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Walk for Learning: A Random Walk Approach for

Federated Learning From Heterogeneous Data

Ghadir Ayache , Member, IEEE, Venkat Dassari , and Salim El Rouayheb

AbstractÐ We consider the problem of a Parameter Server
(PS) that wishes to learn a model that fits data distributed on
the nodes of a graph. We focus on Federated Learning (FL)
as a canonical application. One of the main challenges of FL
is the communication bottleneck between the nodes and the
parameter server. A popular solution in the literature is to allow
each node to do several local updates on the model in each
iteration before sending it back to the PS. While this mitigates
the communication bottleneck, the statistical heterogeneity of
the data owned by the different nodes has proven to delay
convergence and bias the model. In this work, we study random
walk (RW) learning algorithms for tackling the communication
and data heterogeneity problems. The main idea is to leverage
available direct connections among the nodes themselves, which
are typically ªcheaperº than the communication to the PS. In a
random walk, the model is thought of as a ªbatonº that is passed
from a node to one of its neighbors after being updated in
each iteration. The challenge in designing the RW is the data
hetErogeneity and the uncertainty about the data distributions.
Ideally, we would want to visit more often nodes that hold more
informative data. We cast this problem as a sleeping multi-
armed bandit (MAB) to design near-optimal node sampling
strategy that achieves a variance reduced gradient estimates and
approaches sub-linearly the optimal sampling strategy. Based on
this framework, we present an adaptive random walk learning
algorithm. We provide theoretical guarantees on its convergence.
Our numerical results validate our theoretical findings and show
that our algorithm outperforms existing random walk algorithms.

Index TermsÐ Decentralized learning, distributed learning,
random walk, incremental algorithms, multi-armed bandit.

I. INTRODUCTION

A. Overview and Motivation

D
ISTRIBUTED Machine Learning has proven to be

an important framework for training machine learning

models without moving the available data from its local

devices, which ensures privacy and scalability. Federated

Learning (FL) has risen to be one of the main applications [1],
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Fig. 1. Distributed Learning on Graph through local computations at the
graph’s nodes and through local communication between the connected nodes.

[2], [3] that has been attracting significant research attention

and has been deployed in real-world systems with millions

of uses [2]. Other applications include learning in IoT

networks [4], smart cities and healthcare [5], [6]. To see how

a typical learning algorithm works in this setting, consider

the FL setting in Fig 1. There is as Parameter Server (PS)

(typically sitting in the cloud) and a number of nodes (phones,

IoT-devices, smart sensors, etc.) each having its own local data.

The PS wishes to learn a global model on all the data without

moving the data away from its original owner. The algorithm

would work in a batch SGD fashion. In each iteration, the

PS samples a batch of nodes and sends the current model to

it. Each node in this batch will update the model based on its

local data and sends back its updated model to the PS. The PS

then aggregates all the received models and starts over again.

1) Locality vs. Heterogenity: One of the main bottlenecks

here is the communication with the parameter server (PS)

needed in each iteration to aggregate the updates sent by

the nodes and to coordinate the learning process. A popular

solution is to reduce the communication cost with the PS is

to let each node perform several local model updates on its

data before reporting back to the PS [7]. However, the local

computations may induce local biases to the model and slow

the convergence of the learning algorithm. This is due to the

data that is heterogeneous across the different nodes, which

imposes an inconsistency between the local and the global

objectives [8], [9].

2) Random Walks: We propose Random Walks (RW) as a

way to simultaneously achieve two seemingly opposing goals:

extending the benefits of locality and mitigating the drawbacks

of data heterogeneity. The idea being that instead of restricting

local computations to the node itself, they can be extended
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Fig. 2. Random Walk (RW) on the graph: the updated model w
(k) is

transmitted at time k. The self-loops at k = 3 and k = 9, indicate that
the RW algorithm decided to make a second update at the same node. The
model is reported back to the PS on a regular basis.

to its neighboring nodes. This is achieved by leveraging

existing local connections among the nodes themselves,

which are typically cheaper than communication to the

PS [10], [11], [12]. We represent the local connections

by a graph structure where each node is connected to a

subset of other neighboring nodes. Thus, each node can

exchange information with its neighbors and, through these

local communications, information can propagate through the

whole network. This setting can arise in mobile and edge

networks, IoT applications and ad-hoc networks, to name a

few.

In our proposed framework, the learning algorithm will

run as a random walk where in each iteration the model

gets updated at one of the nodes and then passed to one

of its neighbors to take over the next update, as shown in

Figure 2. The model is then passed to the PS on a regular

basis and/or depending on the network resources to mitigate

the communication cost to the PS.

Random walk learning algorithms have been well studied in

the literature on optimization [13], [14], wireless networks [15]

and signal processing [16]. What distinguishes this work is

that it tackles the problem of designing random walk learning

algorithms in the presence of arbitrary data heterogeneity

across the nodes. Our main contribution is a random walk

algorithm that, along with updating the model, it learns

and adapts to the different nodes’ distributions by carefully

combining exploration and exploitation. Our main tool is the

theory of Multi-Armed Bandit (MAB).

3) Random Walk via Multi-Armed Bandit: Typically, the

distributions of the local data at each node are not known

a priori. Therefore, we want to devise a random walk strategy

that overcomes data heterogeneity by learning about the local

data distributions along the way. The goal is to minimize the

variance of the global objective gradient estimates computed

locally by adjusting the nodes’ sampling strategy. More

specifically, at each iteration k, one has to design the

probabilities with which the next node in the RW is chosen

among the neighboring nodes. Note that these probabilities

will depend on k to adapt to the information learned so far,

leading to a time-varying RW. Therefore, the random walk will

start with an exploration phase before gradually transitioning

into an exploitation phase, once more robust estimates about

the nodes’ data are obtained.

We design the RW by casting our problem as Mulit-

Armed bandit. The multi-armed bandit (MAB) is a

learning framework to decide optimally under uncertainty

[17], [18], [19]. It features N arms with unknown random

costs (negative rewards). At each iteration, one pulls. The

problem is to decide on which arm to pull each time so

that the accumulated cost, called regret, after playing T times

is minimized. Our solution is an algorithm that explores

the different arms and, in parallel, it exploits the collected

information so far, where it observes the outcome of playing

an arm and uses it to tune its expected reward estimate to

adjust future selections [17], [18]. In our distributed learning

setting, we model the node selection in the RW as arm pulling

in the MAB framework. At each iteration, the random walk

picks a node in graph to activate for the next update, observes

the update, and receives the local gradient as a cost.

Under this analogy, the performance of the learning

algorithm is measured by the regret, which is the difference

between the cost of a random walk with optimal transition

matrix when all the distributions are known, and the cost of

the nodes visited by the algorithm.

B. Contribution

In this paragraph, we summarize our contribution as

follows:
• In this work, we propose a distributed learning algorithm

to learn a model on the distributed data over the nodes

in a graph. Our algorithm selects the nodes to update the

model by an adaptive random walk on the network to

address the statistical heterogeneity of distributed data.

• We model the random walk transition design as a sleeping

multi-armed bandit problem to compete with the optimal

transition probabilities that mitigate the high variance in

the local gradients estimates.

• We provide the theoretical guarantee on the rate of

convergence of our proposed algorithm approaching a

rate O(1/
√

T ). The rate depends on the graph spectral

property and the minimal gradient variance.

• Finally, we simulate our algorithm on real and synthetic

data, for different graph settings and heterogeneity levels

and show that it outperforms existing baseline random

walk designs.

C. Prior Work

1) Random Walk Learning: Several works have studied

random walk learning algorithms focusing on the convergence

under different sets of assumptions. The works of [14],

[20], and [21] established theoretical convergence guarantees

for uniform random walks for different convex problem

settings and using first-order methods. Later work [22]

employs more advanced stochastic updates based on gradient

tracking technique that uses Hessian information to accelerate

convergence. The work of [23] proposed to speed-up the

convergence by using non-reversible random walks. In [16],

the authors studied the convergence of random walks learning
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for the alternating direction method of multipliers (ADMM).

In [24], the paper proposes to improve the convergence

guarantees by designing a weighted random walk that accounts

for the importance of the local data to speed up convergence.

An asymptotic fundamental bound on the convergence rate

of these algorithms was proven by [25] and it approaches

O(1/
√

k) under convexity and bounded-gradient assumptions.

From our MAB perspective, a common aspect of these

algorithms is that they are purely exploitative. They require

a priori information about the local data (e.g., gradient-

Lipschitz constants, bounds on the gradients) to design a non-

adaptive (time-invariant) random walk.

Random Walk algorithms belong to a more general class

of decentralized learning algorithms where no central entity,

such as a PS, is involved to handle the learning process. Gossip

algorithms are another class of decentralized algorithms that

are not based on random walks (see for e.g. [13], [26], [27],

[28]). In (synchronous) gossip algorithms, at each round,

each node updates and exchanges its local model with its

neighboring nodes. Hence, in each iteration, all the nodes and

all the links in the graph are activated. The goal of a Gossip

algorithm is to ensure that all nodes, and not just the PS, learn

the global model and assume convergence once a consensus

is reached. Hence, it is less efficient in terms of computations

and communication costs [24].

2) Data Heterogeneity: Recently, there has been lots of

work addressing the problem of data heterogeneity especially

in the FL literature. The data across the nodes is typically not

generated in an iid fashion. A local dataset tends to be more

personalized and biased towards its specific owner’s profile.

Therefore, multiple local updates on the global model can drift

the global objective optimization towards its local one. This

may slow down the convergence and can lead to converging

to a suboptimal model [9], [29]. Several measures have been

proposed in the literature to quantify statistical heterogeneity,

which refers to this local vs. global objectives’ inconsistency

in the distributed data. The focus has been on quantifying

the gap between the local update direction and the global

one [8], [29], [30], [31], [32]. The proposed solutions vary

between controlling the update direction [31] or the learning

objective [29].

3) Multi-Armed Bandit Sampler: The multi-armed bandit

(MAB) problem aims to devise optimal sampling strate-

gies by balancing together exploration and exploitation

[17], [18], [19], [33]. Results from MAB have been used in

problems related to standard SGD training in a non-distributed

settings [34], [35], [36], [37], [38]. The idea there is to use

an MAB sampler to select more often the data points that can

better guide the learning algorithm.

In the classical MAB setting there is no constraint on

which node to sample (visit) at a given time (which arm to

pull in the MAB language). However, in our case, we are

restricted by the graph topology, so only neighboring nodes

can be visited. To account for this constraint, we cast

our problem as Sleeping Multi-Armed Bandit in which

nodes that are not neighbors of the current nodes are

assumed to be sleeping (not available) at the time of the

sampling. The Sleeping MAB literature has studied various

assumptions on sleeping reliance: independent availabilities,

general availabilities, and adversarial availabilities. The lower

bound on the regret is known to be Ω(
√

NT ) if we consider

stochastic independent availabilities. For a harder sleeping-

MAB setting with adversarial availabilities, the lower bound

is Ω(N
√

T ) for N being the total number of nodes and T

being the total number of rounds [33], [39], [40]. In our

work, we model the RW design problem as dependent

availabilities Sleeping MAB learning algorithm [40]. For the

proof technicality, we use a harder upper bound on the

performance that assume oblivious adversarial availibilities.

A related line of work is the work on importance sampling

which can be thought of as a pure exploitation scheme with

no exploration. The literature has studied different aspects

of importance sampling using prior information on the local

datasets (e.g., [41], [42], [43], [44]). For instance, in [45], the

paper proposes to sample proportionally to the smoothness

bounds of the local objectives. While the scheme in [41]

suggests to select the data points based on the bounds of the

gradients of the local objectives.

D. Organization

The rest of the paper is organized as follows. We present

the problem setup in Section II. In Section III, we present

the detailed random walk learning algorithm. In Section IV,

we provide the optimal sampling scheme and its theoretical

motivation. In Section V, we outline the analogy between

the RW design problem and the sleeping MAB problem.

In Section VI, we present the MAB RW learning algorithm and

the main theorem on its convergence. Moreover, we provide

the technical definitions and assumptions used into the main

theorem proof in Section VII. Finally, we provide numerical

results on the convergence of our proposed algorithm in

Section VIII. The full proofs of the technical results are

deferred to the appendices.

II. SETUP

A. Network Model

We represent a network of N nodes by an undirected graph

G(V, E) with V = {1, . . . , N} being the set of nodes and

E being the set of edges such that E = {(i, j) ∈ V ×
V, if i is connected to j}. Since the graph is undirected, then

∀(i, j) ∈ E, we have (j, i) ∈ E. Any two connected nodes i
and j are called neighbor nodes and we denote it by i ∼ j.

Moreover, we assume that all the nodes have self-loops, thus,

∀i, (i, i) ∈ E.

B. Data Model

We assume that every node i owns a

dataset Di of size n such that Di =
{

ξi,j := (xi,j , yi,j) ∈ R
d × R for j ∈ [n]

}

, which is

sampled from an unknown local distribution Πi.

C. Learning Objective

Our goal is to minimize a global objective function F (w)
where w ∈ W ⊂ R

d, W being the feasible set assumed to be
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closed and bounded. The objective function F (.) represents

the empirical mean of local losses on the distributed data over

the graph of N nodes. Therefore, we are looking to solve the

following problem:

min
w∈W

{

F (w) :=
1

N

N
∑

i=1

Fi (w)

}

, (1)

where the function Fi is the local objective at the node i and

it is defined as

Fi (w) = Eξi
[Fi (w; ξi)] for ξi ∼ Πi. (2)

The optimal model is denoted by w∗ and defined as follows:

w∗ = arg min
w∈W

F (w).

D. Data Heterogeneity

The data distributions across the nodes of the network are

assumed to be arbitrary. Therefore, when a node performs a

local update on the global model it may bias it by its local

dataset that may not be a good representative of the global

learning objective. Multiple definitions have been recently

proposed to quantify the degree of local heterogeneity in

distributed systems [9], [29], [30], [32]. These definitions

focus on the variance of the local gradients with respect to

the global gradient at a given model w. In our work, we adopt

the definition used by [31] as stated below.

Definition 1 (Data Heterogeneity): The local objectives

Fis are (α, σ)-locally dissimilar at w if

Ei

[

∥∇Fi (w)∥2
2

]

≤ α2 + σ2 ∥∇F (w)∥2
2 ,

for α ≥ 0 , σ ≥ 1, Ei is the expectation over the nodes and

∇Fi (w) is the gradient at node i. For α = 0 and σ = 1,

we restore the homogeneous case.

This definition is a generalization of other

definitions [29], [32].

E. Model Update

In distributed learning applications, the nodes are assumed

to operate on a limited computational budget as they tend to

be personal devices or hard-to-reach sensors.. Thus, we focus

in our analysis on first-order methods using stochastic gradient

descent.1

Thus, the model update at round k will be as follows

w(k+1) = ΠW

(

w(k) − γ(k) 1

p(k)(i(k))
∇̂Fi(k)

(

w(k)
)

)

, (3)

where γ(k) is the step size, ∇̂Fi(k)

(

w(k)
)

is an unbiased

estimate of the local gradient at node i(k) computed on a

uniformly sampled data point from Di(k) , p(k)(i(k)) is the

probability of picking node i(k) at round k, and ΠW is

the projection operator onto the feasible set W . For our

convergence analysis, we will need the following technical

assumptions.

1Our work is applicable to any iterative algorithm that uses an unbiased

descent update [46], [47], [48].

Assumption 1: For every node i ∈ [N ], the local loss

function Fi(.) : W → R
d is differentiable and convex function

on the closed bounded domain W .

Assumption 2: The step size γ(k) is decreasing and satisfies

the following

∞
∑

k=1

γ(k) = +∞ and

∞
∑

k=1

ln k.(γ(k))
2

< +∞. (4)

Assumption 3 (Bounded Gradient): There exits a constant

D such that, ∀i ∈ [V ] and ∀w ∈ W , we have

∥∇Fi(w)∥2
2 ≤ D.

The last assumption is actually a result that follows from

the functions Fi’s being convex on a closed bounded subset

W ⊂ R. A complementary proof can be found in [24].

III. RANDOM WALK ALGORITHM

Our objective is to design a random walk on the graph G
algorithm to learn the optimal model w∗. The algorithm starts

uniformly at random at an initial node in the graph, say i(0),
with an initial model w(0) also sampled uniformly at random

from the feasible set W . Let i(k) be the node visited (active) at

the kth round of the algorithm, k = 0, 1, . . . , T . At each round

k, the active node i(k) will receive the latest model update w(k)

from a neighbor node i(k−1), that was active at the previous

round. Then, the model w(k) is updated via a gradient descent

update using data sampled from the local dataset of node i(k).

The main question we are after is how to design the

transition probabilities defining the random walk, which

govern how the RW is sampling the nodes in the graph.

In addition to the explicit objective of learning the model,

the random walk will simultaneously learn information about

the heterogeneity of each node’s data. Therefore, as the

random walk progresses, it can adapt with the information

gained on the importance of a given node’s data to speed

up the convergence. For this reason, we allow the transition

probabilities of the random walk to adapt over time (algorithm

rounds). We denote by p(k)(i) the probability distribution to

select the node i to be active at round k. We denote by P (k) the

transition matrix at time k. Therefore, we have P (k)(i, j) >
0 if j ∼ i and P (k)(i, j) = 0 otherwise. Moreover, we have

p(k) = p(0)P (1) . . . P (k) and p(m,k) = p(0)P (m+1) . . . P (k).

IV. NODE SAMPLING STRATEGY

We aim to design a sampling strategy that mitigates the

effect of heterogeneity on the performance of the learning

algorithm. Such strategy is constrained by an environment with

two essential properties to consider: 1) The node sampling is

restricted by the topology of the graph where the node to pick

next has to be connected to the current active node; 2) No

full information about the distributed heterogeneous data is

available except what has been learned in the rounds so far

and what can be shared among neighbor nodes.

In our algorithm, each node i is sampled (visited) with

probability p(k)(i) at round k. And the gradient is computed

on one data point sampled uniformly among the n local data

points at the visited node. A crucial quantity for our analysis is
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the second moment of the unbiased gradient estimate at round

k which is

E

[

∥

∥

∥
∇̂Fi(k)

(

w(k)
)∥

∥

∥

2

2

]

=
∑

i∈[N ]

1

p(k) (i)

n
∑

j=1

1

n2

∥

∥

∥∇Fi

(

w(k); ξi,j

)∥

∥

∥

2

2
. (5)

This quantity affects the convergence rate of the Random Walk

SGD algorithm as we show in equation (6) (see the Appendix

for the details)

O





(

T
∑

k=1

γ(k)

)−1 T
∑

k=1

E

[

∥

∥

∥∇̂Fi(k)

(

w(k)
)∥

∥

∥

2

2

]



 . (6)

Thus, the second moment of the gradients’ updates imposes

a burden on the convergence, especially in heterogeneous data

settings where the diversity of the gradients is high. This

dependence on the second moment is a common property

of SGD based algorithms and has been well studied in

the literature. Variance reduction techniques via importance

sampling have been proposed to improve the convergence

guarantees [41], [42], [44], [45], [49].

Our goal is to design the node sampling strategy to approach

the optimal probability that minimizes the convergence

bound [41], [42], [45] given by

p(k)(i) ∝
√

g
(k)
i

(

w(k)
)

, such that

g
(k)
i

(

w(k)
)

:=
∑

ξi,j∈Di

1

n2

∥

∥

∥∇Fi

(

w(k); ξi,j

)∥

∥

∥

2

2
.

Note that computing the g
(k)
i ’s is very costly since it requires

computing the gradients related to all the data points owned

by the node and its neighbors. Moreover, the g
(k)
i ’s need

to be re-computed at the new model w(k) at each iteration.

Instead, we propose to estimate in each iteration the g
(k)
i ’s

using the already computed gradients for the update step in

(3). Therefore, at each iteration, the random walk has a double-

fold objective: (i) update the model in each iteration and (ii)

refine the estimates of the g
(k)
i ’s by adjusting the RW level

of exploitation vs. exploration using tools from the theory of

sleeping multi-armed bandit.

V. SLEEPING BANDIT FOR RW NODE SAMPLING

The multi-armed bandit (MAB) problem [19], [50] is a

decision framework that features a set of N arms, where each

arm i ∈ [N ] has an unknown cost c(k)(i) at round k. A player

selects a sequence of arms i(0), i(1), . . . up to the final round

T (also called called horizon) of the algorithm. The goal is to

design an arm selection strategy to minimize the accumulated

regret R(T ) over the total number of rounds T :

R (T ) =

T
∑

k=1

(

E

[

c(k)
(

i(k)
)]

− min
i∈[N ]

E

[

c(k) (i)
]

)

. (7)

The first term in the regret, E
[

c(k)
(

i(k)
)]

, is the average

cost of the arm selected by the player. The second term,

min
i∈[N ]

E
[

c(k) (i)
]

, is the ªbestº arm with the minimum cost

TABLE I

OUR PROPOSED ANALOGY BETWEEN THE SLEEPING MAB
AND THE RANDOM WALK DESIGN PROBLEMS

that could have been selected were the costs known. The

expectation is taken over the selection strategy and the cost

randomness.

Our work is based on establishing an analogy between MAB

and RW. This allows us to use results from the vast literature

on MAB to design the RW in order to speed up the learning

process. To that end, we think of each node as an arm, and

visiting a node in the RW as selecting an arm in the MAB

problem. What is not clear in this analogy is what the cost

of visiting a node and updating the model is. Based on the

discussion in section IV and the the upper bound in (6),

minimizing the accumulated variance of the gradient serves

to tighten the convergence guarantees. Thus, we propose the

cost of visiting a node i, at a given round k in our Random

Walk algorithm, to be:

c(k)(i) =
∑

ξi,j∈Di

1

n2

∥

∥

∥∇Fi

(

w(k); ξi,j

)∥

∥

∥

2

2
. (8)

However, this analogy between ªstandardº MAB and RW

cannot be fully established here. That is because in MAB

any arm can be selected at any time. Whereas in RW only

neighboring nodes can be visited in each iteration. To take

into account the graph topology, we consider a variant of the

standard MAB called sleeping MAB, where in each iteration

only a subset or arms is available (the rest are sleeping)

[33], [39], [40]. Moreover, the available nodes to select from

are the ones that are connected to the currently visited node.

In Table I, we summarise this analogy between MAB and RW.

Within this sleeping multi-armed bandit framework, our

goal is to minimize the regret given the available arms and

approach the best node sampling strategy denoted by π :

2[N ] → [N ], which is a mapping from a set of available arms

N (k) to a selected arm. The goal is to minimize the following

regret

R (T )

=

T
∑

k=1

(

E

[

c(k)
(

i(k)
)]

− min
π

T
∑

k=1

E

[

c(k)
(

π
(

N (k)
))]

)

,

(9)

where the cost c(k) is defined in (8), the expectation is taken

w.r.t. the availabilities and the randomness of the player’s

strategy, and N (k) is the set of available nodes at time k
which consists of the neighbors of the currently visited node.

Therefore, the regret function is defined as the gap between
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Algorithm 1 Sleeping MAB Random Walk SGD

1: Input: Exploration parameter λ(k). Learning parameter

η =
√

log N
NT . Horizon T. Graph G(E, V ).

2: Initialization: Initial control weight q(0)(i) = 1 ∀i ∈ [N ],
Initial model w(0) chosen uniformly at random from W .

Starter node i(0) chosen uniformly at random from [N ].
3: for k = 1 to T do

4: Compute P (k)(i(k−1), i) ∝ q(k−1) (i) ∀i ∈
N
(

i(k−1)
)

and P (k)(i(k−1), i) = 0 otherwise.

5: Choose a neighbor node i(k) ∼ P (k)(i(k−1), .).
6: Choose ξi,j uniformly at random from Di(k) and

compute ∇̂Fi(k)

(

w(k)
)

.

7: Compute the cost estimate c
(k)
i .

8: Update the model using the SGD update in (3).

9: Update the control weight q(k)(i(k)) using (10).

10: end for

the local variance of the local gradient estimate implied by the

our selection strategy and the minimal variance that requires

full information about the local datasets.

In [33], [39], and [19], it was shown that one can achieve

a sublinear regret O(
√

T ) for sleeping MAB and it is

asymptotically optimal. This is achieved by applying the EXP3

algorithm. Initially, the algorithm assigns equal importance to

all arms. Then, at every round, the player receives the subset

of non-sleeping arms, selects one among them, and observes

the outcome of the chosen arm. The player then updates its

cost estimation and keeps track of the empirical probability

of the appearance of a given arm in the non-sleeping set.

The goal of the player is to balance between exploration and

exploitation and gradually shifts to exploitation as the costs

estimates become more robust after playing enough rounds.

The multi-armed bandit modeling implies an

algorithm design on the random walk that guarantees

a sublinear decaying of the regret in (9) such that

limT→∞
Regret(T )

T = 0, thus, it approaches asymptotically the

optimal transition scheme of the random walk.

VI. MAIN RESULTS

In this section, we summarize our main technical results.

First, we present the details of our Sleeping Multi-Armed

Bandit Random Walk SGD algorithm in Algorithm 1. Second,

we prove in Theorem 1 that the proposed algorithm has an

asymptotically optimal convergence rate.

A. Algorithm

Algorithm 1 leverages the analogy between Sleeping MAB

and RW that we established in the previous section to design

the RW learning algorithm. In the literature of Sleeping

MAB [40], there are two versions of the EXP3 algorithm based

on the availabilities of the arms: dependent versus independent

availabilities. The case with dependent availabilities fits

our RW model since the graph structure dictates the joint

availability of any set of nodes.

In Algorithm 1, each node i keeps an accumulated control

(importance) value q(k)(i) of the observed cost up to round k.

The nodes with higher values will be favored in the selection.

In each round of the algorithm, the active node has to

make a decision to select a neighboring node to carry the

next update. In order to do that, the active node receives

the control value from each neighboring node, and does the

selection proportionally to the control values q(k−1) (i).
The selection starts with pure exploration using uniform

control values and keeps refining it with time given the

observed average cost. The selected node will turn active,

samples one of its local data point uniformly at random,

performs the update in (3) and computes the cost estimate

based on the local gradient.

Each node i keeps tracks of the empirical estimate

P̄ (k)(i) = 1
k

∑k
t=1

(

P (t)(i(t−1), i)
)

. The exploration is

implicitly adjusted by a decreasing exploration parameter

λ(k) =
√

2N+2

k ln (T ) + 2N+2

3k ln (T ). At early stage of the

training λ(k) gives less importance to the observed cost

contribution. Lastly the control value is updated as follows

q(k)
(

i(k)
)

= q(k−1)
(

i(k)
)

exp

(

−η
c
(k)
i

(

i(k)
)

P̄ (k)
(

i(k)
)

+ λ(k)

)

.

(10)

Each round of the Random Walk algorithm consists of one

local update followed by the updated model passage to

a neighbor node that uses the communicated importance

weights. Thus, for a total number of round T , the

communication cost follows an order of O(T.d) where d, is the

dimension of the model.

B. Convergence Guarantees

Theorem 1: Under assumptions 1, 2 and 3, for a connected

graph G, particularly for γ(k) = 1
kq for 1

2 < q < 1, the

convergence rate of Algorithm 1 is as follows:

E

[

F
(

w̄(T )
)

− F (w∗)
]

≤
c.D2

ln(1/µG) + N.E + 1
2R + 3C∗

T 1−q
,

where,

w̄(T ) =

∑T
k=1 γ(k)w(k)

∑T
t=1 γ(t)

, C∗ = min
p

T
∑

k=1

Ep

[

c(k)(i)
]

,

R =
1

2

∥

∥

∥w(0) − w∗
∥

∥

∥

2

2
, and E =

T
∑

k=1

γ(k)

(

1

2k
+

1√
k

)

.

Moreover, c is a constant function of the convexity constants

and the step size and µG is the spectral norm of the transition

matrix defined in Section VII.

To better understand its significance, one must compare it

with other first-order random walk algorithms, such as uniform

node sampling. For all these algorithms, one can get a similar

bound as in Theorem 1 with the same constants (depending on

the data and graph topology, etc.). The only difference would

be in the term C∗ which is the cumulated variance of the

gradients corresponding to the optimal sampling strategy p∗.

Any other node sampling strategy p will lead to a higher cost
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C and a looser bound. Of course, here we are optimizing

the upper bound which we are taking as a proxy for the

actual performance. Our numerical results in Section VIII

substantiate our theoretical conclusions and show that our

proposed algorithm outperform other baselines.

VII. PROOF OUTLINE

We outline here the different steps needed to establish the

result in Theorem 1. The details can be found in the Appendix.

First, we state the results on the regret rate of the sleeping

multi-armed bandit selection scheme used in Algorithm 1.

Furthermore, we show that the multi-armed bandit random

walk is strongly ergodic which is an essential assumption for

the convergence of our algorithm.

Lemma 2 (Regret Rate of Sleeping Multi-Armed Bandit

Sampler): Let C∗ = minp

∑T
k=1 E

[

c(k)(i)
]

is the minimal

cost if the optimal transition scheme is known. Under

algorithm 1, The multi-armed bandit sleeping algorithm

approximates the optimal cost asymptotically as follows

lim
T→∞

1

T

(

T
∑

k=1

E

[

c(k)(i(k))
]

− 3C∗

)

≤ 0,

The proof follows the multiplicative weight approach for

EXP3 algorithms introduced in [18].

Next, we state the definition on Strongly Ergodic Non-

Homogeneous Random Walk [51]. The sleeping multi-armed

bandit algorithm guarantees that this property applies on the

sequence of employed transition, which in the end guarantees

the convergence stated in Theorem 1.

Definition 2 (Strongly Ergodic Non-Homogeneous Random

Walk [51]): We denote by p(k)(i) the probability distribution

to select the node i to be active at round k. We denote

by P (k) the transition matrix at time k. Therefore, we have

P (k)(i, j) > 0 if j ∼ i and P (k)(i, j) = 0 otherwise.

Moreover, we have p(k) = p(0)P (1) . . . P (k) and p(m,k) =
p(0)P (m+1) . . . P (k). A non-homogeneous random walk, with

uniform starting distribution p(0), is called strongly ergodic if

there exists a vector p∗ such that for all m ≥ 0,

lim
k→∞

∥

∥

∥p(m,k) − p∗
∥

∥

∥ = 0.

Lastly, we present the result on the rate of convergence of

the transition probability distribution.

Proposition 3 (Convergence Non-Homogeneous Strongly

Ergodic Random Walk):

The non-homogeneous random walk in Algorithm 1 is

strongly ergodic. Thus, it exists a stochastic matrix P such

that limk→∞
∥

∥P (k) − P
∥

∥ = 0. Moreover, it exists a stochastic

matrix Q such that
∥

∥P k − Q
∥

∥ ≤ cβk
2 , where β1 = 1 > β2 ≥

. . . ≥ βN are the eigenvalues of the matrix P . Moreover,

it exists a function g(k) = O(
√

k) such that

limk→∞ min
{

1/µk
G , g (k)

}∥

∥P (0, k) − Q
∥

∥ = 0, where

1 < 1/µG <
√

1/β2.

VIII. SIMULATIONS

In this section, we present the numerical performance of

our proposed Multi-Armed Bandit Random Walk (RW) SGD

algorithm described in Algorithm 1.

A. Baseline Algorithms

We compare the performance of our algorithm to three

baselines, namely: (1) Uniform Random Walk, (2) Static

Weighted Random Walk, and (3) Adaptive Weighted Random

Walk.

1) The Uniform Random Walk: This algorithm assigns

equal importance to all nodes in the network [20] imitating

uniform sampling in centralized SGD. We implement the

Metropolis Hasting (MH) decision rule to design the transition

probabilities, so the random walk converges to a uniform

stationary. The MH rule can be described as follows:
1) At the kth step of the random walk, the active node i(k)

selects uniformly at random one of its neighbors, say j,

as a candidate to be the next active node. This selection

gets accepted with probability

au

(

i(k), j
)

= min

(

1,
deg

(

i(k)
)

deg (j)

)

.

Upon the acceptance, we have i(k+1) = j.

2) Otherwise, if the candidate node gets rejected, the

random walk stays at the same node, i.e., i(k+1) = i(k).

2) Static Weighted Random Walk: This algorithm assigns

a static importance metric to each node that is proportional

to the gradient-Lipschitz constant of the local loss function

[45], [52]. The random walk is designed by the MH again

with a stationary distribution that is proportional to the

local gradient-Lipschitz constants. In order to achieve that

stationary, the probability of acceptance looks as follows:

aw

(

i(k), j
)

= min

(

1,
Lj

Li(k)

deg
(

i(k)
)

deg (j)

)

. (11)

3) Adaptive Weighted Random Walk: In this algorithm,

we adapted the importance sampling scheme that is used

in [41] and [43] for centralized settings. The importance

is computed for each node i as the average of of

gradients computed so far at that node which is at time k,
∑k

t=1:i(t)=i
∥∇̂Fi(w(t))∥2

2

ni,k
, for ni,k is the total number of rounds

when node i has been active up to k. We call it the pure

Exploitation scheme.

B. Datasets and Comparison

Our simulations are run on both synthetic dataset and on

real benchmarks to confirm our theoretical results. They show

that a bandit based random walk in decentralized learning

consistently outperforms existing random walk baselines that

uses static or exploitation based importance estimation.

1) Synthetic Data: For each node i, we sample the dataset

Di from a a normal distribution with N ([µi,1, µi,2], σI2).
We assigned manually a label to each node dataset such that

half the nodes has the label yi = 1 and the other half has the

yi = −1. We run our simulations on an Expander graph which

known to be sparse (The Margulis-Gabber-Galil graph).2

2We call the generator function of the Python library NetworkX v2.8 [53].
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Fig. 3. Classification model trained on a Synthetic dataset distributed over
an Expander graph of 100 nodes.

Fig. 4. Classification model trained on the Synthetic dataset. The same dataset
is been distributed over a Expander graph of size 100 nodes and 200 nodes.

TABLE II

NUMBER OF ROUNDS TO REACH 0.45 TEST ACCURACY FORLOGISTIC

REGRESSION ON MNIST AS WE VARY THE LEVEL OF SIMILARITY.
BANDIT RW SGD IS CONSISTENTLY FASTER THAN

UNIFORM RW SGD

2) MNIST Dataset and Fashion-MNIST: We run experi-

ments on the MNIST dataset and the Fashion-MNIST to train

a multi-class logistic regression model. We divide the data

among the nodes as follows: for a level s% of similarity, each

client has s% of its local dataset drawn i.i.d. from a shared

pool of data. Another non-public pool of the data is sorted with

respect to label and partitioned into non-overlapping chunks.

Each node is assigned a different chunk that consists of its

remaining (100 − s) % data [31].

Table II and Table IV report the results for different level of

similarity from fully homogeneous to fully heterogeneous to

highlight how different similarity levels affect the convergence

of our algorithm vs. the oblivious uniform algorithm. Table II

is on the MNIST dataset. The gap between both algorithms

becomes wider once the system turns more heterogeneous.

Table IV is on the Fashion-MNIST dataset. The gap between

both algorithms becomes more significant as the system turns

into more heterogeneous state.3

To elaborate on how our algorithm performs given the

graph structure, we consider multiple scenarios of simulations

where we use an Erdos-Renyi with different probabilities of

3The fact that the ratio between the number of iterations of the two
algorithms is constant (roughly 2) is an artifact of the data and is not
reproducible for other datasets. See for example Table IV which is on
the Fashion-MNIST dataset that shows an increasing ratio with decreasing
similarity.

Fig. 5. Classification model trained on the Synthetic dataset. The local dataset
size has been augmented from 20 to 200 in a Expander graph of size 100.

Fig. 6. Multi-class MNIST dataset of 10 classes distributed over 100 nodes
with 0% similarity on Expander graph.

TABLE III

NUMBER OF ROUNDS TO REACH 0.45 TEST ACCURACY FORLOGISTIC

REGRESSION ON FMNIST AS WE VARY THE LEVEL OF SIMILARITY.
BANDIT RW SGD IS CONSISTENTLY FASTER

THAN UNIFORM RW SGD

TABLE IV

NUMBER OF ROUNDS TO REACH 0.75 TEST ACCURACY FORLOGISTIC

REGRESSION ON FMNIST FOR COMPLETE AND INCOMPLETE GRAPHS

FOR 0% SIMILARITY. BANDIT RW SGD IS CONSISTENTLY FASTER

THAN UNIFORM RW SGD

TABLE V

NUMBER OF ROUNDS TO REACH 0.45 TEST ACCURACY FORLOGISTIC

REGRESSION ON MNIST AS WE VARY THE GRAPH CONNECTIVITY

PARAMETER. BANDIT RW SGD IS CONSISTENTLY FASTER THAN

UNIFORM RW SGD. AS WE DECREASE THE PROBABILITY

OFCONNECTIVITY, THE INCREASE IN THE NUMBER

OF ROUNDS IS LESS SIGNIFICANT FOR

THE BANDIT ALGORITHM

connectivity that go from sparser to denser. Table V measures

the performance given the probability of connectivity in the

graph.
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APPENDIX

C. Optimal Sampling

Here is a sketched proof on the optimal sampling to

minimize the gradient variance in the full information

setting [41]. Consider the optimization problem in hand which

can be formulated as follows:

min
∑

i∈[N ]

g
(k)
i

(

w(k)
)

p(k) (i)
,

such that p(k) (i) ∈ (0, 1)∀ i, and
∑

i

p(k) (i) = 1.

The optimality conditions of the Lagrangian expression of the

problem above gives the following:

−g
(k)
i

(

w(k)
)

(p(k) (i))2
+ η = 0 and

∑

i

p(k) (i) = 1,

where η is the Lagrange multiplier. Thus, by a simple algebraic

manipulation, we get p(k) (i) =

√

g
(k)
i (w(k))

∑

j

√

g
(k)
j (w(k))

.

D. Connection to the Heterogeneity Definition

The cost function in Equation (8) that we chose for our

multi-armed bandit is an upper bound on the heterogeneity

Ei

[

∥∇Fi (w)∥2
2

]

defined in Definition 1. Below we clarify

this connection:

Assume Fi for any i ∈ [N ] are convex and L-smooth, then

we have

Ei

[

∥∇Fi (w)∥2
2

]

=
1

N

N
∑

i=1

∥∇Fi (w)∥2
2

≤ 2

N

N
∑

i=1

∥∇Fi (w∗)∥2
2 +

2

N

N
∑

i=1

∥∇Fi (w) −∇Fi (w∗)∥2
2

(a)

≤ 2

N

N
∑

i=1

∥∇Fi (w∗)∥2
2 + 4L (F (w) − F (w∗)) .

(a) follows from Theorem 2.1.5 in [54].

Now taking w = w(T ) in the upper bound above, the

term
(

F
(

w(T )
)

− F
(

w(∗))) depends on the cost which is

the accumulated variance of the gradients at the sequence of

selected nodes up to time T , as shown in Equation (6).

Definition 3: The local loss function Fi for each node

i ∈ V has an Li-Lipschitz continuous gradient; that is, any

w, w′ ∈ W , there exists a constant Li > 0 such that

∥∇fi (w) −∇fi (w′)∥2 ≤ Li ∥w − w′∥2 .
Lemma 4: Under assumptions 1, 2 and 3, the Random

Walk SGD algorithm, that uses the update in equation 3 for

transition matrix P , has the following rate of convergence.

E

[

F
(

w(T )
)

− F (w∗)
]

≤ O





(

T
∑

k=1

γ(k)

)−1 T
∑

k=1

E

[

∥

∥

∥∇̂Fi(k)

(

w(k)
)∥

∥

∥

2

2

]



 .

In order to prove Lemma 4 and Theorem 1, we present

some technical results that we use in the proof. The proof

techniques are essentially inspired by the work of [24] and

they are adapted to the assumptions and setting of this work.

Lemma 5 (Convexity and Lipschitzness): If Fi is a convex

function on an open subset Ω ⊆ R, then for a closed bounded

subset W ⊂ Ω, there exists a constant Di ≥ 0, such that, for

any w1, w2 ∈ W ,

|Fi (w1) − Fi (w2)| ≤ Di ∥w1 − w2∥2 .

We define D = sup
i∈V

Di. Therefore,

|Fi (w1) − Fi (w2)| ≤ D ∥w1 − w2∥2 .

A proof for Lemma 5 can be found in [55].

Corollary 1 (Boundedness of the Gradient): If Fi is a con-

vex function on R, then for a closed bounded subset W ⊂ R,

∥∇Fi(w)∥2 ≤ D, ∀w ∈ W.
Proof: Taking v = w + ∇Fi(w),

D ∥∇Fi(w)∥2 = D ∥v − w∥2

(a)

≥ |Fi(v) − Fi(w)|
(b)

≥ ⟨∇Fi (w) ,∇Fi (w)⟩
= ∥∇Fi(w)∥2

2 .

(a) follows Lemma 5 and (b) follows from Fi being convex.

Now, we present the steps of the the proof:

∥

∥

∥w(k+1) − w∗
∥

∥

∥

2

2

=
∥

∥

∥ΠW

(

w(k) − γ(k)∇̂Fi(k)

(

w(k)
))

− ΠWF (w∗)
∥

∥

∥

2

2

(a)

≤
∥

∥

∥w(k) − γ(k)∇̂Fi(k)

(

w(k)
)

− w∗
∥

∥

∥

2

2

=
∥

∥

∥w(k) − w∗
∥

∥

∥

2

2
− 2γ(k)

〈

w(k) − w∗, ∇̂Fi(k)

(

w(k)
)〉

+
(

γ(k)
)

2
∥

∥

∥∇̂Fi(k)

(

w(k)
)∥

∥

∥

2

2

(a) follows from W being a convex closed set, so one can

apply nonexpansivity theorem in [55].

For the next we use the convexity of Fi,

∥

∥

∥w(k+1) − w∗
∥

∥

∥

2

2

≤
∥

∥

∥w(k) − w∗
∥

∥

∥

2

2
− 2γ(k)

(

Fi(k)

(

w(k)
)

− Fi(k) (w∗)
)

+(γ(k))
∥

∥

∥∇̂Fi(k)

(

w(k)
)∥

∥

∥

2

2
. (12)

Re-arranging the above equation gives

γ(k)
(

Fi(k)

(

w(k)
)

− Fi(k) (w∗)
)

≤ 1

2

(

∥

∥

∥w(k) − w∗
∥

∥

∥

2

2
−
∥

∥

∥w(k+1) − w∗
∥

∥

∥

2

2

)

+
(γ(k))

2

2

∥

∥

∥∇̂Fi(k)

(

w(k)
)∥

∥

∥

2

2
. (13)

Authorized licensed use limited to: New York University AbuDhabi Campus. Downloaded on April 22,2023 at 06:37:28 UTC from IEEE Xplore.  Restrictions apply. 



938 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 4, APRIL 2023

Summing (13) over k and using Assumption and the

boundness of W ,

∑

k
γ(k)

(

Fi(k)

(

w(k)
)

− Fi(k) (w∗)
)

≤ 1

2

∥

∥

∥w(0)−w∗
∥

∥

∥

2

2
+
∑

k
(γ(k))

2
∥

∥

∥∇Fi(k)

(

w(k)
)∥

∥

∥

2

2
. (14)

Next we give some results we need on the Markov chain.

We denote by µ the stationary distribution, P is the transition

matrix and P k is the kth power of matrix P. We refer to ith

row of a matrix P by P (i, :).

Lemma 6 (Convergence of Markov Chain [56]): Assume

the graph G is connected with self-loop, therefore a random

walk is aperiodic and irreducible, we have

max
i

∥

∥µ − P k (i, :)
∥

∥ ≤ Cλ
(k)
P

for k > Kp, where KP is a constant that depends and λP

and λ2(P ) and C is a constant that depends on the Jordan

canonical form of P .

Corollary 2: Using the previous lemma, we get

max
i

∥

∥µ − PTk (i, :)
∥

∥ ≤ CλTk

P ≤ 1

2k

for T (k) = min{k, max{ ln(2Ck)
ln(1/λP ) , KP }}.

Here, we state the next corollary on the convergence of the

random walk.

γ(k)
E

[

Fj(k)

(

w(k−T (k))
)

− Fj(k)

(

w(k)
)]

(a)

≤ Dγ(k)
E

∥

∥

∥w(k−T (k)) − w(k)
∥

∥

∥

(b)

≤ Dγ(k)
E





k−1
∑

n=k−T (k)

∥

∥

∥w(n+1) − w(n)
∥

∥

∥





(c)

≤ Dγ(k)
k−1
∑

n=k−T (k)

E

(∥

∥

∥
w(n+1) − w(n)

∥

∥

∥

)

(d)

≤ D2γ(k)
k−1
∑

n=k−T (k)

γ(n)

(e)

≤ D2

2

k−1
∑

n=k−T (k)

(

(γ(n))
2

+ (γ(k))
2
)

≤ D2

2
T (k)(γ(k))

2
+

D2

2

k−1
∑

n=k−Tk

(γ(n))
2
.

(a) follows from Lemma 5, (b) using triangle inequality,

(c) using linearity of expectation and (d) follows from the

Cauchy±Schwarz inequality.

Now taking the summation over k:

∑

k

γ(k)
E

[

Fj(k)

(

w(k−T (k))
)

− Fj(k)

(

w(k)
)]

≤
∑

k

D2

2
Tk(γ(k))

2
+

D2

2

∑

k

k−1
∑

n=k−Tk

(γ(n))
2
.

By simply using the assumption on the step size summability,

the result is as follows:

∞
∑

k=K

k−1
∑

n=k−T (k)

(

γ(n)
)2

≤
∞
∑

k=K

T (k)
(

γ(k)
)2

≤ 2

ln (1/λP )

∞
∑

k=K

ln k.
(

γ(k)
)2

< ∞. (15)

Now, we compute the following lower bound:

Ej(k)

[

Fj(k)

(

w(k−T (k))
)

−Fj(k) (w∗) |X0, X1, . . . , Xk−T (k)

]

=

N
∑

i=1

(

Fi

(

w(k−T (k))
)

− Fi (w∗)
)

×P
(

j(k) = i |X0, X1, . . . , Xk−T (k)

)

(a)
=

N
∑

i=1

(

Fi

(

w(k−T (k))
)

− Fi (w∗)
)

×P
(

j(k) = i |Xk−T (k)

)

=
N
∑

i=1

(

Fi

(

w(k−T (k))
)

− Fi (w∗)
)

×PT (k)
[

Xk−T (k) | j(k) = i
]

(b)

≥
(

F
(

w(k−T (k))
)

− F (w∗)
)

− N

2k
. (16)

(a) using Markov property and (b) using Lemma 2 in [23].

Therefore,

F
(

w(k−T (k))
)

− F (w∗)

≤ N

2k
+ Ej(k)

[

Fj(k)

(

w(k−T (k))
)

− Fj(k) (w∗) |

×X0, . . . , Xk−T (k)

]

Taking the total expectation, we have

γ(k)
E

[

F
(

w(k−T (k))
)

− F (w∗)
]

≤ Nγ(k)

2k
+ γ(k)

E

[

Fj(k)

(

w(k−T (k))
)

− Fj(k)

(

w∗)
)]

Rearranging the equation above, we get:

∑

k

γ(k)
E

[

F
(

w(k−T (k))
)

− F (w∗)
]

≤
∑

k

Nγ(k)

2k
+
∑

k

γ(k)
E

[

Fj(k)

(

w(k−T (k))
)

−Fj(k)

(

w∗)
)]

≤
∑

k

Nγ(k)

2k
+

1

2

∥

∥

∥w(0) − w∗
∥

∥

∥

2

2

+
∑

k
(γ(k))

2
E

[

∥∇Fi(k) (w∗)∥2
2

]
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Next, we get a bound on

∑

k

γ(k)
E

[

F
(

w(k)
)

− F
(

w(k−T (k))
)]

.

γ(k)
E

[

F
(

w(k)
)

− F
(

w(k−Tk)
)]

(a)

≤ NDγ(k)
E

∥

∥

∥w(k) − w(k−Tk)
∥

∥

∥

(b)

≤ NDγ(k)
E

(

k−1
∑

n=k−Tk

∥

∥

∥w(n+1) − w(n)
∥

∥

∥

)

(c)

≤ NDγ(k)
k−1
∑

n=k−Tk

E

(∥

∥

∥w(n+1) − w(n)
∥

∥

∥

)

(d)

≤ ND2γ(k)
k−1
∑

n=k−Tk

γ(n)

(e)

≤ ND2

2

k−1
∑

n=k−Tk

(

(γ(n))
2

+ (γ(k))
2
)

≤ ND2

2
Tk(γ(k))

2
+

ND2

2

k−1
∑

n=k−Tk

(γ(n))
2
. (17)

(a) follows from Lemma 4, (b) using triangle inequality,

(c) using linearity of expectation, (d) follows Corollary 1 and

(e) follows from the Cauchy±Schwarz inequality. The upper

bound summability over k follows from previous discussion

in equation (15).

Combining with the results in (14) and (15), we get

E

[

F
(

w(k)
)

− F (w∗)
]

≤
∑T

k=1
Nγ(k)

2k + C.D2

ln(1/λP ) + 1
2

∥

∥w(0) − w∗∥
∥

2

2
∑T

k=1 γ(k)

+

(γ(0))
2∑T

k=1 E

[

∥

∥

∥∇̂Fi(k)

(

w(k)
)

∥

∥

∥

2

2

]

∑T
k=1 γ(k)

.

By this step we proved Lemma 4. Next we present the

essential technical results to use in the proof of Theorem 1.

Proposition 7: [Sleeping multi-armed bandit

convergence [33]] The sleeping multi-armed bandit

sampling scheme under adversarial availability guarantees

the following:
∥

∥P (k) − P
∥

∥ ≤ O( 1√
k
). Therefore, using

Definition 1, the random walk with transition matrices P (k)

is strongly ergodic.

We state next Lemma of [51] about the convergence of

strongly ergodic random walk.

Lemma 8 (Theorem II.7 in [51]): Given strongly ergodic

non-homogenous transition matrices P (k) with a stochastic

matrix P such that limk→∞ g(2k)
∥

∥P (k) − P
∥

∥ = 0,

given Q such
∥

∥P k − Q
∥

∥ ≤ cβk
2 , then

limk→∞ min
{

(1/µ)k, g (k)
}∥

∥P (0, k) − Q
∥

∥ = 0, where

1 < 1/µ <
√

1/β2.
Using the previous lemma, we get

max
i

∥

∥

∥
µ − P (0, Tk) (i, :)

∥

∥

∥
≤ O

(

1

2k
+

1√
k

)

(18)

for Tk = min
{

k, max
{

ln(2Ck)
ln(1/λ) , KP

}}

. Therefore,

Ej(k)

[

Fj(k)

(

w(k−T (k))
)

−Fj(k) (w∗) |X0, X1, . . . , Xk−T (k)

]

=
N
∑

i=1

(

Fi

(

w(k−T (k))
)

− Fi (w∗)
)

×P
(

j(k) = i |X0, X1, . . . , Xk−T (k)

)

=

N
∑

i=1

(

Fi

(

w(k−T (k))
)

− Fi (w∗)
)

P
(

j(k) = i |Xk−T (k)

)

=

N
∑

i=1

(

Fi

(

w(k−T (k))
)

− Fi (w∗)
)

×P (0,T (k))
[

Xk−T (k) | j(k) = i
]

≥
(

F
(

w(k−T (k))
)

− F (w∗)
)

− N

2k
− cte.N√

k
. (19)

Finally,

T
∑

k=1

γ(k)
E

[

F
(

w(k)
)

− F (w∗)
]

≤
T
∑

k=1

Nγ(k)

(

1

2k
+

cte√
k

)

+
C.D2

ln (1/λ)

+
1

2

∥

∥

∥w(0) − w∗
∥

∥

∥

2

2
+

T
∑

k=1

(γ(k))
2
E

[

∥

∥

∥∇̂Fi(k)

(

w(k)
)∥

∥

∥

2

2

]

.

Using previous results and the the convexity assumption,

we get

E

[

F
(

w(k)
)

− F (w∗)
]

≤
∑T

k=1 Nγ(k)
(

1
2k + cte√

k

)

+ C.D2

ln(1/λ) + 1
2

∥

∥w(0) − w∗∥
∥

2

2
∑T

k=1 γ(k)

+
(γ(0))

2
C∗

∑T
k=1 γ(k)

.

Employing the assumptions on the step size and the gradient

boundness in Corollary 1, we get an order of convergence

O(T 1−q) for a step size choice γ(k) = 1
kq where 1

2 < q < 1.
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