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Walk for Learning: A Random Walk Approach for
Federated Learning From Heterogeneous Data

Ghadir Ayache™, Member, IEEE, Venkat Dassari, and Salim El Rouayheb

Abstract— We consider the problem of a Parameter Server
(PS) that wishes to learn a model that fits data distributed on
the nodes of a graph. We focus on Federated Learning (FL)
as a canonical application. One of the main challenges of FL
is the communication bottleneck between the nodes and the
parameter server. A popular solution in the literature is to allow
each node to do several local updates on the model in each
iteration before sending it back to the PS. While this mitigates
the communication bottleneck, the statistical heterogeneity of
the data owned by the different nodes has proven to delay
convergence and bias the model. In this work, we study random
walk (RW) learning algorithms for tackling the communication
and data heterogeneity problems. The main idea is to leverage
available direct connections among the nodes themselves, which
are typically “cheaper” than the communication to the PS. In a
random walk, the model is thought of as a ‘“baton” that is passed
from a node to one of its neighbors after being updated in
each iteration. The challenge in designing the RW is the data
hetErogeneity and the uncertainty about the data distributions.
Ideally, we would want to visit more often nodes that hold more
informative data. We cast this problem as a sleeping multi-
armed bandit (MAB) to design near-optimal node sampling
strategy that achieves a variance reduced gradient estimates and
approaches sub-linearly the optimal sampling strategy. Based on
this framework, we present an adaptive random walk learning
algorithm. We provide theoretical guarantees on its convergence.
Our numerical results validate our theoretical findings and show
that our algorithm outperforms existing random walk algorithms.

Index Terms— Decentralized learning, distributed learning,
random walk, incremental algorithms, multi-armed bandit.

I. INTRODUCTION

A. Overview and Motivation

ISTRIBUTED Machine Learning has proven to be
an important framework for training machine learning
models without moving the available data from its local
devices, which ensures privacy and scalability. Federated
Learning (FL) has risen to be one of the main applications [1],

Manuscript received 17 April 2022; revised 5 September 2022;
accepted 30 November 2022. Date of publication 14 February 2023; date
of current version 17 March 2023. This work was supported in part by the
Army Research Laboratory (ARL) under Grant W911NF-21-2-0272 and in
part by the National Science Foundation (NSF) under Grant CNS-2148182.
(Corresponding author: Ghadir Ayache.)

Ghadir Ayache and Salim El Rouayheb are with the Electrical and Computer
Engineering Department, Rutgers University, Piscataway, NJ 08854 USA
(e-mail: ghadir.ayache@rutgers.edu).

Venkat Dassari is with the U.S. Army Research Laboratory, White Oak,
MD 20783 USA.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSAC.2023.3244250.

Digital Object Identifier 10.1109/JSAC.2023.3244250

\\\' Parameter Server

D Node

Communication Link

-
—]
- Local Dataset

Fig. 1. Distributed Learning on Graph through local computations at the
graph’s nodes and through local communication between the connected nodes.

[2], [3] that has been attracting significant research attention
and has been deployed in real-world systems with millions
of uses [2]. Other applications include learning in IoT
networks [4], smart cities and healthcare [5], [6]. To see how
a typical learning algorithm works in this setting, consider
the FL setting in Fig 1. There is as Parameter Server (PS)
(typically sitting in the cloud) and a number of nodes (phones,
IoT-devices, smart sensors, etc.) each having its own local data.
The PS wishes to learn a global model on all the data without
moving the data away from its original owner. The algorithm
would work in a batch SGD fashion. In each iteration, the
PS samples a batch of nodes and sends the current model to
it. Each node in this batch will update the model based on its
local data and sends back its updated model to the PS. The PS
then aggregates all the received models and starts over again.

1) Locality vs. Heterogenity: One of the main bottlenecks
here is the communication with the parameter server (PS)
needed in each iteration to aggregate the updates sent by
the nodes and to coordinate the learning process. A popular
solution is to reduce the communication cost with the PS is
to let each node perform several local model updates on its
data before reporting back to the PS [7]. However, the local
computations may induce local biases to the model and slow
the convergence of the learning algorithm. This is due to the
data that is heterogeneous across the different nodes, which
imposes an inconsistency between the local and the global
objectives [8], [9].

2) Random Walks: We propose Random Walks (RW) as a
way to simultaneously achieve two seemingly opposing goals:
extending the benefits of locality and mitigating the drawbacks
of data heterogeneity. The idea being that instead of restricting
local computations to the node itself, they can be extended
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Fig. 2. Random Walk (RW) on the graph: the updated model w®) s
transmitted at time k. The self-loops at kK = 3 and k£ = 9, indicate that
the RW algorithm decided to make a second update at the same node. The
model is reported back to the PS on a regular basis.
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to its neighboring nodes. This is achieved by leveraging
existing local connections among the nodes themselves,
which are typically cheaper than communication to the
PS [10], [11], [12]. We represent the local connections
by a graph structure where each node is connected to a
subset of other neighboring nodes. Thus, each node can
exchange information with its neighbors and, through these
local communications, information can propagate through the
whole network. This setting can arise in mobile and edge
networks, [oT applications and ad-hoc networks, to name a
few.

In our proposed framework, the learning algorithm will
run as a random walk where in each iteration the model
gets updated at one of the nodes and then passed to one
of its neighbors to take over the next update, as shown in
Figure 2. The model is then passed to the PS on a regular
basis and/or depending on the network resources to mitigate
the communication cost to the PS.

Random walk learning algorithms have been well studied in
the literature on optimization [13], [14], wireless networks [15]
and signal processing [16]. What distinguishes this work is
that it tackles the problem of designing random walk learning
algorithms in the presence of arbitrary data heterogeneity
across the nodes. Our main contribution is a random walk
algorithm that, along with updating the model, it learns
and adapts to the different nodes’ distributions by carefully
combining exploration and exploitation. Our main tool is the
theory of Multi-Armed Bandit (MAB).

3) Random Walk via Multi-Armed Bandit: Typically, the
distributions of the local data at each node are not known
a priori. Therefore, we want to devise a random walk strategy
that overcomes data heterogeneity by learning about the local
data distributions along the way. The goal is to minimize the
variance of the global objective gradient estimates computed
locally by adjusting the nodes’ sampling strategy. More
specifically, at each iteration k, one has to design the
probabilities with which the next node in the RW is chosen
among the neighboring nodes. Note that these probabilities
will depend on k to adapt to the information learned so far,
leading to a time-varying RW. Therefore, the random walk will
start with an exploration phase before gradually transitioning

into an exploitation phase, once more robust estimates about
the nodes’ data are obtained.

We design the RW by casting our problem as Mulit-
Armed bandit. The multi-armed bandit (MAB) is a
learning framework to decide optimally under uncertainty
[17], [18], [19]. It features N arms with unknown random
costs (negative rewards). At each iteration, one pulls. The
problem is to decide on which arm to pull each time so
that the accumulated cost, called regret, after playing 1" times
is minimized. Our solution is an algorithm that explores
the different arms and, in parallel, it exploits the collected
information so far, where it observes the outcome of playing
an arm and uses it to tune its expected reward estimate to
adjust future selections [17], [18]. In our distributed learning
setting, we model the node selection in the RW as arm pulling
in the MAB framework. At each iteration, the random walk
picks a node in graph to activate for the next update, observes
the update, and receives the local gradient as a cost.

Under this analogy, the performance of the learning
algorithm is measured by the regret, which is the difference
between the cost of a random walk with optimal transition
matrix when all the distributions are known, and the cost of
the nodes visited by the algorithm.

B. Contribution

In this paragraph, we summarize our contribution as

follows:

« In this work, we propose a distributed learning algorithm
to learn a model on the distributed data over the nodes
in a graph. Our algorithm selects the nodes to update the
model by an adaptive random walk on the network to
address the statistical heterogeneity of distributed data.

o We model the random walk transition design as a sleeping
multi-armed bandit problem to compete with the optimal
transition probabilities that mitigate the high variance in
the local gradients estimates.

e« We provide the theoretical guarantee on the rate of
convergence of our proposed algorithm approaching a
rate O(1/+/T). The rate depends on the graph spectral
property and the minimal gradient variance.

« Finally, we simulate our algorithm on real and synthetic
data, for different graph settings and heterogeneity levels
and show that it outperforms existing baseline random
walk designs.

C. Prior Work

1) Random Walk Learning: Several works have studied
random walk learning algorithms focusing on the convergence
under different sets of assumptions. The works of [14],
[20], and [21] established theoretical convergence guarantees
for uniform random walks for different convex problem
settings and using first-order methods. Later work [22]
employs more advanced stochastic updates based on gradient
tracking technique that uses Hessian information to accelerate
convergence. The work of [23] proposed to speed-up the
convergence by using non-reversible random walks. In [16],
the authors studied the convergence of random walks learning
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for the alternating direction method of multipliers (ADMM).
In [24], the paper proposes to improve the convergence
guarantees by designing a weighted random walk that accounts
for the importance of the local data to speed up convergence.
An asymptotic fundamental bound on the convergence rate
of these algorithms was proven by [25] and it approaches
O(1/Vk) under convexity and bounded-gradient assumptions.
From our MAB perspective, a common aspect of these
algorithms is that they are purely exploitative. They require
a priori information about the local data (e.g., gradient-
Lipschitz constants, bounds on the gradients) to design a non-
adaptive (time-invariant) random walk.

Random Walk algorithms belong to a more general class
of decentralized learning algorithms where no central entity,
such as a PS, is involved to handle the learning process. Gossip
algorithms are another class of decentralized algorithms that
are not based on random walks (see for e.g. [13], [26], [27],
[28]). In (synchronous) gossip algorithms, at each round,
each node updates and exchanges its local model with its
neighboring nodes. Hence, in each iteration, all the nodes and
all the links in the graph are activated. The goal of a Gossip
algorithm is to ensure that all nodes, and not just the PS, learn
the global model and assume convergence once a consensus
is reached. Hence, it is less efficient in terms of computations
and communication costs [24].

2) Data Heterogeneity: Recently, there has been lots of
work addressing the problem of data heterogeneity especially
in the FL literature. The data across the nodes is typically not
generated in an iid fashion. A local dataset tends to be more
personalized and biased towards its specific owner’s profile.
Therefore, multiple local updates on the global model can drift
the global objective optimization towards its local one. This
may slow down the convergence and can lead to converging
to a suboptimal model [9], [29]. Several measures have been
proposed in the literature to quantify statistical heterogeneity,
which refers to this local vs. global objectives’ inconsistency
in the distributed data. The focus has been on quantifying
the gap between the local update direction and the global
one [8], [29], [30], [31], [32]. The proposed solutions vary
between controlling the update direction [31] or the learning
objective [29].

3) Multi-Armed Bandit Sampler: The multi-armed bandit
(MAB) problem aims to devise optimal sampling strate-
gies by balancing together exploration and exploitation
[17], [18], [19], [33]. Results from MAB have been used in
problems related to standard SGD training in a non-distributed
settings [34], [35], [36], [37], [38]. The idea there is to use
an MAB sampler to select more often the data points that can
better guide the learning algorithm.

In the classical MAB setting there is no constraint on
which node to sample (visit) at a given time (which arm to
pull in the MAB language). However, in our case, we are
restricted by the graph topology, so only neighboring nodes
can be visited. To account for this constraint, we cast
our problem as Sleeping Multi-Armed Bandit in which
nodes that are not neighbors of the current nodes are
assumed to be sleeping (not available) at the time of the
sampling. The Sleeping MAB literature has studied various

assumptions on sleeping reliance: independent availabilities,
general availabilities, and adversarial availabilities. The lower
bound on the regret is known to be Q(v/NT) if we consider
stochastic independent availabilities. For a harder sleeping-
MAB setting with adversarial availabilities, the lower bound
is Q(NVT) for N being the total number of nodes and T
being the total number of rounds [33], [39], [40]. In our
work, we model the RW design problem as dependent
availabilities Sleeping MAB learning algorithm [40]. For the
proof technicality, we use a harder upper bound on the

A related line of work is the work on importance sampling
which can be thought of as a pure exploitation scheme with
no exploration. The literature has studied different aspects
of importance sampling using prior information on the local
datasets (e.g., [41], [42], [43], [44]). For instance, in [45], the
paper proposes to sample proportionally to the smoothness
bounds of the local objectives. While the scheme in [41]
suggests to select the data points based on the bounds of the
gradients of the local objectives.

D. Organization

The rest of the paper is organized as follows. We present
the problem setup in Section II. In Section III, we present
the detailed random walk learning algorithm. In Section IV,
we provide the optimal sampling scheme and its theoretical
motivation. In Section V, we outline the analogy between
the RW design problem and the sleeping MAB problem.
In Section VI, we present the MAB RW learning algorithm and
the main theorem on its convergence. Moreover, we provide
the technical definitions and assumptions used into the main
theorem proof in Section VII. Finally, we provide numerical
results on the convergence of our proposed algorithm in
Section VIII. The full proofs of the technical results are
deferred to the appendices.

II. SETUP
A. Network Model

We represent a network of N nodes by an undirected graph
G(V, E) with V.= {1, ..., N} being the set of nodes and
E being the set of edges such that £ = {(,5) € V x
V, if i is connected to j}. Since the graph is undirected, then
V(i,j) € E, we have (j,i) € E. Any two connected nodes i
and j are called neighbor nodes and we denote it by 7 ~ j.
Moreover, we assume that all the nodes have self-loops, thus,
Vi, (i,1) € E.

B. Data Model

We  assume that every node ¢ owns a
dataset D; of size n such that D, =
{5,'7]' = (i, yij) ERT*xR for je[n]}, which is

sampled from an unknown local distribution IT;.

C. Learning Objective

Our goal is to minimize a global objective function F'(w)
where w € W Cc R%, W being the feasible set assumed to be
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closed and bounded. The objective function F'(.) represents
the empirical mean of local losses on the distributed data over
the graph of N nodes. Therefore, we are looking to solve the
following problem:

. 1
5}%1‘51\}{}7(11)) = N;FZ (w)},

where the function F; is the local objective at the node ¢ and
it is defined as

D

Fi (w) = Eg, [F; (w; &)] for & ~ II,. 2

The optimal model is denoted by w* and defined as follows:

w* = arg min F(w).
wew

D. Data Heterogeneity

The data distributions across the nodes of the network are
assumed to be arbitrary. Therefore, when a node performs a
local update on the global model it may bias it by its local
dataset that may not be a good representative of the global
learning objective. Multiple definitions have been recently
proposed to quantify the degree of local heterogeneity in
distributed systems [9], [29], [30], [32]. These definitions
focus on the variance of the local gradients with respect to
the global gradient at a given model w. In our work, we adopt
the definition used by [31] as stated below.

Definition 1 (Data Heterogeneity): The
F;s are (o, 0)-locally dissimilar at w if

local objectives

E: [IVE ()[3] < a2 +0? | VF ()3

for a« >0, 0 > 1, E; is the expectation over the nodes and
VF; (w) is the gradient at node i. For o« = 0 and 0 = 1,
we restore the homogeneous case.

This  definition is a  generalization of
definitions [29], [32].

other

E. Model Update

In distributed learning applications, the nodes are assumed
to operate on a limited computational budget as they tend to
be personal devices or hard-to-reach sensors.. Thus, we focus
in our analysis on first-order methods using stochastic gradient
descent.!

Thus, the model update at round & will be as follows

1 -
(k+1) k) _ ()~ F (k)
w HW (’LU Y p(k) (i(k))VFz(k) (U) )) , (3)

where v(k) is the step size, @Fi(k) (w(k)2 is an unbiased
estimate of the local gradient at node i*) computed on a
uniformly sampled data point from D;u), p¥)(i*)) is the
probability of picking node i*) at round k, and Iy is
the projection operator onto the feasible set V. For our
convergence analysis, we will need the following technical
assumptions.

'Our work is applicable to any iterative algorithm that uses an unbiased
descent update [46], [47], [48].

Assumption 1: For every node i € [N], the local loss
function F;(.) : W — R is differentiable and convex function
on the closed bounded domain V.

Assumption 2: The step size v\*) is decreasing and satisfies
the following

Z’y(k) =+o00 and Zln k.(fy(’“))2 <4o00. 4

Assﬁﬁé)tion 3 (Bounded Gch_lilent): There exits a constant
D such that, ¥Yi € [V] and Yw € W, we have
IV (w)]2 < D.

The last assumption is actually a result that follows from
the functions F;’s being convex on a closed bounded subset
W C R. A complementary proof can be found in [24].

III. RANDOM WALK ALGORITHM

Our objective is to design a random walk on the graph G
algorithm to learn the optimal model w*. The algorithm starts
uniformly at random at an initial node in the graph, say i(®),
with an initial model w(®) also sampled uniformly at random
from the feasible set W. Let i(%) be the node visited (active) at
the k%" round of the algorithm, & = 0,1, ...,7. At each round
k, the active node i(*) will receive the latest model update w(¥)
from a neighbor node i(k_l), that was active at the previous
round. Then, the model w*) is updated via a gradient descent
update using data sampled from the local dataset of node ().

The main question we are after is how to design the
transition probabilities defining the random walk, which
govern how the RW is sampling the nodes in the graph.
In addition to the explicit objective of learning the model,
the random walk will simultaneously learn information about
the heterogeneity of each node’s data. Therefore, as the
random walk progresses, it can adapt with the information
gained on the importance of a given node’s data to speed
up the convergence. For this reason, we allow the transition
probabilities of the random walk to adapt over time (algorithm
rounds). We denote by p(¥)(i) the probability distribution to
select the node 7 to be active at round k. We denote by P(*) the
transition matrix at time k. Therefore, we have P(¥) (i, j) >
0if j ~ i and P (i, j) = 0 otherwise. Moreover, we have
pF) = pO p) Pk and p(mk) = p0) pm+1)  p(k)

IV. NODE SAMPLING STRATEGY

We aim to design a sampling strategy that mitigates the
effect of heterogeneity on the performance of the learning
algorithm. Such strategy is constrained by an environment with
two essential properties to consider: 1) The node sampling is
restricted by the topology of the graph where the node to pick
next has to be connected to the current active node; 2) No
full information about the distributed heterogeneous data is
available except what has been learned in the rounds so far
and what can be shared among neighbor nodes.

In our algorithm, each node 7 is sampled (visited) with
probability p(*)(i) at round k. And the gradient is computed
on one data point sampled uniformly among the n local data
points at the visited node. A crucial quantity for our analysis is
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the second moment of the unbiased gradient estimate at round
k which is

e [Jore («*)[]
5w E )l o

This quantity affects the convergence rate of the Random Walk
SGD algorithm as we show in equation (6) (see the Appendix
for the details)

o((E) £

Thus, the second moment of the gradients’ updates imposes
a burden on the convergence, especially in heterogeneous data
settings where the diversity of the gradients is high. This
dependence on the second moment is a common property
of SGD based algorithms and has been well studied in
the literature. Variance reduction techniques via importance
sampling have been proposed to improve the convergence
guarantees [41], [42], [44], [45], [49].

Our goal is to design the node sampling strategy to approach
the optimal probability that minimizes the convergence
bound [41], [42], [45] given by

p™) (1) \/m, such that
ggk) (w(k)) = Z % Hsz (w(k)§fi,j)

‘2
i, €D; 2
Note that computing the gl(k) ’s is very costly since it requires
computing the gradients related to all the data points owned
by the node and its neighbors. Moreover, the ggk)’s need
to be re-computed at the new model w*) at each iteration.
Instead, we propose to estimate in each iteration the ggk)’s
using the already computed gradients for the update step in
(3). Therefore, at each iteration, the random walk has a double-
fold objective: (i) update the model in each iteration and (ii)
refine the estimates of the gz(k)’s by adjusting the RW level
of exploitation vs. exploration using tools from the theory of

sleeping multi-armed bandit.

R (@)} ) ©

V. SLEEPING BANDIT FOR RW NODE SAMPLING

The multi-armed bandit (MAB) problem [19], [50] is a
decision framework that features a set of /N arms, where each
arm i € [N] has an unknown cost ¢(*) (i) at round k. A player
selects a sequence of arms (%), i(1), .. up to the final round
T (also called called horizon) of the algorithm. The goal is to
design an arm selection strategy to minimize the accumulated
regret R(T') over the total number of rounds T':

R(T) = ZT: (IE [ ()] - min E [ (z‘)D G
k=1

The first term in the regret, E [¢(*) (i(¥))], is the average
cost of the arm selected by the player. The second term,

m[in]IE [¢®) (4)], is the “best” arm with the minimum cost
i€[N

TABLE I

OUR PROPOSED ANALOGY BETWEEN THE SLEEPING MAB
AND THE RANDOM WALK DESIGN PROBLEMS

[ MAB | RW Learning on Graph |

Arm Node

Action Select the next node in the RW

Cost Variance of the local gradient at the selected
node as shown in (8)

Regret Gap between the accumulated variance and
the minimal variance under the optimal transi-
tion probabilities in full information setting as
shown in (9)

that could have been selected were the costs known. The
expectation is taken over the selection strategy and the cost
randomness.

Our work is based on establishing an analogy between MAB
and RW. This allows us to use results from the vast literature
on MAB to design the RW in order to speed up the learning
process. To that end, we think of each node as an arm, and
visiting a node in the RW as selecting an arm in the MAB
problem. What is not clear in this analogy is what the cost
of visiting a node and updating the model is. Based on the
discussion in section IV and the the upper bound in (6),
minimizing the accumulated variance of the gradient serves
to tighten the convergence guarantees. Thus, we propose the
cost of visiting a node i, at a given round k in our Random
Walk algorithm, to be:

wo- ¥ Lo o
+,5€D;

However, this analogy between ‘“‘standard” MAB and RW
cannot be fully established here. That is because in MAB
any arm can be selected at any time. Whereas in RW only
neighboring nodes can be visited in each iteration. To take
into account the graph topology, we consider a variant of the
standard MAB called sleeping MAB, where in each iteration
only a subset or arms is available (the rest are sleeping)
[33], [39], [40]. Moreover, the available nodes to select from
are the ones that are connected to the currently visited node.
In Table I, we summarise this analogy between MAB and RW.

Within this sleeping multi-armed bandit framework, our
goal is to minimize the regret given the available arms and
approach the best node sampling strategy denoted by 7 :

2Nl — [N], which is a mapping from a set of available arms
N to a selected arm. The goal is to minimize the following
regret

R (T
k

)
> (5[0 ()] -m e ()]

where the cost ¢(®) is defined in (8), the expectation is taken
w.r.t. the availabilities and the randomness of the player’s
strategy, and NV (*) is the set of available nodes at time k
which consists of the neighbors of the currently visited node.
Therefore, the regret function is defined as the gap between
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Algorithm 1 Sleeping MAB Random Walk SGD
1: Input: Exploration parameter A(*). Learning parameter
n= lOgN . Horizon T. Graph G(E, V).

2: Initiallzatlon. Initial control weight ¢(?) (i) = 1 Vi € [N],
Initial model w(®) chosen uniformly at random from W.
Starter node (%) chosen uniformly at random from [N].

3: for k=1to T do

. Compute P® (=1 §)
N (ih=D) and PK) (4 (k=) ,4) = 0 otherwise.

5. Choose a neighbor node i ~ P (=1 ),
Choose ¢&;,; uniformly at random from DM) and
compute V Fj) (w®).

7. Compute the cost estimate cl(»k).

8:  Update the model using the SGD update in (3).

9:  Update the control weight ¢(*)(i(*)) using (10).

10: end for

g @) Vi€

the local variance of the local gradient estimate implied by the
our selection strategy and the minimal variance that requires
full information about the local datasets.

In [33], [39], and [19], it was shown that one can achieve
a sublinear regret O(v/T) for sleeping MAB and it is
asymptotically optimal. This is achieved by applying the EXP3
algorithm. Initially, the algorithm assigns equal importance to
all arms. Then, at every round, the player receives the subset
of non-sleeping arms, selects one among them, and observes
the outcome of the chosen arm. The player then updates its
cost estimation and keeps track of the empirical probability
of the appearance of a given arm in the non-sleeping set.
The goal of the player is to balance between exploration and
exploitation and gradually shifts to exploitation as the costs
estimates become more robust after playing enough rounds.

The multi-armed bandit modeling implies an
algorithm design on the random walk that guarantees

a sublinear decaying of the regret in (9) such that

limr 00 R"%[(T) = 0, thus, it approaches asymptotically the

optimal transition scheme of the random walk.

VI. MAIN RESULTS

In this section, we summarize our main technical results.
First, we present the details of our Sleeping Multi-Armed
Bandit Random Walk SGD algorithm in Algorithm 1. Second,
we prove in Theorem 1 that the proposed algorithm has an
asymptotically optimal convergence rate.

A. Algorithm

Algorithm 1 leverages the analogy between Sleeping MAB
and RW that we established in the previous section to design
the RW learning algorithm. In the literature of Sleeping
MAB [40], there are two versions of the EXP3 algorithm based
on the availabilities of the arms: dependent versus independent
availabilities. The case with dependent availabilities fits
our RW model since the graph structure dictates the joint
availability of any set of nodes.

In Algorithm 1, each node ¢ keeps an accumulated control
(importance) value ¢(*) (i) of the observed cost up to round k.
The nodes with higher values will be favored in the selection.

In each round of the algorithm, the active node has to
make a decision to select a neighboring node to carry the
next update. In order to do that, the active node receives
the control value from each neighboring node, and does the
selection proportionally to the control values ¢(*—1) (7).

The selection starts with pure exploration using uniform
control values and keeps refining it with time given the
observed average cost. The selected node will turn active,
samples one of its local data point uniformly at random,
performs the update in (3) and computes the cost estimate
based on the local gradient.

Each node 1 keeps tracks of the empirical estimate
PRy = L (PO@GEE-D 4)). The exploration is
implicitly adjusted by a decreasing exploration parameter

AR = [22 I (T) + %m (T). At early stage of the

training A(*) gives less importance to the observed cost
contribution. Lastly the control value is updated as follows

(k) (:(k)
k) ()Y — (k=1) (5(k) _ ¢ (i)
¢ (’ )_q (2 )eXp< TEE (i) +A® |-

(10)

Each round of the Random Walk algorithm consists of one
local update followed by the updated model passage to
a neighbor node that uses the communicated importance
weights. Thus, for a total number of round 7, the
communication cost follows an order of O(T.d) where d, is the
dimension of the model.

B. Convergence Guarantees

Theorem 1: Under assumptions 1, 2 and 3, for a connected
graph G, particularly for y¥) = L for 1 < q < 1, the
convergence rate of Algorithm 1 is as follows:

)+NE+1R+SC*

(1) _ * ln(l/u

£ (um) - o] < B NE A
where,

T (k) gy (R)
w(T):—Zkle'Y v —mmZE {(k) }

>y ®

2 1 1
R=g|lw® |, e B=3"9® (5 + ).
w w ) an ;’y 2/€+\/E

Moreover, c is a constant function of the convexity constants
and the step size and jig is the spectral norm of the transition
matrix defined in Section VII.

To better understand its significance, one must compare it
with other first-order random walk algorithms, such as uniform
node sampling. For all these algorithms, one can get a similar
bound as in Theorem 1 with the same constants (depending on
the data and graph topology, etc.). The only difference would
be in the term C* which is the cumulated variance of the
gradients corresponding to the optimal sampling strategy p*.
Any other node sampling strategy p will lead to a higher cost
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C and a looser bound. Of course, here we are optimizing
the upper bound which we are taking as a proxy for the
actual performance. Our numerical results in Section VIII
substantiate our theoretical conclusions and show that our
proposed algorithm outperform other baselines.

VII. PROOF OUTLINE

We outline here the different steps needed to establish the
result in Theorem 1. The details can be found in the Appendix.
First, we state the results on the regret rate of the sleeping
multi-armed bandit selection scheme used in Algorithm 1.
Furthermore, we show that the multi-armed bandit random
walk is strongly ergodic which is an essential assumption for
the convergence of our algorithm.

Lemma 2 (Regret Rate of Sleeping Multi-Armed Bandit
Sampler): Let C* = min, ZleE [c(k) (4)] is the minimal
cost if the optimal transition scheme is known. Under
algorithm 1, The multi-armed bandit sleeping algorithm
approximates the optimal cost asymptotically as follows

lim — ZE[ G 30*) <0,
The proof follows the multiplicative weight approach for
EXP3 algorithms introduced in [18].

Next, we state the definition on Strongly Ergodic Non-
Homogeneous Random Walk [51]. The sleeping multi-armed
bandit algorithm guarantees that this property applies on the
sequence of employed transition, which in the end guarantees
the convergence stated in Theorem 1.

Definition 2 (Strongly Ergodic Non-Homogeneous Random
Walk [51]): We denote by p'\¥) (i) the probability distribution
to select the node i to be active at round k. We denote
by P%) the transition matrix at time k. Therefore, we have
P®)(i,5) > 0 if j ~ i and P®(i,j) = 0 otherwise.
Moreover, we have p'¥) = pOpM) Pk gud pmk) —
pO pmt1)  PF) A non-homogeneous random walk, with
uniform starting distribution p©), is called strongly ergodic if
there exists a vector p* such that for all m > 0,

klim p* ’ =0.

Lastly, we prese;to?he result on the rate of convergence of
the transition probability distribution.

Proposition 3 (Convergence Non-Homogeneous Strongly
Ergodic Random Walk):

The non-homogeneous random walk in Algorithm 1 is
strongly ergodic. Thus it exists a stochastic matrix P such
that limy,_, o ||P P|| = 0. Moreover, it exists a stochastic
matrix () such that HPk QH < ¢35, where B =1 > 35 >

. > [N are the eigenvalues of the matrix P. Moreover,
it exists a function g(k) = O(Vk) such that

limy, oo min {1/pf, g (k) } HP(O”“) — QH =

1<1/pg < /1/P2.

VIII. SIMULATIONS

‘p<m,k) _

0, where

In this section, we present the numerical performance of
our proposed Multi-Armed Bandit Random Walk (RW) SGD
algorithm described in Algorithm 1.

A. Baseline Algorithms

We compare the performance of our algorithm to three
baselines, namely: (1) Uniform Random Walk, (2) Static
Weighted Random Walk, and (3) Adaptive Weighted Random
Walk.

1) The Uniform Random Walk: This algorithm assigns
equal importance to all nodes in the network [20] imitating
uniform sampling in centralized SGD. We implement the
Metropolis Hasting (MH) decision rule to design the transition
probabilities, so the random walk converges to a uniform
stationary. The MH rule can be described as follows:

1) At the k' step of the random walk, the active node i(¥)

selects uniformly at random one of its neighbors, say 7,
as a candidate to be the next active node. This selection

gets accepted with probability
deg (i(k))
deg () |-

Gy (i(k), j) — min <1,

Upon the acceptance, we have i(**t1) = .
2) Otherwise, if the candidate node gets rejected, the
random walk stays at the same node, i.e., i(F+1) = ;(F)
2) Static Weighted Random Walk: This algorithm assigns
a static importance metric to each node that is proportional
to the gradient-Lipschitz constant of the local loss function
[45], [52]. The random walk is designed by the MH again
with a stationary distribution that is proportional to the
local gradient-Lipschitz constants. In order to achieve that
stationary, the probability of acceptance looks as follows:

i (k)
Qo (i(k), j) — min (1’ L; deg()) .

Li(k) deg()

3) Adaptive Weighted Random Walk: In this algorithm,
we adapted the importance sampling scheme that is used
in [41] and [43] for centralized settings. The importance
is computed for each node ¢ as the average of of

gradients computed so far at that node which is at time £,
oo VR )],

(1)

, for n; ;; is the total number of rounds
when node z  has been active up to k. We call it the pure
Exploitation scheme.

B. Datasets and Comparison

Our simulations are run on both synthetic dataset and on
real benchmarks to confirm our theoretical results. They show
that a bandit based random walk in decentralized learning
consistently outperforms existing random walk baselines that
uses static or exploitation based importance estimation.

1) Synthetic Data: For each node i, we sample the dataset
D; from a a normal distribution with N ({11, f1i 2], ol2).
We assigned manually a label to each node dataset such that
half the nodes has the label y; = 1 and the other half has the
y; = —1. We run our simulations on an Expander graph which
known to be sparse (The Margulis-Gabber-Galil graph).’

2We call the generator function of the Python library NetworkX v2.8 [53].
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1009+ yniform RW SGD (Static Appraoch)

—»— Static Weighted RW SGD (Lipschitz)

801 —+— Exploitation RW based SGD

—e— Bandit RW SGD (Exploration and Exploitation)
60

Iw® - w'I3

40

20

0 200 400 600 800 1000
Round k

Fig. 3. Classification model trained on a Synthetic dataset distributed over
an Expander graph of 100 nodes.

100 —#+— Exploitation based RW SGD with (N = 100)
Bandit based RW SGD (N = 100)

—e— Exploitation based RW SGD (N = 200)

—— Bandit based RW SGD (N = 200)

80

60

40

W - w3

20

0 200 400 600 800 1000
Round

Fig. 4. Classification model trained on the Synthetic dataset. The same dataset
is been distributed over a Expander graph of size 100 nodes and 200 nodes.

TABLE I

NUMBER OF ROUNDS TO REACH 0.45 TEST ACCURACY FORLOGISTIC
REGRESSION ON MNIST AS WE VARY THE LEVEL OF SIMILARITY.
BANDIT RW SGD Is CONSISTENTLY FASTER THAN
UNIFORM RW SGD

10% | 100%
202 87 61
138 44 34

Similarity 0%
Uniform RW SGD
Bandit RW SGD

2) MNIST Dataset and Fashion-MNIST: We run experi-
ments on the MNIST dataset and the Fashion-MNIST to train
a multi-class logistic regression model. We divide the data
among the nodes as follows: for a level s% of similarity, each
client has s% of its local dataset drawn i.i.d. from a shared
pool of data. Another non-public pool of the data is sorted with
respect to label and partitioned into non-overlapping chunks.
Each node is assigned a different chunk that consists of its
remaining (100 — s) % data [31].

Table II and Table IV report the results for different level of
similarity from fully homogeneous to fully heterogeneous to
highlight how different similarity levels affect the convergence
of our algorithm vs. the oblivious uniform algorithm. Table II
is on the MNIST dataset. The gap between both algorithms
becomes wider once the system turns more heterogeneous.
Table IV is on the Fashion-MNIST dataset. The gap between
both algorithms becomes more significant as the system turns
into more heterogeneous state.’

To elaborate on how our algorithm performs given the
graph structure, we consider multiple scenarios of simulations
where we use an Erdos-Renyi with different probabilities of

3The fact that the ratio between the number of iterations of the two
algorithms is constant (roughly 2) is an artifact of the data and is not
reproducible for other datasets. See for example Table IV which is on
the Fashion-MNIST dataset that shows an increasing ratio with decreasing
similarity.

—#*— Exploitation based RW SGD with (n =20)
Bandit based RW SGD (n = 20)

—&— Exploitation based RW SGD (n =200)

—e— Bandit based RW SGD (n = 200)

Iw® = w3

0 200 400 600 800 1000
Round

Fig. 5. Classification model trained on the Synthetic dataset. The local dataset
size has been augmented from 20 to 200 in a Expander graph of size 100.

—e— Uniform RW SGD

Static Weighted RW SGD
—#— Exploitation based RW SGD
—e— Bandit RW SGD

Nt

Training Loss

o r N w

0 2000 4000 6000 8000
Round

10000

Fig. 6. Multi-class MNIST dataset of 10 classes distributed over 100 nodes
with 0% similarity on Expander graph.

TABLE III

NUMBER OF ROUNDS TO REACH 0.45 TEST ACCURACY FORLOGISTIC
REGRESSION ON FMNIST AS WE VARY THE LEVEL OF SIMILARITY.
BANDIT RW SGD Is CONSISTENTLY FASTER
THAN UNIFORM RW SGD

Similarity 0% 10% | 100%
Uniform RW SGD | 124 90 66
Bandit RW SGD 82 69 54

TABLE IV

NUMBER OF ROUNDS TO REACH 0.75 TEST ACCURACY FORLOGISTIC
REGRESSION ON FMNIST FOR COMPLETE AND INCOMPLETE GRAPHS
FOR 0% SIMILARITY. BANDIT RW SGD Is CONSISTENTLY FASTER
THAN UNIFORM RW SGD

Similarity Expander graph | Complete graph
Uniform RW SGD 190 143
Bandit RW SGD 169 139
TABLE V

NUMBER OF ROUNDS TO REACH 0.45 TEST ACCURACY FORLOGISTIC
REGRESSION ON MNIST AS WE VARY THE GRAPH CONNECTIVITY
PARAMETER. BANDIT RW SGD Is CONSISTENTLY FASTER THAN
UNIFORM RW SGD. As WE DECREASE THE PROBABILITY
OFCONNECTIVITY, THE INCREASE IN THE NUMBER
OF ROUNDS Is LESS SIGNIFICANT FOR
THE BANDIT ALGORITHM

Probability of Connectivity | 0.1 05 | 0.8
Uniform RW SGD 202 | 128 | 94
Bandit RW SGD 138 | 103 | 90

connectivity that go from sparser to denser. Table V measures
the performance given the probability of connectivity in the
graph.
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APPENDIX
C. Optimal Sampling

Here is a sketched proof on the optimal sampling to
minimize the gradient variance in the full information
setting [41]. Consider the optimization problem in hand which
can be formulated as follows:

o (w®)
min —_—
(k) (3)
1€[N] p (l)

such that p® (4) € (0, 1

Vi, and Zp(k) (1) =

The optimality conditions of the Lagrangian expression of the
problem above gives the following:

k
- gtk (wk))
(™ ())?
where 7 is the Lagrange multiplier. Thus, by a simple algebraic
/(&)
9" (w®)

=5 /o (w®)

+n =0 and Zp =1,

manipulation, we get p(*) (i) =

D. Connection to the Heterogeneity Definition
The cost function in Equation (8) that we chose for our
multi-armed bandit is an upper bound on the heterogeneity
2
E [IVE )]
this connection:

Assume F; for any i € [N] are convex and L-smooth, then
we have

E; [V F; (w)]]

defined in Definition 1. Below we clarify

1 N 2
=y LIVE @I
2 N 2
< 5 2 IVE (w)ll; + ZHVF Fi (w)]3
i=1
@ 9 & 2
< 5 S IVE @)} + 4L (F () - F ().

=1

(a) follows from Theorem 2.1.5 in [54].

Now taking w = w(”) in the upper bound above, the
term (F (w(T)) —F (w(*))) depends on the cost which is
the accumulated variance of the gradients at the sequence of
selected nodes up to time 7', as shown in Equation (6).

Definition 3: The local loss function F; for each node
1 € V has an L;-Lipschitz continuous gradient; that is, any
w, w € W, there exists a constant L; > 0 such that

IVfi (w) =V fi (w)lly < Li lw = w'l, .
Lemma 4: Under assumptions 1, 2 and 3, the Random
Walk SGD algorithm, that uses the update in equation 3 for
transition matrix P, has the following rate of convergence.

2[r (u7) (v

-1

(30) Sx[lor ()]

937

In order to prove Lemma 4 and Theorem 1, we present
some technical results that we use in the proof. The proof
techniques are essentially inspired by the work of [24] and
they are adapted to the assumptions and setting of this work.

Lemma 5 (Convexity and Lipschitzness): If F; is a convex
Sfunction on an open subset Q) C R, then for a closed bounded
subset W C (), there exists a constant D; > 0, such that, for
any wi, we € W,

|Fi (w1) — Fi (w2)| < Dj |lwy — w2,

We define D = supD;. Therefore,
i€V
|[Fi (w1) — Fi (w2)| < D [lwy — wal, .

A proof for Lemma 5 can be found in [55].

Corollary 1 (Boundedness of the Gradient): If F; is a con-
vex function on R, then for a closed bounded subset VW C R,
IVE;(w)|l, <D, YweW.

Proof: Taking v =w + VF;(w),

D|VE(w)lly = D v —wl,

(@
> |Fi(v) =

(b)
> (VE; (w),VF; (w))

= |VFi(w)]3.

Fi(w))

(a) follows Lemma 5 and (b) follows from F; being convex. R
Now, we present the steps of the the proof:

2
Hw(k+1) Wt

2
= HHW (w(’“) — AV (w(k)>) — Iy F (w*)

v wa) _ 7<k>¢pm (w®) -

2

2
2

2
T 2y() < R —w*, VFm (w(k))>

(o ) o5 ()],

(a) follows from W being a convex closed set, so one can
apply nonexpansivity theorem in [55].
For the next we use the convexity of F},

k1) _ x|

i
2
2
* — 2’}/(k) (Fi(k)
2
. 2
1) [9Fn (w )]
2
Re-arranging the above equation gives
’y(k) (Fi(k) (U)(k)) — Fi(k,) (w*))

1 2
1 (me [ [t -
2 2

~ 2
Y Fy (w(k)) H .

<o

()

- Fw (IU*))

(12)

2
w*
2

13)
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Summing (13) over k£ and using Assumption and the
boundness of W,

> A9 (P () = B (w))
O o ()]

Next we give some results we need on the Markov chain.
We denote by p the stationary distribution, P is the transition
matrix and P* is the k' power of matrix P. We refer to i‘"
row of a matrix P by P(i,:).

Lemma 6 (Convergence of Markov Chain [56]): Assume
the graph G is connected with self-loop, therefore a random
walk is aperiodic and irreducible, we have

S

maXHu Pk (i || < C’)\(k)
for k > K, where Kp is a constant that depends and \p
and \o(P) and C is a constant that depends on the Jordan
canonical form of P.

Corollary 2: Using the previous lemma, we get

(6.0 < OXB <

s P %

n(2C
for T®) = min{k, max{ 11 ((12//\k ,Kp}}.
Here, we state the next Corollary on the convergence of the

random walk.

NI [ij (w(k,TW)) — Fj) (w(k))}

< DyWE Hw(k*T(’”) - w(k)H
(b) k—1
<DyWE[ Y Hw<n+1>_w<n>
n=k—T()
(¢) k—1
< Dy®» Y E(Hw“‘“)—w(”))
n=k—T()
(d) k—1
< DM 3T 40
n=k—T()
¢ p2 ) 2 2
<5 X (0" +0®))
n=k—T()

D? s D2 A 2
< Zipy a2 L 2T (n))?.
<5 (") + = kZT (™)

n=k—T}

(a) follows from Lemma 5, (b) using triangle inequality,
(c) using linearity of expectation and (d) follows from the
Cauchy—Schwarz inequality.

Now taking the summation over k:

2 E B (0T = o ()]
k
<;fn<2 83>

k n=k—T

,y(n)

By simply using the assumption on the step size summability,
the result is as follows:

o0

S (o)

k=K n=k—T()

IN

k) ()
2T ()

2 > )2
= T (1/rp) k;(lnk' (")

< 00. 15)

Now, we compute the following lower bound:

o .
By [Fw (w(k O )) —Fiu (w*) | Xo, X1, ..., Xk—T(’c)]
N

=3 (R () Rw)

1

.
Il

( i) = 4| Xo, X1, ..., kaT(k))

(Fi (w(k—T(k))) o (w*)>
P (j(k) =i Xk—T("’>)

(o =T s
1(E(wk )~ F ()
« pT™® {Xk_TW |j(k) _ z}

2 (r (o) - piwn) -

[
H'Mz X

<
—

I
M) =

.
Il

(16)

(a) using Markov property and (b) using Lemma 2 in [23].
Therefore,

F (w(k_T(k))) — F(w")

N _(k) *
< —HEj(k) [Fj(k) (w(k T )) - Fj(k) (w*) |

2k
X X0y v,y Xk,T(k)}

Taking the total expectation, we have

~+OE [F (w(ka(k))) - F(w*)}

N~ )
< S+ BB (0) = B ()
Rearranging the equation above, we get:

ny(k)]E {F (w(k*TW)) - F (w*)}
5 (s o)

_ZM“
+Zk7)

2
7“}*

+5

E[IVFo0 (w")13]

2
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Next, we get a bound on

S e () - £ (s
0 [ () - ()

Y NDyWE ) — w10
(b) k—1
< NDyWE( Y Hw<n+1>_w<n>
n=k—T},
k—1
©
< NDy® 3 ]E(Hw("“)—w(”) )
n=k— Tk
(d)
< ND?y®) Z y
n=k—T}
(e) ND2 k—1 .
<=5 () + ("))
n:kak
ND? 2, ND2 =
< Ti(v*) (17)

P

(a) follows from Lemma 4, (b) using triangle inequality,
(c) using linearity of expectation, (d) follows Corollary 1 and
(e) follows from the Cauchy—Schwarz inequality. The upper
bound summability over k follows from previous discussion
in equation (15).

Combining with the results in (14) and (15), we get

E [F (w(k)) _F (w*)}
_ S e+ iAo t
ST )
[HVFW (™), ]

Zk 17

By this step we proved Lemma 4. Next we present the
essential technical results to use in the proof of Theorem 1.

Proposition 7: [Sleeping multi-armed bandit
convergence [33]] The sleeping multi-armed bandit
sampling scheme under adversarial availability guarantees
the following: HP(k) — PH < O(ﬁ) Therefore, using
Definition 1, the random walk with transition matrices p®)
is strongly ergodic.

We state next Lemma of [51] about the convergence of
strongly ergodic random walk.

Lemma 8 (Theorem I1.7 in [51]): Given strongly ergodic
non-homogenous transition matrices P¥) with a stochastic

n Tk

3w ® — o

() 1
+

matrix P such that limy_, . g(2k) ||P(k) — P|| = 0
given @  such ||Pk - QH < cps,  then
limy oo min {(1/)%, g (k)} [|P% — Q| = 0, where
1< 1/p < /1/Bs.
Using the previous lemma, we get
(o, Tk) i
max e = PO (i,3)|| < (9( o+ \/%> (18)

for T}, = min {kz, max { 11?1((217'5)) ,

_(k)
Ej(k) |:Fj(k-) (w(k T )>_Fj(k) (w

(5, (7 - 5, o)

P (j(k) =1i| Xo, X1, ..., kaT(’”)

(FZ' (w(k—T(k>)) —F (w*)) P (j(k) =i Xk*T(k))

(5, (7 - 5, )

x pO.T™) {Xk oo | §) = z}

K p} } . Therefore,

)| Xo, X1, ... ,Xk,w)}

Il
.MZ

X
L

|
KMZ

@
Il
-

I
.MZ

Il
—

> (F (w(ka"“U) - F(w*)) - % - Ct\/e'%N. (19)
Finally,

T

ARE|F (w®) — F (w*)
3305 [ (o) - P

T

w (L ce) CD

<2 N (% * ﬂ) T/

e

[ e oms ()]

Using previous results and the the convexity assumption,
we get

E [F (w(k)) - F(w*)}
_ 25:1 NA® (i + i;g) + ln(l/)\) +3 ||w W*Hz
B Zk:17 k)

(7(0)) cr
Zk_ )

Employing the assumptions on the step size and the gradient
boundness in Corollary 1, we get an order of convergence
O(T'~9) for a step size choice y¥) = L where 1 < ¢ < 1.

q
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