Wm of the original min-cut struc-
ture m also belong to the set of inequalities and degeneracy equations that specify Wm′ .
This implies that Wm′ ⊆ Wm, for all m′ ∈ m

x
N′ . Furthermore, by lemma 6, the different

W-cells Wm′ do not intersect. Therefore it only remains to prove that the union of all
W-cells Wm′ for all m′ ∈ m

x
N′ is Wm. Consider a graph model G̃N ∈ (GN,m), specified by

a weight vector w ∈ Wm. The recoloring β↑ induces a fine-graining of G̃N to a new graph
model G̃N′ ∈ (GN′ ,mw) where mw is one of the min-cut structures in m

x
N′ , completing the

proof.
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We are now ready to establish for what classes (GN,m) and recolorings β↑, there exists
a fine-graining (β↑, m̌) such that the min-cut subspace of (GN,m) can be obtained from
that of (GN′ , m̌) via the color projection associated to the coarse-graining φ specified by
the recoloring β↓ given in eq. (5.19). The next lemma clarifies that this is always the case.

Lemma 17. For any class (GN,m) and recoloring β↑, there exists a choice of min-cut
structure m̌ ∈ m

x
N′ such that

S(GN,m) = ΦN′→N S(GN′ , m̌) (5.21)

Proof. We only need to prove that theorem 3 applies, and for this we only need to show that
there exists m̌ ∈ m

x
N′ such that Wm̌ = Wm, where Wm̌ = Span (Wm̌) and Wm = Span (Wm).

This follows from lemma 16, since the W-cells Wm′ for all m′ ∈ m
x

N′ form a finite partition
of Wm, and therefore there must exist at least one min-cut structure m̌ ∈ m

x
N′ such that

Span (Wm̌) = Span (Wm).

While this lemma proves the existence of at least one fine-graining such that eq. (5.21)
applies, it should be clear from the proof that this fine-graining is in general non-unique.
Since these fine-grainings will play a crucial role in the next section, we introduce the
following definition

Definition 14 (Minimally-degenerate fine-graining). For any class (GN,m) and recoloring
β↑, a minimally-degenerate fine-graining (β↑, m̌) is any fine-graining such that

Span (Wm̌) = Span (Wm) (5.22)

As explained in the proof of lemma 17, the condition in eq. (5.22) is sufficient to
guarantee that eq. (5.21) holds, but a priori it is not necessary. Therefore it is in princi-
ple possible that there exists fine-grainings which are not minimally-degenerate according
to definition 14, but which are still well behaved in the sense of the coarse-graining in
eq. (5.21). Notice that in the particular case of a class (GN,m) with a 1-dimensional W-
cell, any recoloring β↑ automatically specifies a minimally-degenerate fine-graining for the
class. This simply follows from the fact that the W-cell Wm cannot be partitioned into
smaller components, and there is therefore only one possible fine-grained min-cut structure
m̌. Furthermore, since Wm =Wm̌, eq. (5.22) is trivially satisfied. Equivalently, in this case
the class (GN,m) has only a single representative G̃N (up to an irrelevant global rescaling of
the weights), and the (unique) fine-graining of the class induced by β↑ necessarily coincides
with the fine-graining of G̃N.

Everything we have discussed thus far for fine-grainings of a class (GN,m), can be
iterated until one reaches the largest number of different colors that can be assigned to the
boundary vertices of GN. This number is of course given by the cardinality of ∂V , and we
denote it by V∂ . We define a maximal recoloring of GN as any recoloring that attains this
bound, taking the form

β↑ : ∂V → [V∂ ] (5.23)

Given a class (GN,m), any fine-graining of the form (β↑,m′), with m′ ∈ m
x

N′ , will be
referred to as a maximal fine-graining of (GN,m).
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Figure 8. A choice of three graph models with the same underlying topology. G̃2 and G̃2
′
have

the same min-cut structure and are therefore different representatives of the same class, while G̃2
′′

has a different min-cut structure. Both min-cut structures are generic.

An interesting and useful application of maximal fine-grainings and lemma 17 is the
generalization of our analysis from section 4.3 concerning the relation between min-cut
subspaces and PMIs for tree graphs. The main result of that section was theorem 2,
which says that for any simple tree and min-cut structure, the min-cut-subspace and the
PMI coincide. Given an arbitrary topological graph model GN with tree topology, we
can now turn it into a simple tree via a maximal recoloring β↑. And for any maximal
recoloring, lemma 17 guarantees the existence of a minimally-degenerate fine-graining such
that eq. (5.21) applies. We have thus proved the following general result for arbitrary
topological graph models with tree topology and min-cut structures on them

Theorem 4. For any topological graph model GN with tree topology, min-cut structure
m on GN, and minimally-degenerate maximal fine-graining (β↑, m̌), the min-cut subspace
S(GN′ , m̌) is given by

S(GN,m) = ΦN′→N π(GN′ , m̌) (5.24)

This general result shows that for fixed N many68 min-cut subspaces can be seen as
color-projections of PMIs for a larger number of parties, and it is interesting to ask if all
min-cut subspaces can be obtained in this way. As we will discuss in section 6, this question
is of particular relevance for the reconstruction of the HEC from the solution to the HMIP.

We conclude this section with an example of fine-grainings in the particular case of
an equivalence class whose min-cut subspace is 1-dimensional, illustrating how even in
this case there might exists alternative fine-grainings, as well as the interplay between the
fine-graining procedure and the application of lemma 8 and the reduction of section 3.4.

Consider the two graph models in fig. 8a and fig. 8b. Both of them have the same
generic min-cut structure, which takes the form

UA = {{A1, A2, σ}}, UB = {{B}}, UAB = {{A1, A2, σ, B}} (5.25)

68Notice that the trees in theorem 4 are allowed to have an arbitrarily large number of vertices for each
color, and therefore could in principle encode the same information content as graphs with more complicated
topology.
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(0, 1, 0)
(0, 1, 1)

(0, 0, 1)

(1, 1, 0) (1, 0, 1)

(1, 0, 0)

G̃2

G̃2
′

G̃2
′′

Figure 9. A cross section of R3
>0 by an affine R2 plane orthogonal to the vector (1, 1, 1). This cross

section shows the partition of R3
>0 and its boundary into W-cells for the topological graph model

of the graphs in fig. 8, before and after the recoloring from eq. (5.32). See the main text for more
details.

The W-cell for this min-cut structure is the interior of the following polyhedral cone in R3
>0

cone {(1, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 1)} (5.26)

where we ordered the weights according to (A1σ,A2σ,Oσ). Its image under the map

Γ =

0 0 1
0 0 0
0 0 1

 (5.27)

is the 1-dimensional S-cell
S = λ (1, 0, 1), λ > 0 (5.28)

which is indeed the entropy ray of both graph models G̃2 and G̃2
′.

The min-cut structure of the graph model in fig. 8c is again generic and takes the form

UA = {{A1, A2}}, UB = {{B}}, UAB = {{A1, A2, B}} (5.29)

The W-cell is the interior of another polyhedral cone in R3
>0

cone {(1, 0, 1), (0, 1, 1), (0, 0, 1)} (5.30)

and its image under the map

Γ =

1 1 0
0 0 0
1 1 0

 (5.31)

is the same 1-dimensional S-cell given in eq. (5.28) for the other two graph models.
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Figure 10. Graph models specified by particular choices of weights discussed in the main text.

Figure 9 shows the partition into W-cells of the space of edge weights R3
>0 for the

topological graph model underlying the three graph models of fig. 8. The regions shaded
in orange and cyan correspond respectively to the two full-dimensional W-cells given in
eq. (5.26) and eq. (5.30). We leave it as an exercise for the reader to verify that the solid
edge separating the these two W-cells does indeed correspond, as suggested by the figure,
to a degenerate min-cut structure with a 1-dimensional W-cell (see fig. 10a for a choice of
representative of this class).

The regions on the boundary of R3
>0 instead, correspond to W-cells for min-cut struc-

tures on different topological graph models obtained by appropriate deletion of edges,
following the reduction described in section 3.4. The vertices shown in solid black in fig. 9
correspond to extreme rays shared by the two full-dimensional W-cells (see fig. 10b for
an example). They are 1-dimensional W-cells whose associated S-cells are again given by
eq. (5.28), in agreement with lemma 8. On the other hand, the unfilled vertices corre-
sponding to the canonical bases vectors of R3, are examples of the situation where lemma 8
cannot be used. As explained in the proof of the same lemma, it can happen that an
extreme ray of a W-cell is mapped to the null vector by the corresponding Γ map, which
is precisely what happens here (cf. fig. 10c). All other solid edges in fig. 9 can also be
checked to be 2-dimensional W-cells, again after an appropriate deletion of edges (for now,
the dashed edges and the (1, 1, 0) vertex should be ignored, and the segment connecting
(0, 1, 0) to (1, 0, 0) should be seen as a single face). Finally, notice that again in agreement
with lemma 8, each W-cell (for all dimensions higher than 1) has at least an extreme ray
which is not mapped to the null vector by the corresponding Γ matrix. The only exception
seems to be the face generated by {(0, 1, 0), (1, 0, 0)}, however in this case even if the W-cell
is 2-dimensional, lemma 8 does not apply, since the entire W-cell is mapped to the null
vector and the min-cut subspace is not 1-dimensional.

Let us now consider the maximal recoloring of the graphs models in fig. 8 specified by

A1 → A, A2 → C, B → B, O → O (5.32)

The new min-cut structures corresponding to the recolored graph models are still generic,
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and can conveniently be described by their corresponding Γ matrices. They are respectively

Γ
G̃2

=



1 0 0
0 0 0
0 1 0
1 0 0
0 0 1
0 1 0
0 0 1


Γ
G̃2
′ =



0 1 1
0 0 0
0 1 0
0 1 1
0 0 1
0 1 0
0 0 1


Γ
G̃2
′′ =



1 0 0
0 0 0
0 1 0
1 0 0
1 1 0
0 1 0
1 1 0


(5.33)

As one can immediately see, after recoloring, the graph model in fig. 8a has a 3-dimensional
min-cut subspace, while the min-cut subspaces of the graph models in fig. 8b are 2-
dimensional, even if the two original graph models belonged to the same W-cell and had a
1-dimensional min-cut subspace.

The W-cells of the first two fine-grained graph models are

W
G̃2

= cone {(1, 1, 0), (0, 1, 1), (1, 0, 1)}

W
G̃2
′ = cone {(1, 1, 0), (1, 0, 0), (1, 0, 1)} (5.34)

These new W-cells are again shown in fig. 9, where the dashed edges, and the new vertex
(1, 1, 0), are new W-cells that correspond to new min-cut structures that emerge from the
recoloring of the original topological graph model. As one can easily guess from the figure,
there is an additional full-dimensional W-cell

cone {(0, 1, 0), (1, 1, 0), (0, 1, 1)} (5.35)

which can immediately be obtained by swapping A and C in the recolored graph model of
fig. 8b. Combined, all these W-cells form a partition of the original W-cell for the graph
models in fig. 8a and fig. 8b given in eq. (5.26), in agreement with lemma 16. On the other
hand, as also shown in fig. 9, the recoloring of the graph model in fig. 8c is not associated
to any partition of the original W-cell. The full set of W-cells after the recoloring of the
topological graph model can also be seen in fig. 11, where we explicitly show the transition
between different W-cells as a function of two independent weights (the third can be fixed
by rescaling). Notice that there is an additional W-cell that is not visible in fig. 17, namely
the 0-dimensional W-cell corresponding to the origin of R3.

Finally, let us briefly comment again on the application of lemma 8 to see how it relates
to fine-grainings. Starting from G̃2 we can apply lemma 8 and select an extreme ray of
the closure of the W-cell given in eq. (5.26) such that the min-cut subspace of the new
graph model is again the one generated by the S-cell given in eq. (5.28). Suppose that we
choose (0, 1, 1) (cf. fig. 10c) and then apply the recoloring from eq. (5.32). The W-cell of
the resulting graph model is the same as the original one, and the new min-cut structure
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Figure 11. The W-cells for the topological graph model underlying the graphs in fig. 8, as well
as variations of it obtained via the deletion of the appropriate edges. The figure shows the explicit
dependence on the values of the weights as well as the degeneracy equations. The shaded insets
show the topological graph models associated to the two diagrams, which are distinguished by the
presence (left) or absence (right) of the (σ,O) edge.

is degenerate. With the choice of representative UC = {{C}}, the Γ matrix is

Γ =



0 0 0
0 0 0
0 1 0
0 0 0
0 1 0
0 1 0
0 1 0


(5.36)

and the (necessarily 1-dimensional) S-cell is

S = λ (0, 0, 1, 0, 1, 1, 1), λ > 0 (5.37)

The coarse-graining associated to the initial coloring of the graph (before the recoloring
that induced the fine-graining) specifies the color projection (cf. eq. (5.4))

Φ3→2 =

0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1

 (5.38)

and one can immediately verify that once applied to eq. (5.37) this transformation gives
the original S-cell from eq. (5.28).
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6 The HEC from marginal independence

In this section we will use the machinery that we have developed thus far to relate the
construction of the HECN to the knowledge of set of holographic PMIs.

In section 6.1 we will first look at various graph models which realize the known
extreme rays of the HECN up to N = 6, focusing in particular on their PMIs. The reader
should not be surprised by the fact that we will look directly at graph models, rather than
equivalence classes, since by corollary 1 each of the graph models discussed here is by itself
an equivalence class (up to a global rescaling of the weights). In these cases, an explicit
choice of weights should merely be seen as a more compact way of specifying a min-cut
structure on the underlying topological graph model.

Based on the evidence presented in section 6.1, in section 6.2 we will then formulate
various conjectures about certain properties of the graph models that realize the extreme
rays of the HECN for arbitrary N. We will discuss in detail how these conjectures are
related to each other, and their implications for the explicit reconstruction of the HECN
from the set of holographic PMIs.

In most of the following discussions about extreme rays of the HECN, including the
formulation of our conjectures (in particular (C1) and (C4)), we will always implicitly
assume that we are focusing only on the restricted set of “genuine N-party” extreme rays,
i.e., on extreme rays which are not embeddings into N-party entropy space of extreme rays
for fewer parties. The convenience of this assumption lies in the fact that the components of
such extreme rays are strictly positive, which allows us to ignore unnecessary complications
related to the connectivity of the graphs. Indeed, if some components of an N-party entropy
vector S vanish, it is always possible to use purity69 to effectively reduce the number of
parties to some N′ < N, and distill the essential information contained in S into a new
N′-party entropy vector S′.

6.1 Graph models and PMIs for known extreme rays of the HEC

In section 3.5 we proved that any graph model that realizes an extreme ray of the HECN
has a 1-dimensional min-cut subspace, and we have shown an explicit example for N = 3.
In that example, the topological graph model G3 associated to G̃3 was a simple tree graph
(cf. definition 12). By theorem 2 it follows then that its PMI is also 1-dimensional (it is
the min-cut subspace), and that the ray in eq. (3.22) is also an extreme ray of the SAC3.
As it turns out, the same type of situation also occurs for all graph models which realize
the extreme rays of the HECN, for N ∈ {2, 3, 4} [27], as the reader can easily verify.

On the other hand, for N = 5, not all realizations of the extreme rays given in [28,
32] were trees. The key observation of this subsection is that one can nonetheless find
alternative graph models, which are trees, and realize the same extreme rays. These trees
however are no longer simple and this non-simplicity is not just a consequence of particular
choices of graph realizations, but rather of the fact that the corresponding extreme rays of

69Recall that the von Neumann entropy of a density matrix vanishes if and only if it corresponds to a
pure state. Similarly, for graphs, the entropy of a subsystem I vanishes if and only if the min-cut for I is
disconnected from its complement.
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the HEC5 are not extreme rays of the SAC5 (their PMIs are higher dimensional, see the
next subsection for more details).

In fig. 12, we provide a tree graph realization for every HEC5 extreme ray which was
not realized by a tree graph in [32]. Most of these new trees can immediately be obtained
from the original graph models from [32] by simply splitting every degree-k boundary
vertex into k vertices of the same color.70 For each of these tree graph models we can
then specify a maximal recoloring and consider the associated possible fine-grainings of the
corresponding class. As exemplified in the previous section, one possible such fine-gaining
is simply obtained via the fine graining of the graph model, i.e., by only applying the
recoloring to the boundary vertices, without varying the weights. Despite the fact that in
general the dimension of the min-cut subspace can grow after a fine-graining, it turns out
that in each case the resulting min-cut subspace is 1-dimensional.71 Since each of these new
graph models is now specified on a simple tree (because the recoloring was maximal), it
then follows by theorem 2 that the PMI is also 1-dimensional, and these graph models thus
realize extreme rays of the SACN′ for the corresponding N′ = V∂ − 1 ≥ 5. For instance, via
this procedure, the last graph model in fig. 12 lifts to a simple tree graph model for N′ = 10,
which one can check realizes an extreme ray of the SAC10.72 Notice that even if the fine
grainings specified here may73 not be minimally-degenerate according to definition 14, the
min-cut subspaces before and after the fine-graining are still related by a color-projection,
since both S-cells are just single rays.

For N ≥ 6, the HECN is still unknown, but a large number of its extreme rays is known
for N = 6 [31], and we can again explore whether we can realize them with graph models
with tree topology. If we succeed, we can then repeat the same procedure we just described
for the N = 5 case, to make these tree graph models simple via a maximal recoloring, and
check if the resulting min-cut subspace is 1-dimensional. If this is the case, these graph
models then realize extreme rays of the SACN′ for some N′ ≥ 6.

At the time of writing, a total of 4122 distinct (orbits of) extreme rays have been
discovered. Although only 24 of these can be realized by simple trees, it turns out that
as many as 3905 of the others can be realized by graph models that can be immediately
turned into non-simple trees by just splitting their boundary vertices (as explained before
for the N = 5 case). In other words, only 193 extreme rays are realized by graph models
that contain cycles involving only bulk vertices, which can thus not be broken by splitting
boundary vertices. However, most of these just contain a single bulk 3-cycle, which is
straightforward to break as we show in appendix A. Ultimately, there only remain 14
graphs models which cannot be obviously turned into trees, as they involve larger cycles or
more than a single 3-cycle. Figures 13 and 14 depict graph models realizations containing

70This is not always sufficient: for example the last graph in fig. 12 requires a judicious iterative application
of the operations described in appendix A, particularly the ∆-Y exchange operation shown in fig. 17.

71At this point the reader may already wonder whether we could have used lemma 8 in case the resulting
min-cut subspace had a higher dimensionality. Indeed this is the case, and we will use this strategy in what
follows.

72To check extremality of an entropy vector for N parties, one can simply check that it satisfies all
instances of SA for that N, and that at least D− 1 linearly independent instances are saturated.

73We have not explicitly checked the dimensionality of the W-cells, since it is not crucial here.
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Figure 12. The first and third columns show graph realizations of the extreme rays of the HEC5
which cannot be realized by simple trees. Rather than their original form from [28], here we show
the graphs of minimal number of vertices obtained by [32]. To the right of each graph, we provide
a non-simple tree realization of the same extreme ray, obtained through repeated application of the
graph operations described in appendix A.

a bulk 4-cycle for two of the HEC6 extreme rays. After splitting the boundary vertices and
maximally recoloring them, the topological graph models are the same for these two cases.
Nevertheless, it is easy to convert the graph of fig. 13 into a tree graph (by splitting the bulk
cycle at the σ2 vertex; cf. the bottom panel), whereas an analogous transformation does
not work for the graph of fig. 14, even though the original graph looks a bit simpler. For
all simple tree graph models obtained via this procedure, the resulting min-cut subspace
(and therefore PMI) is indeed 1-dimensional.

In total there are only a few (some of the 14 mentioned above) extreme rays of the
HEC6 which are realized by graph models that we were not immediately able to convert
into tree graphs using these simple operations. While it is possible that some of these
extreme rays cannot be realized by any tree graph, we have not attempted a systematic
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Figure 13. Alternative graph realizations of one of the extreme rays of the HEC6. Notice that
one of these realizations is a tree graph.
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Figure 14. Alternative graph realizations of another extreme ray of the HEC6. Notice that the
graph on the right has the same topology as the second graph in fig. 13.

and exhaustive search, and it seems likely that the difficulty in obtaining tree realizations
for these extreme rays is just technical rather than fundamental.

6.2 Reconstruction of the HEC from marginal independence

We are now ready to discuss the main claim of this work, namely how the reconstruction of
the holographic entropy cone is related to the solution of the holographic marginal indepen-
dence problem. We will not be able to provide a definite proof that such a reconstruction is
possible. However, motivated by the observations presented in the previous subsection, we
will formulate a series of conjectures each of which will imply that this is indeed the case.
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We will organize these conjectures following a hierarchy, from the weakest to the strongest,
analysing their relations and implications. As we will see, all of these conjectures, except
only for the weakest (C1) (see below), will imply that this reconstruction has a particularly
nice form and is intimately related to 1-dimensional holographic PMIs, i.e., holographic
extreme rays of the SAC.

Let us begin by explaining more explicitly how the reconstruction would work. Since
the HEC is a polyhedral cone, it can equivalently be described by providing either the
full set of its extreme rays, or the full set of its facets, specified by non-redundant entropy
inequalities. Given one description, one can in principle74 obtain the other using well-
known conversion algorithms [49], and we will focus on the description in terms of extreme
rays. Suppose now that we are interested in the HECN∗ for a specific number of parties
N∗, and we are given the full solution to the HMIP, i.e., we are given the full set of all
holographic PMIs (recall definition 11) for all possible values of N, can we derive all the
extreme rays of the HECN∗ from this data?

As a warm up, let us first discuss the simpler situation where N∗ ≤ 4. Suppose that we
do not know the extreme rays of the HECN∗ , but instead we want to try to extract them
from the solution to the HMIP for N = N∗. Such solution is the collection of all PMIs that
can be realized holographically for N = N∗, and it will contain PMIs of different dimensions
1 ≤ d ≤ D∗. For each 1-dimensional PMI it is straightforward to determine an entropy ray
that generates it, as one simply needs to pick a ray oriented towards the positive orthant of
entropy space. Furthermore, any such ray is automatically an extreme ray of the HECN∗

because it is a holographic extreme ray of the SACN∗ .75 On the other hand, we will ignore
all higher dimensional PMIs, since it is not possible to uniquely determine an entropy
ray out of them. We can then build a candidate for the HECN∗ by taking the conical
hull of the rays thus obtained. The equivalence of the HECN∗ with this cone however
is just a coincidence related to the fact that we are only considering N∗ ≤ 4, and as we
reviewed in the previous subsection, in this case all extreme rays of the HECN∗ correspond
to 1-dimensional PMIs.

Let us now focus on N∗ ≥ 5, and consider an extreme ray S of the HECN∗ which is not
an extreme ray of the SACN∗ , and a class (GN∗ ,m) realizing it, i.e., such that

S(GN∗ ,m) = S (6.1)

where S is the subspace generated by S. Suppose that there exists a minimally-degenerate
fine-graining (cf. definition 14) to a class (GN, m̌), with N > N∗ and m̌ ∈ m

x
N , such that the

min-cut subspace and the PMI coincide. Denoting by ΦN→N∗ the corresponding coarse-
graining we then have

S = ΦN→N∗ S(GN, m̌) = ΦN→N∗ π(GN, m̌) (6.2)

74There is no known efficient algorithm to perform this conversion, and in practice this is undoable already
for N = 6.

75Notice that any class (GN,m) realizing this ray (which exists by assumption) is guaranteed by lemma 10
to have a 1-dimensional min-cut subspace, in agreement with corollary 1.

– 59 –



J
H
E
P
0
9
(
2
0
2
2
)
1
9
0

This implies that S can be obtained from the solution to the HMIP. The reason is that
this solution includes π(GN, m̌), from π(GN, m̌) we can obtain S via a color-projection, and
S can be obtained from S as described before, since S is 1-dimensional. This motivates us
to formulate our first conjecture

Conjecture (C1). For any N∗ and any extreme ray S of the HECN∗, there exists a class
(GN∗ ,m) realizing S and a minimally-degenerate fine-graining to a class (GN, m̌) for some
finite N ≥ N∗ such that

S(GN, m̌) = π(GN, m̌) (6.3)

and π(GN, m̌) is nowhere-zero.76

If this conjecture holds, in principle all one needs to do to construct the HECN∗ is
to consider all possible color-projections from N to N∗ of all nowhere-zero PMIs that are
realizable holographically, for each N ≥ N∗, pick a non-negative ray from each 1-dimensional
subspace obtained by this procedure, and take the conical hull of the resulting set. Notice
that not all entropy rays obtained in this way will be extremal, however the ones that are
non-extremal are guaranteed to be contained in the HECN∗ by the nowhere-zero condition.
This follows from the fact that if a holographic PMI is nowhere-zero, it contains at least a
(not necessarily extremal) nowhere-zero entropy vector S′ realized by a graph model. Since
we are only considering PMIs that are color-projected to 1-dimensional subspaces, and by
being nowhere-zero S′ cannot be mapped to the null vector by such a projection, the result
of the projection must be the subspace generated by the projection of S′, which is inside
the HECN∗ . On the other hand, (C1) will guarantee that all extreme rays of the HECN∗

will be included in the resulting set.
At first sight, this procedure seems daunting, since we are demanding to consider all

possible values of N ≥ N∗. In practice however this is never necessary, since for any N∗ the
HECN∗ only has a finite number of extreme rays (it is a polyhedral cone) and can therefore
be reconstructed from the solution to the HMIP for N = Nmax(N∗) given by

Nmax(N∗) = max {Nmin(S), ∀S} (6.4)

where for each extreme ray S of the HECN∗ , Nmin(S) denotes the smallest N ≥ N∗ for
which conjecture (C1) holds. The reason is that for each extreme ray S of the HECN∗ and
PMI P in the solution to the HMIP for N = Nmin(S) such that

S = ΦNmin(S)→N∗P, (6.5)

there is a lift77 to a new PMI P′ in the solution to the HMIP for N = Nmax such that

P = ΦNmax→NminP′ (6.6)
76Here by a nowhere-zero PMI P we mean that for any choice of generators of P, none of the components

vanishes.
77This is a straightforward consequence of the standard lift construction described in section 3.6, and of

the fact that the min-cut subspace of a class determines its PMI (cf. corollary 3).
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Therefore we can simply obtain S from P′ as follows

S = ΦNmax→N∗P
′ (6.7)

where
ΦNmax→N∗ = ΦNmin→N∗ ΦNmax→Nmin (6.8)

Notice that we are only arguing for the existence of Nmax(N∗), but we are not providing
a way to determine its value for a given N∗. In any concrete reconstruction of the HECN∗

one would instead need to know the value of Nmax(N∗) to make sure that one is considering
the solution to the HMIP for a value of N large enough such that it is sufficient to derive
the complete set of extreme rays.78 However, it should by now be clear that the focus
of the present work is not on any explicit reconstruction of the HEC, but rather on the
equivalence of this problem to the solution of the HMIP.

For small N our evidence strongly supports (C1) and allows us to derive some tight
upper bounds on Nmax(N∗). For N ≤ 4, we have already seen that Nmax(N∗) = N∗, so the
first non-trivial case is N = 5. The graph models shown in the first and third columns
of fig. 12 correspond to PMIs of dimensions ranging from 2 (e.g., the first one) to 6 (e.g.,
the last one). To explore conjecture (C1), one may consider incremental fine-grainings79

of these graph models obtained by first splitting boundary vertices of degree higher than
one, and then recoloring the boundary vertices. In all cases, one observes that the min-cut
subspace remains 1-dimensional upon fine-graining, while the PMI exhibits a non-increasing
dimensionality. Remarkably, in most cases one obtains a graph model with a 1-dimensional
PMI after only a couple of steps, and in all cases three steps always suffice.80 In summary,
this allows us to conclude that Nmax(5) ≤ 8, and that this bound is likely saturated.
Although our data for N∗ = 6 is incomplete and thus insufficient to derive a similar bound,
we highlight that the same qualitative features are observed for all graph models realizing
the currently known extreme rays of the HEC6 (unlike in the previous subsection, here we
are not attempting to realize these extreme rays with tree graph models). The splitting
of boundary vertices and the straightforward fine-graining of a graph model specified by a
maximal recoloring is sufficient to obtain a new graph model such that the corresponding
min-cut subspace and PMI coincide.81

78In principle one could also proceed as follows. Start from the solution to the HMIP for N = N∗ and
construct a cone as we explained. Then derive its facets and check if they are valid holographic entropy
inequalities using the contraction maps of [27]. If all facets are valid inequalities, the reconstruction is
complete, otherwise one can increase the value of N and repeat the process. Once Nmax(N∗) has been
reached, the reconstruction is guaranteed to be complete. The problem with this procedure however is
that the conversion from extreme rays to facets is inefficient, and that it is currently unknown if all valid
holographic inequalities can be proven via contraction maps.

79Again, these are particular choices of fine-grainings of the min-cut structure of a graph model specified
by the same choice of weights as in the original graph.

80In fact, by taking the currently known extreme rays of the HEC6 which are also extremal in the SAC6

(equivalently, extreme rays of the SAC6 which are holographic), and coarse-graining down to 5 parties, we
observe that as many as 16 out of the 19 orbits of extreme rays of the HEC5 are obtained. In other words,
remarkably, 16 of the extreme rays of the HEC5 descend from the SACN already at N = 6.

81Technically this observation is not an exact confirmation that (C1) holds in these cases, since a priori
the fine-grainings of the min-cut structures may not be minimally-degenerate. However, we can also imagine
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Notice that while (C1) in principle allows for fine-grainings to graph models with
higher dimensional min-cut subspaces, in all known cases discussed above the equivalence
with PMIs was achieved with 1-dimensional min-cut subspaces. This suggests that the
reconstruction of the HEC could actually be even simpler, and reliant only on the knowl-
edge of 1-dimensional holographic PMIs. This motivates the following stronger conjecture,
consistent with all our data to date:

Conjecture (C2). For any N∗ and any extreme ray S of the HECN∗, there exists an
extreme ray R of the SACN for some finite N ≥ N∗, a graph model realizing R and a
recoloring β↓ such that from the corresponding coarse-graining φ we have

S = ΦN→N∗ R (6.9)

If this conjecture holds, it is not necessary to know the full solution to the HMIP to
reconstruct the HEC. Instead it is sufficient to know only the 1-dimensional PMIs that are
holographic or, equivalently, the extreme rays of the SAC that can be realized by graph
models. We could then redefine Nmax(N∗) as the smallest number of parties from which all
HECN∗ extreme rays can be recovered as in eq. (6.9). Explicitly, the HECN∗ would then
be given by

HECN∗ = cone {ΦNmax→N∗ R, ∀R ∈ RNmax
H , ∀ΦNmax→N∗} (6.10)

where RN
H is the set of holographic extreme rays of the SACN. For instance, from the

bound on Nmax mentioned above for N∗ = 5 we see that the HEC5 can be obtained from
the conical hull of just those extreme rays of the SAC8 which are holographic. Notice that
from a structural point of view this a highly non-trivial statement, since the projections
ΦNmax→N∗ that appear in eq. (6.10) are not arbitrary projections, but color-projections
associated to coarse-grainings. Finally, notice that the reconstruction formula eq. (6.10)
also gives a full solution to the HMIP for N = N∗, as one can recover all holographic PMIs
from the knowledge of the extreme rays.

Due to its generality however, proving (C2) might be quite challenging, in particular
because the topology of the graph models that realize the holographic extreme rays of
the SAC is not restricted in any way. On the other hand, the observations at the end of
the previous subsection suggest that there might be an additional simplification. We have
seen that for all extreme rays of the HEC5 we could find realizations by graph models
with tree topology. And that for all these tree graph models, the fine-graining specified
by a maximal recoloring was automatically giving a new (simple tree) graph model with
a 1-dimensional PMI. For instance, the tree graphs exhibited in fig. 12 show that all the
extreme rays of the HEC5 can be obtained by coarse-graining extreme rays of the SACN
realizable by simple tree graph models for some 5 < N ≤ 11.82 Similar facts seem to hold
for the known extreme rays of the HEC6: by just applying the simple entropy-preserving

to first use lemma 8 before the recoloring, to obtain a 1-dimensional W-cell. The fine-graining induced by
the recoloring is then guaranteed to be minimally-degenerate, and (C1) holds.

82Specifically, this upper bound comes from the tree counterpart to the only non-planar graph in fig. 12,
which requires the highest lift of all graphs for obtaining a simple tree: from N∗ = 5 to N = 11.
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graph manipulations described in appendix A, we are able to turn almost all graph models
realizing these rays into new graph models with tree topology. One of just a handful of
exceptions is the graph in fig. 14. However, we stress that despite the fact that we have
not found a tree form for it to support (C3), one can easily check that after a splitting of
e.g. vertex C alone, and a maximal recoloring, one already obtains a graph model realizing
an extreme ray of the SAC7, in agreement with (C2).

Based on these observations, it is therefore interesting to explore the implications of
the following conjecture.

Conjecture (C3). For any N∗, every (nowhere-zero) extreme ray of the HECN∗ is realiz-
able by a graph model with tree topology.

The reader will probably already guess how this new conjecture is related to (C2) and
the reconstruction problem, since we have already seen several examples of this situation.
However let us explain more carefully why (C2) implies that the reconstruction is given by
eq. (6.10).

Consider an extreme ray S of the HECN∗ , and suppose that (C3) holds. Then there
exists a class (GN∗ ,m) whose S-cell is the ray generated by S, and we denote by S its
(1-dimensional) min-cut subspace. In general the W-cell of (GN∗ ,m) could be higher di-
mensional, and an arbitrary fine-graining could produce a new class whose min-cut subspace
has dimension greater than one (recall the example at the end of section 5.2). However,
if this is the case, we can always use lemma 8 to find a new class (ĜN∗ , m̂) such that the
min-cut subspace is still S, while the S-cell is just a single entropy ray. Notice that, as we
have already seen in various examples, when we use lemma 8 we may be forced to apply
the reduction described in section 3.4 and delete some of the edges. We can now apply
theorem 4 to (ĜN∗ , m̂) to get yet a new class (ǦN, m̌), for some N > N∗, where ǦN is now
a simple tree and the color-projection ΦN→N∗ of its PMI is S. Finally, since the W-cell of
(ĜN∗ , m̂) was 1-dimensional, it is guaranteed by lemma 16 to remain 1-dimensional after
the fine-graining, and the PMI of (ǦN, m̌) is therefore 1-dimensional as well.

In summary, assuming (C3), we have shown how to construct a new class that satis-
fies (C2), showing that (C3) is sufficient for the reconstruction of the HEC via eq. (6.10).

We conclude by mentioning one more conjecture which is not specific to any particular
set of faces of the HEC or the SAC, and could be an interesting general property of all
min-cut structure on arbitrary topological graph models.

Conjecture (C4). For any N, topological graph model GN and min-cut structure m, there
exists a topological graph model G′N with tree topology and a min-cut structure m′ such
that

S(G′N,m′) = S(GN,m) (6.11)

A priori one may have doubts about this conjecture, considering how special tree graphs
are compared to arbitrary graphs. Notice however that the trees in (C1) are not required to
be simple, and can have an arbitrary number of boundary vertices for each color. Finally
should be clear that if one could prove (C4), then (C3) would follow immediately. By
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the argument presented above, (C3) would then imply (C2), and the reconstruction of the
HECN∗ from the extreme rays of the SACNmax for all N∗ would be given by eq. (6.10).

7 Discussion

In this section we briefly summarize our results and what remains to be proven to definitely
conclude that the solution to the holographic marginal independence problem contains
sufficient information for the reconstruction of the holographic entropy cone. Moreover,
we comment on several interesting directions for future investigations which are suggested
by the possibility of such a reconstruction, and by the framework that we have developed
throughout this work.

Summary: the main goal of this work was to argue that the holographic entropy cone can
be reconstructed, for an arbitrary number of parties, from the solution to the holographic
marginal independence problem. We have shown how such a reconstruction would work,
and argued that it takes a particularly simple form. Indeed, we argued that to be able
to reconstruct the HEC one does not even need to know the full solution to the HMIP,
but only the set of 1-dimensional holographic PMIs. Ultimately, what this implies is the
following

Claim. The knowledge of all holographic entropy inequalities, for all values of N, is equiv-
alent to the knowledge of all holographic extreme rays of the SAC, for all values of N.

A summarizing cartoon of this equivalence and of the reconstruction procedure is
provided in fig. 15. We stress that, as we explained above, this claim does not hold for a
fixed value of N when N ≥ 5, i.e., knowing the holographic extreme rays of the SAC for N
parties does not in general provide enough information to derive all the N-party holographic
entropy inequalities.

Completing the proof: to complete the proof of our main claim above it remains to
prove (C2). This problem however might be challenging, since (C2) is specific to extreme
rays, which are unknown (and are precisely what we want to reconstruct), and the graph
models realizing them are allowed to have unrestricted topology. We believe that the best
way to proceed is to prove (C3). Although we were not able to check that this conjecture
holds for all known extreme rays of the HEC6, we also did not attempt an exhaustive
search, and it seems likely that one simply needs to consider more complicated tree graphs.

While in principle it is possible that (C3) only holds for extreme rays, it also seems
reasonable to expect that it is a more general fact about 1-dimensional min-cut subspaces,
in which case proving this conjecture would presumably be easier. In fact, the realizability
of min-cut subspaces via tree graphs might be even more general, and one could also
attempt to directly prove (C4). An interesting way to proceed in this direction would
be to better understand the structure of the partition of the space of edge weights into
W-cells for a given topological graph model. Since this structure also determines the maps
to entropy space that produce the min-cut subspaces for the various min-cut structures,
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N = 8

N = 6

N = 5

N = 4

N = 3

N = 2

Φ6→5

Φ8→5Φ′8→5

S1

S2

R′1

R1

R2

Figure 15. A schematic cartoon of a cross-section of the SACN and the HECN for different values of
N. The extreme rays of the SACN are represented by the green and blue vertices. The green ones are
also extreme rays of the HECN, and their conical hull is the darkest shaded region. The blue ones are
outside of the HECN. The boundary of the HECN is highlighted in orange, and the orange vertices
represent extreme rays of the HECN which are not extreme rays of the SACN. The arrows indicate
color-projections associated with coarse-grainings that implement the reconstruction, mapping the
green vertices to the orange. For N = 5 the figure shows two extreme rays S1 and S2 that are not
extreme rays of the SAC5 and need to be reconstructed. While N = 6 is sufficient to obtain S1
as S1 = Φ6→5R1, it is not sufficient to reconstruct S2. On the other hand, N = 8 is sufficient to
reconstruct both rays, S1 = Φ′8→5R′1 and S2 = Φ8→5R2. To avoid clutter, we are suppressing all
irrelevant projections/lifts of other extreme rays. The shapes of the cone cross-sections (as well as
the numbers of facets and extreme rays of various kinds) are not meant to be taken literally.
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if one could directly relate this structure to the topology of the graph, one might then be
able to prove that any min-cut subspace can be obtained from a tree.

Finally, we should also contemplate the possibility that our main claim above is false.
A plausible strategy for disproving it would be to obtain solutions to simpler constructs
derived from the HEC and SAC, analogous to the symmetrizations of [47, 48], and checking
for any possible inconsistency with our claims. In such a case it might still be possible to
reconstruct the HEC from the solution to the HMIP, but it would not be sufficient to
only know the holographic extreme rays of the SAC. To prove that the reconstruction
is possible one should then try to prove (C1), although this conjecture suffers from the
same complications we just mentioned for (C2), since it is specific to extreme rays and the
graphs have unrestricted topology. However, one may also wonder if for each equivalence
class of graph models (not just those which realize extreme rays), there always exists a
fine-graining to a new one such that the min-cut subspace and the PMI coincide. While
stronger then (C1), this property might be easier to prove by investigating more deeply
the relation between min-cut subspaces and PMIs for arbitrary topological graph models
and min-cut structures.

Finding the holographic extreme rays of the SAC: if our main claim above holds,
the problem of determining the HEC is mapped to the problem of determining which
extreme rays of the SAC are holographic. While this is beyond the scope of the present
work, we briefly comment on the importance of this question and some intriguing possible
answers.

For a fixed number of parties N, consider the following sets of extreme rays of the
SACN (dropping the N-dependence to simplify the notation)

R := {extreme rays of the SAC}
RSSA := {extreme rays of the SAC that satisfy SSA}
RQ := {extreme rays of the SAC that can be realized by quantum states}
RH := {extreme rays of the SAC that can be realized by graph models} (7.1)

These sets clearly satisfy the following chain of inclusions

RH ⊆ RQ ⊆ RSSA ⊆ R (7.2)

and we have RSSA = R only for N = 2, while typically |RSSA | � |R|.
If our main claim holds, the deep question about the physical origin of the HEC and its

structure is distilled to the question about the relation between the sets RH and RQ . If RH=
RQ , all extreme rays of the SAC compatible with quantum mechanics would participate in
the construction of the HEC, and there would be no other holographic constraint to resolve.
While all data currently available points in this direction, it is conceivable that for larger
values of N there exist extreme rays of the SAC that can be realized by quantum states
but not by geometric states. This would hint at more fundamental holographic constraints
which operate at the level of the SAC and would be very interesting to investigate.

Answering this question however could be quite difficult, since very little is known
about the structure of the QEC, and to the best of our knowledge, there is no systematic
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construction of quantum states that realize the extreme rays of the SAC. A more approach-
able question on the other hand could be whether RH and RSSA coincide. Interestingly, for
N ≤ 5, for which the elements of RSSA can be determined using standard algorithms [49],
this turns out to be the case. If RH = RSSA , the chain of inclusions eq. (7.2) immediately
implies that RH = RQ and RQ = RSSA , and we would not only obtain a full characterization
of the HEC, but also new information about the QEC for arbitrary N. In order to establish
if RH = RSSA , the structure of RSSA is currently being investigated in [50]. The goal is to
obtain a sufficiently detailed characterization of the elements of this set, such that they
could then be matched with explicit holographic realizations in terms of graph models.

Generalization to HRT: in this work we focused on the static version of the holographic
entropy cone, since this is the situation where configurations of HRRT surfaces can be
described by graph models. The connection between the HEC and the solution to the
HMIP however seems to suggest that the same structure would pertain also to dynamical
spacetimes. Intuitively, the reason is that the crucial information about the configurations
of HRRT surfaces is not rooted in the area of the individual surfaces, but rather the
connectivity of the entanglement wedges of the various subsystems. It would be interesting
to explore this possibility in more detail.83

The most convenient contingency would be one wherein one can devise a graph model
for the general time-dependent situation, with the subsystem entanglement entropy again
given by the sum of the edge weights of the cut edges for a suitably-defined min-cut, in
which case the graph side of the HEC construction would be identical. The immediate
obstacle with this approach arises from the fact that parts of the HRT surfaces for various
regions can be timelike-separated, and more importantly that the surfaces in question have
their areas extremized rather than simply minimized. One possibility of circumventing this
complication is examined in [51].

The holographic entropy polyhedron (HEP): many of the tools that we used here
have a close relationship with those introduced in [33, 34] in the context of the holographic
entropy arrangement. The reader who is familiar with these works will probably notice for
example the similarity between the min-cut structure of a topological graph model and the
proto-entropy vector of a holographic configuration. Analogously, the min-cut subspace
is closely related to the set of constraints that must be satisfied by the coefficients of an
unspecified “information quantity” (defined as an arbitrary linear combination of entropies,
or equivalently as an element of the dual of entropy space) such that it vanishes on a full S-
cell. When a min-cut subspace S has dimension D−1 in fact, S⊥ is the vector of coefficients
of the only information quantity that vanishes on all vectors in the S-cell whose linear span
is S. This is the type of information quantity that was dubbed a “primitive” in [33, 34].
The holographic entropy arrangement was then defined as the set of all hyperplanes in
N-party entropy space which correspond to these primitive quantities, and the HEP as the

83For two-dimensional CFT, it was proven in [43] that any holographic entropy inequality which holds
for RT surfaces also holds for HRT surfaces. Despite the limitations related to the special properties of a
3-dimensional bulk spacetime, it would be useful to clarify the relation between the present work and the
result of [43], where it was SSA rather than SA that played a crucial role.
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polyhedron carved by the entropy inequalities associated to the primitive quantities that
have a definite sign for geometric states.

In light of the results of the present work, it is tempting to identify the holographic
entropy arrangement with the set of codimension-1 min-cut subspaces, and the HEP with
the HEC. Indeed, as we have shown here, each extreme ray of the HEC corresponds to a
1-dimensional min-cut subspace, and the min-cut subspace of a graph obtained from the
disjoint union of multiple graphs is the sum of the min-cut subspaces of the individual
graphs (cf. section 3.6). Using this construction one could then combine the graphs real-
izing the extreme rays of the HEC to obtain new graphs whose min-cut subspaces are the
supporting subspaces of the facets of the HEC. All information quantities corresponding
to holographic entropy inequalities would then be primitive in the sense of [33, 34], and
the holographic entropy cone and polyhedron would coincide.

This simple reasoning however obfuscates some of the subtleties that were at the core
of the motivations of [33] for introducing the HEP in the first place. Throughout this work
we have constantly seen that a crucial role in determining the structure, or certain trans-
formation properties, of the objects that we introduced has been played by the “pattern
of degeneracies” of an equivalence class of graph models. This is especially true for the
realization of the extreme rays of the HEC via graph models, which as we have seen, have
a 1-dimensional min-cut subspace and are therefore “maximally degenerate”. In terms of
holographic configurations and extremal surfaces, these degeneracies seem to translate to
situations where the configurations are so fine-tuned that the entropies of multiple subsys-
tems are computed by several coexisting surfaces of equal area. In many other contexts
however, like bulk reconstruction, one is typically inclined to ignore such fine-tuned cases
to avoid worrying about subtleties regarding order of limits [52] by focusing instead on
generic situations. Indeed, this was precisely the approach followed by [33], which defined
primitive information quantities by restricting to generic configurations. In the language
of this work, resolving this issue seems to boil down to the question of whether the min-
cut subspaces which support the facets of the HEC can be realized by generic equivalence
classes, rather than via the aforementioned construction based on extreme rays. The pre-
cise details about the connection between the two formulations however could be more
subtle, and requires more careful investigations [44].

Finally, a similar fine-tuning is related to the concrete holographic realizations of graph
models, which is obtained via 3-dimensional multiboundary wormhole geometries [27] where
the subsystems are chosen to cover the entire boundaries. This choice in fact allows for
a fine-tuning of the entanglement among the CFTs that live on the different boundaries,
which has no counterpart for subsystems of a single boundary, where the entropies are
divergent and cannot be meaningfully regulated. For this reason, [33] defined the HEP by
further restricting the set of primitive quantities to those that can be realized by single-
boundary configurations. Work is in progress to shed light also on this issue, and to resolve
the subtle differences between the HEC and the HEP [44].

Quantum entropies: our discussion in this paper has focused on entropies realizable
by geometric states in holography, but it would be interesting to explore if some of the
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tools developed here can also be utilized to analyze properties of quantum entropies for
other classes of states. For example, models of entanglement capturing richer patterns
of quantum correlations through hypergraphs and topological links have been explored
in [37, 53–55] and much of the structure we studied here admits a natural extrapolation to
those settings. It is then interesting to ask if any of our results and conjectures could be
suitably generalized. For instance, are min-cuts the only ingredient at the heart of why the
HEC descends from the SAC in the sense of conjecture (C2)? If so, it would be reasonable to
expect an analogous phenomenon with hypergraphs, namely, that the hypergraph entropy
cone be obtainable from extreme rays of the SAC that are realizable by hypergraphs.
This poses a non-trivial question already at 4 parties, when the hypergraph entropy cone
includes an extreme ray which is not an extreme ray of the SAC4, and it is unclear whether
it can be obtained as a color projection of an extreme ray of the SACN for some N > 4 [53].

Quantum corrections: the graph models studied here precisely capture the properties
of the RT prescription in holography. What can our results say about holographic entan-
glement entropy beyond the strictly classical limit where entropies are purely geometric?
It would be interesting to explore how quantum contributions from matter fields affect our
results. The application of the combinatorial machinery to the study of entropies computed
by the quantum extremal surface prescription was already shown to be fruitful in [56]. A
similar reasoning could be used here to discern the imprint that the area term leaves on
the generalized entropy and the discrete structure potentially emerging from it.

Acknowledgments

It is a pleasure to thank Mukund Rangamani for initial collaboration and many discussions
on this project. We also thank Temple He, Matt Headrick, Bogdan Stoica and Michael
Walter for useful discussions. We would like to thank KITP, with support from the National
Science Foundation under Grant No. NSF PHY-1748958, for its hospitality during the
program “Gravitational Holography”. During the completion of this project, SHC has
been supported by NSF grants PHY-1801805 and PHY-2107939, by a Len DeBenedictis
Graduate Fellowship, and by funds from UCSB. VH has been supported in part by the U.S.
Department of Energy grant DE-SC0009999 and in part by the U.S. Department of Energy
grant DE-SC0020360 under the HEP-QIS QuantISED program. MR has been supported
by the University of Amsterdam, via the ERC Consolidator Grant QUANTIVIOL, and by
the Stichting Nederlandse Wetenschappelijk Onderzoek Instituten (NWO-I).

A Graph operations

Throughout this work we have been focusing on min-cut structures on topological graph
models rather than on graph models and entropy vectors. However, as we have seen, there
is a particularly important situation where the two concepts essentially coincide, namely
the extreme rays of the HEC. In these cases it is useful to perform certain manipulations
which simplify the graph or make manifest some underlying properties. In particular, we
have used these operations to obtain realizations of all extreme rays of the HEC5 and most

– 69 –



J
H
E
P
0
9
(
2
0
2
2
)
1
9
0

a

b

a

b

a b min{a, b}

a

b

a+ b

a

b

c
a

b

Figure 16. Basic entropy-preserving graph operations. The last one requires c ≥ a + b. Brown
vertices are to be kept fixed under these operations. Boundary vertices are colored in red, and bulk
ones in gray. In a general graph, both brown and red vertices may connect to arbitrarily many
other edges, whereas gray ones should only appear as shown.

a

c

b

a+ b

a+ c b+
c

Figure 17. The new entropy-preserving graph operation ∆-Y. Vertices are color-coded as in fig. 16.

of the HEC6 by tree graphs, in order to establish a connection with the extreme rays of the
SACN. In this appendix we provide a brief presentation of the operations we have used.

The kind of graph operations one is interested in are those which can be used to
locally change the vertices, edges, and weights of a general graph while preserving its
entropy vector. A few such basic operations were listed in figure 6 of [27]. It turns out
these can all be easily broken down into simpler operations, which we reproduce in fig. 16.

In the examples we discussed, however, these operations were not always sufficient to
convert a graph model into a tree, and there is another graph operation which has proven
remarkably useful (e.g. in obtaining the tree graphs at the bottom of fig. 12), the ∆-Y
exchange shown in fig. 17. Since this is a non-trivial operation, we include a proof that it
indeed does not alter the entropy vector of a graph model:

Lemma 18. The ∆-Y exchange operation preserves the entropies.

Proof. Consider two graph models G̃N and G̃N
′ related by the operation in fig. 17, such

that G̃N (on the left) contains the 3-cycle (∆), while G̃N
′ (on the right) contains the degree-

3 vertex (Y). In G̃N, let the pertinent vertices be {i, j, k}, joined by edges with weights
{wij , wik, wjk} (in fig. 17 labeled more compactly as {a, b, c} for simplicity of notation).
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G̃N weight G̃N
′

∅, {i, j, k} 0 ∅, {σ, i, j, k}

{i}, {j, k} wij + wik = wσi {i}, {σ, j, k}

{j}, {i, k} wij + wjk = wσj {j}, {σ, i, k}

{k}, {i, j} wik + wjk = wσk {k}, {σ, i, j}

Table 2. Weight contributions to general candidate min-cuts on G̃N and G̃N
′
, depending on exactly

which subset of the vertices involved in the graph operation in fig. 17 is included. The agreement
between the two graphs proves lemma 18.

To obtain G̃N
′, we preserve the same vertices, delete the edges, add a new vertex σ, and

connect it to each of the former vertices by new edges of weights {wσi, wσj , wσk} given by

wσi = wij + wik wσj = wij + wjk wσk = wik + wjk

An arbitrary vertex cut on G̃N may contain any of the 8 subsets of the vertices {i, j, k}
that make up the 3-cycle. In each case, the contribution from the edges that form the
cycle to the weight of the corresponding cut is given in table 2. In G̃N

′ there are instead
16 possible subsets of {σ, i, j, k} which an arbitrary cut may contain. However, 8 of them
can be immediately ruled out by the fact that they cannot achieve minimum weight. To
see this, consider for example a cut containing precisely {σ, i}. This would receive a weight
wσj + wσk = wij + wik + 2wjk, which is strictly greater than the weight that {i} alone
would give, namely, wσi = wij +wik. In general, one easily observes that for a cut to be of
minimum weight, the newly added vertex σ should only participate when the cut contains
at least two of {i, j, k}, thus giving only 8 possibilities, as in G̃N. Looking at each case as
in table 2, we arrive at the desired result that min-cut weights on the two graphs indeed
match.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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