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Convection occurs ubiquitously on and in rotating geophysical and astrophysical bodies.
Prior spherical shell studies have shown that the convection dynamics in polar regions can
differ significantly from the lower latitude, equatorial dynamics. Yet most spherical shell
convective scaling laws use globally-averaged quantities that erase latitudinal differences
in the physics. Here we quantify those latitudinal differences by analysing spherical shell
simulations in terms of their regionalized convective heat-transfer properties. This is done
by measuring local Nusselt numbers in two specific, latitudinally separate, portions of the
shell, the polar and the equatorial regions, Nup and Nue, respectively. In rotating spherical
shells, convection first sets in outside the tangent cylinder such that equatorial heat transfer
dominates at small and moderate supercriticalities. We show that the buoyancy forcing,
parameterized by the Rayleigh number Ra, must exceed the critical equatorial forcing by a
factor of ≈20 to trigger polar convection within the tangent cylinder. Once triggered, Nup
increases with Ra much faster than does Nue. The equatorial and polar heat fluxes then tend
to become comparable at sufficiently high Ra. Comparisons between the polar convection
data and Cartesian numerical simulations reveal quantitative agreement between the
two geometries in terms of heat transfer and averaged bulk temperature gradient. This
agreement indicates that rotating spherical shell convection dynamics is accessible both
through spherical simulations and via reduced investigatory pathways, be they theoretical,
numerical or experimental.
Key words: Bénard convection, rotating flows, geostrophic turbulence

1. Introduction
It has long been known that rotating spherical shell convection significantly differs
between the low latitudes (e.g. Busse & Cuong 1977; Gillet & Jones 2006) situated
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outside the axially aligned cylinder that circumscribes the inner spherical shell boundary
(the tangent cylinder, TC) and the higher latitude polar regions lying within the TC
(e.g. Aurnou et al. 2003; Sreenivasan & Jones 2006; Aujogue et al. 2018; Cao, Yadav
& Aurnou 2018). Further, in the atmosphere–ocean literature, latitudinal separation into
polar, mid-latitude, extra-tropical and tropical zones is essential to accurately model
the large-scale dynamics (e.g. Vallis 2017). Yet few scaling studies of spherical shell
convection consider the innate regionalization of the dynamics (cf. Wang et al. 2021),
and instead mostly focus on globally averaged quantities (e.g. Gastine, Wicht & Aubert
2016; Long et al. 2020).

In the turbulent rapidly rotating limit, theory requires the convective heat transport to
be independent of the fluid diffusivities irregardless of system geometry. This yields (e.g.
Julien et al. 2012b; Plumley & Julien 2019)

Nu ∼ (Ra/Rac)
3/2 ∼ R̃a3/2Pr−1/2 ∼ Ra3/2E2Pr−1/2, (1.1)

where, defined explicitly below, the Nusselt number Nu is the non-dimensional heat
transfer, Ra (Rac) denotes the (critical) Rayleigh number, E is the Ekman number, Pr is the
Prandtl number, and R̃a ≡ Ra E4/3 expresses the generalized convective supercriticality
(Julien et al. 2012b).

Cylindrical laboratory experiments with Pr ≈ 7 and Cartesian (planar) numerical
simulations with Pr = (1, 7) and no-slip boundaries with Ra/Rac ! 10 reveal a steep
scaling Nu ∼ (Ra/Rac)

β with β ≈ 3 (King, Stellmach & Aurnou 2012; Cheng et al.
2015, 2018). By comparing numerical models with stress-free and no-slip boundaries,
Stellmach et al. (2014) showed that the steep β ≈ 3 scaling is an Ekman pumping effect
(cf. Julien et al. 2016). For larger supercriticalities, β decreases and gradually approaches
(1.1). This β ≈ 3 regime is expected to hold as long as the thermal boundary layers are in
quasi-geostrophic balance, a condition approximated by Ra E8/5 ! 1 (Julien et al. 2012a).

Globally averaged quantities in spherical shell models present several differences with
the planar configuration. In particular, no steep β ≈ 3 exponent is observed. Gastine et al.
(2016) showed that the globally averaged heat transfer first follows a Nu − 1 ∼ Ra/Rac − 1
weakly nonlinear scaling for Ra ≤ 6 Rac before transitioning to a scaling close to (1.1)
for Ra > 6 Rac and RaE8/5 < 0.4. Spherical shell models with a ratio between the inner
radius ri and the outer radius ro of 0.35 and fixed-flux thermal conditions recover similar
global scaling behaviours, though with a slightly larger exponent β ≈ 1.75 for E = 2 ×
10−6 (Long et al. 2020). Because the Ekman pumping enhancement of heat transfer is
maximized when rotation and gravity are aligned, β is lower in the equatorial regions of
spherical shells. This explains why globally averaged spherical β values cannot attain the
β ≈ 3 values found in planar (polar-like) studies.

Recently, Wang et al. (2021) analysed heat transfer within the equatorial regions, at
mid-latitudes and inside the entire TC. They argued that the mid-latitude scaling in their
models, similar to Gastine et al. (2016)’s global scaling, follows the diffusion-free scaling
(1.1), while the region inside the TC follows a β ≈ 2.1 trend. This TC-scaling exponent is
significantly smaller than those obtained in planar models, possibly because of the finite
inclination angle between gravity and the rotation axis averaged over the volume of the
TC.

Following Wang et al. (2021), this study aims to better characterize the latitudinal
variations in rotating convection dynamics and quantify the differences between spherical
and non-spherical geometries. To do so, we carry out local heat transfer analyses in
the polar and equatorial regions over an ensemble of Pr = 1 rotating spherical shell
simulations with ri/ro = 0.35 and ri/ro = 0.6.
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Regionalized rotating spherical shell convection

2. Hydrodynamical model
We consider a volume of fluid bounded by two spherical surfaces of inner radius ri and
outer radius ro rotating about the z-axis with a constant rotation rate Ω . Both boundaries
are mechanically no-slip and are held at constant temperatures To = T(ro) and Ti = T(ri).
We adopt a dimensionless formulation of the Navier–Stokes equations using the shell gap
d = ro − ri as the reference length scale, the temperature contrast #T = To − Ti as the
temperature unit, and the inverse of the rotation rate Ω−1 as the time scale. Under the
Boussineq approximation, this yields the following set of dimensionless equations for the
velocity u and temperature T expressed in spherical coordinates:

∂u
∂t

+ u · ∇u + 2ez × u = −∇p + RaE2

Pr
T g(r)er + E ∇2u, ∇ · u = 0, (2.1a,b)

∂T
∂t

+ u · ∇T = E
Pr

∇2T, (2.2)

where p corresponds to the non-hydrostatic pressure, g to gravity and er (ez) denotes
the unit vector in the radial (axial) direction. The above equations are governed by the
dimensionless Rayleigh, Ekman and Prandtl numbers, respectively defined by

Ra = αgo#Td3

νκ
, E = ν

Ωd2 , Pr = ν

κ
, (2.3a–c)

where ν and κ correspond to the constant kinematic viscosity and thermal diffusivity,
go is the gravity at the external radius and α is the thermal expansion coefficient.
Two spherical shell configurations are employed: (i) a thin shell with ri/ro = 0.6 under
the assumption of a centrally condensed mass with g = (ro/r)2 (Gilman & Glatzmaier
1981); (ii) a self-gravitating thicker spherical shell model with ri/ro = 0.35 and g = r/ro.
The latter corresponds to the standard configuration employed in numerical models of
Earth’s dynamo (e.g. Christensen & Aubert 2006; Schwaiger, Gastine & Aubert 2019).
We consider numerical simulations with 104 ≤ Ra ≤ 1011, 10−7 ≤ E ≤ 10−2 and Pr = 1
computed with the open source code MagIC (https://github.com/magic-sph/magic.) (Wicht
2002; Gastine & Wicht 2012). We mostly build the current study on existing numerical
simulations from Gastine et al. (2016) and Schwaiger, Gastine & Aubert (2021) and
continue their time integration to gather additional diagnostics when required.

In the following analyses overbars denote time averages, triangular brackets denote
azimuthal averages and square brackets denote averages about the angular sectors
comprised between the colatitudes θ0 − α and θ0 + α in radians:

f̄ =
∫ t0+τ

t0
f dt, 〈 f 〉 = 1

2π

∫ 2π

0
f (r, θ, φ, t) dφ,

[
f
]α
θ0

= 1
Sα

θ0

∫

Sα
θ0

f (r, θ, φ, t) dS,

(2.4a–c)

with dS = sin θ dθ and Sα
θ0

=
∫ max(θ0+α,π)

min(θ0−α,0) sin θ dθ .
For the sake of clarity, we introduce the following notations to characterize the

time-averaged radial distribution of temperature:

ϑ(r) = [〈T̄〉]π/2
π/2, ϑe(r) = [〈T̄〉]π/36

π/2 , ϑp(r) = 1
2

(
[〈T̄〉]π/36

0 + [〈T̄〉]π/36
π

)
, (2.5a–c)

where ϑe and ϑp correspond to the averaged radial distribution of temperature in
the equatorial and polar regions, respectively, and α = π/36 rad corresponds to 5◦ in
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Figure 1. (a) Schematic showing the area selection to compute (2.7a,b), the local polar (blue) and equatorial
(red) Nusselt numbers. (b) Time-averaged local Nusselt numbers in the polar (Nup) and equatorial (Nue) regions
as a function of the Rayleigh number for spherical shell simulations with ri/ro = 0.6 and g = (ro/r)2 and
Pr = 1 (Gastine et al. 2016). The different Ekman numbers are denoted by different symbol shapes, the two
spherical shells surfaces ri and ro are marked by open and filled symbols, and by lower levels of opacity,
respectively.

colatitudinal angle. The schematic shown in figure 1(a) highlights the fluid volumes
involved in these measures. The value of α = 5◦ is quite arbitrary and has been adopted to
allow a comparison of polar data with local planar Rayleigh–Bénard convection (hereafter
RBC) models while keeping a sufficient sampling.

To quantify the differences between the heat transfer in the polar and equatorial regions,
we introduce a Nusselt number that depends on colatitude θ via

Nui(θ) =

d〈T̄〉
dr

∣∣∣∣
ri

dTc

dr

∣∣∣∣
ri

, Nuo(θ) =

d〈T̄〉
dr

∣∣∣∣
ro

dTc

dr

∣∣∣∣
ro

,
dTc

dr
= −riro

r2 , (2.6a–c)

where Tc corresponds to the dimensionless temperature of the conducting state. The
corresponding local Nusselt numbers in the equatorial and polar regions are then defined
by

Nue = [Nu(θ)]π/36
π/2 , Nup = 1

2

(
[〈Nu(θ)〉]π/36

0 + [〈Nu(θ)〉]π/36
π

)
. (2.7a,b)

We finally introduce the mid-shell time-averaged temperature gradient in the polar region:

∂T =
−

dϑp

dr

∣∣∣∣
r=rm

− dTc

dr

∣∣∣∣
r=rm

, rm = 1
2
(ri + ro), (2.8a,b)

where normalization by the conductive temperature gradient allows us to compare the
scaling behaviour of ∂T between spherical shells of different radius ratio values, ri/ro,
and planar models.
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Regionalized rotating spherical shell convection
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Figure 2. (a) Nusselt number in the polar (Nup) and in the equatorial (Nue) regions as a function of R̃a =
Ra E4/3 in the ri/ro = 0.6 simulations. The symbols carry the same meaning as in figure 1 but with only the
Ra E8/5 < 2 simulations retained. (b) Ratio of polar and equatorial heat transfer Nup/Nue as a function of R̃a
for both spherical shell boundaries and E ≤ 10−4.

3. Results
Figure 1(b) shows Nup and Nue as a function of Ra for various E at both boundaries, ri and
ro, for spherical shell simulations with ri/ro = 0.6 and g = (ro/r)2. Rotation delays the
onset of convection such that the critical Rayleigh number required to trigger convective
motions increases with decreasing Ekman number, Rac ∼ E−4/3. Convection first sets in
outside the TC (e.g. Dormy et al. 2004). For each Ekman number, heat transfer behaviour
in the equatorial regions (red symbols) first raises slowly following a weakly nonlinear
scaling (e.g. Gillet & Jones 2006), before gradually rising in the vicinity of Nue ≈ 2. At
Nue " 2, the heat transfer increases more steeply with Ra, before gradually tapering off
toward the non-rotating RBC trend (e.g. Gastine, Wicht & Aurnou 2015). For Ra/Rac >
O(10), convection sets in in the polar regions and Nup steeply rises with Ra with a much
larger exponent than Nue. At still larger forcings, the slope of Nup gradually decreases and
comparable amplitudes in polar and equatorial heat transfers are observed. Heat-transfer
scalings at both spherical shell boundaries ri and ro follow similar trends.

Figure 2 shows (a) Nup and Nue and (b) their ratio Nup/Nue plotted at both boundaries
as a function of the supercriticality parameter R̃a = RaE4/3. For R̃a < 4, Nue increases
following the weakly nonlinear form Nue − 1 ∼ Ra/Rac − 1 (Gastine et al. 2016, § 3.1).
For larger supercriticalities, the Nue scaling steepens and an additional E-dependence
causes the data to fan out, possibly because these highest R̃a cases do not fulfil Ra E8/5 <
0.4. There is no clear power-law scaling in the Nue(R̃a < 10) data, but the steepest local
slope yields max(β) ≈ 1.9 in the 5 ≤ R̃a ≤ 10 range.

Best fits to the figure 2(a) data show that polar convection onsets at R̃a(E) = 11.2 ± 0.3
in the ri/ro = 0.6 simulations. The mean value of the critical polar Rayleigh number is

Rap
c = 11.2 E−4/3. (3.1)

Although the polar onset of convection, estimated via Rap
c E4/3, remains nearly constant,

the global (e.g. low latitude) onset value, estimated by Rac E4/3, varies by a factor of ≈2
over our E range. Their ratio then yields

Rap
c(E)/Rac(E) = 20 ± 5. (3.2)
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This means that rotating convection does not typically onset in the polar regions until
the lower latitude convection is already 20 times supercritical and is already operating
under highly supercritical conditions. This difference in equator vs polar convective onsets
imparts a significant regionalization to rotating spherical shell convection right from the
get go.

We find, throughout this investigation, that polar rotating convection compares closely
to its plane-layer counterpart. However, it is not expected that the polar critical Rayleigh
number will exactly agree with plane-layer predictions, due to the effects of finite spherical
curvature as well as the radial variations of gravity in these ri/ro = 0.6 simulations. In the
rapidly rotating thin-shell limit, in which ri/ro → 1 and E is kept asymptotically small,
Rap

c will likely approach the planar value. Still, the polar scaling in (3.1) is found to be
51 % of the plane-layer E → 0 scaling prediction, Rac = 21.9 E−4/3 (Kunnen 2021), and
to be 56 % of Niiler & Bisshopp (1965)’s finite Ekman number, no-slip plane layer Rac
prediction at E = 10−6. In addition to the similarity in critical Ra values, it is found that the
polar heat transfer Nup rises sharply once polar convection onsets, following a Nup ∼ R̃a3

scaling that matches the heat-transfer scalings found in no-slip planar simulations carried
out over the same (E, Pr) ranges (King et al. 2012; Stellmach et al. 2014; Aurnou et al.
2015).

Figure 2(b) shows the ratio of polar to equatorial heat transport, which follows a distinct
V-shape trend that can be decomposed in three regions: (i) for R̃a < 11.2, Nup ≈ 1 and
the ratio depends directly on Nue = f (R̃a); (ii) for 11.2 < R̃a ! 30, Nup raises much faster
than Nue hence increasing Nup/Nue; (iii) when rotational effects become less influential,
Nup/Nue ≈ 1 at ri and Nup/Nue ≈ 1.5 at ro.

Figure 3(a,b) shows the time-averaged temperature profiles in the polar and equatorial
regions (ϑp dashed lines and ϑe dot-dashed lines) alongside the volume-averaged
temperature (ϑ , solid line) for two numerical models with ri/ro = 0.6, g = (ro/r)2,
E = 10−6 and different Ra. For the case with Ra ≈ 14.1 Rac (figure 3a), low-latitude
convection is active but has yet to start within the TC. The mean temperature in the
polar regions ϑp thus closely follows the conductive profile Tc (dotted line), while in
the equatorial region we observe the formation of a thin thermal boundary layer at ri
and a decrease of the temperature gradient in the fluid bulk. At larger convective forcing
(Ra ≈ 69.3 Rac, figure 3b), convection is space-filling. The temperature profiles in the
polar and equatorial regions become comparable and a larger fraction of the temperature
contrast is accommodated in the thermal boundary layers.

Figure 3(c) shows the latitudinal variations of the heat flux at both spherical shell
boundaries for increasing supercriticalities. These profiles confirm that convection first
sets in outside the TC while the high-latitude regions remain close to the conductive
Nu = 1 state up to Rap

c , and that the Ra > Rap
c polar transfer rises quickly, thus reducing

the latitudinal Nu contrast. Both spherical-shell boundaries feature similar global trends,
with interesting regionalized differences. The TC (solid vertical lines) is visible, for
instance, in the outer-boundary heat transfer Nuo(θ), manifesting itself in local maxima
that persist between 15 Rac and 70 Rac.

Figure 4 shows (a) Nup and (b) normalized mid-depth polar temperature gradients ∂T
as a function of Ra/Rap

c for spherical-shell simulations with ri/ro = 0.6 and ri/ro = 0.35,
and for Cartesian asymptotically reduced models (e.g. Plumley et al. 2016) and E ≥ 2 ×
10−7, Pr = 1 direct numerical simulations (Stellmach et al. 2014). In this figure, Rap

c is
used for the critical Ra values for spherical-shell data, whereas standard planar Rac values
are used for the plane-layer data. Good quantitative agreement is found in the Nup and ∂T
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(c)

Figure 3. (a,b) Radial profiles of time-averaged temperature in the polar regions (blue dashed line), in the
equatorial region (red dot-dashed line) and averaged of the entire spherical surface (tan solid line). For
comparison, the conducting temperature profile Tc is also plotted as a black dotted line. Panel (a) corresponds
to ri/ro = 0.6, g = (ro/r)2, E = 10−6, Ra = 6.5 × 108, Pr = 1, while (b) corresponds to ri/ro = 0.6, g =
(ro/r)2, E = 10−6, Ra = 3.2 × 109 and Pr = 1. (c) Time-averaged local Nusselt number at both spherical shell
boundaries as a function of the colatitude for simulations with ri/ro = 0.6, g = (ro/r)2, E = 10−6, Pr = 1 and
increasing supercriticalities. Solid (dashed) lines correspond to ri (ro). The vertical solid lines mark the location
of the TC. In all panels, the shaded regions correspond to one standard deviation about the time averages.

data from spherical shell and planar models, with all the data sets effectively overlying
one another. The 1 ! Ra/Rap

c ! 3 heat transfer follows a Nup ∼ (Ra/Rac)
3 scaling in

all the data sets. At larger supercriticalities, the scaling exponent of Nup decreases and the
asymptotic β = 3/2 scaling appears to be approached in the highest supercriticality planar
cases. The mid-depth temperature gradients quantitatively agree in all models as well,
attaining a relatively large minimum value, ∂T ≈ 0.5 near Ra ≈ 3 Rap

c , before increasing
slightly in the highest supercriticality planar models.

4. Discussion
Globally averaged heat-transfer scalings for rotating convection differ between spherical
and planar geometries with the latter yielding steeper Nu-Ra scaling trends. By introducing
regionalized measures of heat transfer, we have shown that this steep scaling can also be
recovered in the polar regions of spherical shells. The comparisons in figure 4 reveal an
almost perfect overlap in heat-transfer data between the two geometries. Importantly, this
demonstrates that local, non-spherical models can be used to understand spherical systems
(e.g. Julien et al. 2012b; Horn & Shishkina 2015; Cabanes et al. 2017; Calkins 2018; Cheng
et al. 2018; Miquel et al. 2018; Gastine 2019).

Our regional analysis shows that the use of global volume-averaged properties to
interpret rotating spherical shell convection can be misleading since such averages are
often made over regions with significantly differing convection dynamics (e.g. Ecke &
Niemela 2014; Lu et al. 2021; Grannan et al. 2022, in rotating cylinders). As such, it is
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3 × 10–7 < E ≤ 10–6

10–7 < E ≤ 3 × 10–5

10–6 < E ≤ 3 × 10–6

E ≤ 10–7

(a) (b)

Figure 4. (a) Nusselt number in the polar regions Nup as a function of the local supercriticality Ra/Rap
c .

(b) Normalized mid-depth temperature gradient (2.8a,b) in the polar regions ∂T as a function of the local
supercriticality. Spherical-shell simulations include two configurations with ri/ro = 0.6 and g = (ro/r)2 (light
blue symbols, from Gastine et al. 2016) and ri/ro = 0.35 and g = r/ro (dark blue symbols, from Schwaiger
et al. 2021). All the simulations with E ≤ 10−5 and Nup > 1 have been retained. Direct numerical simulations
(DNS) in Cartesian geometry with periodic horizontal boundary conditions (light yellow symbols) come from
Stellmach et al. (2014), while non-hydrostatic quasi-geostrophic models (CNH-QGM) (red symbols) come
from Plumley et al. (2016).

quite likely that globally averaged β depends on the spherical shell radius ratio, ri/ro. In
higher ri/ro shells, more of the fluid will lie within the TC and the globally averaged β
will tend towards a polar value near 3. In contrast, lower ri/ro shells should trend towards
regional β values below 2, as found in our Nue data. We hypothesize further that the
mid-latitude β - 3/2 scaling in (Wang et al. 2021) may represent a combination of the
low- and high-latitude scalings, which could also be tested by varying ri/ro.

A similar argument may also explain Wang et al. (2021)’s higher latitude, TC
heat-transfer scaling of β = 2.1. We postulate that measuring the rotating heat transfer
away from the poles will always yield β < 3. This may be further exacerbated if the heat
transfer is measured across the TC, which likely acts as a radial transport barrier (e.g.
Guervilly & Cardin 2017; Cao et al. 2018). Thus, Wang et al. (2021)’s β ≈ 2.1 value may
arise because their whole TC measurements extend to far lower latitudes in comparison
with the far tighter, pole-adjacent Nup measurements made here that yield β ≈ 3.

The polar heat-transfer data in figure 2 demonstrates a sharp convective onset value, with
Rap

c = (11.2 ± 0.3)E−4/3 over our range of ri/ro = 0.6 models and Rap
c/Rac = 20 ± 5.

It is likely that convective turbulence is space-filling in planetary fluid layers. We argue
then that realistic geophysical and astrophysical models of rotating convection require
Ra > Rap

c . If the convection is rapidly rotating as well, this constrains the convective
Rossby number Roconv = (RaE2/Pr)1/2 ! 0.1 (e.g. Christensen & Aubert 2006; Aurnou,
Horn & Julien 2020). Thus, space-filling rotating convective turbulence simultaneously
requires Ra " 10Rap

c and Roconv ! 1/10, which then constrains that E ! 10−6 in Pr - 1
models. Such dynamical constraints are important for building accurate models of Nu(θ),
which are essential to our interpretations of planetary and astrophysical observations. For
instance, on the icy satellites, latitudinal changes in ice shell thickness and surface terrain
likely reflect the latitudinally varying convective dynamics in the underlying oceans (e.g.
Soderlund et al. 2020). We hypothesize that the broad array of Nup/Nue solutions found in
the models (e.g. Soderlund 2019; Amit et al. 2020; Bire et al. 2022) could possibly arise
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Figure 5. (a,b) Meridional sections, equatorial cut and radial surfaces of the axial component of the vorticity
ωz = ez · ∇ × u. Panel (a) corresponds to a numerical model with ri/ro = 0.35, g = r/ro, E = 10−7, Ra =
1011 and Pr = 1, while (b) corresponds to a numerical model with ri/ro = 0.6, g = (ro/r)2, E = 3 × 10−7,
Ra = 1.3 × 1010 and Pr = 1. (c) Local Nusselt number at both spherical-shell boundaries as a function of the
colatitude. The orange and blue lines correspond to the numerical model shown in (a,b), respectively. The
location of the TC for both radius ratios is marked by vertical solid lines.

because convection is not active within the TC in some of the models, and is not rapidly
rotating in others. Our results suggest that quantitative comparisons in heat-flux profiles
can only be made between models having similar latitudinal distributions of convective
activity and comparable Rossby number values.

Establishing asymptotically accurate trends for Nup/Nue also requires accurate scaling
laws for the equatorial heat transfer. A brief inspection of figure 2 reveals the complexity
of Nue(R̃a), and its lack of any clear power-law trend. To further complicate this task,
zonal jets tend to develop in no-slip cases with E ! 10−6, which can substantively alter
the patterns of convective heat flow. Figure 5(a,b) shows axial vorticity ωz = ez · ∇ × u
snapshots and figure 5(c) latitudinal heat-flux profiles for two E < 10−6 simulations with
different radius ratios. Convection in the figure 5(a) ri/ro = 0.35 case is sub-critical inside
the TC, while it is space-filling in the figure 5(b) ri/ro = 0.6 simulation. In the latter case,
polar convection develops as small-scale axially aligned vortices which do not drive jets
within the TC. In contrast, the convective motions outside the TC are already sufficiently
turbulent in both cases to trigger the formation of zonal jets. These jet flows manifest via
the formation of alternating, concentric rings of positive and negative axial vorticity. These
coherent zonal motions act to reduce the heat-transfer efficiency in the regions of intense
shear where the zonal velocities become of comparable amplitude to the convective flow
(e.g. Aurnou et al. 2008; Yadav et al. 2016; Guervilly & Cardin 2017; Raynaud et al. 2018;
Soderlund 2019). Thus, the outer-boundary heat-flux profile Nuo(θ) in figure 5(c) adopts a
strongly undulatory structure exterior to the TC. The asymptotic scaling behaviour of Nue
is hence intimately related to the spatial distribution and amplitude of the zonal jets that
develop in the shell, a topic for future investigations of rotating convective turbulence (e.g.
Lonner, Aggarwal & Aurnou 2022).
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