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A B S T R A C T   

Extensive studies developed eco-driving strategies to smooth traffic and reduce energy con
sumption and emission at signalized intersections. Part I (Zhang and Du, 2022) of this study 
developed a novel platoon-centered control for eco-driving (PCC-eDriving), considering a mixed 
flow involving Connected and Autonomous Vehicles (CAVs) and Human-Driven Vehicles (HDVs). 
This PCC-eDriving is mathematically implemented by a hybrid Model Predictive Control (MPC) 
system and solved by an active-set based optimal condition decomposition algorithm (AS-OCD). It 
generates discrete control laws for a platoon to approach, split as sub-platoons as needed, and 
then pass the intersections smoothly and efficiently. Though the numerical experiments validated 
the effectiveness, the theoretical properties of the hybrid MPC system and the solution algorithms 
were not investigated. Part II of this study thus focused on these theoretical analyses. Mainly, we 
first analyzed and proved the MPC sequential feasibility and hybrid system switching feasibility to 
guarantee the control continuity of the hybrid MPC system. Next, we factored CAV control un
certainties and proved the Input-to-state stability of the robust MPC controller. These proofs 
theoretically ensured the effectiveness and robustness of the hybrid MPC system. Last, we proved 
the solution optimality and convergence of the AS-OCD algorithm. It confirmed that the AS-OCD 
algorithm could find the global optimal solutions for the MPC optimizers with a linear conver
gence rate.   

1. Introduction 

Severe traffic congestion and frequent stop-and-go traffic isolation often occur around intersections with traffic lights. This non- 
smooth traffic pattern further causes traffic accidents (Poch and Mannering, 1996), wastes extra energy consumption and emissions 
(Li et al., 2014), and significantly dampens driving comfort (Summala, 2007). Inspired by recent advancements in connected and 
autonomous vehicle (CAV) technologies, many studies have been devoted to developing eco-driving strategies for improving traffic 
safety and efficiency at signalized intersections. The main idea is to inform CAVs the signal phase and timing (SPaT) through Vehicle to 
Infrastructure (V2I) communication technology and then plan the optimal driving strategy for CAVs to go through an intersection 

DOI of original article: https://doi.org/10.1016/j.trb.2023.02.006. 
Abbreviations: CAV, Connected and autonomous vehicle; MPC, Model predictive control; Eco-driving, Economic driving. 

* Corresponding author. 
E-mail addresses: hanyu.zhang@ufl.edu (H. Zhang), lilidu@ufl.edu (L. Du).  

Contents lists available at ScienceDirect 

Transportation Research Part B 

journal homepage: www.elsevier.com/locate/trb 

https://doi.org/10.1016/j.trb.2023.03.008    

mailto:https://doi.org/10.1016/j.trb.2023.02.006
mailto:hanyu.zhang@ufl.edu
mailto:lilidu@ufl.edu
www.sciencedirect.com/science/journal/01912615
https://www.elsevier.com/locate/trb
https://doi.org/10.1016/j.trb.2023.03.008
https://doi.org/10.1016/j.trb.2023.03.008
https://doi.org/10.1016/j.trb.2023.03.008


Transportation Research Part B xxx (xxxx) xxx

2

efficiently and smoothly. Along with this thought, various eco-driving strategies have been developed, including vehicle-level constant 
or dynamic speed advisory (Lu and Shladover, 2014; Simchon and Rabinovici, 2020, Kamal et al., 2012; Ma et al., 2017) using heuristic 
or optimization approaches, or platoon-level trajectory plan (Zhao et al., 2018; Wang et al., 2019; Ma et al., 2021; Chen et al., 2021) 
employing platooning control to generate energy-efficient trajectory instructions. Though all of them demonstrated inspiring results, 
several studies (Wan et al., 2016; Ma et al., 2016, Lioris et al., 2016) indicated that vehicle-level eco-driving strategies could not 
guarantee system performance while platoon-level eco-driving strategies performed better in this aspect. However, developing 
platoon-level eco-driving strategies often need to address super difficulties in modeling and computation as involving a large-scale 
problem with more vehicles and considering more complex decisions such as systematically splitting a long platoon. 

Our study in Part I (Zhang and Du, 2022) addressed this challenge. It developed a novel system optimal platoon-centered control for 
eco-driving (PCC-eDriving) at signalized intersections, leveraging CAV technologies. This PCC-eDriving is distinguished from existing 
platoon-level eco-driving strategies (Zhao et al., 2018; Ma et al., 2021; Chen et al., 2021) in several aspects. First, it applied a feedback 
closed-loop trajectory control approach rather than an open-loop trajectory planning method to improve control robustness against 
traffic and vehicle control uncertainties. Second, it considers the entire platoon as a system and generates optimal eco-driving control 
laws for the entire platoon rather than only instructing the leading CAV. In this way, the PCC-eDriving can ensure system optimality 
regarding traffic smoothness and energy consumption efficiency. Furthermore, the PCC-eDriving is mathematically implemented by a 
hybrid system, which integrates three model predictive control (MPC) controllers to respectively direct the platoon to approach, split 
as needed, and then pass the intersection, co-considering traffic smoothness, efficiency, and energy consumption. In particular, the 
hybrid MPC system uses a mixed-integer nonlinear program (MINLP) rather than heuristic approaches to break a long platoon if it 
cannot entirely pass the intersection in one green interval, considering traffic smoothness, traffic throughput and energy consumption. 
What is more, the MINLP and the optimizers of the MPC controllers are well streamlined to facilitate the control switching feasibility 
and efficiency. We will show this merit in our theoretical analysis later. Last, an active-set optimal condition decomposition algorithm 
(AS-OCD) is designed to solve the MPC controllers efficiently in a distributed computing manner. 

Part I of this study (Zhang and Du, 2022) validated the effectiveness of the PCC-eDriving and the associated approaches by nu
merical experiments but has not yet investigated several critical issues regarding the properties of the hybrid MPC system and the 
solution approaches. For example, the MPC sequential feasibility, hybrid system switching feasibility, MPC control stability and 
AS-OCD convergence are not analyzed and proved. They together decide whether the hybrid MPC system can run smoothly and 
effectively. Specifically, an MPC system with sequential feasibility ensures that it can always find feasible control law that satisfies all 
the constraints at any future time step when it starts with an initial feasible state. The applicability of the PCC-eDriving attaches a great 
importance to the MPC sequential feasibility, as it significantly affects the CAV control continuity and robustness, which further impact 
driving safety. Built upon that, the hybrid system switching feasibility decides if the platoon under PCC-eDriving can feasibly switch 
from one MPC controller to another. Without this switching feasibility, the hybrid control system will fail to guide the platoon to split 
and pass the intersection. Furthermore, the stability of a MPC control evaluates whether and how fast the system will reach the control 
goal in theory. This control performance is crucial as it theoretically ensures that PCC-eDriving can quickly guide CAVs to achieve 
desired spacing and speed while minimizing energy consumption. Finally, the PCC-eDriving used the AS-OCD algorithm to solve the 
large-scale MPC optimizers in real time. The solution optimality and convergence performance of the AS-OCD algorithm significantly 
impact the applicability of the hybrid MPC system developed for this PCC-eDriving. 

This Part II paper seeks to complete these theoretical gaps in the Part I paper. Specifically, we first analyzed and proved the MPC 
sequential feasibility and hybrid system switching feasibility to ensure the control continuity and smoothness of the hybrid MPC 
system. Then we analyzed the asymptotical stability of the MPC system and proved the Input-to-State stability of the robust MPC 
controller, which factors the CAV driving uncertainties. Next, this study analyzed the optimality and convergence of the AS-OCD 
algorithm. The theoretical analysis confirmed that the AS-OCD algorithm could quickly find the global optimal solution for the 
MPC controllers developed in this study with a linear convergence rate. 

The effort of this study is presented by the roadmap as follows. Section 2 and 3 respectively revisits the PCC-eDriving problem setup 
and the hybrid MPC system. Building upon that, Section 4 analyzes and proves the sequential feasibility of the MPC controller and 
hybrid MPC switching feasibility. Section 5 investigates the MPC nominal system and robust system and then proves the Input-to-state 

Fig. 1. Sample platoon at the signalized intersection (from part I).  
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Stability of the MPC controller. Furthermore, Section 6 analyzes the solution performance and proves the convergence of the AS-OCD 
algorithm. The whole study is summarized in Section 7. 

2. PCC-edriving problem statement 

This study considers a mixed-flow platoon approaching a signalized intersection on an urban road and seeks to drive it through the 
intersection smoothly by avoiding sharp stop/deceleration as much as possible. Using the example shown in Fig. 1, we introduce the 
problem setup and the notations. Without loss of generality, we consider a sample platoon involving two CAV segments sandwiched by 
a human-driven vehicle (HDV) segment. A longer platoon can be extended by following this pattern. Accordingly, we label the three 
segments as C1 with CAVs labeled as {1, …, n}, H with HDVs indexed by {1̂,…, m̂}, and C2 with CAVs labeled as {n + 1, …, N}. A CAV 
set C = C1 ∪ C2 is then defined for all CAVs in the platoon. We also introduce notations xi, vi ui for ∀i ∈ IC = {1, …, N} and x̂i, v̂i uî for 
∀̂i ∈ IH = {0̂, 1̂, …, m̂} to represent the longitudinal position, speed, and acceleration of the ith CAV and the ̂ith HDV respectively. The 
platoon trajectory control is conducted at discrete time steps (indexed by k ∈ Z+ := {0,1,2,…}) with a uniform control interval τ > 0. 
Accordingly, the control input ui (i ∈ IC) keeps constant in each control interval. We consider a preceding-and-following communi
cation network well connects the CAVs in the platoon. Besides, this study considers the movements of the HDVs 0̂, 1̂ and m̂ can be 
detected at each control step by the adjacent CAVs using onboard sensors. 

When a platoon enters the V2I communication zoon of the traffic signal, it will receive the traffic signal phase and timing infor
mation (SPaT), including green and red phase intervals Tg = τkg,Tr = τkr and remaining time of the current phase T̃g = τk̃g or T̃r = τk̃r. 
Accordingly, the PCC-eDriving will instruct the platoon to split into sub-platoons as needed so that they can sequentially pass the 
intersection in the consecutive traffic cycles reducing sharp deceleration or stop. This control process will be conducted by a hybrid 
MPC system designed in Part I of our study. For completeness, we briefly introduce this hybrid system in the following section. 

3. Hybrid MPC system 

Mainly, the hybrid MPC system considers three states q0,q1,q2 of a platoon. Correspondingly, it includes three MPC controllers 
MPC-q0, MPC-q1 and MPC-q2 and two switching signals σ0,σ1 to connect these different states and controllers. Below we specify those 
states and switching signals sequentially along the process of the platoon splitting and then passing an intersection. 

Without loss of generality, we consider a mixed flow platoon A under state q0 as it is driving towards a signalized intersection. The 
MPC-q0 controller is then designed to conduct the car-following platooning control under state q0. When the platoon A enters the traffic 
signal communication zone, it receives the SPaT information, and then the switching signal σ0 is triggered to determine the optimal 
platoon splitting plan. Specifically, a mixed-integer nonlinear program (MINLP-σ0) is used to calculate the optimal platoon splitting 
point by leveraging traffic throughputs and smoothness. Following the splitting decision, the platoon A will split into two sub-platoons 
A1 and A2. The leading sub-platoon A1 will pass the intersection during the current green interval. We denote its state as q1. Whereas 
the latter sub-platoon A2 cannot pass the intersection in the current signal cycle under our prediction and will be instructed to 
decelerate gently to avoid red idling. We denote such a state of A2 as q2. Correspondingly, the MPC-q1 and MPC-q2 controllers are 
designed respectively for the states q1 and q2. After the leading sub-platoon A1 passes the intersection, the switching signal σ1 is 
triggered and sub-platoon A1 restores car-following state q0. 

Later, when the sub-platoon A2 reaches the communication zone, the above-mentioned procedure repeats. Specifically, the optimal 
platoon splitting point will be determined again and sub-platoon A2 will further split into two sub-platoons A1(2) and A2(2) in Fig. 2. if 
A2 cannot entirely pass the intersection in one green interval. Repeating this strategy, the PCC-eDriving can instruct a long platoon to 
pass multiple signalized intersections. In addition, the hybrid MPC is robust to accommodate unexpected accidents that causes the first 
sub-platoon A1 failing to pass the intersection by splitting the A1 further. 

Fig. 2. Hybrid MPC system under normal traffic conditions (From Part I).  
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This PCC-eDriving control and the hybrid MPC system bring in technical challenges from the aspects of mathematical modeling, 
solution approach development, and theoretical analyses. Part I of our study have addressed the mathematical modeling and solution 
approach development. This Part II paper focuses on theoretical analyses and proofs regarding the control feasibility, stability and 
algorithm convergence. To do that, we briefly present the mathematical models of the hybrid MPC system to lay down the foundation 
for mathematical analyses. Please refer to Part I of our study for a detailed discussion regarding those formulations. 

3.1. MPC-q0 controller for State q0 

The MPC-q0 controller generates the platoon-centered trajectory control laws to guide the car-following movement of CAVs in the 
platoon at time step k ∈ Z+ by predicting the platoon future states at any time step k + p, for∀p = 1, …, P(p ∈ P), before it enters the 
traffic signal communication zone. It aims to minimize traffic oscillations and energy consumption represented by Eq. (1), subject to 
the vehicle dynamics and various constraints demonstrated in Eqs. (2)–(14), where the time steps in the prediction horizon is denoted 
as kP. Hereafter, we also simplify step k + p to p throughout this section to avoid complex notation. 

MPC-q0 

Min Γ(u(p)) =
∑P

p=1

{
1
2

[
zT (p)Qzz(p) + (z′

(p))
T Qz′ z′

(p)
]

+
τ2

2
ω1‖ u(p − 1) ‖

2
2

}

(1) 

Subject to 

xi(k + 1) = xi(k) + τvi(k) +
τ2

2
(ui(k) − Δui(k)), i ∈ IC, k ∈ kp (2)  

vi(k + 1) = vi(k) + τ(ui(k) − Δui(k)), i ∈ IC, k ∈ kp (3)  

Δui(k) = εivi(k) + ηiui(k) − ηiui(k − 1), i ∈ IC, k ∈ kp (4)  

xm̂(k) = xn(k − Tm̂) − Dm̂, k ∈ kp (5)  

amin,i ≤ ui(k) ≤ amax,i, i ∈ IC, k ∈ kp (6)  

vmin ≤ vi(k) ≤ vmax, i ∈ IC, k ∈ kp (7)  

xi−1(k) − xi(k) ≥ Li + δ1τvi(k) + δ2τ(vi(k) − vi−1(k)), i ∈ IC, k ∈ kp (8)  

si(k) = Li + δ1τvi(k) + δ2τ(vi(k) − vi−1(k)) + δ, i ∈ IC, k ∈ kp (9)  

Δxi(k) = xi−1(k) − xi(k) − si(k), i ∈ IC, k ∈ kp (10)  

Δvi(k) = vi−1(k) − vi(k), i ∈ IC, k ∈ kp (11)  

z(k) := (Δx1(k), …, ΔxN(k))
T

∈ RN , k ∈ kp (12)  

z′

(k) := (Δv1(k), …, ΔvN(k))
T

∈ RN , k ∈ kp (13)  

Φf := (z(k + P) ∈ ζ, z′

(k + P) ∈ ζ
′

). (14) 

More exactly, Eqs. (2)–(4) represent the robust CAV dynamics using double integrator model. Δui(k) represents the CAV i’s control 
uncertainties including powertrain delay and aerodynamic drag etc. Eq. (5) uses Newell’s car-following model Newell, 2002) to predict 
HDV driving behaviors. Eqs. (6)–(8) respectively illustrate the acceleration, speed limits and safe distance constraints of CAV i. Eq. (9) 
describes the desired spacing policy for CAV i, Eqs. (10)–(11) curve the spacing and speed tracking errors of CAV i. Accordingly, the 
tracking errors of all the CAVs together form the platoon tracking dynamics in Eqs. (12)–(13). Finally, Eq. (14) presents the terminal 
constraints. It requires the platoon spacing and speed tracking errors will be confined to small domains ζ and ζ′ respectively at final 
time step k + P of the MPC prediction horizon. It should be noted that this study employed Newell’s car-following model for friendly 
computation performance (see the justification given in Section 3 in Part I). Nevertheless, replacing Newell with other math 
complicated car-following models such as Wiedemann Wiedemann, 1991) or IDM (Treiber et al., 2000) models will not affect the MPC 
recursive feasibility and stability for the following reasons. First of all, the HDV car-following model is served as equality constraints in 
Eq. (5) in MPC, so that it will not affect MPC sequential feasibility given the initial state is satisfied (see the proofs in section 4 later). 
And the MPC stability proof in section 5 later is only related to CAV dynamics in Eqs. (2)–(4), terminal constraints in Eq. (14) and cost 
function in Eq. (1) according to Mayne et a., (2000). Hence, it will also not affect the MPC stability in this paper. 

Note that this platoon-centered car-following control is different from the existing approach in Gong et al., (2016); Gong and Du, 
(2018); Shen et al., (2021). It explicitly factors the CAV control uncertainties by Eq. (4), HDV driving variations by Eq. (5) as well as 
adaptive safe distance constraints and desired spacing policy by Eqs. (8) and (9). These enhanced features capture more traffic and 
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control reality, aiming to improve the traffic system performance in urban environments, but introduce extra challenges in the MPC 
sequential feasibility and control stability. We will address these challenges in Section 4 and Section 5. 

3.2. Switching signal MINLP-σ0 

The MINLP-σ0 optimizer determines the optimal splitting point and triggers the switching signal σ0 in the hybrid MPC system. The 
splitting decision tries to balance traffic throughput and smoothness represented by the objective function in Eq. (15) subject to the 
same vehicle dynamics and safety constraints used in MPC-q0 while considering extra constraints regarding the splitting point in Eqs. 
(16)–(21). This way, we can ensure the optimal split point can be successfully implemented while sustaining control switching 
feasibility. We will discuss it in section 4. 

MINLP-σ0 

min J(u, y) = J1(u, y) + ω2J2(u, y) (15)  

where 

J1(u, y) =
∑P=k̃g+kr

p=1

{
1
2

[
zT (p)Qzz(p) + (z′

(p))
T Qz′ z′

(p)
]

+
τ2

2
ω1‖ u(p − 1) ‖

2
2

}

J2(u, y) = −
∑

i∈Ic

i ∗ yi 

Subject to constraints in Eqs. (2)–(9), (12)–(13), (16)–(21): 
∑

i∈Ic

yi = 1; yi ∈ {0, 1}, i ∈ Ic (16) 

Eq. (16) requires only one splitting point exits in the platoon, where yi is a binary variable to describe the location of the platoon 
splitting point. For instance, yi∗ = 1 represents that the platoon splits ahead of CAV i*. 

xi−1
(
k̃g

)
≥ −M(1 − yi), i ∈ Ic, (17) 

Eq. (17) predicts the last CAV i* − 1 in the first sub-platoon A1 can pass the intersection before the end of the current green interval 
at time step p = k̃g. It requires the splitting decision made by the MINLP-σ0 model can ensure the A1 can entirely pass the intersection in 
the current green interval. 

xi
(
k̃g + kr

)
≤ M(1 − yi), i ∈ Ic, (18) 

On the other hand, Eq. (18) predicts the movement of the second sub-platoon A2 after splitting. It requires the splitting decision 
made by the MINLP-σ0 model should consider that the sub-platoon A2 cannot pass the intersection until the end of the sequential red 
interval at time step p = k̃g + kr. 

i ∗ yi ≤ C, i ∈ Ic, (19) 

Next, Eq. (19) indicates the splitting decision is constrained by the downstream traffic capacity, where C represents the number of 
vehicles allowed to pass the intersection based on the current downstream traffic condition. 

Δxi(p) = xi−1(p) − xi(p) − si(p) − yi ∗ D , i ∈ Ic, (20)  

Δvi(p) = vi−1(p) − vi(p) − yi ∗ D
′

, i ∈ Ic, (21) 

Finally, Eqs. (20)–(21) factor the future platoon spacing and speed errors D and D
′

at the splitting point. 
Overall, the MINLP-σ0 will find the optimal platoon splitting point by predicting the future platoon control and movements during 

the current green and sequential red intervals, namely the next P = k̃g + kr time steps. It will guide the followed MPC-q1 and MPC-q2 

control and help to ensure the feasibility of the state switching q0 →
σ0

(q1, q2). We will discuss these details in Section 4. 

3.3. MPC-q1 controller for state q1 

The MPC-q1 controller instructs a sub-platoon, e.g., A1, under state q1 to efficiently and smoothly pass the intersection in the current 
green interval. For discussion convenience, we use Â1 to denote the CAV set in sub-platoon A1, and formally present MPC-q1 below. 

MPC-q1 

Min Γ(u) =
∑P

p=1

{
1
2

[
zT (p)Qzz(p) + (z′

(p))
T Qz′ z′

(p)
]

+
τ2

2
ω1u(p − 1)

}

(22) 
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Subject to, for i ∈ Â1, p ∈ P where P = k̃g, k̃g − 1, …,1: 
Constraints in Eqs. (2)–(13), and 

xi∗−1(P) ≥ 0, (23) 

Eq. (23) ensures that the sub-platoon A1 passes the intersection within the remaining green interval. It is derived from Eq. (17) in 
the MINLP-σ0. To keep control continuity and facilitate switching feasibility, MPC-q1 also shares the same constraints in Eqs. (2)–(13) 
with MPC-q0. We will discuss these technical details to ensure switching feasibility in section 4. 

3.4. MPC-q2 controller for state q2 

Last, MPC-q2 controller instructs a sub-platoon (e.g., A2) under state q2 to split and smoothly approach the intersection while 
reducing sharp deceleration and red idling. In general, MPC-q2 can have two controllers, including MPC-q2-(i) that generates its eco- 
driving trajectory for the leading CAV i* in A2, and (ii) MPC-q2-(ii) that generates system optimal car-following control laws for all 
other CAVs in A2 following the leading CAV i*. 

MPC-q2-(i) Eco-driving Trajectory Reference of Leading CAV i*. 

Min F(ui∗ ) =
∑P

p=1
‖ ui∗ (p − 1) ‖

2
2 − ω3xi∗ (P) (24) 

Subject to, for p ∈ P, P = k̃g + kr, k̃g + kr − 1, …, 1: 
CAV i* dynamics and constraints in Eqs. (1)–(3) and (6)–(8). 

xi∗ (P) ≤ 0, (25) 

The objective function in Eq. (24) tunes the parameter ω3 to balance the two conflict objectives in minimizing energy consumption 
and maximizing traffic throughputs. Eq. (25) presents that the CAV i* won’t pass the intersection during the red interval according to 
the splitting decision from MINLP-σ0. It also indirectly avoids the following vehicles running the red light. 

MPC-q2-(ii) Following Vehicles’ Trajectory Control. 

Min Γ(u) =
∑P

p=1

{
1
2

[
zT (p)Qzz(p) + (z

′

(p))
T Qz′ z

′

(p)
]

+
τ2

2
ω1‖ u(p − 1) ‖

2
2

}

(26) 

Subject to, for i ∈ Â2 \i∗, p ∈ P where P = k̃g + kr, k̃g + kr − 1, …, 1 :

Constraints in Eqs. (2)–(13), 
Here, we use Â2 to denote the CAV set in the sub-platoon A2. The MPC-q2-(ii) is a system optimal car-following control to guide the 

sub-platoon A2 to smoothly follow the leading eco-driving trajectory reference provided by the MPC-q2-(i). To ensure the hybrid MPC 
system switching feasibility, the MPC-q2-(ii) controller is designed to be very similar to MPC-q0 except a shrinking prediction horizon P. 

4. Feasibility of the hybrid MPC system 

We first investigate three important properties of the hybrid MPC system: sequential feasibility, hybrid system switching feasibility, 
and MPC terminal constraint feasibility. They together ensure the control continuity and smoothness of the hybrid MPC system. 

4.1. MPC sequential feasibility 

MPC is implemented recursively at each time step 0, 1, …, k − 1, k. Therefore, a fundamental theoretical question is whether the 
MPC can find a feasible control law at each time step k (i.e., whether the constraint set of the MPC optimizer is non-empty at each time 
step k), given the platoon system starts from an initial feasible condition at k = 0. A MPC system is called sequential (recursive) feasible 
Löfberg, 2012) if the answer to this question is affirmative. The hybrid MPC system in this study has three controllers: MPC-q0, MPC-q1 
and MPC-q2. MPC-q0 has constraints in Eqs. (2)–(14), which are also shared with MPC-q1 and MPC-q2 except the terminal constraint in 
Eq. (14). Hence, this study first proves the sequential feasibility of MPC-q0. Then, we further discuss the sequential feasibility of 
MPC-q1 and MPC-q2 as well as the switching feasibility of the hybrid system in Section 4.2. To prove the sequential feasibility of the 
MPC-q0, we first classify Eqs. (2)–(14) into the following three sets:  

(i) S 1(u(k)) : constraint set in Eqs. (2)–(4) and (6)–(8) for capturing the CAV dynamics, acceleration, speed and safety constraints 
at step k ∈ Z+.

(ii) S 2(u(k), Z(k +P)) : the HDV movements in Eq. (5) and the terminal constraint in Eq. (14) at step k ∈ Z+.  
(iii) S 3(u(k)) : the control dynamics in Eqs. (9)–(13) at step k ∈ Z+. 

It should be noticed that the third constraint set S 3(u(k)) involves control dynamic formulations. They are always feasible if the 
first constraint set S 1(u(k)) is feasible. For the second constraint set S 2(u(k), Z(k + P)), Eq. (5) is an equality constraint to curve the 
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HDV trajectory. Thus, they are always feasible in math and also stay feasible in practice if accurate time and distance displacements are 
estimated. Apart from it, the terminal constraint in Eq. (14) is only active at the final time step k + P of the MPC. Its sequential 
feasibility is ensured if the nominal MPC system is asymptotical stable (see proof in detail in Section 5.2) according to Mayne et al., 
(2000). Consequently, to prove the sequential feasibility of the MPC-q0, this study will mainly analyze and prove the sequential 
feasibility of the first constraint set S 1(u(k)) by Lemma 1. 

Lemma 1. For k ∈ Z+ := {0, 1, 2, …} and i ∈ IC, if S 1(ui(k)) is feasible, then there exists δ1 ≥ 1 and δ2 ≥ 0 that make S 1(ui(k +1))

feasible and compact. In addition, the non-empty feasible control input profile S1(ui(k)) for platoon vehicle i at step k is given below: 

ui(k) ∈ S1(ui(k)) =
[
max

{
amin,i, ai,v

}
, min

{
amax,i, ai,v, ai,d

}]
, (27)  

where 

ai,v =
vmin − (1 − τεi)vi(k) − τηiui(k − 1)

τ(1 − ηi)
≤ 0  

ai,v =
vmax − (1 − τεi)vi(k) − τηiui(k − 1)

τ(1 − ηi)
≥ 0  

ai,d = εivi(k) + ηiui(k) − ηiui(k − 1) +
gi(k) + τ(vi−1(k + 1) − vi(k))

τ2
(
δ1 + δ2 + 1

2

) +

(
δ2 − 1

2

)
ui−1(k)

δ1 + δ2 + 1
2  

gi(k) = xi−1(k) − xi(k) − (Li + δ1τvi(k) + δ2τ(vi(k) − vi−1(k)))

Proof: To prove the sequential feasibility of the constraint set S 1(ui(k)) constituted of Eqs. (2)–(4) and (6)–(8), we need to find a 
non-empty control input profile S1(ui(k)) at step k for k ∈ Z+ that makes the constraint set S 1(ui(k +1)) feasible, given that S 1(ui(k))

is feasible. Namely, with feasible state at any step k, the MPC can have a feasible control input at step k leading to a feasible state at step 
k + 1. Below we provide the technical details. 

We first reformulate the speed limit constraint at step k + 1 according to Eqs. (3), (4) and (7). And then we find its corresponding 

feasible control input set ui(k) ∈
[
ai,v, ai,v

]
as follows in Eq. (28). 

vmin ≤ vi(k + 1) ≤ vmax
⇔ vmin ≤ vi(k) + τ(ui(k) − ⇔ ui(k)) = vmax
⇔ vmin ≤ (1 − τεi)vi(k) + τ(1 − ηi)ui(k) + τηiui(k − 1) ≤ vmax

⇔ ui(k) ∈
[
ai,v, ai,v

]
,

(28)  

where the lower bound ai,v and upper bound ai,v are given in Eq. (29). 

ai,v =
vmin − (1 − τεi)vi(k) − τηiui(k − 1)

τ(1 − ηi)

ai,v =
vmax − (1 − τεi)vi(k) − τηiui(k − 1)

τ(1 − ηi)

(29) 

Similarly, we reformulate the safe distance constraints at step k + 1 according to Eqs. (2)–(4) and (8). For discussion convenience, 
we use gi(k) to represent the safe distance constraint in Eq. (8) for CAV i at step k and denote ui(k) = ui(k) − Δui(k). Then, we present 
the mathematical derivations below in Eq. (30). 

gi(k + 1) = xi−1(k + 1) − xi(k + 1) − (Li + δ1τvi(k + 1) + δ2τ(vi(k + 1) − vi−1(k + 1)))

= xi−1(k) − xi(k) + τ(vi−1(k) − vi(k)) +
τ2

2

(
ui−1(k) − ui(k)

)

−(Li + δ1τvi(k) + δ2τ(vi(k) − vi−1(k))) − δ1τ2ui(k) − δ2τ2
(

ui(k) − ui−1(k)
)

= gi(k) + τ(vi−1(k) − vi(k)) + τ2
(

δ2 +
1
2

)

ui−1(k) − τ2
(

δ1 + δ2 +
1
2

)

ui(k)

= gi(k) + τ(vi−1(k + 1) − vi(k)) + τ2
(

δ2 −
1
2

)

ui−1(k) − τ2
(

δ1 + δ2 +
1
2

)

ui(k)

(30) 

Note that we assume S 1(ui(k)) is feasible, it makes the safe distance constraints in Eq. (8) feasible at time step k. Mathematically, 
gi(k) ≥ 0. To make the safe distance constraints keep feasible at next time step k + 1 (i.e., gi(k + 1) ≥ 0), we should have the following 
control input requirement (ui(k) ≤ ai,d) in Eq. (31) based upon Eqs. (4) and (30). 

ui(k) ≤ ai,d = εivi(k) + ηiui(k) − ηiui(k − 1)
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+
gi(k) + τ(vi−1(k + 1) − vi(k))

τ2
(
δ1 + δ2 + 1

2

) +

(
δ2 − 1

2

)
ui−1(k)

δ1 + δ2 + 1
2

(31) 

Recall that we define δ1 ≥ 1, δ2 ≥ 0 for Eq. (8). Without loss of generalizability, we pick δ1 ≥ max
{

vmin−vmax
τ(amin,i−εvmin)

− 1, 1
}

, δ2 =
1
2 to show 

the sequential feasibility1. By plugging in δ2 = 1
2, we can remove the term with ui−1(k) and simplify Eq. (31) to Eq. (32) below. 

ai,d = εivi(k) + ηiui(k) − ηiui(k − 1) +
gi(k) + τ(vi−1(k + 1) − vi(k))

τ2(δ1 + 1)
(32) 

Wrapping the Eqs. (6), (28), (31) and (32), we have the following solution set S1(ui(k)) in Eq. (33) that makes the constraints set 
S 1(ui(k +1)) feasible given that S 1(ui(k)) is feasible. 

ui(k) ∈ S1(ui(k)) =
[
max

{
amin,i, ai,v

}
, min

{
amax,i, ai,v, ai,d

}]
(33) 

We next show S1(ui(k)) in Eq. (33) is non-empty. To do that, it suffices to show max
{

amin,i, ai,v

}
≤ min{amax,i, ai,v, ai,d}. More 

specifically, we need to prove the following six inequalities hold (i) amax,i ≥ amin,i, (ii) amax,i ≥ ai,v, (iii) ai,v ≥ amin,i, (iv) ai,v ≥ ai,v, (v) 
ai,d ≥ amin,i, (vi) ai,d ≥ ai,v. It is obvious that (i) amax,i ≥ amin,i and (iv) ai,v ≥ ai,v hold according to Eqs. (6) and (29). Below we sequentially 

show the inequalities (ii), (iii), (v), and (vi) are satisfied in the Eqs. (34)–(37) when δ1 ≥ max
{

vmin−vmax
τ(amin,i−εvmin)

−1, 1
}

≥ vmin−vmax
τ(amin,i−εvmin)

− 1 and δ2 

= 1
2. 
Specifically, we confirm inequality (ii) amax,i ≥ ai,v holds by the derivations given in Eq. (34). 

amax,i − ai,v = amax,i −
vmin − (1 − τεi)vi(k) − τηiui(k − 1)

τ(1 − ηi)
≥ amax,i +

−vmin + (1 − τεi)vmin + τηiamin,i

τ(1 − ηi)
= amax,i −

εivmin − ηiamin,i

(1 − ηi)
> 0

(34) 

We prove inequality (iii) ai,v ≥ amin,i by the mathematical process in Eq. (35). 

ai,v − amin,i =
vmax − (1 − τεi)vi(k) − τηiui(k − 1)

τ(1 − ηi)
− amin,i ≥

vmax − (1 − τεi)vmax − τηiamax,i

τ(1 − ηi)
− amin,i =

εivmax − ηiamax,i

(1 − ηi)
− amin,i > 0 (35) 

To ensure inequality (v) ai,d ≥ amin,i, we develop the mathematical process in Eq. (36). 

ai,d − amin,i =
εivi(k) − ηiui(k − 1)

(1 − ηi)
+

gi(k) + τ(vi−1(k + 1) − vi(k))

τ2(δ1 + 1)(1 − ηi)
− amin,i

≥
1

(1 − ηi)

[
vi−1(k + 1) − vi(k)

τ(δ1 + 1)
− (1 − ηi)amin,i + (εivi(k) − ηiui(k − 1))

]

+
gi(k)

τ2(δ1 + 1)(1 − ηi)

≥
1

(1 − ηi)

[
vmin − vmax

τ(δ1 + 1)
− (1 − ηi)amin,i +

(
εivmin − ηiamin,i

)
]

=
1

(1 − ηi)

[
vmin − vmax

τ(δ1 + 1)
−

(
amin,i − εivmin

)
]

(36) 

By choosing a feasible δ1 ≥ vmin−vmax
τ(amin,i−εvmin)

− 1, we have 1
(1−ηi)

[
vmin−vmax
τ(δ1+1)

− (amin,i − εivmin)
]

≥ 0. Consequently, we confirm inequality (v) 

ai,d − amin,i ≥ 0 in Eq. (36). 
Last, we confirm inequality (v) ai,d ≥ amin,i by the derivation below in Eq. (37). 

ai,d − ai,v =

[
εivi(k) − ηiui(k − 1)

(1 − ηi)
+

gi(k) + τ(vi−1(k + 1) − vi(k))

τ2(δ1 + 1)(1 − ηi)

]

−
vmin − (1 − τεi)vi(k) − τηiui(k − 1)

τ(1 − ηi)

>
1

τ(1 − ηi)

[
vi−1(k + 1) − vi(k)

δ1 + 1
− (vmin − vi(k))

]

=
vi−1(k + 1) − vmin + δ1(vi(k) − vmin)

τ(1 − ηi)(δ1 + 1)
≥ 0 (37) 

Wrapping the results above, we prove the sequential feasibility of the constraints S 1(u(k)), with which we conclude Lemma 1. ▪ 

4.2. Hybrid switching feasibility 

Built upon the sequential feasibility of each MPC, switching feasibility guarantees that MPC controllers in a hybrid system can 
feasibly switch according to the hybrid system design. Then to ensure the continuity of the hybrid system, it is crucial to prove the 
switching feasibility (Mhaskar, et al., 2005). Namely, the system can keep feasible as the control switches from one MPC controller to 
another. As shown in Fig. 2, the hybrid system of this study involves three types of state switching: (i) q0 →

σ0 q1, q2; (ii) q1 →
σ1 q0; (iii) 

q2(κ − 1) →
σ0 q1(κ), q2(κ). Given the sequential feasibility of MPC-q0 proved in Section 4.1, we show the switching feasibility one by one 

1 Please note that the selection of the parameters here is to ensure feasibility rigorously. It is not necessarily the best choice for the 
implementation. 
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below.  

(i) q0 →
σ0 q1, q2 represents the platoon A under the control of MPC-q0 splits into two sub-platoons A1 and A2 by switching signal σ0, 

and then operate respectively under the control of MPC-q1 and MPC-q2. Note that MPC-q1 and MPC-q2 share the same vehicle 
dynamics and constraints in Eqs. (2)–(14) with MPC-q0 except extra constraints in Eqs. (23) and (25). Therefore, the control 
switching feasibility is ensured if MPC-q1 and MPC-q2 stay sequential feasible with these extra constraints. To demonstrate it, 
recall that the switching signal MINLP -σ0 also shares the same vehicle dynamics and constraints in Eqs. (2)–(14) with MPC-q0, 
while Eq. (23) in MPC-q1 and (25) in MPC-q2 are respectively derived from Eqs. (17) and (18) in the MINLP-σ0. That is to say, if 
MINLP-σ0 can find a feasible platoon splitting point factoring Eqs. (17) and (18), then involving constraints in Eqs. (23) or (25) 
into MPC-q0 for switching to MPC-q1 or MPC-q2 (i.e., implementing splitting point decision in the MPC control) will ensure that 
MPC-q1 and MPC-q2 can always find feasible trajectory control solution at each step (i.e., the sequential feasibility of MPC-q1 
and MPC-q2 is confirmed). According to the definition of the platoon splitting point in Eq. (16), MINLP-σ0 can always find a 
feasible platoon splitting point. Therefore, we confirm the sequential feasibility of MPC-q1and MPC-q2 and the switching 
feasibility of q0 →

σ0 q1, q2.  
(ii) q1 →

σ1 q0 represents the control of the sub-platoon A1 switches from MPC-q1 to MPC-q0 when the switching signal σ1 is triggered. 
Note that the MPC-q0 has an extra terminal constraint in Eq. (14) compared with MPC-q1. If the terminal constraint in Eq. (14) is 
always feasible, then the switching q1 →

σ1 q0 is feasible. Recall that the terminal constraint in Eq. (14) regulates the platoon 
control error to be limited in a defined range at the end of the prediction horizon P. It is always feasible when the prediction 
horizon P is large enough (see section 4.3). Therefore, the feasibility of this switching is ensured.  

(iii) q2(κ −1) ̅̅̅̅→
σ0(κ)

q1(κ), q2(κ) represents the sub-platoon A2(κ − 1) under the control of MPC-q2(κ − 1) further splits into the sub- 
platoon A1(κ) under the control of MPC-q1(κ)and the sub-platoon A2(κ) under the control of MPC-q2(κ) when switching signal 
σ0(κ) is triggered. Similar to the first type of switching, MPC-q1(κ) and MPC-q2(κ) share the same vehicle dynamics and con
straints with MPC-q2(κ − 1), but have extra constraints in Eqs. (23) and (25). The switching feasibility is ensured according to 
the same discussion for (i) q0 →

σ0 q1, q2. 

Overall, the discussions above ensure the sequential feasibility of MPC-q1 and MPC-q2 and also guarantee the feasibility of the state 
switchings in the well-designed hybrid system. 

4.3. MPC terminal constraint feasibility 

The MPC-q0 introduces the terminal constraints in Eq. (14) to facilitate the MPC stability. Specifically, Eq. (14) requires all CAVs in 
the platoon to reach a steady state at the end of the prediction horizon P, namely, the spacing and speed tracking errors are confined to 
small domains at step P. Intuitively, if the MPC prediction horizon P is too small, the platoon may not have enough time to adjust 
spacing and speed and satisfy Eq. (14). On the other side, if P is set vary large, it introduces tremendous computation loads, though the 
terminal constraint in Eq. (14) becomes feasible. Hence, the problem becomes how to theoretically quantify the minimum P value to 
ensure Eq. (14) feasible while reducing the computation loads. 

The rigorous analysis of the minimum P value is not trivial because the movements of the CAVs are constrained by acceleration/ 
speed limits in Eq. (6)–(7) and coupled and constrained by safe distance constraints in Eq. (8). To tackle the problem, we construct a 
series of feasible driving strategies to make vehicles sequentially satisfy the terminal constraint in Eq. (14). Mainly, we first make the 
leading CAV satisfy its terminal constraint in Eq. (14) using feasible control strategies that satisfy constraints in Eqs. (2)–(13), then the 
second CAV, the third CAV, …, until the last CAV in the platoon. With this idea in mind, we consider a simple case E where only two 
CAVs are involved. We make the leading CAV stay a constant speed and manage the following CAV to reach the same speed and desired 
spacing as the leading CAV in PE time steps using the well-designed vehicle driving strategy s. As such, we figure out it needs PE time 
steps for one CAV to reach steady-state and satisfy terminal constraint in Eq. (14). It is noted that PE is related with CAVs’ initial states 
and acceleration/speed limits. 

Next, we extend this two-CAV simple case E to a general case with n CAVs, by letting CAVs sequentially implement the strategy s in 
the order from the first to the last vehicle in the platoon. Then the corresponding number of time steps needed is 

∑n
i=1PE(i) for the 

general n-vehicle case. In summary, 
∑n

i=1PE(i) provides a lower bound for the MPC prediction horizon P. If the MPC prediction horizon 
P ≥

∑n
i=1PE(i), the MPC terminal constraint feasibility is ensured. 

Our analyses and proofs indicated that the lower bound value of P (i.e., 
∑n

i=1PE(i)) highly depends on the platoon size n and each 
CAV PE(i) value, which is further related with CAVs’ initial states and acceleration/speed limits. As the platoon size increases, or the 
CAVs’ initial states move further away from the steady-state, or the feasible acceleration/speed ranges get smaller, the lower bound 
value 

∑n
i=1PE(i) theoretically increases. In practice, if the platoon is initially close to the steady-state (e.g., ± 5m from desired spacing, 

± 2 (m/s) from desired speed), then P = 15 is large enough to ensure the terminal constraints in Eq. (14) feasible for a platoon with 10 
CAVs. To factor in the traffic signal phase and timing information, this study set P to be at least 20 or even 30, which ensured the 
feasibility of the terminal constraints in most scenarios for a reasonable platoon size. 

The entire proof involves many scenarios regarding CAVs’ initial states and acceleration/speed limits, which make the proof itself 
tedious and very lengthy. In addition, the proof is similar to the feasibility proof developed in our previous work (Zhang et al., 2022). 
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Thus, we omit the detailed proofs in this study but put them on arXiv (Zhang and Du, 2022). 

5. MPC control stability 

This section studies the control stability of the MPC controllers. The control stability plays a vital role in ensuring the system’s 
performance. It theoretically guarantees that the platoon system can go to the desired spacing and speed even when exposed to 
disturbances. A system fails to reach or sustain its control goal if it is unstable. Typically, the majority of the control stability can be 
analyzed and proved by linear analysis techniques (Sastry and Bodson, 2011). However, the receding horizon MPC control with 
constraints, such as the MPC-q0, MPC-q1 and MPC-q2 in this study constitute a nonlinear feedback control system, of which the 
standard linear techniques are insufficient to prove the stability. To tackle this challenge, we employ the Lyapunov theory in Theorem 
1 below to characterize the nominal system2 behaviors and prove the asymptotical stability of the nominal MPC-q0 first. 

Theorem 1. Asymptotic Stability (Bof et al., 2018): Let φ = 0 be an equilibrium point for the autonomous system φ(k + 1) = f(φ(k)), 
where f : D→Rn is locally Lipschitz in D⊂Rn and 0 ∈ D. Suppose there exists a function V: D→Rn which is continuous and such that (i) V 
(φ = 0) = 0 and V(φ) > 0 for ∀φ ∈ D − {0}; (ii) V(f(φ(k))) − V(φ) ≤ 0 for ∀φ ∈ D, then φ = 0 is stable. The function V that satisfies 
conditions (i) and (ii) is called Lyapunov function. Moreover, if (iii) V(f(φ(k))) − V(φ) < 0for ∀φ ∈ D − {0}, then φ = 0 is asymptotic 
stable. 

Furthermore, this study is aware that the uncertainties in Eq. (4) makes our MPC-q0 a robust system rather than the nominal system. 
Proving the stability of the nominal system is not sufficient for this study. We therefore continue to prove the Input-to-State stability of 
MPC-q0 in Remark 1 based upon Theorem 2. The Input-to-State stability ensures the system states are bounded around the equilibrium 
point (i.e., the steady-state of the platoon), when uncertainties are involved. In other words, the platoon under the MPC-q0 control in 
this study will perform well under control uncertainties, if it is Input-to-State stable. 

Theorem 2. Input-to-State Stability (Zeilinger et al., 2009): The discrete-time robust linear system φ(k + 1) = Aφ(k) + Bu(k) + w(k) is 
Input-to-State stable if the corresponding nominal system φ(k + 1) = Aφ(k) + Bu(k) is asymptotically stable and the disturbance w(k) is 
bounded. 

Please note that the stability (e.g., Input-to-State stability) is used to evaluate the performance of an MPC in the long term. MPC-q1 
and MPC-q2 are the controllers with shrinking prediction horizons. They are only used for a short time period when the platoon is near 
the intersection. Hence, we only show the stability proof for MPC-q0. 

5.1. Reformulation and nominal system of the MPC-q0 

Before developing our stability analyses, we first rewrite Eqs. (2)–(4) and (9)–(13) into Eqs. (38) and (39) respectively, 

φ(k + 1) = Aφ(k) + Bu(k) + w(k) (38)  

φ(k + 1) = Aφ(k) + Bu(k) (39)  

where for ∀k ∈ Z+, φ(k) =

[
z(k)

z′

(k)

]

∈ R2N is the control state, u(k) ∈ RN+1 is the control input, w(k) ∈ W ∈ R2N is the bounded un

certainty that is contained in a convex and compact set introduced by Eq. (4). Eq. (38) is discrete-time robust control dynamics of our 
MPC-q0, whereas Eq. (39) is the corresponding nominal control dynamics by taking off the uncertainty w(k). Then, we have A, B and W 
defined in Eq. (40). The corresponding mathematical derivations to obtain them are provided in the Appendix A1. 

A =

[
IN τIN
0 IN

]

∈ R2N×2N ; B =

[
τ2S1
τS2

]

∈ R2N×(N+1); W =

[

−

[
τ2S1
τS2

]

Δi, −

[
τ2S1
τS2

]

Δi

]

(40) 

The matrix S1,S2 in Eq. (40) are shown below, where c1 = δ2 + 1
2; c2 = −

(
δ1 + δ2 + 1

2

)
: 

S1 =

⎡

⎢
⎢
⎣

c1 c2
c1 c2

⋱ ⋱
c1 c2

⎤

⎥
⎥
⎦ ∈ RN× (N+1); S2 =

⎡

⎢
⎢
⎣

1 −1
1 −1

⋱ ⋱
1 −1

⎤

⎥
⎥
⎦ ∈ RN× (N+1).

Next, we transform the robust MPC-q0 developed in Section 3 into the nominal system MPC-Q0 below using the nominal control 
dynamics in Eq. (39). Note that the CAV control uncertainty in Eq. (4) is removed. 

MPC − Q0 min
u

Γ(k) =
∑P

p=1
l (φ(p|k), u(p|k))

Subject to: φ(p + 1|k) = Aφ(p|k) + Bu(p|k), p = 0, 1, …, P − 1 

2 Nominal system is defined as the system’s dynamics without modeling uncertainty errors 
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(φ(p + 1|k), u(p|k)) ∈ Φ × U, p = 0, 1, …, P − 1  

φ(P|k) ∈ Φf 

The notation (p|k) in the MPC-Q0 represents the time step of p + k; Φ and U are linear constraints on the states and inputs cor
responding to Eqs. (5)–(8). According to the MPC-q0 objective function in Eq. (1), the stage cost is defined as l (φ(p|k),

μ(p|k)) := 1
2 [zT(p|k)Qzz(p|k) + (z′

(p|k))
TQz′ z′

(p|k)] + τ2

2 ω1‖ u(p − 1|k) ‖
2
2. Φf is the compact terminal constraint defined in Eq. (39). 

Please note that under the nominal system in the Eq. (39), Φf becomes the equilibrium point, namely Φf = 0: z(P|k) = 0, z′(P|k) = 0. 
Solving the MPC-Q0 will generate an optimal control sequence û(k) = [u∗(0|k), u(1|k),…,u(P − 1|k)], in which the MPC controller 

will only implement the current control decision u*(0|k), and recompute MPC-Q0 at the next time step. u*(0|k) can be considered as a 
feedback control of the current state φ(0|k) at step k as follows in Eq. (41): 

u∗(0|k) = Kf φ(0|k) (41)  

where Kf is the corresponding feedback control law obtained by solving MPC-Q0. From the optimal control sequence û(k), we can 
obtain corresponding state sequence φ̂(k) = [φ(1|k), φ(2|k), …, φ(P|k)] as well as the optimal value function ΓV(k, û(k)) of the MPC- 
Q0. ΓV(k, û(k)) is the value of the objective function Γ(k) when the optimal control sequence û(k) is applied to the system. The value 
function ΓV(k, û(k)) will be employed as a Lyapunov function to prove the asymptotic stability in the next Section 5.2. We abbreviate 
ΓV(k, û(k)) as ΓV(k) hereafter for discussion convenience. 

5.2. Asymptotic Stability and Input-to-State Stability 

This section proves the asymptotical stability of the nominal MPC-Q0 and then the Input-to-State stability of the robust MPC-q0. 
Specifically, we first show ΓV(k) is a Lyapunov function and thus the nominal MPC-Q0 is asymptotic stable in Lemma 2 according to the 
Lyapunov Theory in Theorem 1. Then together Theorem 2, we conclude the robust MPC-q0 is Input-to-State stable in Remark 1. 

Lemma 2. Suppose ΓV(k) is the optimal value function of MPC-Q0, then ΓV(k) is a Lyapunov function and MPC-Q0 is asymptotic 
stable. 

Proof. According to the feedback control law in Eq. (41), the nominal controller in Eq. (39) can be converted into φ(k + 1) = (A +
BKf)φ(k) for ∀k ∈ Z+, which is an autonomous system stated in Theorem 1. Accordingly, the autonomous system dynamic function f =
A + BKf is linear time invariant and thus Lipschitz in a domain D = RN. Then, to prove ΓV(k) is a Lyapunov function and MPC-Q0 is 
asymptotic stable, we need to prove the function ΓV(k) satisfies the three conditions in Theorem 1, which are (i) ΓV(φ(k) = 0) = 0 and 
ΓV(φ(k)) > 0 for ∀φ(k) ∈ RN − {0}; (ii) ΓV(f(φ(k))) − ΓV(φ(k)) ≤ 0 for ∀φ(k) ∈ RN; (iii) ΓV(f(φ(k))) − ΓV(φ(k)) < 0for ∀φ(k) ∈ RN − {0}. 

Recall that ΓV(k) represents the optimal value of the objective function Γ(k) in the MPC-Q0, which is obtained by applying the 
optimal control sequence û(k) to the system3. The quadratic formulation of Γ(k) in Eq. (1) indicates Γ(k) ≥ 0 so that we have ΓV(k) ≥ 0. 
Apart from it, ΓV(k) = 0 holds if and only if the MPC-Q0 reaches equilibrium point (i.e., φ(k) = 0, all CAV keep same reference speed 
and apart with desired spacing). Hence, condition (i) is satisfied. 

Then, we need to show conditions (ii) and (iii) are satisfied. Specifically, ΓV(k + 1) < ΓV(k) for ∀φ ∈ RN − {0} and ΓV(k + 1) = ΓV(k) 
when φ = 0. The mathematical definition of function ΓV(k) and ΓV(k + 1) are given below in Eqs. (42) and (43). 

ΓV (k) = min
u

∑P

p=1
l (φ(p|k), u(p − 1|k)) = min

u

∑P

p=1
l (φ(p + k), u(p + k − 1)) (42)  

ΓV (k + 1) = min
u

∑P

p=1
l (φ(p + k + 1), u(p + k)) (43) 

According to Eqs. (42) and (43), we have the following mathematical derivations for ΓV(k + 1) in Eq. (44). 

ΓV (k + 1) = min
u

{
∑P−1

p=1
l (φ(p + k + 1), u(p + k)) + l (φ(P + k + 1), u(P + k))

}

= min
u

{
∑P

p=2
l (φ(p + k), u(p + k − 1)) + l (φ(k + 1), u(k))

}

− min
u(k)

l (φ(k + 1), u(k)) + min
u(P+k)

l (φ(P + k + 1), u(P + k))

= ΓV (k) − min
u(k)

l (φ(k + 1), u(k)) + min
u(P+k)

l (φ(P + k + 1), u(P + k)) (44) 

Since we define the terminal constraint φ(P|k) ∈ Φf = 0 in the nominal MPC-Q0, we have the state φ reach the equilibrium point at 
step k + P (i.e., φ(P + k) = 0). Then there exits feasible control input u(P + k) = 0 to drive the state φ stay at the equilibrium point 0, 

3 ΓV(k) refers to ΓV(φ(k)) and correspondingly ΓV(k + 1) refers to ΓV(f(φ(k))). 
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namely φ(P + k + 1) = 0. Hence, min
u(P+k)

l (φ(P + k + 1),u(P + k)) = 0. Together Eq. (44), we have the following Eq. (45). 

ΓV (k + 1) ≤ ΓV (k) − min
u(k)

l (φ(k + 1), u(k)) (45) 

Further, based on Eq. (45) and l (φ(k + 1),u(k)) ≥ 0, we have 

ΓV (k + 1) ≤ ΓV (k)

Condition (ii) is satisfied. Moreover ΓV(k + 1) = ΓV(k) holds if and only if l (φ(k + 1), u(k)) = 0, namely φ(k) = 0, u(k) = 0. 
Condition (iii) is satisfied. In summary, function ΓV(k) is a Lyapunov function that satisfies three conditions in Theorem 1. Hence, MPC- 
Q0 is asymptotic stable. We conclude the proof. ▪ 

Remark 1. Given that the uncertainty w(k) is bounded and Lemma 2 has proved that the nominal MPC-Q0 is asymptotic stable, we 
claim that the robust MPC-q0 is Input-to-State stable according to Theorem 2. It ensures that the platoon states such as vehicle speeds 
and spacings in this study are bounded around our desired control goal under the robust MPC control. Besides, the gap between the 
actual control performance and our literal control goal highly depends on the uncertainty w(k). Specifically, the gap decreases as the 
uncertainty w(k) becomes smaller. When w(k) = 0, the system becomes nominal system without uncertainty and the gap becomes 0. 

Remark 2. Although this study does not explicitly model the impact of CAV communication delay in the MPC-q0, the bounded CAV 
communication delay will not affect the stability of the MPC-q0. Specifically, the negative impacts caused by the bounded commu
nication delay can be factored into the bounded control uncertainties w(k) in CAV’s robust dynamic system through Eq. (38). Given the 
communication delay is bounded, the resulting control uncertainty w(k) will also be bounded. Then the MPC-q0 is still Input-to-State 
stable according to Remark 1. On the other hand, if the communication lag is large and unbounded (e.g., communication fails), MPC 
feasibility and system stability are hard to be ensured. One possible solution for addressing this challenge is to use a machine learning 
approach to detect such anomalies and exclude such CAVs with significant communication lags using finite state machine in platoon 
according to Smith et al., (2020). As in this case, the CAVs with significant communication lags are not well connected, from which the 
platoon is separated into two individual platoons. However, this topic is out of the scope of the research in this paper. We propose to do 
it in our future work. 

6. Theoretical analysis of the AS-OCD 

Part I of this study developed an active-set-based optimal condition decomposition approach (AS-OCD) to solve the MPC optimizers 
of the hybrid system via a distributed optimization approach. The numerical experiments have validated its effectiveness in practice. 
This section in Part II focuses on analyzing its theoretical performance, including solution optimality and convergence speed. 

6.1. Active set based optimal condition decomposition (AS-OCD) 

For completeness, we first briefly review the key ideas and formulations of the AS-OCD algorithm to provide the mathematical 
foundation for our theoretical analysis. Please refer to the Part I paper (Zhang and Du, 2022) for the technical details. The AS-OCD 
algorithm combines the active set method (AS) (Nocedal and Wright, 2006; Nak et al., 2017) and the optimal condition decompo
sition approach (OCD) (Conejo et al., 2002). Mainly, the AS algorithm identifies the violated constraints by the current solution of the 
MPC controllers and then makes them become active4 constraints. This procedure renders the following Optimizer F in Eq. (46), which 
is rewritten from MPC-q0 but only subject to equality constraints. Next, the OCD algorithm is used to solve optimizer F in distributed 
computing fashion. The two procedures are iteratively conducted until AS cannot find the violated inactive constraints. 

Optimizer F : Min Γ(u) =
∑N

i=1

{

zT
i Qzi zi +

(
z

′

i

)T
Qz′

i
z

′

i +
τ2

2
‖ ui ‖

2
2

}

(46) 

Subject to l-many gAS(uj − 1, uj) = 0, l -many cAS(uj ) = 0,

In the optimizer F in Eq. (46), gAS(uj − 1, uj) = 0 is an active coupled5 constraint such as safe distance constraints in Eq. (8) while 
constraint cAS(uj ) = 0 is active uncoupled constraints such as acceleration/speed limits in Eqs. (6)–(7). 

Clearly, the OCD algorithm is critical to ensuring convergence and computation efficiency. We provide more technical details in 
this regard. The Karush–Kuhn–Tucker (KKT) conditions (Boyd et al., 2004) of the convex optimizer F lead to a system of equations. 
Newton’s method (Nocedal and Wright, 2006) in Eq. (47) is an efficient approach to find the global optimal solution for such system. 

4 Given an optimization problem, an inequality constraint g(x) ≥ 0 is called active at x if g(x) = 0 and inactive at x if g(x) > 0, whereas equality 
constraints are always active.  

5 Coupled constraints refer to the constraints involving more than two agents (two CAVs in this study). Conversely, uncoupled constraints involve 
only one agent (one CAV). 
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∇2LAS(u,η,λ) ∇T cAS(u) ∇T gAS(u)

∇cAS(u) 0 0
∇gAS(u) 0 0

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
K

⎛

⎝
Δu

−Δη
−Δλ

⎞

⎠

⏟̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅ ⏟
Δ

= −

⎛

⎝
∇LAS(u, η, λ)

cAS(u)

gAS(u)

⎞

⎠

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
f

⇔ KΔ = −f (47)  

where LAS(u,η, λ) = Γ(u) + ηTcAS(u) + λTgAS(u) is the Lagrangian function derived from Optimizer F; η = [η1, …, ηl ]
T and λ = [λ1,…, λl]T 

are Lagrange multipliers; the searching direction Δ is obtained by solving Δ = −K−1f and then is used to update the solution iteratively 
until converging to the optimal solution. 

This Newton’s method needs to be implemented by a central solver since the KKT matrix K involves coupled elements: ∇2LAS(u,η, 
λ), ∇gAS(u).For example, ∇2LAS(u,η, λ) is related to the objective function Γ(u) in Eq. (1) where the neighboring CAVs’ control inputs 
are closely coupled in terms of the platoon control dynamics in Eqs. (9)–(13)). ∇gAS(u) is the gradient of safe distance constraints in Eq. 
(8) and thus also couples two neighboring CAVs’ states. However, our experiments found that centralized computation cannot provide 
satisfying performance for this real-time control. Part I of this study thus explored the OCD algorithm. A critical modification is to 
approximate the KKT matrix K in Eq. (47) to K in Eq. (48). 

⎛

⎝
K1 0 0
0 ⋱ 0
0 0 KN

⎞

⎠

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
K

⎛

⎝
Δ1
⋮

ΔN

⎞

⎠

⏟̅̅̅̅ ⏞⏞̅̅̅̅ ⏟
Δ

= −

⎛

⎝
f1
⋮
fN

⎞

⎠

⏟̅̅̅ ⏞⏞̅̅̅ ⏟
f

⇔ Δ1 = −K−1
i fi, ∀i = 1, …, N, (48)  

where Ki is the matrix block of CAV i in the approximated KKT matrix K; Δi and fi represent CAV i’s searching direction and corre
sponding gradient. The mathematical formulations of Ki, Δi, fi are given in Appendix A2. Apparently, CAVs’ control variables in K are 
separable. Accordingly, we can compute each CAV i’s searching direction by Δi = −K−1

i fi in a distributed manner. To be noted, this 
approximation of the KKT matrix will not affect the solution optimality and the convergence of the OCD algorithm. We will 
demonstrate these technical details in section 6.2. 

6.2. Convergence of the AS-OCD 

This AS-OCD algorithm is an iterative distributed algorithm. Then, it posed the theoretical questions regarding its convergence 
performance (i.e., whether the AS-OCD can converge to the optimal solution and how fast it converges). We investigate these issues in 
this section. The main idea is given as follows. According to the study of Nocedal and Wright, (2006), the AS method can converge to 
the global optimal solution for a strictly convex quadratic problem with linear constraints. It works efficiently for optimization 
problems with few active constraints. The MPC optimizers of this study satisfy these features. Hence, the convergence rate and solution 
optimality of the AS-OCD algorithm highly depends on the performance of the OCD algorithm. According to Theorem 3 in Conejo et al., 
(2002), the OCD algorithm can guarantee the linear convergence rate to the global optimal solution when an optimizer satisfies certain 
conditions. We will use this Theorem 3 to prove the convergence of the OCD algorithm. For completeness, we provide Theorem 3 first 
as follows. 

Theorem 3. (Conejo et al., 2002) For an optimizer F in Eq. (46), using the OCD algorithm can obtain the global optimal solution6 l* 
with linear convergence rate at least equal to ρ* if the following conditions hold.  

(I) Functions Γ, g, c have Lipschitz-continuous second derivatives in an open set containing l*;  
(II) The matrix K is nonsingular7 for any l, and the sequence {K} converges to a nonsingular matrix K as l → l*;  

(III) At the second order KKT point l*, ρ∗ = ρ(I − (K)
−1K) < 1. 

Built upon Theorem 3, we prove Lemma 3 to confirm that the OCD algorithm can obtain global optimal solutions efficiently. 

Lemma 3. The MPC optimizer F in Eq. (46) satisfies conditions (I), (II) and (III) in Theorem 3 and thus can obtain global optimal 
solution in linear convergence rate using OCD algorithm. 

Proof: First of all, the functions Γ, g and c of the MPC optimizer F in Eq. (46) are quadratic or linear. Then they are globally second- 
order Lipschitz-continuous according to Sohrab, (2003). Thus, Condition (I) is satisfied. Next, given that the matrix K is the hessian 
matrix of Γ when constraints g, c are not active, then K is constant because Γ is quadratic. Besides, K is diagonalizable8 and we can 
easily show Γ is strictly convex with positive eigenvalues according to Eq. (46) and MPC-q0 optimizer in Eq. (1). Hence, K has full rank 
and is always nonsingular (Greub, 2012). Condition (II) is satisfied. 

Then, we focus on proving condition (III) holds by showing the spectral radius (all the eigenvalues) of the matrix (I −(K)
−1K) is 

smaller than 1 (i.e., ρ* < 1). To do that, we first provide the explicit expression of the matrix (I − (K)
−1K). Then we use the induced 

6 The global optimal solution l* = (u*, σ*, λ*) is the second-order KKT point of optimizer F. When optimizer F is convex, l* is the optimal solution.  
7 Nonsingular matrix is a square matrix whose determinant is not equal to zero (i.e., has full rank).  
8 If a matrix A is Hermitian symmetric, then A is diagonalizable. K is symmetric and thus diagonalizable. 
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norm inequality9 ρ(A) ≤ ‖A‖ to prove the spectral radius of matrix (I −(K)
−1K) is less than 1. The proof details are given as follows. 

To prove condition (iii) ρ∗ = ρ(I −(K)
−1K) < 1 holds, we first write the mathematical formulations of the matrices K and K in Eq. 

(49). Note that the objective function Γ(u) in Eq. (46) is locally coupled, namely CAV i’s control input ui is only coupled with two 
control inputs ui − 1, ui + 1 of its immediate neighboring CAVs. According to this feature, we have ∂2Γ

∂uiuj
= 0 if |i − j| ≥ 2. 

K =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2Γ
∂u2

1

∂2Γ
∂u1u2

0 … 0

∂2Γ
∂u2u1

∂2Γ
∂u2

2

∂2Γ
∂u2u3

⋱ ⋮

0
∂2Γ

∂u3u2
⋱ ⋱ 0

⋮ ⋱ ⋱
∂2Γ

∂u2
N−1

∂2Γ
∂uN−1uN

0 … 0
∂2Γ

∂uNuN−1

∂2Γ
∂u2

N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

K =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2Γ
∂u2

1
0 0 … 0

0
∂2Γ
∂u2

2
0 ⋱ ⋮

0 ⋱ ⋱ ⋱ 0

⋮ ⋱ 0
∂2Γ

∂u2
N−1

0

0 … 0 0
∂2Γ
∂u2

N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (49) 

It is noted that matrices K and K in Eq. (49) do not consider the constraints in Eqs. (6)–(8) and (14) because they are not active 
under normal traffic conditions. Besides, involving these constraints will introduce Lagrangian multipliers η and λ into the Lagrangian 
function LAS in Eqs. (47). Given multipliers η and λ can be any negative or positive value, the matrices K and K in Eqs. (47)–(48) are 
hard to bound. Consequently, theoretically proving condition (iii) becomes mathematically intractable according to Conejo et al. 
(2002). 

According to Eq. (49), we can sequentially derive the matrix (K)
−1K in Eq. (50) and finally the matrix I − (K)

−1K in Eq. (51) below. 

(K)
−1K =

⎡

⎢
⎢
⎢
⎢
⎣

IP A1,2 0 … 0
A2,1 IP A2,3 ⋱ ⋮
0 A3,2 ⋱ ⋱ 0
⋮ ⋱ ⋱ IP AN−1,N
0 … 0 AN,N−1 IP

⎤

⎥
⎥
⎥
⎥
⎦

, (50)  

where Ai,i−1 =
(

∂2Γ
∂u2

i

)−1(
∂2Γ

∂uiui−1

)
∈ RP×P, i = 2, …, N; Ai,i+1 =

(
∂2Γ
∂u2

i

)−1(
∂2Γ

∂uiui+1

)
∈ RP×P, i = 1, …, N − 1. 

B =

⎡

⎢
⎢
⎢
⎢
⎣

B1
B2
⋮

BN−1
BN

⎤

⎥
⎥
⎥
⎥
⎦

= I − (K)
−1K =

⎡

⎢
⎢
⎢
⎢
⎣

0 −A1,2 0 … 0
−A2,1 0 −A2,3 ⋱ ⋮

0 −A3,2 ⋱ ⋱ 0
⋮ ⋱ ⋱ 0 −AN−1,N
0 … 0 −AN,N−1 0

⎤

⎥
⎥
⎥
⎥
⎦

, (51) 

Note that we use B = I − (K)
−1K hereafter for discussion convenience. To prove condition (III) holds, it is equivalent to showing the 

spectral radius of matrix B is less than 1. We intend to use the induced norm inequality10 to prove it. Specifically, we first calculate the 
1-norm of matrix B (i.e, ‖B‖) and show ‖B‖ is less than 1. It is equivalent to showing the summation of the row elements’ absolute 
values is less than 1 for every row of matrix B. For discussion convenience, we denote B = [ B1 B2 … BN−1 BN ]

T, where Bi ∈ RP×NP 

represents ith row block of matrix B with P rows. Bi corresponds to CAV i’s P-step matrix block in the optimizer Γ(u). Further, we use the 
notation Bi,p to represent the pth row of the matrix block Bi, ∀p = 1, …, P. Bi,p corresponds to CAV i’s matrix block at time step p. 
Wrapping above, if the 1-norm of Bi,p (i.e., ‖Bi,p‖) is less than 1 for ∀i = 1, …, N, ∀p = 1, …, P, condition (III) holds. Below we show ‖Bi,p‖

is always less than 1. 
To do that, we first have Bi,∀i = 1, …, N represented as follows in Eq. (52). 

Bi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Ai,i+1 = −

(
∂2Γ
∂u2

i

)−1 ∂2Γ
∂uiui+1

if i = 1

−Ai,i−1 − Ai,i+1 = −

(
∂2Γ
∂u2

i

)−1(
∂2Γ

∂uiui−1
+

∂2Γ
∂uiui+1

)

if i ∕= 1, N

−Ai,i−1 = −

(
∂2Γ
∂u2

i

)−1 ∂2Γ
∂uiui−1

if i = N

(52) 

9 For a matrix A, ρ(A) ≤ ‖ArAptCommand2016;1/r for all positive integers r, where ρ(A) is the spectral radius of A. When = 1, ρ(A) ≤ ‖A‖, ‖A‖ is 
the 1-norm of matrix A.  
10 sely, uncoupled constraints involve only one agent (one CAV). 
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According to Eq. (52), we can obtain ‖Bi,p‖ in Eq. (53) for each row p1 ∈ {1, …, P} in Bi. 

‖ Bi,p‖=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑P

p2=1
|

∂2Γ
∂ui(p1)ui(p2)

|
−1

⃒
⃒
⃒
⃒

∂2Γ
∂ui(p1)ui+1(p2)

⃒
⃒
⃒
⃒ i = 1

∑P

p2=1
|

∂2Γ
∂ui(p1)ui(p2)

|
−1

⃒
⃒
⃒
⃒

∂2Γ
∂ui(p1)ui−1(p2)

+
∂2Γ

∂ui(p1)ui+1(p2)

⃒
⃒
⃒
⃒ i ∕= 1, N

∑P

p2=1
|

∂2Γ
∂ui(p1)ui(p2)

|
−1

⃒
⃒
⃒
⃒

∂2Γ
∂ui(p1)ui−1(p2)

⃒
⃒
⃒
⃒ i = N

(53) 

Consequently, to prove ‖Bi,p‖ < 1, we need to derive out the mathematical representation of ∂2Γ
∂ui(p1)ui(p2)

, ∂2Γ
∂ui(p1)ui−1(p2)

, ∂2Γ
∂ui(p1)ui+1(p2)

and 

show each element of ‖Bi,p‖ is strictly less than 1. To do that, we calculate the second derivatives ∂2Γ
∂ui(p1)ui(p2)

, ∂2Γ
∂ui(p1)ui−1(p2)

and ∂2Γ
∂ui(p1)ui+1(p2)

respectively in Eqs. (54), (55), (56), according to Eq. (46). 

∂2Γ
∂ui(p1)ui(p2)

=
∑P

p=max{p1 ,p2}

[

αi
∂zi(p)

∂ui(p1)

∂zi(p)

∂ui(p2)
+ βi

∂z′

i(p)

∂ui(p1)

∂z′

i(p)

∂ui(p2)
+ αi+1

∂zi+1(p)

∂ui(p1)

∂zi+1(p)

∂ui(p2)
+ βi+1

∂z′

i+1(p)

∂ui(p1)

∂z′

i+1(p)

∂ui(p2)

]

+ ω1τ2ς(p1, p2), (54)  

∂2Γ
∂ui(p1)ui−1(p2)

=
∑P

p=max{p1 ,p2}

[

αi
∂zi(p)

∂ui(p1)

∂zi(p)

∂ui−1(p2)
+ βi

∂z′

i(p)

∂ui(p1)

∂z′

i(p)

∂ui−1(p2)

]

, (55)  

∂2Γ
∂ui(p1)ui+1(p2)

=
∑P

p=max{p1 ,p2}

[

αi+1
∂zi+1(p)

∂ui(p1)

∂zi+1(p)

∂ui+1(p2)
+ βi+1

∂z
′

i+1(p)

∂ui(p1)

∂z
′

i+1(p)

∂ui+1(p2)

]

, (56) 

In Eq. (54), ς(p1, p2)= {
1 if p1 = p2
0 otherwise is an indicator function. In Eqs. (54)–(56), the first derivative ∂zi(p)

∂ui−1(p2)
, ∂zi(p)

∂ui(p2)
, ∂z′

i+1(p)

∂ui+1(p2)
and ∂z′

i+1(p)

∂ui(p2)

are formulated below in Eq. (57) according to Eqs. (9)–(13). 

∂zi(p)

∂ui−1(p2)
=

∂xi−1(p)

∂ui−1(p2)
+ δ2τ ∂vi−1(p)

∂ui−1(p2)
;

∂z
′

i+1(p)

∂ui(p2)
=

∂vi(p)

∂ui(p2)

∂zi(p)

∂ui(p2)
= −

∂xi(p)

∂ui(p2)
− (δ1 + δ2)τ ∂vi(p)

∂ui(p2)
;

∂z′

i+1(p)

∂ui+1(p2)
= −

∂vi+1(p)

∂ui+1(p2)
(57) 

Without loss of generality, we consider CAVs’ aerodynamic drag and powertrain lag coefficients are the same for discussion 
convenience so that we can have | ∂vi(p)

∂ui(p2)
| = |

∂vi+1(p)

∂ui+1(p2)
| and | ∂xi−1(p)

∂ui−1(p2)
| = |

∂xi(p)

∂ui(p2)
| according to Eqs. (2)–(4). Then we have the following re

lations regarding ∂zi(p)

∂ui−1(p2)
, ∂zi(p)

∂ui(p2)
, ∂z′

i+1(p)

∂ui+1(p2)
and ∂z′

i+1(p)

∂ui(p2)
in Eq. (58) based on Eq. (57). Note that if CAVs’ aerodynamic drag and powertrain lag 

are different, | ∂vi(p)

∂ui(p2)
| and | ∂xi(p)

∂ui(p2)
| may be smaller or larger than | ∂vi+1(p)

∂ui+1(p2)
| and | ∂xi−1(p)

∂ui−1(p2)
| respectively. It will make the math relations in Eqs. 

(58)–(59) very complicated with a large number of scenarios, and consequently lead to Eq. (53) mathematically intractable. Besides, 
CAVs’ aerodynamic drag and powertrain lag are normally small, so it is reasonable to consider them the same values without affecting 
the final results. 

⃒
⃒
⃒
⃒

∂z′

i+1(p)

∂ui+1(p2)

⃒
⃒
⃒
⃒ =

⃒
⃒
⃒
⃒
∂z′

i+1(p)

∂ui(p2)

⃒
⃒
⃒
⃒;

⃒
⃒
⃒
⃒

∂zi(p)

∂ui−1(p2)

⃒
⃒
⃒
⃒ <

⃒
⃒
⃒
⃒

∂zi(p)

∂ui(p2)

⃒
⃒
⃒
⃒ (58) 

According to Eqs. (54)–(56) and (58), we have the following inequality formulations regarding ∂2Γ
∂ui(p1)ui(p2)

, ∂2Γ
∂ui(p1)ui−1(p2)

, ∂2Γ
∂ui(p1)ui+1(p2)

in 
Eq. (59). 

⃒
⃒
⃒
⃒

∂2Γ
∂ui(p1)ui+1(p2)

⃒
⃒
⃒
⃒ <

⃒
⃒
⃒
⃒

∂2Γ
∂ui(p1)ui(p2)

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒

∂2Γ
∂ui(p1)ui−1(p2)

+
∂2Γ

∂ui(p1)ui+1(p2)

⃒
⃒
⃒
⃒ <

⃒
⃒
⃒
⃒

∂2Γ
∂ui(p1)ui(p2)

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒

∂2Γ
∂ui(p1)ui−1(p2)

⃒
⃒
⃒
⃒ <

⃒
⃒
⃒
⃒

∂2Γ
∂ui(p1)ui(p2)

⃒
⃒
⃒
⃒ (59) 

Based upon Eqs. (53) and (59), we thus have ‖Bi,p‖ < 1, i ∈ N, p ∈ P Hence, we know that 1-norm of every row in matrix I −(K)
−1K is 

smaller than 1, mathematically ‖ I − (K)
−1K ‖< 1. Finally, we apply the induced norm theorem and obtain 
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ρ∗ = ρ
(
I − (K)

−1K
)

≤‖ I − (K)
−1K ‖< 1.

Condition (III) is satisfied. We conclude the proof. ▪ 
In summary, Lemma 3 demonstrates our MPC controllers satisfies the three conditions given in Theorem 3. Then Theorem 3 

confirms that using the AS-OCD algorithm can efficiently solve the MPC controllers in this study and obtain the global optimal solution 
with a linear convergence rate. In particular, the approximation of the KKT matrix K in Eq. (47) by K in Eq. (48) will not affect the 
solution optimality and convergence speed. 

7. Conclusion 

Advanced connected and autonomous vehicle (CAV) technology offers new opportunities for eco-driving strategies at signalized 
intersections by leveraging traffic signal phase and timing (SPaT) information. The existing eco-driving strategies mainly provide 
vehicle-level speed plan or advisory for individual vehicles without considering other vehicles’ benefits. Although showing 
improvement in fuel consumption and emissions, these approaches may sacrifice the traffic system performance and lack robustness to 
various uncertainties in the real world. To bridge these limits, Part I (Zhang and Du, 2022) of this study developed a system optimal 
platoon-centered control for eco-driving (PCC-eDriving), which provides feedback control law for a mixed flow platoon to pass the 
signalized intersections smoothly and efficiently. We carefully designed a hybrid MPC system to instruct the entire intersection passing 
process, which includes the platoon approaching the intersection, then splitting into sub-platoons and sequentially passing the 
intersection in different traffic cycles. The hybrid MPC system mainly uses three MPC controllers and one mixed integer nonlinear 
programming switching signal, aiming to generate robust, feasible, and stable control law for the PCC-eDriving. By conducting 
simulated numerical experiments, Part I demonstrates the merits of the hybrid MPC system. Part II paper theoretically analyzed and 
proved the control law generated by the hybrid MPC system is feasible, stable, and thus robust. Specifically, we proved the sequential 
feasibility of the MPC controllers and switching feasibility of the hybrid system, and analyzed how the prediction horizon affects the 
feasibility of the optimizer. We investigated the asymptotic stability of the nominal MPC controller and further proved the 
Input-to-State stability of the robust MPC controller in the hybrid MPC system. To ensure satisfying computation performance for this 
real-time control, Part I of this study designed the AS-OCD algorithm to solve the large-scale MPC optimizers in a distributed manner. 
Part II of this study moved forward and theoretically proved the convergence and optimality of the AS-OCD algorithm. We conclude 
that the AS-OCD algorithm can reach the global optimal solution in linear convergence rate when it is used to solve the MPC controllers 
in this study. 
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Appendix 

Appendix A1. Mathematical derivations of Eqs. (38)–(40) 

According to the control dynamics in Eqs. (10)–(13) and CAV dynamics in Eqs. (2)–(4), we can have the following mathematical 
derivations of the CAV i’s control dynamics in the Eqs. (60) and (61). Note that we denote ai(k) = ui(k) − Δui(k) for notation simplicity. 

zi(k + 1) = xi−1(k + 1) − xi(k + 1) − si(k + 1)

= xi−1(k) − xi(k) + τ(vi−1(k) − vi(k)) +
τ2

2
(ai−1(k) − ai(k)) − si(k + 1)

= zi(k) + si(k) − si(k + 1) + τz
′

i (k) +
τ2

2
(ai−1(k) − ai(k))

= zi(k) + τz
′

i (k) − δ1τ2ai(k) − δ2τ2(ai−1(k) − ai(k)) +
τ2

2
(ai−1(k) − ai(k))

= zi(k) + τz
′

i (k) + τ2
(

1
2

+ δ2

)

ai−1(k) − τ2
(

δ1 + δ2 +
1
2

)

ai(k) (60)  

z
′

i (k + 1) = vi−1(k + 1) − vi(k + 1)

= vi−1(k) + τai−1(k) − (vi(k) + τai(k))

= z
′

i (k) + τ(ai−1(k) − ai(k)) (61) 

Let c1 = δ2 + 1
2; c2 = −

(
δ1 +δ2 +1

2

)
We have the following Eq. (62) according to Eqs. (60) and (61). 
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[
zi(k + 1)

z
′

i (k + 1)

]

=

[
1 τ
0 1

][
zi(k)

z
′

i (k)

]

+

[
τ2c1 τ2c2

τ −τ

][
ai−1(k)

ai(k)

]

(62) 

According to the control dynamics of CAV i in Eq. (62), we can then derive out the following platoon control dynamics in Eq. (63), 
[

z(k + 1)

z′

(k + 1)

]

=

[
IN τIN
0 IN

][
z(k)

z′

(k)

]

+

[
τ2S1
τS2

]

a(k) (63)  

where a(k) = [ a0(k) … ai(k) … aN(k) ]
T

∈ RN+1 and the matrices S1 and S2 are given below with c1 = δ2 + 1
2; c2 = −

(
δ1 + δ2 +

1
2
)
. 

S1 =

⎡

⎢
⎢
⎣

c1 c2
c1 c2

⋱ ⋱
c1 c2

⎤

⎥
⎥
⎦ ∈ RN× (N+1); S2 =

⎡

⎢
⎢
⎣

1 −1
1 −1

⋱ ⋱
1 −1

⎤

⎥
⎥
⎦ ∈ RN× (N+1)

Appendix A2. The mathematical formulations of Ki, Δi, fi are presented as follows according to Eqs. (47) and (48) 

Ki =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2LAS(u, η, λ)

∂u2
i

∂T ci(ui)

∂ui

∂T gi(ui−1, ui)

∂ui

∂ci(ui)

∂ui
0 0

∂gi(ui−1, ui)

∂ui
0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; Δi =

⎡

⎣
Δui

−Δηi
−Δλi

⎤

⎦; fi =

⎡

⎢
⎢
⎢
⎢
⎣

∂LAS(u, η, λ)

∂ui

ci(ui)

gi(ui−1, ui)

⎤

⎥
⎥
⎥
⎥
⎦
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