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ARTICLE INFO ABSTRACT
Keywords: Extensive studies developed eco-driving strategies to smooth traffic and reduce energy con-
Connected and autonomous vehicle sumption and emission at signalized intersections. Part I (Zhang and Du, 2022) of this study

Platoon-centered control
Eco-driving strategy
Model predictive control
Hybrid MPC system
Sequential feasibility

developed a novel platoon-centered control for eco-driving (PCC-eDriving), considering a mixed
flow involving Connected and Autonomous Vehicles (CAVs) and Human-Driven Vehicles (HDVs).
This PCC-eDriving is mathematically implemented by a hybrid Model Predictive Control (MPC)
system and solved by an active-set based optimal condition decomposition algorithm (AS-OCD). It

Switching Feasibility generates discrete control laws for a platoon to approach, split as sub-platoons as needed, and
Asymptotic stability then pass the intersections smoothly and efficiently. Though the numerical experiments validated
Input-to-State stability the effectiveness, the theoretical properties of the hybrid MPC system and the solution algorithms

were not investigated. Part II of this study thus focused on these theoretical analyses. Mainly, we
first analyzed and proved the MPC sequential feasibility and hybrid system switching feasibility to
guarantee the control continuity of the hybrid MPC system. Next, we factored CAV control un-
certainties and proved the Input-to-state stability of the robust MPC controller. These proofs
theoretically ensured the effectiveness and robustness of the hybrid MPC system. Last, we proved
the solution optimality and convergence of the AS-OCD algorithm. It confirmed that the AS-OCD
algorithm could find the global optimal solutions for the MPC optimizers with a linear conver-
gence rate.

1. Introduction

Severe traffic congestion and frequent stop-and-go traffic isolation often occur around intersections with traffic lights. This non-
smooth traffic pattern further causes traffic accidents (Poch and Mannering, 1996), wastes extra energy consumption and emissions
(Li et al., 2014), and significantly dampens driving comfort (Summala, 2007). Inspired by recent advancements in connected and
autonomous vehicle (CAV) technologies, many studies have been devoted to developing eco-driving strategies for improving traffic
safety and efficiency at signalized intersections. The main idea is to inform CAVs the signal phase and timing (SPaT) through Vehicle to
Infrastructure (V2I) communication technology and then plan the optimal driving strategy for CAVs to go through an intersection
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efficiently and smoothly. Along with this thought, various eco-driving strategies have been developed, including vehicle-level constant
or dynamic speed advisory (Lu and Shladover, 2014; Simchon and Rabinovici, 2020, Kamal et al., 2012; Ma et al., 2017) using heuristic
or optimization approaches, or platoon-level trajectory plan (Zhao et al., 2018; Wang et al., 2019; Ma et al., 2021; Chen et al., 2021)
employing platooning control to generate energy-efficient trajectory instructions. Though all of them demonstrated inspiring results,
several studies (Wan et al., 2016; Ma et al., 2016, Lioris et al., 2016) indicated that vehicle-level eco-driving strategies could not
guarantee system performance while platoon-level eco-driving strategies performed better in this aspect. However, developing
platoon-level eco-driving strategies often need to address super difficulties in modeling and computation as involving a large-scale
problem with more vehicles and considering more complex decisions such as systematically splitting a long platoon.

Our study in Part I (Zhang and Du, 2022) addressed this challenge. It developed a novel system optimal platoon-centered control for
eco-driving (PCC-eDriving) at signalized intersections, leveraging CAV technologies. This PCC-eDriving is distinguished from existing
platoon-level eco-driving strategies (Zhao et al., 2018; Ma et al., 2021; Chen et al., 2021) in several aspects. First, it applied a feedback
closed-loop trajectory control approach rather than an open-loop trajectory planning method to improve control robustness against
traffic and vehicle control uncertainties. Second, it considers the entire platoon as a system and generates optimal eco-driving control
laws for the entire platoon rather than only instructing the leading CAV. In this way, the PCC-eDriving can ensure system optimality
regarding traffic smoothness and energy consumption efficiency. Furthermore, the PCC-eDriving is mathematically implemented by a
hybrid system, which integrates three model predictive control (MPC) controllers to respectively direct the platoon to approach, split
as needed, and then pass the intersection, co-considering traffic smoothness, efficiency, and energy consumption. In particular, the
hybrid MPC system uses a mixed-integer nonlinear program (MINLP) rather than heuristic approaches to break a long platoon if it
cannot entirely pass the intersection in one green interval, considering traffic smoothness, traffic throughput and energy consumption.
What is more, the MINLP and the optimizers of the MPC controllers are well streamlined to facilitate the control switching feasibility
and efficiency. We will show this merit in our theoretical analysis later. Last, an active-set optimal condition decomposition algorithm
(AS-OCD) is designed to solve the MPC controllers efficiently in a distributed computing manner.

Part I of this study (Zhang and Du, 2022) validated the effectiveness of the PCC-eDriving and the associated approaches by nu-
merical experiments but has not yet investigated several critical issues regarding the properties of the hybrid MPC system and the
solution approaches. For example, the MPC sequential feasibility, hybrid system switching feasibility, MPC control stability and
AS-OCD convergence are not analyzed and proved. They together decide whether the hybrid MPC system can run smoothly and
effectively. Specifically, an MPC system with sequential feasibility ensures that it can always find feasible control law that satisfies all
the constraints at any future time step when it starts with an initial feasible state. The applicability of the PCC-eDriving attaches a great
importance to the MPC sequential feasibility, as it significantly affects the CAV control continuity and robustness, which further impact
driving safety. Built upon that, the hybrid system switching feasibility decides if the platoon under PCC-eDriving can feasibly switch
from one MPC controller to another. Without this switching feasibility, the hybrid control system will fail to guide the platoon to split
and pass the intersection. Furthermore, the stability of a MPC control evaluates whether and how fast the system will reach the control
goal in theory. This control performance is crucial as it theoretically ensures that PCC-eDriving can quickly guide CAVs to achieve
desired spacing and speed while minimizing energy consumption. Finally, the PCC-eDriving used the AS-OCD algorithm to solve the
large-scale MPC optimizers in real time. The solution optimality and convergence performance of the AS-OCD algorithm significantly
impact the applicability of the hybrid MPC system developed for this PCC-eDriving.

This Part II paper seeks to complete these theoretical gaps in the Part I paper. Specifically, we first analyzed and proved the MPC
sequential feasibility and hybrid system switching feasibility to ensure the control continuity and smoothness of the hybrid MPC
system. Then we analyzed the asymptotical stability of the MPC system and proved the Input-to-State stability of the robust MPC
controller, which factors the CAV driving uncertainties. Next, this study analyzed the optimality and convergence of the AS-OCD
algorithm. The theoretical analysis confirmed that the AS-OCD algorithm could quickly find the global optimal solution for the
MPC controllers developed in this study with a linear convergence rate.

The effort of this study is presented by the roadmap as follows. Section 2 and 3 respectively revisits the PCC-eDriving problem setup
and the hybrid MPC system. Building upon that, Section 4 analyzes and proves the sequential feasibility of the MPC controller and
hybrid MPC switching feasibility. Section 5 investigates the MPC nominal system and robust system and then proves the Input-to-state
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Fig. 1. Sample platoon at the signalized intersection (from part I).
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Stability of the MPC controller. Furthermore, Section 6 analyzes the solution performance and proves the convergence of the AS-OCD
algorithm. The whole study is summarized in Section 7.

2. PCC-edriving problem statement

This study considers a mixed-flow platoon approaching a signalized intersection on an urban road and seeks to drive it through the
intersection smoothly by avoiding sharp stop/deceleration as much as possible. Using the example shown in Fig. 1, we introduce the
problem setup and the notations. Without loss of generality, we consider a sample platoon involving two CAV segments sandwiched by
a human-driven vehicle (HDV) segment. A longer platoon can be extended by following this pattern. Accordingly, we label the three

segments as C; with CAVs labeled as {1, ..., n}, H with HDVs indexed by {T, ...,m}, and C, with CAVs labeled as{n + 1, ..., N}. ACAV
set C = Cy1 U C3 is then defined for all CAVs in the platoon. We also introduce notations x;, v; u; for Vi € Ic = {1, ..., N} and x;, v; u; for

Vie Iy = {6, T, ..., m} to represent the longitudinal position, speed, and acceleration of the iz, CAV and the fth HDV respectively. The
platoon trajectory control is conducted at discrete time steps (indexed by k € Z, := {0,1,2,...}) with a uniform control interval T > 0.
Accordingly, the control input u; (i € I¢) keeps constant in each control interval. We consider a preceding-and-following communi-

cation network well connects the CAVs in the platoon. Besides, this study considers the movements of the HDVs 0, 1 and i can be
detected at each control step by the adjacent CAVs using onboard sensors.
When a platoon enters the V2I communication zoon of the traffic signal, it will receive the traffic signal phase and timing infor-

mation (SPaT), including green and red phase intervals Ty = tk,, Tr = Tk, and remaining time of the current phase Tg = 1k or T, = tk,.
Accordingly, the PCC-eDriving will instruct the platoon to spht into sub-platoons as needed so that they can sequentially pass the
intersection in the consecutive traffic cycles reducing sharp deceleration or stop. This control process will be conducted by a hybrid
MPC system designed in Part I of our study. For completeness, we briefly introduce this hybrid system in the following section.

3. Hybrid MPC system

Mainly, the hybrid MPC system considers three states go,q1,g2 of a platoon. Correspondingly, it includes three MPC controllers
MPC-qp, MPC-q; and MPC-q5 and two switching signals 6¢,0; to connect these different states and controllers. Below we specify those
states and switching signals sequentially along the process of the platoon splitting and then passing an intersection.

Without loss of generality, we consider a mixed flow platoon A under state qq as it is driving towards a signalized intersection. The
MPC-q controller is then designed to conduct the car-following platooning control under state go. When the platoon A enters the traffic
signal communication zone, it receives the SPaT information, and then the switching signal oy is triggered to determine the optimal
platoon splitting plan. Specifically, a mixed-integer nonlinear program (MINLP-cy) is used to calculate the optimal platoon splitting
point by leveraging traffic throughputs and smoothness. Following the splitting decision, the platoon A will split into two sub-platoons
A; and A,. The leading sub-platoon A; will pass the intersection during the current green interval. We denote its state as g;. Whereas
the latter sub-platoon A; cannot pass the intersection in the current signal cycle under our prediction and will be instructed to
decelerate gently to avoid red idling. We denote such a state of Ay as ga. Correspondingly, the MPC-q; and MPC-g; controllers are
designed respectively for the states q; and gp. After the leading sub-platoon A; passes the intersection, the switching signal o7 is
triggered and sub-platoon A; restores car-following state qo.

Later, when the sub-platoon A, reaches the communication zone, the above-mentioned procedure repeats. Specifically, the optimal
platoon splitting point will be determined again and sub-platoon A, will further split into two sub-platoons A1(2) and A5(2) in Fig. 2. if
A cannot entirely pass the intersection in one green interval. Repeating this strategy, the PCC-eDriving can instruct a long platoon to
pass multiple signalized intersections. In addition, the hybrid MPC is robust to accommodate unexpected accidents that causes the first
sub-platoon A; failing to pass the intersection by splitting the A; further.
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Fig. 2. Hybrid MPC system under normal traffic conditions (From Part I).
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This PCC-eDriving control and the hybrid MPC system bring in technical challenges from the aspects of mathematical modeling,
solution approach development, and theoretical analyses. Part I of our study have addressed the mathematical modeling and solution
approach development. This Part II paper focuses on theoretical analyses and proofs regarding the control feasibility, stability and
algorithm convergence. To do that, we briefly present the mathematical models of the hybrid MPC system to lay down the foundation
for mathematical analyses. Please refer to Part I of our study for a detailed discussion regarding those formulations.

3.1. MPC-qy controller for State qp

The MPC-q controller generates the platoon-centered trajectory control laws to guide the car-following movement of CAVs in the
platoon at time step k € Z, by predicting the platoon future states at any time step k + p, forvp = 1, ..., P(p € P), before it enters the
traffic signal communication zone. It aims to minimize traffic oscillations and energy consumption represented by Eq. (1), subject to
the vehicle dynamics and various constraints demonstrated in Eqs. (2)-(14), where the time steps in the prediction horizon is denoted
as kp. Hereafter, we also simplify step k + p to p throughout this section to avoid complex notation.

MPC-qo

Min u(p) = Y {5 [ (0)0:200)+ < ) 0:2 )] + ol o= 1) I W
p

Subject to
xi(k+1) = x;(k) + 7vi(k) +T—22(u,-(k) —Au(k)), i €I, k €k, 2
vilk4 1) = vi(k) 4+ 7(u; (k) — Awy(k)), i € Ic, k €k, 3)
Au; (k) = evi (k) + (k) — nui(k = 1), i € Ie, k € k, 4)
Xin(k) = %, (k= Tp) — Dy, k €k, (5)
ing < Ui (k) < paxi, i € Ic, k €k, 6)
Vinin < Vi(k) < Vipar, 1 €1, k €k 7)
Xio1 (k) = xi(k) > Ly + 812vi(k) + 8,0(vi(k) — vy (K)), i € Ie, k € k, 8
si(k) = Li + 817vi(k) + Syt (vi(k) —viei (k) + 8, i € Ic, k €k, 9
Axi(k) = xiy(k) —xi(k) — si(k), i € lc, k €k, (10)
Avi(k) = vi_y (k) —vi(k), i € Ic, k €k, (11)
2(k) == (Ax (k), ..., Axy (k)" € RV, k€ k, 12)
7 (k) == (Avi(k), ..., Avy (k) € RY, k € k, (13)
@ = (z(k+P) €2 (k+P) ). a4

More exactly, Egs. (2)-(4) represent the robust CAV dynamics using double integrator model. Au;(k) represents the CAV i’s control
uncertainties including powertrain delay and aerodynamic drag etc. Eq. (5) uses Newell’s car-following model Newell, 2002) to predict
HDV driving behaviors. Egs. (6)-(8) respectively illustrate the acceleration, speed limits and safe distance constraints of CAV i. Eq. (9)
describes the desired spacing policy for CAV i, Egs. (10)-(11) curve the spacing and speed tracking errors of CAV i. Accordingly, the
tracking errors of all the CAVs together form the platoon tracking dynamics in Eqgs. (12)—(13). Finally, Eq. (14) presents the terminal
constraints. It requires the platoon spacing and speed tracking errors will be confined to small domains { and ¢’ respectively at final
time step k + P of the MPC prediction horizon. It should be noted that this study employed Newell’s car-following model for friendly
computation performance (see the justification given in Section 3 in Part I). Nevertheless, replacing Newell with other math
complicated car-following models such as Wiedemann Wiedemann, 1991) or IDM (Treiber et al., 2000) models will not affect the MPC
recursive feasibility and stability for the following reasons. First of all, the HDV car-following model is served as equality constraints in
Eq. (5) in MPC, so that it will not affect MPC sequential feasibility given the initial state is satisfied (see the proofs in section 4 later).
And the MPC stability proof in section 5 later is only related to CAV dynamics in Eqgs. (2)-(4), terminal constraints in Eq. (14) and cost
function in Eq. (1) according to Mayne et a., (2000). Hence, it will also not affect the MPC stability in this paper.

Note that this platoon-centered car-following control is different from the existing approach in Gong et al., (2016); Gong and Du,
(2018); Shen et al., (2021). It explicitly factors the CAV control uncertainties by Eq. (4), HDV driving variations by Eq. (5) as well as
adaptive safe distance constraints and desired spacing policy by Egs. (8) and (9). These enhanced features capture more traffic and
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control reality, aiming to improve the traffic system performance in urban environments, but introduce extra challenges in the MPC
sequential feasibility and control stability. We will address these challenges in Section 4 and Section 5.

3.2. Switching signal MINLP-c

The MINLP-6( optimizer determines the optimal splitting point and triggers the switching signal 6¢ in the hybrid MPC system. The
splitting decision tries to balance traffic throughput and smoothness represented by the objective function in Eq. (15) subject to the
same vehicle dynamics and safety constraints used in MPC-qo while considering extra constraints regarding the splitting point in Eqs.
(16)-(21). This way, we can ensure the optimal split point can be successfully implemented while sustaining control switching
feasibility. We will discuss it in section 4.

MINLP-6,

min J(u,y) = Ji (u,y) + @202 (u,y) (15)

where

n) = 3 {300 + € 0 0:5 0] + Fonl 1) I}

p=1

J(u,y) = —Zi * Vi

i€l
Subject to constraints in Egs. (2)-(9), (12)-(13), (16)-(21):
D vi=ly {01}, icl (16)
iel.

Eq. (16) requires only one splitting point exits in the platoon, where y; is a binary variable to describe the location of the platoon
splitting point. For instance, y; = 1 represents that the platoon splits ahead of CAV i*.

xio1(kg) = —M(1—y,), i €L, 17

Eq. (17) predicts the last CAV i* — 1 in the first sub-platoon A; can pass the intersection before the end of the current green interval

attimestepp = Eg. It requires the splitting decision made by the MINLP-67 model can ensure the A; can entirely pass the intersection in
the current green interval.

xi(kg+k) <M(1—y), i€, (18)

On the other hand, Eq. (18) predicts the movement of the second sub-platoon A, after splitting. It requires the splitting decision

made by the MINLP-6( model should consider that the sub-platoon A cannot pass the intersection until the end of the sequential red

interval at time step p = %g + k;.
ixy <C,i€l, (19)
Next, Eq. (19) indicates the splitting decision is constrained by the downstream traffic capacity, where C represents the number of
vehicles allowed to pass the intersection based on the current downstream traffic condition.

Axi(p) = xi.1(p) —xi(p) — sip) —yi*x Z, i €L, (20)

Avi(p) = via(p) —vilp) —yix 7, i €L, 1)
Finally, Eqs. (20)-(21) factor the future platoon spacing and speed errors & and & at the splitting point.

Overall, the MINLP-6( will find the optimal platoon splitting point by predicting the future platoon control and movements during

the current green and sequential red intervals, namely the next P = Eg + k; time steps. It will guide the followed MPC-q; and MPC-q;

control and help to ensure the feasibility of the state switching qo zo>(q1, q2). We will discuss these details in Section 4.
3.3. MPC-q; controller for state q;

The MPC-q; controller instructs a sub-platoon, e.g., A1, under state q; to efficiently and smoothly pass the intersection in the current
green interval. For discussion convenience, we use E to denote the CAV set in sub-platoon A;, and formally present MPC-q; below.
MPC-ql
£ (1 LT 2
in ) = Y {3 [ 0)0.200) + ) 05 )] + Sonalp ~ 1)} 22)

p=1



H. Zhang and L. Du Transportation Research Part B xxx (Xxxx) XXX

Subject to, fori € ﬁl,p € P where P =k, , %g— 1,...,1:
Constraints in Egs. (2)-(13), and

Xi—1(P) >0, (23)

Eq. (23) ensures that the sub-platoon A; passes the intersection within the remaining green interval. It is derived from Eq. (17) in
the MINLP-o6(. To keep control continuity and facilitate switching feasibility, MPC-q; also shares the same constraints in Eqs. (2)—(13)
with MPC-qg. We will discuss these technical details to ensure switching feasibility in section 4.

3.4. MPC-q; controller for state qz

Last, MPC-q; controller instructs a sub-platoon (e.g., A3) under state g, to split and smoothly approach the intersection while
reducing sharp deceleration and red idling. In general, MPC-q, can have two controllers, including MPC-q,-(i) that generates its eco-
driving trajectory for the leading CAV i* in Ay, and (ii) MPC-q»-(ii) that generates system optimal car-following control laws for all
other CAVs in A, following the leading CAV i*.

MPC-q5-(i) Eco-driving Trajectory Reference of Leading CAV i*.

»
Min F(u:) = | ur(p = 1) |3 — w3x: (P) (24)
p=1

Subject to, forp € P, P = %g+ k;, ig+ k—1, ..., 1:
CAV i* dynamics and constraints in Eqs. (1)-(3) and (6)—(8).

x:(P) <0, (25)

The objective function in Eq. (24) tunes the parameter w3 to balance the two conflict objectives in minimizing energy consumption
and maximizing traffic throughputs. Eq. (25) presents that the CAV i* won’t pass the intersection during the red interval according to
the splitting decision from MINLP-cy. It also indirectly avoids the following vehicles running the red light.

MPC-q--(ii) Following Vehicles’ Trajectory Control.

P

Min 1) = 303 (00020 + € (1) 0. 0)] + ol i~ 1) [} 26)

=1

Subject to, fori € A;\i*, p € Pwhere P = Eng k., Eg+ ke—1, ..., 1:

Constraints in Egs. (2)-(13),

Here, we use A, to denote the CAV set in the sub-platoon Ay. The MPC-q»-(ii) is a system optimal car-following control to guide the
sub-platoon A; to smoothly follow the leading eco-driving trajectory reference provided by the MPC-g2-(i). To ensure the hybrid MPC
system switching feasibility, the MPC-q»-(ii) controller is designed to be very similar to MPC-q( except a shrinking prediction horizon P.

4. Feasibility of the hybrid MPC system

We first investigate three important properties of the hybrid MPC system: sequential feasibility, hybrid system switching feasibility,
and MPC terminal constraint feasibility. They together ensure the control continuity and smoothness of the hybrid MPC system.

4.1. MPC sequential feasibility

MPC is implemented recursively at each time step 0, 1, ..., k — 1, k. Therefore, a fundamental theoretical question is whether the
MPC can find a feasible control law at each time step k (i.e., whether the constraint set of the MPC optimizer is non-empty at each time
step k), given the platoon system starts from an initial feasible condition at k = 0. A MPC system is called sequential (recursive) feasible
Lofberg, 2012) if the answer to this question is affirmative. The hybrid MPC system in this study has three controllers: MPC-q,, MPC-q;
and MPC-q5. MPC-q has constraints in Eqs. (2)-(14), which are also shared with MPC-q; and MPC-q5 except the terminal constraint in
Eq. (14). Hence, this study first proves the sequential feasibility of MPC-qo. Then, we further discuss the sequential feasibility of
MPC-q; and MPC-q; as well as the switching feasibility of the hybrid system in Section 4.2. To prove the sequential feasibility of the
MPC-qq, we first classify Eqgs. (2)-(14) into the following three sets:

i) -71(u(k)) : constraint set in Eqs. (2)-(4) and (6)-(8) for capturing the CAV dynamics, acceleration, speed and safety constraints
atstepke Z,.
(i) “»(u(k), Z(k+P)) : the HDV movements in Eq. (5) and the terminal constraint in Eq. (14) at step k € Z.,..
(iii) .“3(u(k)) : the control dynamics in Eqs. (9)-(13) at step k € Z..

It should be noticed that the third constraint set .”’3(u(k)) involves control dynamic formulations. They are always feasible if the
first constraint set .1 (u(k)) is feasible. For the second constraint set .75 (u(k), Z(k + P)), Eq. (5) is an equality constraint to curve the
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HDV trajectory. Thus, they are always feasible in math and also stay feasible in practice if accurate time and distance displacements are
estimated. Apart from it, the terminal constraint in Eq. (14) is only active at the final time step k + P of the MPC. Its sequential
feasibility is ensured if the nominal MPC system is asymptotical stable (see proof in detail in Section 5.2) according to Mayne et al.,
(2000). Consequently, to prove the sequential feasibility of the MPC-qo, this study will mainly analyze and prove the sequential
feasibility of the first constraint set .7; (u(k)) by Lemma 1.

Lemmal. Forke Z,:={0,1,2,...} and i € I, if .71 (u;(k)) is feasible, then there exists ; > 1 and &3 > 0 that make .1 (u;(k +1))
feasible and compact. In addition, the non-empty feasible control input profile S; (u;(k)) for platoon vehicle i at step k is given below:

(k) € Si(ui(k)) = [max{amm.w@},min{amm.hﬂ, m}} o
where

a;, = Vonin — (1 — 7€) vi(k) — Tnu;(k — 1) <0

- (1 —n,)

an — Viar — (1 — 7€) vi(k) — Tip,u;(k — 1) o

(1 —1n;)

_ gilk) +(via(k+1) = vi(k)) | (82 —5)uia(k)

a = evi(k (k) — mui(k—1

Aia SV()+’71u() ’1,“( )+ ‘[2(51+52+%) + 51+52+%
gi(k) = xi_1 (k) — x;(k) — (Li + 817v; (k) + 27 (vi(k) — vi_i (k)))

Proof: To prove the sequential feasibility of the constraint set ."; (u;(k)) constituted of Eqgs. (2)-(4) and (6)-(8), we need to find a
non-empty control input profile S; (u;(k)) at step k for k € Z.. that makes the constraint set ./, (u;(k+1)) feasible, given that .o (u;(k))
is feasible. Namely, with feasible state at any step k, the MPC can have a feasible control input at step k leading to a feasible state at step
k + 1. Below we provide the technical details.

We first reformulate the speed limit constraint at step k + 1 according to Egs. (3), (4) and (7). And then we find its corresponding

feasible control input set u;(k) € [&, E] as follows in Eq. (28).

Vimin < Vi(k 4+ 1) < Vipar
S Vin < Vi(k) + (i (k) — € u;(k)) = Vs

& Vin < (1= zevi(k) + (1 = n)ui (k) + st (k = 1) < Vi (28)

s u(k) € iy, iy |
where the lower bound a;, and upper bound @;,, are given in Eq. (29).

@ = Ymin = (1 — ze)vi(k) — mpui(k — 1)

(1 —mn,)

(29)

o Ve — (1 —z&))vi(k) — 7 (k — 1)

" (1 —n;)

Similarly, we reformulate the safe distance constraints at step k + 1 according to Egs. (2)-(4) and (8). For discussion convenience,
we use gj(k) to represent the safe distance constraint in Eq. (8) for CAV i at step k and denote u;(k) = u;(k) — Au;(k). Then, we present

the mathematical derivations below in Eq. (30).

gilk+1)=xiy(k+1)—xi(k+1) = (L + S1tvi(k + 1) + Sor(vi(k + 1) —viii (K + 1))
— i1 () = 5K) + 7011 (6) = ) + 5 (w1 () — ()
(L + 817i(K) + 6,7(vi (k) — vir (K))) — 617 us(K) — 6,7 (M — (k)> 30)

= gi(k) + t(viii (k) — vi(k)) + 7 (52 + %) u;_i (k) — 7 (5] +6 + %)@

— (k) + 2 (k+ 1) — (k) + <52 - %)M e (51 5 %)@

Note that we assume .7 (u;(k)) is feasible, it makes the safe distance constraints in Eq. (8) feasible at time step k. Mathematically,
gi(k) > 0. To make the safe distance constraints keep feasible at next time step k + 1 (i.e., gi(k + 1) > 0), we should have the following
control input requirement (u;(k) < @;4) in Eq. (31) based upon Egs. (4) and (30).

ui(k) <@g = evi(k) +naui(k) — qui(k—1)
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gi(k) + t(vioy (k + 1) — v;(k)) . (82 = Hui_i (k)
T2(61+52+%) (31“1‘52"!‘%

(31)

Recall that we define §; > 1, 82 > O for Eq. (8). Without loss of generalizability, we pick §; > max{M -1,1 }, 8y = %to show

©(Amini —€Vmin)

the sequential feasibility'. By plugging in 5, = 1, we can remove the term with u;_; (k) and simplify Eq. (31) to Eq. (32) below.

gi(k) +t(viei(k+ 1) — vi(k))

Aia e,v,(k) + nzul(k) ”'u'(k ) + 72(51 + 1)

(32)

Wrapping the Egs. (6), (28), (31) and (32), we have the following solution set S; (u;(k)) in Eq. (33) that makes the constraints set
71(ui(k+1)) feasible given that .71 (u;(k)) is feasible.

u;(k) € Sy (ui(k)) = [max{amin_,-,ai_v},min{am,,x_,,-,f-_v,m}] (33)

We next show S;(u;(k)) in Eq. (33) is non-empty. To do that, it suffices to show max{amm‘i, &} < min{amaxi, Gy, Giq}. More
specifically, we need to prove the following six inequalities hold (i) @maxi > Gmin,is (i) @maxi > Qiy, (D) Ty > Amins, (AV) Ty > @iy, (V)
@id > i, (V) g > @iy It is obvious that (i) Gmax,i > @min,iand (iv) @, > a;, hold according to Egs. (6) and (29). Below we sequentially

show the inequalities (ii), (iii), (v), and (vi) are satisfied in the Eqgs. (34)-(37) when §; > max{% -1, 1} > m —1andé,

1
5
Specifically, we confirm inequality (ii) Gmax; > Giy holds by the derivations given in Eq. (34).

(1 = zevi(k) — nous (k — v 1 —7e)v.: Ve — e
pari — Giy = Amari — Vinin ( re,)v,(k) T’]xul(k 1) > i - Vinin + ( TEl)vmm + T Qomin,i = Ayes — M -0
— (1 —n,) (1 —mn,) (1—mn,)
(34)
We prove inequality (iii) @, > amn; by the mathematical process in Eq. (35).
(1 =7 )vi (k) — th.u:(k — —(1 - 7e: — . ) . —n. .
W,V - amm,[ = vnlax ( TEl)VI (k) Tr]‘ul (k 1) - amin,[ 2 V”ZUX ( Tél)vmax Tr’lam“x'l - aﬂliﬂ.i == M - amin,[ > O (35)
(1 —n,) (1 —n,) (1—mn)
To ensure inequality (V) Gig > amn;, we develop the mathematical process in Eq. (36).
__ evi(k) —nui(k—1)  gi(k) +7(viei(k+ 1) —vi(k))
Aig — Qpini = ) — Qmin,i
(1—mn) (8 + 1)(1 —n,)
1 vie1(k+ 1) —vi(k) } gi(k)
> — (1= ) aming + (Evi (k) = maus(k = 1)) | +
= L et ) it 1) | s
1 Vinin — V. 1 Viin — V,
Z — | 1- i Amin,i + EiVmin — [amin.i =7 T Amin,i — EiVmin (36)
T L (0 W e =) | = (2 [ )

By choosing a feasible 6; > T(Z#fe";"‘) — 1, we have (lf—w [V'T"(fgl’fl";* — (Amini — €Vmin) ] > 0. Consequently, we confirm inequality (v)
g — Amin; > 0 in Eq. (36).
Last, we confirm inequality (v) G;q > amin; by the derivation below in Eq. (37).

@ —a;, = {e,-v,-(k) —niui(k —1) +gi(k) +r(vi(k+1) - V,-(k))}  Vain = (1= 7, vi(k) — e (k — 1)

(1 —=mn) 26+ 1)(1—n,) w(1—n,)
1 fol(k+ 1) 7V,~(k) _ Vi—l(k+ 1) 7Vmin+5l(vi(k) 7‘)"“_")
> [T Ot = (=)@ +1) =0 37)

Wrapping the results above, we prove the sequential feasibility of the constraints .7"; (u(k)), with which we conclude Lemma 1. m

4.2. Hybrid switching feasibility

Built upon the sequential feasibility of each MPC, switching feasibility guarantees that MPC controllers in a hybrid system can
feasibly switch according to the hybrid system design. Then to ensure the continuity of the hybrid system, it is crucial to prove the
switching feasibility (Mhaskar, et al., 2005). Namely, the system can keep feasible as the control switches from one MPC controller to

another. As shown in Fig. 2, the hybrid system of this study involves three types of state switching: (i) qo 3 q1, q2; (i) q1 4 qo; (iii)
q2(x — 1) B ¢4 (x), g2(x). Given the sequential feasibility of MPC-qq proved in Section 4.1, we show the switching feasibility one by one

1 Please note that the selection of the parameters here is to ensure feasibility rigorously. It is not necessarily the best choice for the
implementation.



H. Zhang and L. Du Transportation Research Part B xxx (Xxxx) XXX

below.

() qo 3 q1, go represents the platoon A under the control of MPC-qq splits into two sub-platoons A; and A, by switching signal oo,
and then operate respectively under the control of MPC-q; and MPC-q,. Note that MPC-q; and MPC-q share the same vehicle
dynamics and constraints in Eqgs. (2)-(14) with MPC-q( except extra constraints in Eqs. (23) and (25). Therefore, the control
switching feasibility is ensured if MPC-q; and MPC-q5 stay sequential feasible with these extra constraints. To demonstrate it,
recall that the switching signal MINLP -6, also shares the same vehicle dynamics and constraints in Eqs. (2)-(14) with MPC-qq,
while Eq. (23) in MPC-q; and (25) in MPC-q5 are respectively derived from Egs. (17) and (18) in the MINLP-6. That is to say, if
MINLP-o can find a feasible platoon splitting point factoring Eqs. (17) and (18), then involving constraints in Eqs. (23) or (25)
into MPC-qy for switching to MPC-q; or MPC-qs (i.e., implementing splitting point decision in the MPC control) will ensure that
MPC-q; and MPC-q; can always find feasible trajectory control solution at each step (i.e., the sequential feasibility of MPC-q;
and MPC-qs is confirmed). According to the definition of the platoon splitting point in Eq. (16), MINLP-6( can always find a
feasible platoon splitting point. Therefore, we confirm the sequential feasibility of MPC-q;and MPC-q, and the switching

feasibility of go 3 q1, qo.

(i) ¢1 3 qo represents the control of the sub-platoon A; switches from MPC-q; to MPC-qy when the switching signal o, is triggered.
Note that the MPC-qg has an extra terminal constraint in Eq. (14) compared with MPC-q;. If the terminal constraint in Eq. (14) is

always feasible, then the switching g; 2 qo is feasible. Recall that the terminal constraint in Eq. (14) regulates the platoon
control error to be limited in a defined range at the end of the prediction horizon P. It is always feasible when the prediction
horizon P is large enough (see section 4.3). Therefore, the feasibility of this switching is ensured.

(>iii) q2(x—1) BN q1(x), gz2(x) represents the sub-platoon Ay(k — 1) under the control of MPC-g5(x — 1) further splits into the sub-
platoon A;(x) under the control of MPC-q;(x)and the sub-platoon As(x) under the control of MPC-gs(x) when switching signal
oo(k) is triggered. Similar to the first type of switching, MPC-q;(x) and MPC-g5(x) share the same vehicle dynamics and con-
straints with MPC-ga(x — 1), but have extra constraints in Egs. (23) and (25). The switching feasibility is ensured according to

the same discussion for (i) qo 3 q1, 2.

Overall, the discussions above ensure the sequential feasibility of MPC-q; and MPC-q» and also guarantee the feasibility of the state
switchings in the well-designed hybrid system.

4.3. MPC terminal constraint feasibility

The MPC-qo introduces the terminal constraints in Eq. (14) to facilitate the MPC stability. Specifically, Eq. (14) requires all CAVs in
the platoon to reach a steady state at the end of the prediction horizon P, namely, the spacing and speed tracking errors are confined to
small domains at step P. Intuitively, if the MPC prediction horizon P is too small, the platoon may not have enough time to adjust
spacing and speed and satisfy Eq. (14). On the other side, if P is set vary large, it introduces tremendous computation loads, though the
terminal constraint in Eq. (14) becomes feasible. Hence, the problem becomes how to theoretically quantify the minimum P value to
ensure Eq. (14) feasible while reducing the computation loads.

The rigorous analysis of the minimum P value is not trivial because the movements of the CAVs are constrained by acceleration/
speed limits in Eq. (6)—(7) and coupled and constrained by safe distance constraints in Eq. (8). To tackle the problem, we construct a
series of feasible driving strategies to make vehicles sequentially satisfy the terminal constraint in Eq. (14). Mainly, we first make the
leading CAV satisfy its terminal constraint in Eq. (14) using feasible control strategies that satisfy constraints in Eqs. (2)-(13), then the
second CAYV, the third CAYV, ..., until the last CAV in the platoon. With this idea in mind, we consider a simple case E where only two
CAVs are involved. We make the leading CAV stay a constant speed and manage the following CAV to reach the same speed and desired
spacing as the leading CAV in Pg time steps using the well-designed vehicle driving strategy s. As such, we figure out it needs Pg time
steps for one CAV to reach steady-state and satisfy terminal constraint in Eq. (14). It is noted that P is related with CAVs’ initial states
and acceleration/speed limits.

Next, we extend this two-CAV simple case E to a general case with n CAVs, by letting CAVs sequentially implement the strategy s in
the order from the first to the last vehicle in the platoon. Then the corresponding number of time steps needed is Y} ; P (i) for the
general n-vehicle case. In summary, > 1, P(i) provides a lower bound for the MPC prediction horizon P. If the MPC prediction horizon
P > >, Pg(i), the MPC terminal constraint feasibility is ensured.

Our analyses and proofs indicated that the lower bound value of P (i.e., }_i ; Pg(i)) highly depends on the platoon size n and each
CAV Pg(i) value, which is further related with CAVs’ initial states and acceleration/speed limits. As the platoon size increases, or the
CAVs’ initial states move further away from the steady-state, or the feasible acceleration/speed ranges get smaller, the lower bound
value Y7 ; Px(i) theoretically increases. In practice, if the platoon is initially close to the steady-state (e.g., == 5m from desired spacing,

=+ 2 (m/s) from desired speed), then P = 15 is large enough to ensure the terminal constraints in Eq. (14) feasible for a platoon with 10

CAVs. To factor in the traffic signal phase and timing information, this study set P to be at least 20 or even 30, which ensured the
feasibility of the terminal constraints in most scenarios for a reasonable platoon size.

The entire proof involves many scenarios regarding CAVs’ initial states and acceleration/speed limits, which make the proof itself
tedious and very lengthy. In addition, the proof is similar to the feasibility proof developed in our previous work (Zhang et al., 2022).
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Thus, we omit the detailed proofs in this study but put them on arXiv (Zhang and Du, 2022).
5. MPC control stability

This section studies the control stability of the MPC controllers. The control stability plays a vital role in ensuring the system’s
performance. It theoretically guarantees that the platoon system can go to the desired spacing and speed even when exposed to
disturbances. A system fails to reach or sustain its control goal if it is unstable. Typically, the majority of the control stability can be
analyzed and proved by linear analysis techniques (Sastry and Bodson, 2011). However, the receding horizon MPC control with
constraints, such as the MPC-qy, MPC-q; and MPC-q- in this study constitute a nonlinear feedback control system, of which the
standard linear techniques are insufficient to prove the stability. To tackle this challenge, we employ the Lyapunov theory in Theorem
1 below to characterize the nominal system” behaviors and prove the asymptotical stability of the nominal MPC-q first.

Theorem 1. Asymptotic Stability (Bof et al., 2018): Let ¢ = 0 be an equilibrium point for the autonomous system @(k + 1) = f(p(k)),
where f : D-R" is locally Lipschitz in DCR" and 0 € D. Suppose there exists a function V: D—R" which is continuous and such that (i) V
(@ =0) =0 and V(¢) > 0 for Vo € D — {0}; (ii) V(flp(k))) — V(¢) < 0 for V¢ € D, then ¢ = 0 is stable. The function V that satisfies
conditions (i) and (ii) is called Lyapunov function. Moreover, if (iii) V(f(¢(k))) — V(¢) < Ofor V¢ € D — {0}, then ¢ = O is asymptotic
stable.

Furthermore, this study is aware that the uncertainties in Eq. (4) makes our MPC-qg a robust system rather than the nominal system.
Proving the stability of the nominal system is not sufficient for this study. We therefore continue to prove the Input-to-State stability of
MPC-qp in Remark 1 based upon Theorem 2. The Input-to-State stability ensures the system states are bounded around the equilibrium
point (i.e., the steady-state of the platoon), when uncertainties are involved. In other words, the platoon under the MPC-qq control in
this study will perform well under control uncertainties, if it is Input-to-State stable.

Theorem 2. Input-to-State Stability (Zeilinger et al., 2009): The discrete-time robust linear system ¢(k + 1) = A@(k) + Bu(k) + w(k) is
Input-to-State stable if the corresponding nominal system ¢(k + 1) = A@(k) + Bu(k) is asymptotically stable and the disturbance w(k) is
bounded.

Please note that the stability (e.g., Input-to-State stability) is used to evaluate the performance of an MPC in the long term. MPC-q;
and MPC-q; are the controllers with shrinking prediction horizons. They are only used for a short time period when the platoon is near
the intersection. Hence, we only show the stability proof for MPC-qy.

5.1. Reformulation and nominal system of the MPC-qp

Before developing our stability analyses, we first rewrite Eqgs. (2)-(4) and (9)-(13) into Egs. (38) and (39) respectively,

@(k+1) = Ap(k) + Bu(k) + w(k) (38)
@k+1) = Ap(k) + Bu(k) (39)

_ | =(k) 2N N+1 ; ; 2N }

where for Vk € Z,,, ¢(k) = 2 (k) € R*Y is the control state, u(k) € R""" is the control input, w(k) € W € R*" is the bounded un

certainty that is contained in a convex and compact set introduced by Eq. (4). Eq. (38) is discrete-time robust control dynamics of our
MPC-qp, whereas Eq. (39) is the corresponding nominal control dynamics by taking off the uncertainty w(k). Then, we have A, Band W
defined in Eq. (40). The corresponding mathematical derivations to obtain them are provided in the Appendix Al.

A= {lg T[{:[v} c RV, g — |:7;2;;1:| € RV = {7 {‘iil}xhi[‘f:il}éi] (40)
The matrix $1,S; in Eq. (40) are shown below, where ¢c; =8, + % co = — (61 + 62 +3):
¢ ¢ 1 -1
S, = €1 f2 ) c RV* (N+l); S, = 1 —.1 c RV* WD)
' c]' c 1 -1

Next, we transform the robust MPC-q, developed in Section 3 into the nominal system MPC-Q, below using the nominal control
dynamics in Eq. (39). Note that the CAV control uncertainty in Eq. (4) is removed.

P

MPC — @ minl'(k) = > Z(oplk), ulplk))

p=1

Subject to: p(p + 1|k) = Ap(p|k) + Bu(p|k),p=0,1,...,P -1

2 Nominal system is defined as the system’s dynamics without modeling uncertainty errors

10
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(p(p+1]k), u(plk)) e® x U, p=0, 1, ..., P—1

@(Plk) € @y

The notation (p|k) in the MPC-Q, represents the time step of p + k; ® and U are linear constraints on the states and inputs cor-
responding to Egs. (5)-(8). According to the MPC-qo objective function in Eq. (1), the stage cost is defined as /(¢(plk),
u(plk)) := 2" (plk)Quz(plk) + (2 (pk)"Q, 2 (k)] + %a)lH u(p —1k) |I2. @y is the compact terminal constraint defined in Eq. (39).
Please note that under the nominal system in the Eq. (39), ®fbecomes the equilibrium point, namely ®; = 0: z(P|k) =0, 2'(P|k) = 0.

Solving the MPC-Q will generate an optimal control sequence # (k) = [u*(0lk), u(1|k),...,u(P — 1lk)], in which the MPC controller
will only implement the current control decision u*(0|k), and recompute MPC-Qy at the next time step. u*(0|k) can be considered as a
feedback control of the current state ¢(0|k) at step k as follows in Eq. (41):

u' (Olk) = Ko (O[k) (41

where Kj is the corresponding feedback control law obtained by solving MPC-Q. From the optimal control sequence u(k), we can
obtain corresponding state sequence ¢ (k) = [p(1]k), @(2|k), ..., (P|k)] as well as the optimal value function I'y(k, #(k)) of the MPC-
Qo. Ty(k,u(k)) is the value of the objective function I'(k) when the optimal control sequence # (k) is applied to the system. The value
function I'y(k, u(k)) will be employed as a Lyapunov function to prove the asymptotic stability in the next Section 5.2. We abbreviate
Ty(k, u(k)) as T'y(k) hereafter for discussion convenience.

5.2. Asymptotic Stability and Input-to-State Stability

This section proves the asymptotical stability of the nominal MPC-Q, and then the Input-to-State stability of the robust MPC-qj.
Specifically, we first show I'y(k) is a Lyapunov function and thus the nominal MPC-Qj is asymptotic stable in Lemma 2 according to the
Lyapunov Theory in Theorem 1. Then together Theorem 2, we conclude the robust MPC-qy is Input-to-State stable in Remark 1.

Lemma 2. Suppose I'y(k) is the optimal value function of MPC-Qy, then I'y(k) is a Lyapunov function and MPC-Q, is asymptotic
stable.

Proof. According to the feedback control law in Eq. (41), the nominal controller in Eq. (39) can be converted into ¢(k + 1) = (A +
BKpo(k) for Vk € Z.,, which is an autonomous system stated in Theorem 1. Accordingly, the autonomous system dynamic function f =
A + BKyis linear time invariant and thus Lipschitz in a domain D = RN. Then, to prove I'y(k) is a Lyapunov function and MPC-Qy is
asymptotic stable, we need to prove the function I'y(k) satisfies the three conditions in Theorem 1, which are (i) I'v(¢(k) = 0) = 0 and
T'y(@(k)) > 0 for Vop(k) € RN — {0}; (i) Ty(f(ek))) — T'v(p(K)) < 0 for Ye(k) € RY; (i) Ty(f(epk))) — I'p(k)) < Ofor Vo (k) € RN — {0}.

Recall that I'i(k) represents the optimal value of the objective function I'(k) in the MPC-Qg, which is obtained by applying the
optimal control sequence # (k) to the systemB. The quadratic formulation of I'(k) in Eq. (1) indicates I'(k) > 0 so that we have I'y(k) > 0.
Apart from it, I'y(k) = 0 holds if and only if the MPC-Qg reaches equilibrium point (i.e., (k) = 0, all CAV keep same reference speed
and apart with desired spacing). Hence, condition (i) is satisfied.

Then, we need to show conditions (ii) and (iii) are satisfied. Specifically, T'y(k + 1) < T'y(k) for Vo € RN — {0} and 'y(k 4 1) = I'y(k)
when ¢ = 0. The mathematical definition of function I'y(k) and I'y(k + 1) are given below in Egs. (42) and (43).

Ty (k) = miny_/(p(plk) ulp = 11k)) = min Y _/(p(p+ k), ulp+k—1)) (42)
Fv(k-‘rl):muini/((p(erknLl),u(erk)) (43)

According to Egs. (42) and (43), we have the following mathematical derivations for I'y(k + 1) in Eq. (44).

Ty(k+1) = muin{ i/((/}(p+k+ 1), u(p+k)+7(pP+k+ 1),u(P+k))}

p=1

= min{ Z/((/J(I)Jrk),u(prkf D)+ (pk+ 1),u(k))} —min/ (p(k+1),u(k)) + u:(v;%/(q;(P+k+ 1), u(P+k))

u p u(k)
=Ty(k) - l’l’l(i})’l/((p(k-‘r 1), u(k)) + r(giri)/((p(P-‘rk-‘r 1), u(P+k)) 44

Since we define the terminal constraint ¢p(P|k) € ®¢= 0 in the nominal MPC-Q,, we have the state ¢ reach the equilibrium point at
step k + P (i.e., (P + k) = 0). Then there exits feasible control input u(P + k) = 0 to drive the state ¢ stay at the equilibrium point 0,

8 I'y(k) refers to I'/{(¢p(k)) and correspondingly I'y(k + 1) refers to I'/{(f(p(k))).

11
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namely (P + k + 1) = 0. Hence, r(rp}irﬁ)/(z/z(P +k + 1),u(P + k)) = 0. Together Eq. (44), we have the following Eq. (45).
u(P+
Ty(k+1) <Ty(k) - rr%z/((p(k-‘r 1), u(k)) (45)

Further, based on Eq. (45) and /(¢(k + 1),u(k)) > 0, we have
Iy(k+1) <Ty(k)

Condition (ii) is satisfied. Moreover I'y(k + 1) = I'y(k) holds if and only if /(p(k + 1),u(k)) = 0, namely ¢(k) = 0, u(k) = 0.
Condition (iii) is satisfied. In summary, function I'y(k) is a Lyapunov function that satisfies three conditions in Theorem 1. Hence, MPC-
Qo is asymptotic stable. We conclude the proof. =

Remark 1. Given that the uncertainty w(k) is bounded and Lemma 2 has proved that the nominal MPC-Q is asymptotic stable, we
claim that the robust MPC-q is Input-to-State stable according to Theorem 2. It ensures that the platoon states such as vehicle speeds
and spacings in this study are bounded around our desired control goal under the robust MPC control. Besides, the gap between the
actual control performance and our literal control goal highly depends on the uncertainty w(k). Specifically, the gap decreases as the
uncertainty w(k) becomes smaller. When w(k) = 0, the system becomes nominal system without uncertainty and the gap becomes 0.

Remark 2. Although this study does not explicitly model the impact of CAV communication delay in the MPC-qo, the bounded CAV
communication delay will not affect the stability of the MPC-qq. Specifically, the negative impacts caused by the bounded commu-
nication delay can be factored into the bounded control uncertainties w(k) in CAV’s robust dynamic system through Eq. (38). Given the
communication delay is bounded, the resulting control uncertainty w(k) will also be bounded. Then the MPC-qy is still Input-to-State
stable according to Remark 1. On the other hand, if the communication lag is large and unbounded (e.g., communication fails), MPC
feasibility and system stability are hard to be ensured. One possible solution for addressing this challenge is to use a machine learning
approach to detect such anomalies and exclude such CAVs with significant communication lags using finite state machine in platoon
according to Smith et al., (2020). As in this case, the CAVs with significant communication lags are not well connected, from which the
platoon is separated into two individual platoons. However, this topic is out of the scope of the research in this paper. We propose to do
it in our future work.

6. Theoretical analysis of the AS-OCD

Part I of this study developed an active-set-based optimal condition decomposition approach (AS-OCD) to solve the MPC optimizers
of the hybrid system via a distributed optimization approach. The numerical experiments have validated its effectiveness in practice.
This section in Part II focuses on analyzing its theoretical performance, including solution optimality and convergence speed.

6.1. Active set based optimal condition decomposition (AS-OCD)

For completeness, we first briefly review the key ideas and formulations of the AS-OCD algorithm to provide the mathematical
foundation for our theoretical analysis. Please refer to the Part I paper (Zhang and Du, 2022) for the technical details. The AS-OCD
algorithm combines the active set method (AS) (Nocedal and Wright, 2006; Nak et al., 2017) and the optimal condition decompo-
sition approach (OCD) (Conejo et al., 2002). Mainly, the AS algorithm identifies the violated constraints by the current solution of the
MPC controllers and then makes them become active” constraints. This procedure renders the following Optimizer F in Eq. (46), which
is rewritten from MPC-qo but only subject to equality constraints. Next, the OCD algorithm is used to solve optimizer F in distributed
computing fashion. The two procedures are iteratively conducted until AS cannot find the violated inactive constraints.

N

. 2
Optimizer F : Min ['(u) = Z{Z{QQZ" + (z;.)[erz; +%H u; |\§} (46)

i=1

Subject to I-many gas(y; — 1, uj)) = 0, /-many css(u,) = 0,

In the optimizer F in Eq. (46), gas(yj — 1, u)) = 0 is an active coupled5 constraint such as safe distance constraints in Eq. (8) while
constraint cas(u,) = 0 is active uncoupled constraints such as acceleration/speed limits in Eqs. (6)—(7).

Clearly, the OCD algorithm is critical to ensuring convergence and computation efficiency. We provide more technical details in
this regard. The Karush-Kuhn-Tucker (KKT) conditions (Boyd et al., 2004) of the convex optimizer F lead to a system of equations.
Newton’s method (Nocedal and Wright, 2006) in Eq. (47) is an efficient approach to find the global optimal solution for such system.

4 Given an optimization problem, an inequality constraint g(x) > 0 is called active at x if g(x) = 0 and inactive at x if g(x) > 0, whereas equality
constraints are always active.

5 Coupled constraints refer to the constraints involving more than two agents (two CAVs in this study). Conversely, uncoupled constraints involve
only one agent (one CAV).

12
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Vaieaswas) VVieas(u) VVgas(u) [ Au VLas(u,n,2)
Veas(u) 0 0 —Ap | =— cas(u) SKA=—f 47)
Veas(u) 0 0 —A gas(u)
K A f

where Las(u,n, ) =T'(w) + nTcAS(u) + kTgAs(u) is the Lagrangian function derived from Optimizer F; = [y, ..., 1 /]T and A= [Ag,..., AT
are Lagrange multipliers; the searching direction A is obtained by solving A = —K~'fand then is used to update the solution iteratively
until converging to the optimal solution.

This Newton’s method needs to be implemented by a central solver since the KKT matrix K involves coupled elements: VZLAs(u,n,
A), Vgas(u).For example, VZLAs(u,n, ) is related to the objective function I'(u) in Eq. (1) where the neighboring CAVs’ control inputs
are closely coupled in terms of the platoon control dynamics in Egs. (9)—(13)). Vgas(u) is the gradient of safe distance constraints in Eq.
(8) and thus also couples two neighboring CAVs’ states. However, our experiments found that centralized computation cannot provide
satisfying performance for this real-time control. Part I of this study thus explored the OCD algorithm. A critical modification is to
approximate the KKT matrix K in Eq. (47) to K in Eq. (48).

K, 0 0 A, f _ .
0 ~ 0 s == |ed =& vi=1, N, (48)
0 0 Ky Ay i

K a 7

where K; is the matrix block of CAV i in the approximated KKT matrix K; A; and f; represent CAV i’s searching direction and corre-
sponding gradient. The mathematical formulations of K;, A;, f; are given in Appendix A2. Apparently, CAVs’ control variables in K are
separable. Accordingly, we can compute each CAV i’s searching direction by A; = —K; ! fi in a distributed manner. To be noted, this

approximation of the KKT matrix will not affect the solution optimality and the convergence of the OCD algorithm. We will
demonstrate these technical details in section 6.2.

6.2. Convergence of the AS-OCD

This AS-OCD algorithm is an iterative distributed algorithm. Then, it posed the theoretical questions regarding its convergence
performance (i.e., whether the AS-OCD can converge to the optimal solution and how fast it converges). We investigate these issues in
this section. The main idea is given as follows. According to the study of Nocedal and Wright, (2006), the AS method can converge to
the global optimal solution for a strictly convex quadratic problem with linear constraints. It works efficiently for optimization
problems with few active constraints. The MPC optimizers of this study satisfy these features. Hence, the convergence rate and solution
optimality of the AS-OCD algorithm highly depends on the performance of the OCD algorithm. According to Theorem 3 in Conejo et al.,
(2002), the OCD algorithm can guarantee the linear convergence rate to the global optimal solution when an optimizer satisfies certain
conditions. We will use this Theorem 3 to prove the convergence of the OCD algorithm. For completeness, we provide Theorem 3 first
as follows.

Theorem 3. (Conejo et al., 2002) For an optimizer F in Eq. (46), using the OCD algorithm can obtain the global optimal solution® I*
with linear convergence rate at least equal to p* if the following conditions hold.

(I) Functions T, g, ¢ have Lipschitz-continuous second derivatives in an open set containing [*;
(I) The matrix K is nonsingular’ for any I, and the sequence {K} converges to a nonsingular matrix K as I — I*;
(I) At the second order KKT point I*, p* = p(I — (K) 'K) < 1.

Built upon Theorem 3, we prove Lemma 3 to confirm that the OCD algorithm can obtain global optimal solutions efficiently.

Lemma 3. The MPC optimizer F in Eq. (46) satisfies conditions (I), (II) and (III) in Theorem 3 and thus can obtain global optimal
solution in linear convergence rate using OCD algorithm.

Proof: First of all, the functions I', g and c of the MPC optimizer F in Eq. (46) are quadratic or linear. Then they are globally second-
order Lipschitz-continuous according to Sohrab, (2003). Thus, Condition (I) is satisfied. Next, given that the matrix K is the hessian
matrix of I’ when constraints g c are not active, then K is constant because I' is quadratic. Besides, K is diagonalizable® and we can
easily show I" is strictly convex with positive eigenvalues according to Eq. (46) and MPC-qq optimizer in Eq. (1). Hence, K has full rank
and is always nonsingular (Greub, 2012). Condition (II) is satisfied.

Then, we focus on proving condition (III) holds by showing the spectral radius (all the eigenvalues) of the matrix (I —(K)’IK) is
smaller than 1 (i.e., p* < 1). To do that, we first provide the explicit expression of the matrix (I — (K) 'K). Then we use the induced

% The global optimal solution I* = (u*, 6*, A*) is the second-order KKT point of optimizer F. When optimizer F is convex, [* is the optimal solution.
7 Nonsingular matrix is a square matrix whose determinant is not equal to zero (i.e., has full rank).
8 If a matrix A is Hermitian symmetric, then A is diagonalizable. K is symmetric and thus diagonalizable.
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norm inequality’ p(A) < ||A|| to prove the spectral radius of matrix (I —(K) 'K) is less than 1. The proof details are given as follows.

To prove condition (iii) p* = p(I —(K) 'K) < 1 holds, we first write the mathematical formulations of the matrices K and K in Eq.
(49). Note that the objective function I'(u) in Eq. (46) is locally coupled, namely CAV i’s control input u; is only coupled with two

control inputs u; _ 1, y; 4 1 of its immediate neighboring CAVs. According to this feature, we have LT if li —j| > 2.

ou;u;
- 5 -
ail; o°r 0 0 o )
ou;  Ouyuy — 0 0 0
o’
’r T OT R
auzul (3u§ auzu; ’ ’ 0 al
2 0u§
K=1| 0 or 0 K=1]0 . 0 (49)
dusuty 5
5 , T
0T o EY
Uy -1
0l ,  Ouy_yuy
T
0T T 0 ... 0 0 5
0 0 — L ouy, |
L Ouyiy_ 0MN i

It is noted that matrices K and K in Eq. (49) do not consider the constraints in Eqs. (6)—(8) and (14) because they are not active
under normal traffic conditions. Besides, involving these constraints will introduce Lagrangian multipliers n and A into the Lagrangian
function Lys in Eqs. (47). Given multipliers 1 and )\ can be any negative or positive value, the matrices K and K in Eqs. (47)-(48) are
hard to bound. Consequently, theoretically proving condition (iii) becomes mathematically intractable according to Conejo et al.
(2002).

According to Eq. (49), we can sequentially derive the matrix (I?)’IK in Eq. (50) and finally the matrix I — (F)’lK in Eq. (51) below.

I A, 0 0
Ay Ip Ays :
EK7'K=|0 A - 0o |, (50)
o I Ay_iy
0 ... 0 Awva I
where Ay = (25) l(duﬁlﬁl) ERPP 1 =2, N Ay = (%) l(jTFl) ERPP i—1,. N—1.
Bl 0 7A1,2 0 0
B, —Az 0 —Az3 . :
B=| ! |=I-®)7'K=| 0 —A;; - 0 ; (51)
By : 0 —Ay_1n
By 0 0 —Ayy_i 0

Note that we use B = I — (K) 'K hereafter for discussion convenience. To prove condition (III) holds, it is equivalent to showing the
spectral radius of matrix B is less than 1. We intend to use the induced norm inequality'° to prove it. Specifically, we first calculate the
1-norm of matrix B (i.e, ||B||) and show ||B|| is less than 1. It is equivalent to showing the summation of the row elements’ absolute
values is less than 1 for every row of matrix B. For discussion convenience, we denoteB =[B; B, ... By By ]T, where B; € RPN
represents i row block of matrix B with P rows. B; corresponds to CAV i’s P-step matrix block in the optimizer I'(1s). Further, we use the
notation B;, to represent the p‘h row of the matrix block B;, Vp = 1, ..., P. B;, corresponds to CAV i’s matrix block at time step p.
Wrapping above, if the 1-norm of B;, (i.e., ||Bjp|) isless than 1 for Vi=1, ..., N, Vp =1, ..., P, condition (III) holds. Below we show ||B; ||
is always less than 1.

To do that, we first have By,Vi = 1, ..., N represented as follows in Eq. (52).

1

T\ oT
—Aiin = - 53 if i =1
o (a“iz> Ouitiyy v
PO\ Fr o
Bi={ —A. | —Ay = —— (52)
Ajic1 — Aiigi (du%) (au;u,-,l + auiui+1> if i#1,N
Fr\ T
A =) T i
ii—1 <0uf> it ifi=N

° For a matrix A, p(A) < ||A"AptCommand2016;/" for all positive integers r, where p(A) is the spectral radius of A. When = 1, p(A) < ||A]|, |A| is
the 1-norm of matrix A.
10 sely, uncoupled constraints involve only one agent (one CAV).

14



H. Zhang and L. Du Transportation Research Part B xxx (xxxx) xxx

According to Eq. (52), we can obtain ||B;p|| in Eq. (53) for each row p; € {1, ..., P} in B;.

P | 62 1| 62
Iauz(]? M:(Pz |au1 Mz+1(]72)

p2=1

g T o’r T |
BI=0 S n i 4 1,N 53
1801=Y 2 oo [awoacsn * a7 >3)
LT K T N
S ou(p)ui(p) ' 0w(p)uii(p2)|

r o°r
[ (Pl)“:(Pz) Ou;(p1)ui—1(p2)’  9u;(p1)uir (p2)
show each element of ||B;,|| is strictly less than 1. To do that, we calculate the second derivatives m@l and

respectively in Eqgs. (54), (55), (56), according to Eq. (46).

Consequently, to prove ||B;p|| < 1, we need to derive out the mathematical representation of and

o’r ’r
)Ui(Pz) ? 0ui(p1)ui-1 (p2) 0u; (p1)ui+1 (P2)

T - 0z;(p) 0z(p) 0z(p) 0z(p) _ 0zi11(p) 92iv1(p) 32;-“(17) 9z, (p) 2
0”1(17 ) (p2) p= m;;..pz}{alaui(l?l) aui([’z)+ﬂiaui(P1) 0“1’(172)+0h+1 (P ) (P ) *hin 0”1'(1’1) ‘)“i(l’2) o g(Pl~,P2)~, ©9
oY 0u(p) 0u(p) o 07(p) 0%i(p)
T, 3 [ ey i e e
627[‘_ P v aZi+1(P) aZi+1Q?) 0z;+l(p) az;‘+l(17)
Ou; (p1)uir1 (p2) B Z {alﬂ Ou;(p1) Ouiyi(pa) iH Oui(p1) Ouis (PZ)} ' 0

p=max{pi,p2}

In Eq. (54), ¢(p1,p2)={ 0 lﬁémf 2 is an indicator function. In Egs. (54)—(56), the first derivative l)u‘)z‘l(‘&) S J‘Z&) s ;uzl 11& ; an nd l?uf(}(;

are formulated below in Eq. (57) according to Eqgs. (9)—(13).

0lp) _ 0ap) o a(p) 95() _ Oulp)
Oui_1(p2)  Ouiy(p2) 0u, I(PZ) Ou;(p2)  Oui(p2)

0u(p) _ _Ox(p) (61 +8)r wilp) . 9z, (p) _ vini(p)

Ou;(p2) Ou;(p2) 0”[(112)’ Oui i1 (p2) a Ouiy1 (p2)
Without loss of generality, we consider CAVs’ aerodynamic drag and powertrain lag coefficients are the same for discussion

| = Z’T&ﬂ and | ;;‘ 11(1(52 =] gf‘(pz | according to Eqs. (2)-(4). Then we have the following re-

(57)

convenience so that we can have |2

du; (Pz

lations regarding ou‘?zi((’gz) , oifig;) , ;f;llg; and 011 (lp(f in Eq. (58) based on Eq. (57). Note that if CAVs’ aerodynamic drag and powertrain lag
@)

(p W1 (p) i1(p) : : :
o @2 \ and |- &y | may be smaller or larger than | T | and | T | respectively. It will make the math relations in Eqs.

(58)—(59) very complicated with a large number of scenarios, and consequently lead to Eq. (53) mathematically intractable. Besides,
CAVs’ aerodynamic drag and powertrain lag are normally small, so it is reasonable to consider them the same values without affecting
the final results.

|aZL+|(p ‘ azl“(p 9z(p) | 9z(p)
|0Mz+1(]J2 ‘ aux(]Jz 0ui71(172)| dui(l)z)

According to Egs. (54)—(56) and (58), we have the following inequality formulations regarding i (p‘iz)z A (pl‘;iil o (plgzuiil ) in
Eq. (59).

are different, | &

(58)

<

T | or
auz(Pl)M[+1(P2)| aMi(Pl)Mi(Pz)
T T | or |

ou;(p1)ui—1 (p2) +alli(l’l)“iﬂ(ﬂz) = }‘)”i(Pl)”i(PZH

T | T
aui(pl)ui—l(P2)| aui(pl)ui(pZ)

Based upon Egs. (53) and (59), we thus have ||B;|| < 1,i€ N, p € P Hence, we know that 1-norm of every row in matrix I —(K) 'Kis

(59)

<

smaller than 1, mathematically || I — (K) 'K ||< 1. Finally, we apply the induced norm theorem and obtain
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p =p(1-(&)'K) <| 1 (K) 'K [<1.

Condition (III) is satisfied. We conclude the proof. m

In summary, Lemma 3 demonstrates our MPC controllers satisfies the three conditions given in Theorem 3. Then Theorem 3
confirms that using the AS-OCD algorithm can efficiently solve the MPC controllers in this study and obtain the global optimal solution
with a linear convergence rate. In particular, the approximation of the KKT matrix K in Eq. (47) by K in Eq. (48) will not affect the
solution optimality and convergence speed.

7. Conclusion

Advanced connected and autonomous vehicle (CAV) technology offers new opportunities for eco-driving strategies at signalized
intersections by leveraging traffic signal phase and timing (SPaT) information. The existing eco-driving strategies mainly provide
vehicle-level speed plan or advisory for individual vehicles without considering other vehicles’ benefits. Although showing
improvement in fuel consumption and emissions, these approaches may sacrifice the traffic system performance and lack robustness to
various uncertainties in the real world. To bridge these limits, Part I (Zhang and Du, 2022) of this study developed a system optimal
platoon-centered control for eco-driving (PCC-eDriving), which provides feedback control law for a mixed flow platoon to pass the
signalized intersections smoothly and efficiently. We carefully designed a hybrid MPC system to instruct the entire intersection passing
process, which includes the platoon approaching the intersection, then splitting into sub-platoons and sequentially passing the
intersection in different traffic cycles. The hybrid MPC system mainly uses three MPC controllers and one mixed integer nonlinear
programming switching signal, aiming to generate robust, feasible, and stable control law for the PCC-eDriving. By conducting
simulated numerical experiments, Part I demonstrates the merits of the hybrid MPC system. Part II paper theoretically analyzed and
proved the control law generated by the hybrid MPC system is feasible, stable, and thus robust. Specifically, we proved the sequential
feasibility of the MPC controllers and switching feasibility of the hybrid system, and analyzed how the prediction horizon affects the
feasibility of the optimizer. We investigated the asymptotic stability of the nominal MPC controller and further proved the
Input-to-State stability of the robust MPC controller in the hybrid MPC system. To ensure satisfying computation performance for this
real-time control, Part I of this study designed the AS-OCD algorithm to solve the large-scale MPC optimizers in a distributed manner.
Part II of this study moved forward and theoretically proved the convergence and optimality of the AS-OCD algorithm. We conclude
that the AS-OCD algorithm can reach the global optimal solution in linear convergence rate when it is used to solve the MPC controllers
in this study.
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Appendix
Appendix Al. Mathematical derivations of Egs. (38)-(40)

According to the control dynamics in Eqgs. (10)-(13) and CAV dynamics in Egs. (2)-(4), we can have the following mathematical
derivations of the CAV i’s control dynamics in the Eqgs. (60) and (61). Note that we denote a;(k) = u;(k) — Au;(k) for notation simplicity.

zilk+1) =x(k+1) —x;(k+1) — si(k+1)

2

= xi 1 () = %K) + 7(vis (k) — (k) + =

5 (ai-1 (k) —ai(k)) — si(k+1)

= alk) +(0) sk 1) + 75,0 + 7 (@1 (k) (k)

=zi(k) + TZ; (k) — 617%a;(k) — 8,7 (a1 (k) — a;(k)) + ﬁ(ai,] (k) —ai(k))

2
=z(k) + TZL» (k) + 7 <%+52> ai_y (k) — 7 (51 + 6, +%) a;(k) (60)
2k 1) = vy (k+ 1) — vi(k+1)

= v (k) + ta;_ (k) — (vi(k) +7a;(k))

= 2, (k) + t(ar1 (k) — a;(k)) 61)

Letc; =85 +1 o = — (81 +6, +1) We have the following Eq. (62) according to Egs. (60) and (61).
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zi(k+1) :[1 T] zi(k) +{#cl TZCZHa,»,I(k)} (62)

qk+1] L0 Ulzmw] L -]l ak

According to the control dynamics of CAV i in Eq. (62), we can then derive out the following platoon control dynamics in Eq. (63),

Zk+1) ][Iy iv]]| z(k) 7’8,

[z'(k-'rl)] = {o Iv ] L(k) s, |40 63)
wherea(k) = [ag(k) ... a(k) ... an(k)]" € R¥*! and the matrices $; and S, are given below with¢; =8, +3; ¢2 = — (61 + 62 +
2

cp 1 -1
S = Ci f‘.z € RVx V+1), S, = 1 —..1 € RVx (v+1)

Appendix A2. The mathematical formulations of K;, A;, f; are presented as follows according to Eqs. (47) and (48)

PLas(u,n, ) 0 ci(w) 0" giluiiy, )

ou? ou; Ou; OLas(u,n,2)
Au; ou;
K = dci(u;) 0 0 A= | —An, |if = )
0u,- _A;Ll_ i\Ui
0gi (w1, u;) 0 0 gilui1,u;)
ou;
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