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of alkynes in radical cascades
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Abstract

One of the simplest organic functional groups, the alkyne, offers a broad 
canvas for the design of cascade transformations in which up to three 
new bonds can be added to each of the two sterically unencumbered, 
energy-rich carbon atoms. However, kinetic protection provided by 
strong π-orbital overlap makes the design of new alkyne transformations 
a stereoelectronic puzzle, especially on multifunctional substrates. 
This Review describes the electronic properties contributing to the 
unique utility of alkynes in radical cascades. We describe how to control 
the selectivity of alkyne activation by various methods, from dynamic 
covalent chemistry with kinetic self-sorting to disappearing directing 
groups. Additionally, we demonstrate how the selection of reactive 
intermediates directly influences the propagation and termination 
of the cascade. Diverging from a common departure point, a carefully 
planned reaction route can allow access to a variety of products.
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properties of the reactive intermediates derived from alkynes: vinyl ani-
ons formed from alkyne reactions with nucleophiles are rather stable 
(–34 kcal mol–1 for hydride addition) whereas vinyl cations (+9 kcal mol–1 
for protonation) formed in the reactions with electrophiles are quite 
unstable. The instability of vinyl cations limits their synthetic utility, 
while the greater stability of vinyl anions can be a disadvantage for 
cascade reactions as it can create thermodynamic traps by increasing 
the barriers for subsequent steps in domino transformations. From 
that point of view, vinyl radicals possess an attractive combination 
of properties for cascade design: their formation has neither the pro-
hibitive thermodynamic penalty of vinyl cations nor the deactivating 
unproductive stabilization of vinyl anions. In other words, vinyl radicals 
are easy enough to make but also reactive, penetrating readily even 
through the aromatic ‘armour’33.

The goal of this Review is to highlight the fundamental reasons 
for the role of alkynes in radical cascade transformations. Radical pro-
cesses have unique advantages for cascade transformations — unlike 
anions, cations and complexes with transition metal catalysts, the 
translocation of a radical centre in a domino sequence of reactions does 
not require physical transport of an accompanying group (for example, 
the counterion or the catalyst)34,35. The focus of this article will be the 
unique opportunities provided by the inherent structural, energetic 
and stereoelectronic features of a carbon–carbon triple bond for the 
controlled design of cascade reactions.

Stereoelectronics of alkyne reactions
The structural simplicity of alkynes provides an interesting contrast 
to their stereoelectronic complexity. This complexity originates from 
the presence of two mutually orthogonal π-bonds. One can think of 
alkynes as ‘two functional groups in one package’3, each of which can 
be selectively activated in a sequence of transformations.

This complexity is reflected by the fact that stereoelectronic fac-
tors in intramolecular alkyne reactions, such as cyclizations, have been 
surprisingly controversial. In the classic 1976 paper, Baldwin suggested 
dramatically different guidelines for the cyclizations of sp2 (trig) and 
sp (dig) systems, based on the notion that nucleophilic and radical 
additions to alkynes follow an unusual acute trajectory36. More recent 
experimental and computational data, summarized in 2011 by Alabugin 
and Gilmore37, showed that the basic stereoelectronic guidelines for 
alkenes and alkynes are similar, opposed Baldwin’s original predictions, 
and reinforced Beckwith’s alternative guidelines for radical reactions38. 
Because an obtuse, Burgi–Dunitz-like trajectory is favoured for radical 
attack at both alkynes and alkenes, both functionalities generally prefer 
exo cyclizations (Fig. 2a). The stereoelectronic preferences embodied 
in the new rules, as mentioned above, are favourable for the design 
of alkyne cascades. Indeed, radical exo-dig cyclizations turned out 
to be more suitable in cascade transformations to extended polyaro-
matics than their endo-dig counterparts. For the all-exo cascades of 
1 illustrated in Fig. 2a, the average yield is ~90% per step. By contrast, 
the radical cascade propagated by endo-dig cyclization is inefficient, 
as illustrated by <10% yield of the 6-endo-dig product 4 in39 Fig. 2a. 
The design of endo-cyclizations of alkynes is much more difficult. 
Efficient radical 5-endo-dig cyclizations remains scarce and, for a long 
time, the only example of such a process was the cyclization of a silyl 
radical (6) reported by Studer and co-workers40. The first example of 
an efficient carbon radical 5-endo-dig cyclization (10) by the Alabugin 
group was initiated by a tosyl radical, where the 5-endo transition state 
is additionally stabilized by S=O∙∙∙H hydrogen bonding41. One way to 
satisfy stereoelectronic requirements is by changing the alkyne LUMO 

Introduction
Alkynes are among the simplest organic chemistry functional groups: 
it takes only two carbons and two hydrogens to make C2H2, the parent 
alkyne. However, the two carbon atoms harbour a surprising potential 
for electron complexity, as illustrated by the continuing saga of C2 
(acetylene stripped of its hydrogens), an intriguing molecule in which 
the number of bonds between the two carbons can range from two to 
four, depending on how the chemical bonding is analysed1,2. Although 
C2H2 is far less exotic and controversial than C2, alkynes still have many 
interesting and useful electronic features associated with the pres-
ence of two types of bond (σ and π)3. Furthermore, the orthogonality 
of the two alkyne π-systems allows them to be involved in chemical 
transformations independent of one another — a useful property 
for selective cascade transformations in which multiple new bonds 
are formed, and complex products are derived from simple starting 
materials4–13 (Fig. 1a).

The utility of alkynes as a platform for both the design of reactions 
and in the discovery of modes of reactivity results from their relatively 
high energy and electronic peculiarities. The high energy stored in an 
alkyne can be illustrated by the fact that the thermodynamic cost of 
making a triple bond (~65 kcal mol–1) is much higher than for making a 
double bond (28 kcal mol–1) or cyclopropane (~30 kcal mol–1)14 (Fig. 1b). 
This feature makes many reactions involving alkynes highly exergonic. 
The alkyne moiety can be compared to a tightly wound spring, its high 
energy waiting to be released to provide a driving force for reaction. 
However, harnessing this reactivity is impossible without mastering 
stereoelectronic control of alkyne activation.

Paradoxically, the high energy stored between two alkyne carbons 
(>60 kcal mol–1; ref. 14) is paired with relative kinetic stability, originat-
ing from their strong π-overlap at the short C–C distance15. Only once 
this stereoelectronic puzzle is solved can it unlock useful transfor-
mations. For instance, the parent anionic 5-endo-dig cyclization of 
an alkyne has a higher barrier than the >30 kcal mol–1 less exergonic 
5-endo-trig cyclization of an alkene (Fig. 1c). This relatively low reac-
tivity can be translated into high selectivity, whereas thermodynamic 
instability can be used to make reactions irreversible. Not surprisingly, 
alkynes are closely associated with ‘click chemistry’16–20, for which high 
selectivity and full conversions are desired. In addition, alkynes are 
‘carbon-rich’14 and can be used for the preparation of heterocycles21–28 
and carbon-rich nanomaterials in an atom-economical manner29–31.

Despite their simplicity, alkynes are not a completely blank canvas 
of reactivity — they are primed to be quite electrophilic by the relatively 
high electronegativity of sp-hybridized carbons3. For these reasons, 
generation of the same archetypal reactive intermediates (such as cati-
ons, radicals and anions) from similarly substituted alkenes and alkynes 
comes with distinctly different thermodynamic preferences (Fig. 1e). 
Therefore, alkynes prefer more electron-rich reacting partners and 
can be thought of as having ‘electrophilic’ functionality. In fact, alkyne 
carbon atoms are in the same oxidation state as those in the –CH2C(O)– 
moiety and can be introduced into carbonyl reaction pathways without 
the need for external redox agents32. Hence, alkynes provide a conveni-
ent and energetically favourable entry to carbonyl chemistry because 
they can be converted into enols and enamines through exergonic 
nucleophilic additions (Fig. 1d). In essence, alkynes can be energy-rich 
surrogates for other groups and can unlock reactions that would be 
otherwise thermodynamically uphill.

The fundamental features of alkyne reactivity impose unique 
substituent effects on their stability and reactivity towards nucleo-
philes, electrophiles and radicals (Fig. 1f). The same factors define the 
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f  Thermodynamics of addition reactions of acetylene and ethylene

Fig. 1 | Unique characteristics of alkynes. a, Structural diversity from 
alkynes. Up to six new bonds and different types of cycle can be formed from 
an alkyne. b, Alkyne as a high-energy functionality. Energies in kcal mol–1 at 
MP2/6-311++G(d,p) level. c, The paradox of alkyne reactivity. Energies are 
given in in kcal mol–1 at the M05-2X/6-31+G(d,p) level. d, Alkynes as carbonyl 
surrogates. Energies are given in in kcal mol–1 at the M06-2X/6-31+G(d,p) level. 

e, Alkyl versus vinyl stability. Energies are given in in kcal mol–1 at the G2 level 
of theory. Vinyl cations are strongly disfavoured compared to the alkyl cation 
(>20 kcal mol–1). The vinyl radicals are disfavoured compared to the alkyl radical 
(~10 kcal mol–1). The vinyl anion is favoured compared to alkyl anion (12 kcal mol–1). 
f, Thermodynamics of addition reactions of acetylene and ethylene. Energies are 
given in in kcal mol–1 at the B3LYP/6-31+G(d,p) level.
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(lowest unoccupied molecular orbital) symmetry. This can be achieved 
by coordination of the alkyne to an external Lewis acid (‘LUMO umpol-
ung’)42 in electrophile-promoted nucleophilic cyclizations, which are 
discussed elsewhere42.

Together with the high carbon content, the efficiency of exo-dig 
cyclization makes oligoalkynes excellent precursors to the carbon-
rich polyaromatic ribbons (Fig. 2b). Independent of the initiation 
sequence and the number of participating alkyne units, these multistep 
sequences reliably produce polyaromatic products in yields of 62% to 
78%. This high efficiency is associated with the selective intermolecular 
attack of the Sn radical at the central alkyne. This selectivity ensures 
that all alkyne units participate in a sequence of exo-dig cyclizations. 
To achieve this selectivity, traceless directing groups have been used 
at the propargylic positions of skipped oligoalkynes 12 (ref. 43). With 
this approach, fused [5]helicenes (13) can be synthesized after three 
6-exo-dig cyclization in ~70% yield at the gram scale. By replacing 
the final alkyne with an alkene, as in 14, this cascade can be inter-
rupted before the formation of a five-membered ring. This is a result 
of the penultimate alkyl radical being insufficiently reactive to attack  
the terminal aromatic ring. Therefore, the use of enynes enables access 
to a defect-free hexagonal framework via a sequence of 6-exo-dig 
cyclizations terminated by a 6-exo-trig step44. A topologically analo-
gous electrochemical cascade demonstrated the utility of selective 
deprotonation of radical-cations for initiating an efficient synthesis 
of N-heteroaromatics (20)45.

Although they are relatively rare, 3- and 4-exo cyclizations have 
begun to find synthetic application. Although such processes may 
be uphill in energy, this is not a problem for the cascade processes, 
in which a mildly endothermic step can be coupled with subsequent 
strong exothermic reactions to drive the overall sequence forward. 
4-exo-dig cyclizations, one of the least explored cyclization modes and 
unfavourable according to the Baldwin rules, often have lower energy 
barriers than the alternative 5-endo-dig cyclization. This is because of 
the stereoelectronic advantage for the obtuse angle of radical attack  
at the π-bond37. The higher strain of the formation of the smaller ring 
can partially offset the 4-exo-dig stereoelectronic preference in favour 
of more stable 5-endo-dig products. However, the extra help needed for 
the 5-endo-dig to prevail over 4-exo-dig only reemphasizes the intrinsic 
preference for exo-dig cyclizations in alkyne cascades. The first exam-
ple of radical 4-exo-dig cyclization that forms an unsubstituted vinyl 
radical intermediate before generating bicyclo[3.1.1]heptane 23 was 
reported by Malacria’s group46. Kambe et al. reported the synthesis 
of α-alkylidene-β-lactam 26 with 4-exo-dig closure of the carbamoyl 
radical 25 (ref. 47). More recently, an efficient and general synthesis 
of azetidines by radical 4-exo-dig cyclization of ynamides (28) was 
described48 (Fig. 2c).

Owing to the same stereoelectronic factors, the 3-exo-dig cycliza-
tion has a lower barrier than 4-endo-dig cyclization. The ring opening 
of 3-exo-dig products is also fast because they are often less stable than 
the acyclic reactants, and ring opening proceeds through the same low 
transition state as ring closure. A method for alkynylation of olefins (30) 
was developed via a 3-exo-dig cyclization followed by ring opening of 
the 3-exo-dig product49,50 (Fig. 2d).

But what about intermolecular radical reactions of alkynes, espe-
cially in the presence of other functional groups? This question will 
be addressed in the following section because it has important conse-
quences for chemo- and regioselective alkyne activation in structurally 
and functionally complex substrates.

Alkynes versus alkenes
Alkynes are full of paradoxes. To start with, alkynes have a seemingly 
conflicting disconnection between kinetics and thermodynamics. On 
one hand, alkynes have high-energy functionalities and many of their 
reactions are more exergonic than the analogous reactions with alkenes 
(Fig. 1). Furthermore, alkynes are, on average, less sterically protected 
than alkenes because they can accommodate fewer substituents. In 
addition, the presence of two π-bonds can alleviate some of the ste-
reoelectronic restrictions, especially for ‘endo’-cyclizations. However, 
despite their high energy, alkynes possess substantial kinetic stability 
and often react more slowly than alkenes. From this point of view, selec-
tive activation of alkynes, in the presence of alkenes and other function-
alities, presents an interesting challenge. Development in this field has 
provided valuable insights regarding reaction control and the complex 
interplay between kinetics and thermodynamics on chemoselectivity.

Acetylene has a lower highest occupied molecular orbital (HOMO) 
and a higher LUMO than does ethylene, which parallels the higher 
ionization energy and the less negative electron affinity of acetylene51 
(Fig. 3a). The rate constants of intermolecular radical addition to  
alkenes and alkynes demonstrate that addition to alkenes is faster for 
a wide range of radicals52–55. This preference depends on the nature of 
the radical — the kalkene/kalkyne ratios vary from 1.7 to 36 for the exam-
ples shown in Fig. 3b. The smaller rate difference observed for the 
sterically hindered tBu-substituted variants and a relatively bulky Et3Si 
radical indicates that alkynes are more sterically forgiving than alkenes 
(Fig. 3b). However, even in this case, intermolecular addition to the 
alkene is faster, indicating that steric factors cannot override intrin-
sic electronic differences. The large difference of kalkene/kalkyne ratios 
observed for electrophilic radicals (36 for ·CF3) versus nucleophilic 
radicals (3.5 for ·c-C6H11) stems from the electron-deficient nature of 
sp-hybridized carbons.

High-level ab initio calculations of the barriers, enthalpies and rate 
constants for methyl radical addition to simple alkenes and alkynes 
have found that addition to alkenes is kinetically favoured over addi-
tion to alkynes, despite a larger exothermicity in alkyne addition56. At 
the W1h//QCISD/6-31G(d) level, the exothermicities favour addition 
to the ethyne and propyne by 1.2 and 1.5 kcal mol–1 even though the 
corresponding Arrhenius activation energies are ~2.0 kcal mol–1 lower 
for the addition to alkenes (ethene and propene). Such ‘contra-thermo-
dynamic behaviour’ has been attributed to the greater deformation 
energies associated with the addition to an alkyne and the much larger 
alkyne singlet–triplet gap. As reported by Radom et al., this difference 
in the singlet–triplet gap is the greatest contributor to the activation 
barrier according to the Shaik–Pross curve-crossing model of chemi-
cal reactivity56. From a simpler but equally accurate perspective, this 
is also a consequence of alkynes having a much stronger π-bond than 
alkenes, which dominates the reaction kinetics.

Fig. 2 | Stereoelectronic preferences of alkyne reactions. a, Use of the 
stereoelectronic preferences for alkyne cyclizations. Energies are given in 
kcal mol–1 at the B3LYP/6-31+G(d,p) level. b, Use of alkynes for annealing aromatic 
systems into larger carbon-rich products. c, Anti-Baldwin radical 4-exo-dig 

cyclization. d, Anti-Baldwin 3-exo-dig cyclizations. AIBN, azobisisobutyronitrile; 
Cy, cyclohexyl; DCM, dichloromethane; DCP, dicumyl peroxide; DTBP, di-tert-
butyl peroxide; EWG, electron-withdrawing group; LUMO, lowest unoccupied 
molecular orbital; Ts, toluenesulfonyl.
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However, even though formation of vinyl radicals by intermolecu-
lar radical addition to alkynes is slower than formation of alkyl radicals 
from alkenes, vinyl radicals are more reactive than the alkyl radicals57–59. 
For example, 5-exo cyclizations of vinyl radicals are >1,000 times faster 
than cyclizations of analogous alkyl radicals60. Vinyl radicals are also 
much more electrophilic than alkyl radicals — an additional advantage 
in reactions with electron rich targets15. The electron affinity of vinyl 
radical is rather large (15.5 kcal mol–1), whereas the ethyl radical has a 
negative electron affinity of –6.4 kcal mol–1, meaning that the ethyl 
anion is unbound.

Selectivity in alkyne cascades
Precise control of selectivity in radical cascades is essential but 
challenging, especially when several reactive functionalities are 
present. Designing a radical cascade in a controllable manner with 
precise chemo- and regioselective alkyne activation requires different 
strategies under different circumstances.

Reversible intermolecular addition
When the intermolecular radical addition is reversible, the radical 
acceptor may survive until the productive step occurs, which poten-
tially offers precise control of selectivity in a radical cascade. In this 
section, we discuss the reversibility of radical additions to alkynes and 
illustrate how to utilize this behaviour for the design of radical cascades.

Why are radical additions to alkynes reversible? From the relative 
rates of alkyne and alkene reactions, one would expect that intermolec-
ular radical addition to non-conjugated enynes would favour reaction 
at the alkene. However, the classic work of Stork revealed the opposite 
chemoselectivity61. As shown in Fig. 3c, the reaction of acetylenic diol 
40 with tributyltin hydride and azobisisobutyronitrile (AIBN) afforded 
a 70% yield of the 5-exo-trig product 41, formed via the intermolecular 
attack at the alkyne. The modified precursor 42, lacking the propargyl 
alcohol, follows the same reaction path to give the cyclized product 43 
in 76% yield. The propargyl alcohol is therefore not necessary for the 
chemoselective alkyne activation. Without the alkene, the Sn radical 
attacks both sites of the alkyne moiety, transforming the alkyne (44) 
into a mixture of regioisomeric alkenes (45 and 46). Additionally, the 
exposure of a 1:1 mixture of (E)-1-d-oct-1-ene (47) and 1-octyne (48) in 
the presence of Bu3SnH and AIBN returned the alkene isomerized into 
a mixture of E and Z isomers. These experiments reveal that addition 
to the alkene remains undetected during the activation of the alkyne 
and that the Bu3Sn radical adds quickly and reversibly to both the 
alkynes and the alkenes. It is the reversibility of the ‘invisible’ radical 
addition that is responsible for the selective formation of the observed 
cyclic product.

These early pioneering studies paved the way for many radical 
cascades of alkynes that are much more selective than one would 
expect62–72. To properly analyse a broader variety of the newer data, we 
will briefly discuss the origin of reversibility for the radical additions.

The reversibility of radical addition to alkynes may seem to con-
tradict our earlier discussion regarding the exothermicity of alkyne 
addition reactions. However, unlike hydrogenation and hydration, 

where two σ-bonds are formed, radical addition forms only one σ-bond. 
Hence, the outcome is more sensitive to the properties of the newly 
formed σ-bond.

Additions to both alkynes and alkenes are only exothermic when 
the newly formed σ-bond is stronger than the broken π-bond. In other 
words, if only one weak σ-bond is formed while a strong π-bond is 
broken, such as vinyl radical formation from an alkyne, the thermody-
namics can be finely balanced — uphill or downhill, depending on the 
interplay of several factors. In this context, reversibility is generally 
observed in the formation of vinyl radicals from alkynes in reactions 
with large polarizable heteroatomic partners. If the new σ-bond is weak, 
which is typical for a relatively large soft radical X (Fig. 3c), its strength 
can be similar to that of the broken π-bond. In this case, the addition 
step is nearly thermoneutral and reversible. Hence, the paradox of 
higher endothermicity of radical additions to alkynes, compared to the 
other addition reactions in Fig. 3c where two new σ-bonds are formed, 
is explained by the incomplete compensation for breaking the strong 
alkyne π-bond and forming only one sp2-X (X = Sn, Si, C) σ-bond.

From this point of view, the special role of Sn radical addition 
in initiating reversible alkyne activation (part of the ‘tyranny of tin’ 
phenomenon73,74) can be illustrated by the comparison of addition 
of Sn-, Si- and C-centred radicals of comparable steric bulk to diphe-
nyl acetylene (tolane)75. While the addition of the SnMe3 radical to 
tolane (ΔG = –2.6 kcal mol–1) is close to thermoneutral, the additions 
of the CMe3 radical (–5.6 kcal mol–1) and, especially, the SiMe3 radical 
(–20 kcal mol–1) to tolane are more exergonic. One can trace these dif-
ferences back to the relative weakness of the Csp2–Sn bond (with bond 
dissociation energy, BDE < 80 kcal mol–1) in comparison to the C–C 
(BDE ~90 kcal mol–1) and C–Si (BDE ~89 kcal mol–1) bonds. We note also 
that the C–Sn BDE is comparable to the strength of the alkyne π-bond 
(76 kcal mol–1).

The more stabilization the radical gains, the more exergonic the 
radical addition is. In a simple case, formation of a strong C–X σ-bond will 
result in an irreversible radical addition, whereas formation of a weak 
σ-bond will make the addition reversible. However, this simple picture 
does not take into account the σC–X/radical hyperconjugation, which 
can provide substantial stabilization to the vinyl radical (for example, 
the radical Si and Sn-‘β-effect’)76. Such vicinal hyperconjugative inter-
actions between the C–X bond and the half-empty radical orbitals are 
relatively large as vinyl radicals are strong acceptors. As expected, the 
magnitude of this stabilization further correlates with the donor abil-
ity of σC–X bonds: C–Sn (24.4 kcal mol–1) > C–Si (15.9 kcal mol–1) > C–C  
(5.8 kcal mol–1, according to NBO analysis). The combination of the 
weak C–Sn bond and strong σC-Sn/radical hyperconjugation in β-Sn-
substituted radicals result in a highly non-symmetric complex of the 
Sn-radical and a π-bond. Furthermore, in a β-scission process, the Sn-β-
effect should increase because distorted bonds are better donors77, 
providing additional stabilization to the transition state for this process 
and contributing to the favourable kinetic reversibility of Sn radical 
addition to the alkyne.

Navacchia et al. confirmed that addition of the ArS radical to an 
alkyne is also reversible78 (Fig. 3d). The benzyl thiol 54 and alkyne 55 
under the reflux condition of fluorobenzene with AIBN gives a complex 

Fig. 3 | Alkynes versus alkenes and the reversibility of radical additions to  
alkynes. a, Acetylene versus ethylene. b, Radical addition to alkenes and alkynes.  
W1h//QCISD/6-31G(d). c, Reversibility of Sn radical addition to alkyne. d, Reversi
bility of ArS addition to alkyne. e, Reversibility of sulfonyl radical addition to 

alkyne. B3LYP/6-31G**(ref. 41); M06-L/LANL2DZ(Cu)-6-311G**(ref. 79). AIBN, 
azobisisobutyronitrile; bpy, 2,2′-bipyridine; EA, electron affinity; HOMO, highest 
occupied molecular orbital; IP, ionization potential; LUMO, lowest unoccupied 
molecular orbital; NBO, natural bond orbital; T, temperature; Ts, toluenesulfonyl.
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mixture of products instead of the simple addition. Initially, the benzyl 
thiol radical attacked the alkyne, giving the vinyl radical 57, which can 
undergo β-scission, forming the phenylthiyl (PhS) radical. The PhS radi-
cal then added both to the alkyne 59 formed in situ and to the original 
alkyne 55, as confirmed by the formation of alkenes 62, 65 and 68, 
and benzothiophenes 61, 64 and 67. The formation of these products 
indicates that vinyl radicals can undergo β-scission efficiently, giving 
the PhS radical. These experiments indicate ArS radical addition to an 
alkyne is reversible.

The reversibility of the sulfonyl radical (RSO2) addition to an alkyne 
has been demonstrated by computational data. The tosyl radical addi-
tions to alkyne units are close to thermoneutral and are reversible41 
(Fig. 3e). In the case of sulfonylation and trifluoromethylation of 
alkynes, the sulfonyl radical addition of 80 to an alkyne 79 is uphill by 
only 0.8 kcal mol–1 (ref. 79).

An important consequence of the reversibility of radical additions 
to alkynes is that they can be coupled with fragmentations that restore 
the alkyne moiety. If the same alkyne is re-formed, such transient vinyl 
radical formation can be used to introduce dynamic covalent chemi-
cal control. The fragmentation can either restore the initial alkyne or 
form a different alkyne. In the latter case, the alkyne moiety is restored 
with a different substituent. In the first of these scenarios, revers-
ibility of radical additions to alkynes is used for chemoselective and 
regioselective cascade initiation. In the second, it is used for selective 
termination of radical cascades. We will discuss these scenarios in the 
following sections.

Dynamic covalent chemistry in alkyne radical cascades. The revers-
ibility of certain radical additions to alkynes allows them to be con-
sidered under the umbrella of dynamic covalent chemistry (DCC)80. 
In essence, DCC is the introduction of elements of thermodynamic 
control to induce selective transformations mediated by reversible 
covalent bond formation. DCC can also introduce kinetic traps via 
‘self-sorting’ of the pool of interconverting intermediates through the 
lowest ‘escape’ transition state.

The combination of the radical pool with kinetic self-sorting can 
provide a high level of selectivity in alkyne radical transformations. The 
reversibility of radical addition to an alkyne and the fast equilibration 
between the different radicals acts as an ‘error-checking’ process, in 
which only one product is formed81. The pool of radicals will eventually 
be depleted by reaction of the radical with the lowest activation barrier 
for the subsequent reaction. From that point of view, the rich radical 
interconversion chemistry may be invisible, and the final product 
seems to be formed from a single component of such mixtures.

In a radical cascade involving enynes, the pool of radicals will con-
tain alkyl and vinyl radicals. If fast equilibration is possible, the prod-
ucts usually come from vinyl radicals even though formation of alkyl 
radicals from addition to alkene may be thermodynamically favoured. 
An interesting example of such a system is provided by selective Bu3Sn-
mediated enyne cyclizations where a single indene product (88) is 
formed instead of a mixture of eight possible products derived from 
two cyclizations (exo and endo) of each of the four possible benzylic 
radical intermediates (83, 84, 85 and 86) formed by radical addition to 

the enyne81 (Fig. 4a). This dynamic process uses tin radicals, which can 
reversibly add to π-bonds, allowing for the formation of a single cycli-
zation product from the pool of radicals. The computational analysis 
of this reaction revealed that the four possible radicals have similar 
stabilities, but the alkyl radicals formed by radical addition to an alkene 
are more stable than similar vinyl radicals formed by radical addition 
to an alkyne. Interestingly, the observed product stems from the least 
stable radical (83). This paradox can be explained by the kinetic self-
sorting process. In the pool of four radicals, the product of the cascade 
is determined by the lowest-energy transition state of the subsequent 
cyclization steps. Precursors for the non-observed products are either 
simply recycled back to the reagents or, in the case of unproductive 
vinyl radicals, can be converted into productive vinyl radicals directly 
through a low (5.6 kcal mol–1) barrier 1,2-Sn shift75. This process illus-
trates how DCC can allow covalent bonds to reversibly form, break 
and re-form to ultimately afford one out of several possible products.

When other factors are closely balanced, the lower steric hin-
drance of the terminal alkyne can shift the balance in favour of radical 
attack on at the triple bond. For instance, chemo- and regioselective 
addition of Sn radical to terminal alkyne moiety of enynes is common 
in the cascades that start with substituted enynes82–88. However, when 
radical additions to both alkenes and alkynes are reversible, DCC could 
provide a better explanation for the high selectivity of the cyclizations. 
In the Ph3Sn-radical-mediated tandem triple addition of dienyne 89, all 
products (93, 94 and 95) stem from the addition of the Sn radical to the 
terminal alkyne, even though a sterically accessible terminal alkene is 
also present in the molecule89. We note that the radical cascade gives 
product 93 where four new σ-bonds are formed at the alkyne unit.

DCC also assists in synthesis of functionalized phenanthrenes 
from o-alkynyl biphenyls90 (Fig. 4b). Two vinyl radicals, 98 and 99, are 
formed by intermolecular Sn-radical addition to the alkyne. Based on 
the computational data, the formation of these two radicals is revers-
ible, so that they can interconvert under the reaction conditions. 
The lower activation barrier for subsequent cyclization of radical 99 
makes it the productive species in this pool of radicals that leads to the 
phenanthrene (100) formation.

The selectivity of the thiol radical cascade in cyclizations of enynes 
also takes advantage of the reversibility of ArS radical addition (Fig. 4c). 
In the synthesis of oxepin and oxocine (108) by Majumdar and cowork-
ers91,92, an ArS radical can attack either the alkene or alkyne. In the pool 
of radicals, the vinyl radical (103), formed from radical addition to the 
alkyne, can undergo either a 6- or 7-exo-trig cyclization. The cascade is 
continued by 3-exo-trig ring closure and ring opening. The alkyl radi-
cal, on the other hand, remains unproductive, because of the higher 
barrier of the cyclization steps.

DCC can also explain the selectivity of sulfonyl radical-mediated 
cyclizations of enynes. In this radical cascade, the product comes from 
a path initiated by intermolecular radical addition to the internal alkyne 
instead of the terminal alkene unit93 (Fig. 4d). This surprising chemose-
lectivity can be rationalized by considering the pool of radicals formed 
by reversible sulfonyl radical addition to both the alkene and alkyne. 
The productive vinyl radical (113), which has a lower barrier for subse-
quent cyclization, leads to the final product 115. Interestingly, in other 

Fig. 4 | Dynamic covalent chemistry in alkyne radical cascades. a, Sn-radical-
mediated cyclization of enyne. b, Sn-radical-mediated cyclization of o-alkynyl 
biphenyls. c, ArS-radical-mediated cyclizations of enyne. d, Sulfonyl-radical-
mediated cyclizations of enynes. Ac, acetyl; AIBN, azobisisobutyronitrile; 

BPO, benzoyl peroxide; DBU, 1,8-diazabicyclo(5,4,0)undec-7-ene; DTBP, 
di-tert-butyl peroxide; Piv, pivalyl; TBAI, tetrabutylammoniumiodide; 
TfO, trifluoromethanesulfonate; TS, transition state; Ts, toluenesulfonyl.
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cases, the selectivity can be reversed. The cyclization of 1,5-enynes 
(116) initiated by a sulfonyl radical starts from the addition to the alk-
ene (117), followed by 5-exo-dig cyclization (121)94. It is possible that 
DCC also plays an important part in this transformation and that the 
alkyl radical has the lowest energy barrier for the subsequent cycliza-
tion step from the pool of radicals. An interesting comparison to this 
work, provided by Wang et al.95, found that chalcogen radical species 
(such as sulfonyl, thiyl and selenyl) exclusively targeted the terminal 
carbon of the 2-Ph-substituted alkene moiety in 1,6-enynes (125). Only 
the 5-exo-dig cyclization product 128 was observed in this cascade, 
highlighting the absolute regio- and chemoselectivity of these radical 
species towards the alkene attack. Although DCC could possibly explain 
this result, the selectivity may simply reflect the preference of RSO2, an 
electrophilic radical, for a more electron-rich target, that is, the alkene.

Transient sacrifice of an alkyne moiety. Alkynyl radicals are concep-
tually interesting but harder to generate and control, compared to vinyl 
radicals, owing to their high reactivity. As the alkynyl Csp–H bonds are 
very strong (130 kcal mol–1, about 20 kcal mol–1 stronger than the Csp2–H 
bonds of alkenes), direct generation of alkynyl radicals from alkynes is 
difficult and these high-energy species are expected to react fast with 
a variety of targets96,97. Use of weaker σ-bonds, such as the Csp–I bond, 
allows generation of these unstable reactive species98–100. Although 
interesting, these reactions are outside of the scope of this Review as 
we focus on reactions that involve the alkyne π-bonds.

Several recent reports describe the indirect introduction of alkyne 
moieties via radical cascades that correspond to radical sp–sp3/sp–sp2 
couplings. These examples illustrate that radical cascades of alkynes 
can be used to make new alkynes101 but through an addition/elimination 
approach based on the temporary sacrifice and subsequent regenera-
tion of the alkyne moiety. These processes provide useful alternatives 
to the functionalization of alkynes based on direct nucleophilic addi-
tion to an electrophile (such as ketone)102,103, on palladium-catalysed 
alkynylation of aryl and vinyl halides (such as Sonogashira and related 
reactions), or on the Corey–Fuchs reaction and the Seyferth–Gilbert 
homologation.

Electron-deficient sp-hybridized alkynes such as acetylenic tri-
flones readily accept nucleophilic radicals. Such electrophilic alkynyla-
tion is an umpolung of the usual synthetic approaches where acetylene 
(or acetylide) is used as a nucleophilic synthon in reactions with elec-
trophiles104 (Fig. 5a). The regioselectivity of radical attack stems from 
a combination of steric factors and electronic effects on the stability of 
the vinyl radical intermediates. With the recent progress in generating 
carbon- or heteroatom-centred radicals, this newly emerging radical 
alkynylation finds broad application (see below).

In 1986, Russel and Ngoviwatchai reported the first radical alky-
nylation with alkynylsulfones (131) or iodoalkynes (132)105–107. A decade 
later, the scope of radical alkynylation was extended with acetylenic 
triflones (135) acting as excellent alkyne transfer reagents for radical-
mediated reactions involving C–H activation108. More progress has 
been made in radical alkynylation for challenging synthetic goals, 
such as in the functionalization of quaternary carbons. A one-pot 

radical-mediated alkynylation of alkylcatecholboranes 137 starting 
from alkenes has been developed, which can be used to functionalize 
quaternary carbons109. Alkynyl triflone 140 has been used to achieve 
the alkynylation of a quaternary carbon centre in a ring-expansion 
process110 and was further expanded to terminal alkynes as a start-
ing point111. Transition-metal-free protocols for alkynylation using 
terminal alkyne 143 and alkyl iodide 142 under ultraviolet light in an 
aqueous base has proved useful for the coupling of non-activated 
alkyl iodides with terminal alkynes111. In addition, the use of carbox-
ylic acids, trifluoroborates and boronic acids as a radical source also 
greatly expanded the boundaries of the application of radical alkynyla-
tion. The decarboxylative radical alkynylation of carboxylic acids 146 
using EBX (ethynylbenziodoxolone) reagents 145 and silver nitrate 
as a catalyst in aqueous conditions has also been described112. The 
Chen group reported a deboronative alkynylation reaction in which 
trifluoroborates (148) or boronic acids were used as radical sources113. 
The Han group described the synthesis of alkyne-containing hetero-
cycles from ketoximes (149 and 151) and EBX reagents114,115. The alkyne 
unit in ketoxime 149 was used as a building block for the construction 
3H-pyrrol-3-ones core in 150 where four new bonds were formed from 
the two π-bonds of alkyne while the alkyne unit of the EBX reagent was 
used for alkynylation. This approach was used to achieve challenging 
1,1,2-trifunctionalization of terminal alkynes (154)116 by intercepting 
the vinyl radical via intramolecular 1,5-HAT (hydrogen atom transfer) 
followed by a radical 5-exo-dig cyclization. Two π-bonds of a termi-
nal alkyne reactant were converted into four new σ-bonds of highly 
functionalized cyclopentane product.

An intramolecular application of this concept leads to alkyne 
migrations. This strategy also takes advantage of the resilient nature 
of alkynes (Fig. 5b). In general, after the initial selective radical attack 
at the terminal alkene, the alkyl radical attacks the alkyne intramolecu-
larly, forming a vinyl radical and closing a ring. The ring opening gives 
a new alkyne unit and a new alkyl radical. The reactions proceed well 
when the new radical is stabilized, for example by an adjacent O atom 
through 2c-3e (2-centre, 3-electron) bond, or when a stable byproduct 
is formed, for example through the release of SO2. In 2017, Zhu and 
Studer independently applied this strategy for the photochemical trif-
luoromethyl117 and perfluoroalkyl-alkynylation of alkenes (157)118. The 
trifluoromethyl or perfluoroalkyl radical attacks the terminal alkene, 
setting up the following exo-dig alkyl radical cyclizations. Further-
more, these alkyne migration cascades can be initiated by carbon or 
heteroatom-centred radicals in the 1,4-enyne 160 (refs. 49,50,119,120). 
The starting point of the alkyne migration strategy is not limited to 
enynes. Zhu’s group reported an intermolecular monofluoroalkyla-
tive alkynylation of alkenes121. In contrast to the previous examples, 
where the alkynes and alkene are in the same molecule, here alkyne 
163 is connected to the radical precursor while alkene 164 serves as 
an intermolecular partner in this cascade. The authors suggest that 
the activation of the C–Br bond is followed by intermolecular radical 
addition to the alkene, which apparently proceeds faster than an alter-
native intramolecular 3-exo-dig closure. The intermolecular addition 
sets up a 5-exo-dig cyclization. The alkyne moiety is reformed as alkyne 

Fig. 5 | Alkyne resilience in intermolecular and intramolecular reactions.  
a, Intermolecular radical alkynylation. b, Intramolecular radical alkynylation. 
AIBN, azobisisobutyronitrile; Bathophen, bathophenanthroline; BI, benzi-
odoxole; BPO, benzoyl peroxide; bpy, 2,2′-bipyridine; cat, catalyst; DABCO, 
1,4-diazabicyclo[2.2.2]octane; DCE, 1,2-dichloroethane; DCM, dichloromethane; 

d.r., diastereomeric ratio; dFppy = 2-(2′,4′-difluorophenyl)pyridyl; 
DMA, dimethylacetamide; DME, dimethoxyethane; DTBP, di-tert-butyl peroxide; 
HFIP, 1,1,1,3,3,3-hexafluoroisopropanol; LiHMDS, lithium bis(trimethylsilyl)
amide; ppy, tris(2-phenylpyridine); Rf, perfluoroalkyl; r.t., room temperature; 
TFE, 2,2,2-trifluoroethanol; TfO, trifluoromethanesulfonate; TIPS, triisopropylsilyl.
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migration has completed and the cyclized product 167 is reopened with 
the subsequent loss of SO2, rendering the overall process irreversible.

Irreversible intermolecular addition
When radical addition is irreversible, there is no radical pool with 
kinetic self-sorting. Therefore, the selectivity of the first radical addi-
tion becomes essential. In this section, we summarize several selectivity 
trends for radical cascades in multifunctional molecules, containing 
both an alkene and an alkyne.

General reactivity of alkenes versus alkynes. Additions to alkenes 
generally have lower barriers than additions to alkynes, despite hav-
ing comparable or lower exergonicity. Therefore, radical addition to 
an alkene is generally faster than the addition to an equivalent alkyne 
because the alkene π-bonds are weaker. Experimental data indicates 
that, when all possible radical addition reactions are irreversible, the 
radical cascade usually starts with addition to the alkene rather than 
the alkyne, especially for terminal alkenes where steric hindrance is 
minimal (Fig. 6a).

This reactivity pattern dominates for the formation of strong 
bonds, such as C–C bonds in an irreversible C-radical addition. For 
example, when using CF3 radicals to initiate the radical cyclization of 
1,6-enyne 169 (refs. 122–124), the initial intermolecular radical addition 
occurred at the terminal alkene. In the next step, the intermediate alkyl 
radical 170 underwent 5-exo-dig cyclization. Analogous selectivity is 
observed for the radical cyclizations of 1,7-enyne 176. Although one 
could argue that electronic factors also contribute to the selectiv-
ity in the above examples, such effects cannot be dominant as both 
nucleophilic and electrophilic radicals were reported to react faster 
with alkenes (Fig. 3b). Interestingly, despite the polarity mismatch, 
CF3 radicals attack the electron-deficient alkene moiety of enyne 176 
first, setting up the subsequent 6-exo-dig cyclization125–127. We note 
that the same two functional groups (alkene and alkyne) are involved 
in the radical cascade in the opposite order to the enyne cyclizations 
that proceed under the DCC or ‘radical pool’ conditions.

As N-radical addition to an alkyne is generally irreversible128, the 
radical nitration of 1,7-enyne 176 starts with NO2 radical addition to 
the alkene129. In remarkable cyclization-fragmentation-cyclization 
1,8-enyne (183) cascades, a variety of radicals (·CF3, ·SCF3, ·P(O)Ph2, ·N3)  
can initiate the sequence of reactions by selectively attacking the 
alkene130. The alkyne moiety is involved in the second part of the cas-
cade by engaging in a 6-exo-dig cyclization with the electrophilic 
N-amidyl radical to form a vinyl radical that completes the cascade by 
attacking a pendant aromatic ring.

Radical-mediated 1,4-difunctionalization of 1,3-enynes (188) is 
a useful strategy for building functionalized allenes (191)131–139. This 
process starts with the radical addition to alkene, resulting in propar-
gyl radical (189) and its resonance structure the allenyl radical (190). 
The following capture of the allenyl radical gives the functionalized 
allene products. The enantioselective syntheses of chiral allenes were 
independently described by the Bao and Zhang groups140, and the Liu 
group141. The Bao and Zhang groups achieved the enantioselective 
1,4-oxycyanation of 1,3-enynes. In Liu’s work, the radical R4 attacks the  

alkene unit in 1,3-enyne 192, followed by the reaction between the alle-
nyl radical and copper (II) acetylide to afford chiral allenes. In another 
example, chiral allene derivatives have been synthesized from the, 
1,3-enynes 197 by a radical approach with photoredox and chromium 
catalysis142.

Reversing the intrinsic preferences by sterics. The preference for 
radical addition to an alkene can be reversed when the alkene is steri-
cally hindered. Because alkyne carbons are relatively unencumbered, 
alkynes are more sterically forgiving than alkenes. When a hindered 
(for example, trisubstituted) alkene is present, the steric effect can 
override the intrinsic preference for radical addition to the alkene and 
attack the alkyne instead (Fig. 6b). In the synthesis of tricyclic fluorene 
203 from 1,6-enyne 200, reported by the Liang’s group143, the acyl radi-
cal generated from TBHB (t-butyl hydroperoxide) targets the alkyne 
instead of the trisubstituted alkene. In this example, the two methyl 
groups provide sufficient steric hindrance to the alkene to reverse 
the intrinsic preference of radical addition, making the alkyne a more 
favourable target. Similarly, Liang group reports the NO2 radical initi-
ates a radical cascade by adding to the alkyne instead of the hindered 
alkene moiety in a 1,6-enyne 204 (ref. 144).

Shifting selectivity by stabilizing the products. Thermodynamic 
effects can also play a part in controlling selectivity in enyne radical 
cyclizations. Radical addition that forms a more stabilized radical is 
generally more favourable. The chemo- and regioselectivity of radical 
borylation-cyclization cascade of 1,6-enynes (208) was controlled by 
varying the substituents145 (Fig. 6c). In this case, the high selectivity 
probably derives from stabilization of the transition state, leading to 
the intermediate radical by benzylic conjugation. Although N-hetero-
cyclic carbene (NHC)-boryl radical146 additions to substituted alkenes 
and alkynes are exergonic, there is not enough information to judge 
whether the DCC can explain the selectivity. However, useful empiri-
cal observations are available. When R1 (with alkene) is an H or Me 
group and R2 (with alkyne) is an aryl group, the boryl radical attacks 
the alkyne first (209). On the other hand, when the alkene has aryl 
substituents and alkyne has H or Me group, the boryl radical attacks  
the alkene first (211). In the control experiment where both the  
Ph-substituted alkene and alkyne are present (213), the radical cascade 
is unselective. These observations indicate that the selectivity present 
in enyne radical cyclization reactions can be controlled by stabilizing 
the preferred product.

Other selectivity control strategies
In addition to the above methods addressing selectivity in enyne radical 
cascades, there are other selectivity control strategies for substrates 
with multiple alkynes and/or alkynes.

Directing groups. Substrates that have more than one alkyne moiety 
present a challenge for selectivity control. One approach to solving 
challenging selectivity problems in multifunctional substrates is the 
use of directing groups147–151. However, designing an intermolecular 
directing group for a short-lived neutral intermediate, such as a radical, 

Fig. 6 | Selectivity in cyclizations with irreversible intermolecular radical 
addition. a, Radical addition targeting alkene prior to alkyne. b, Radical 
addition targeting alkyne prior to alkene. c, Radical addition targeting alkyne 
prior to alkene. 4-CzIPN, 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene; 

DHP, dihydropyridine; DMSO, dimethyl sulfoxide; DTBP, di-tert-butyl peroxide; 
FG, functional group; NHC, N-heterocyclic carbene; Piv, pivalyl; TBHB, 
tert-butyl hydroperoxide; TEMPO, 2,2,6,6-tetramethylpiperidin-1-yl)oxyl; 
Ts, toluenesulfonyl.
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is a daunting task. Fortunately, alkynes lend themselves perfectly 
to supramolecular directing effects based on through-space 2c,3e-
interactions of radicals with a propargylic heteroatom lone pair43. 
Such interactions between Me3Sn radicals and a lone pair at the α-OR 
substituent (Fig. 7a) can explain the fast and selective addition of Sn 
radicals to propargylic ethers 216. This design was extended to highly 
selective radical cascades of ortho-phenylene oligoalkynes 21914,152. For 
example, Sn radical addition to the propargylic position is favoured 
kinetically over addition to diaryl substituted alkyne moieties and other 
related functionalities. Another interesting feature of these reactions 
is that the directing group is ‘traceless’ as it is removed via homolytic 
C–O scission in the final aromatization step, assisted by the through-
space hyperconjugative interaction between the departing OR radical 
and the SnR3′ group153.

Such selective reactions assisted by a directing group have been 
documented in the literature and continue to be creatively used 
in synthesis154–161. A number of examples using this method for the 
preparation of natural products have been provided by Hale and co-
workers162–167 who used oxygen-directed hydrostannation for the prepa-
ration of complex and pharmaceutically relevant compounds such as 
(+)-acutiphycin. The key step in this sequence is a double O-directed 
free radical hydrostannation, which provided the key precursor 227 
in 84% yield.

Selective activation of alkyl or aryl halides. An additional approach 
to chemoselective radical initiation in the presence of alkynes is the 
activation of C–I or C–Br bonds (Fig. 7b). Generally, this is accomplished 
via a radical atom-transfer process but new photo- and electrochemical 
methods to generate radicals from C–I or C–Br bonds hold substantial 
potential168. Traditionally, many radical alkyne cascades start from 
activation of a C–I or a C–Br bond where the relative stability of alkynes 
allows them to survive the initiation stage of the cascade process, with 
the reversible addition reactions remaining undetected. From this, an 
understanding of the relative kinetics of halogen-atom abstraction 
and alkene/alkyne addition reactions, in addition to subsequent trap-
ping of the initially formed radical by an irreversible cyclization step, 
is essential for the rational design of such cascades.

The synthetic potential of this approach was elegantly illustrated 
in the early work of Curran et al., who used chemoselective activation of 
a C–I bond in the synthesis of hirsutene (234)169. The alkyl radical (232) 
initiates a sequence of 5-exo-trig/5-exo-dig cyclizations terminated 
by H-atom abstraction to form the product hirsutene (234). One of 
the notable features of this synthesis is that the Sn-centred radical 
selectively (and irreversibly) abstracts the I-atom from the starting 
material in the presence of an alkene and an alkyne. They extended this 
approach, combining inter- and intramolecular radical additions to 
make functionalized (methylene)cyclopentanes170. This radical cascade 
is initiated by C–I bond activation of 1-iodo-3-butynes (235) with the 
in situ formed stannyl radicals. Intramolecular 3-exo-dig cyclization 
of this radical is reversible, so, even though it is likely to proceed, it 
remains invisible. Instead, the productive reaction path involves an 
intermolecular alkyl radical attack at an α,β-unsaturated ester. The 
resulting alkyl radical (238) has a sufficiently long tether connecting it 

to the alkyne unit, allowing the intramolecular radical attack to proceed 
without the formation of a strained product and instead forming the 
5-exo-dig intermediate 239. Furthermore, the utility of alkynes extends 
beyond being a target for the cyclization step. The high-energy vinyl 
radical that results from radical addition to alkynes can be exploited 
to restart the chain propagation via fast iodine atom transfer from the 
iodoalkyne reactant, as seen here to provide product 240.

In some cases, where isonitrile acts as a radical acceptor, the alkyne 
moiety can survive until the end of the cascade. This selectivity, at 
least partially, comes from the intrinsic isonitrile radical addition bar-
riers being lower, probably because isonitriles are ‘stereoelectronic 
chameleons’171 that have additional transition state stabilizing orbital 
interactions that are not present in alkynes. Alkynes and isonitriles can 
be combined strategically in the synthesis of camptothecin172. After 
initiation by Br-abstraction, the intermediate radical (243) does not 
engage in an intramolecular (4-exo-dig) closure but rather reacts with 
the isonitrile intermolecularly. Unlike addition to an alkene, the addi-
tion to isonitrile can better explain the tether between the alkyl radical 
and the alkyne by only one carbon, as isonitriles undergo 1,1-addition 
while alkenes undergo 1,2-addition. The tether is nevertheless long 
enough to enable a 5-exo-dig cyclization of the radical and the alkyne 
(244). After that, the high reactivity of the vinyl radical allows it to 
penetrate through the aromatic armour of a pendant benzene ring and 
form the last cycle, which completes the tetracyclic core of the product. 
The subsequent rearomatization produces the final product 246.

Chemoselective activation of the C–I bond has also been used to 
selectively initiate the exo-dig radical cascade of skipped enediynes 
(247)173. After C–I bond activation, the resulting alkyl radical 248 initi-
ates the cascade by attacking the internal alkyne via the 6-exo-dig path-
way. This approach provides an alternative strategy for the preparation 
of polycyclic frameworks in addition to strategies included in Fig. 2.

A new synthetic application of selective C–I bond activation in 
the presence of an alkyne is provided by the one-pot conversion of 
benzenes to pyrenes via ‘3-point annulations’174. In this approach, 
the Sn radical activates the C–I bond at a relatively low temperature 
(90 °C). In these circumstances, the alkyne is preserved as a result of 
the reversible Sn radical addition and the lack of a productive cycliza-
tion route. Conversely, the C–I activation results in the generation of 
an aryl radical that can cyclize irreversibly to form the first cycle (253). 
This step creates a ‘bay region’, which, after rearomatization (254), 
serves as a target for the second cyclization step that uses the alkyne. 
Conveniently, the second cyclization proceeds at a higher temperature 
(110 °C), allowing the cascade to be interrupted at the first cyclization 
stage or continue until it anneals three rings to an aromatic core. Use of 
extended aromatic cores in the starting materials provided expedient 
access to previously unknown polyaromatic systems.

Conclusion and outlook
The two sterically unencumbered energy-rich carbon atoms offer a 
beautifully primed canvas for the design of cascades where two, four 
or even six175–178 new bonds can be added to the alkyne. This property 
makes alkynes an ideal ‘carbon glue’179, a foundation for connecting 
smaller molecular pieces into a larger product. Furthermore, diverging 

Fig. 7 | Other selectivity control strategies in radical cascades of alkynes.  
a, Directing groups in radical cascade of alkyne. Energies are given in kcal mol–1 
at the UM06-2X/Lanl2dZ level. Anchoring nO → nSn interaction denotes donation 
from the lone pair of O to the radical orbital at Sn. b, Activation of the C–I 

or C–Br bond in radical cascade of an alkyne and another functional group. 
AIBN, azobisisobutyronitrile; NBO E(2), energy of the stabilizing interaction 
evaluated by the second-order perturbation theory and natural bond 
orbital analysis.
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from the common alkyne departure point, a carefully planned reaction 
route can open access to richly functionalized and structurally complex 
products through the choice of reaction partners. This versatility makes 
alkynes valuable participants in synthetic designs.

This Review illustrates that free-radical reactions of alkynes are 
particularly useful because their thermodynamics is favourable for 
propagating the intermediate steps in the cascades. We highlight a col-
lection of approaches that help to achieve precise control of selectivity 
for the reactions of alkynes, even in the presence of other potentially 
reactive functionalities.

Despite the great progress documented in this Review, not all chal-
lenges have yet been met. For instance, so far, radical cascades generally 
only involve the π-system of alkynes with the formation of either two or 
four new bonds. Radical reactions that efficiently make six new bonds at 
the two alkyne carbons are unknown. Another limitation is the relative 
inefficiency and scarcity of radical endo-dig cyclizations in compari-
son to their exo-dig counterparts. Not only do endo-dig cyclizations 
suffer from the unfavourable radical attack trajectory at the alkyne42 
but, unlike the well documented ring expansion of exo-trig products 
of similar alkene cyclizations (such as the rearrangement of initially 
formed 5-exo-trig products into their 6-endo-trig isomer58,59,180,181), the 
analogous ring expansion of exo-dig cyclization products is impossible 
owing to stereoelectronic constraints6,182. The new cascades that can 
overcome such limitations use alkenes as alkyne equivalents by com-
bining exo-trig cyclizations with subsequent fragmentations75. Along 
with the alkyne resilience examples given in Fig. 5, these transforma-
tions illustrate that the use of fragmentation termination steps offers 
additional avenues for creative design of radical cascades that retain 
π-bonds in the products.

Like a loaded mouse trap, alkynes combine high energy with 
kinetic stability. The transformative power of the high energy con-
tent is illustrated by the crucial role of alkynes in the development 
of biorthogonal chemistry3. A deeper understanding of alkyne ste-
reoelectronics is needed for controlling kinetics of alkyne reactions 
and for unlocking the reactivity features needed to design cascade 
reactions that can rapidly build complex chemical structures, both 
natural and unnatural.

Published online: xx xx xxxx
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