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A B S T R A C T   

Inspired by connected and autonomous vehicle (CAV) technologies, extensive studies have 
developed open-loop vehicle-level trajectory planning or speed advisory to promote eco-driving 
at traffic intersections. But few studies work on platoon-level closed-loop trajectory control, 
which can better sustain stream traffic smoothness and efficiency. Motivated by this research gap, 
this study developed a system optimal platoon-centered control for eco-driving (PCC-eDriving), 
which can guide a platoon mixed with connected and autonomous vehicles (CAVs) and human- 
driven vehicles (HDVs) to smoothly approach, split as needed, and then sequentially pass 
signalized intersections, while reducing or even avoiding sharp deceleration and red idling. The 
effort is separated to Part I and Part II to prevent a lengthy article. Specifically, Part I of this study 
modeled the PCC-eDriving as a hybrid Model Predictive Control (MPC) system. It involves three 
MPC controllers for platoon trajectory control and a mixed-integer nonlinear program (MINLP) 
for optimal splitting decisions. Each MPC controller is integrated with robust vehicle dynamics 
and an online adaptive curve learning algorithm to factor control and vehicle driving un
certainties. An active-set-based optimal condition decomposition algorithm (AS-OCD) was 
developed to efficiently solve the MPC controllers’ large-scale optimizers in a distributed manner. 
The numerical experiments built upon the field and simulated data indicated that the PCC- 
eDriving could significantly improve traffic smoothness and efficiency while reducing energy 
consumption and emission at urban signalized intersections. Part II will analyze and prove the 
sequential feasibility and the Input-to-State stability of the hybrid MPC system, as well as the 
convergence of the AS-OCD solution approach to theoretically sustain the performance of the 
hybrid MPC system.   

1. Introduction 

It has been observed that the traffic signals often cause vehicle idling and stop-and-go traffic fluctuations and thus lead to 
tremendous traffic congestion at urban traffic intersections. Inspired by connected and autonomous vehicle (CAV) technologies, 
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various eco-driving strategies and algorithms have been developed in recent literature, aiming to improve traffic safety and efficiency 
and reduce energy consumption and emission at signalized intersections. Specifically, by leveraging V2I communication technologies, 
some studies developed heuristic or optimization model-based approaches to provide either (i) vehicle-level speed advisory, including 
constant speed plan (e.g., He et al., 2015; Mandava et al., 2009; Alsabaan et al., 2013; Wan et al., 2016; Simchon and Rabinovici, 2020) 
and real-time dynamic speed control (e.g., Asadi and Vahidi, 2010; Kamal et al., 2012; Sun et al., 2020; Nie and Farzaneh, 2021), or (ii) 
platoon-level eco-driving strategy by considering an entire platoon as a system and instructing entire platoon’s trajectory plan (Wei 
et al., 2017; Faraj et al., 2017; Li et al., 2018; Zhao et al., 2018; Wang et al., 2019; Ma et al., 2021; Chen et al., 2021), responding to 
predefined signal control schedules. Other studies developed joint optimization to generate proactive schemes for coordinating the 
vehicle platoon trajectory control and the traffic signal control (Feng et al., 2018; Guo et al., 2019; Niroumand et al., 2020), aiming to 
improve the traffic smoothness at the intersection. However, most of these studies focused on optimizing the leading vehicle’s tra
jectory rather than the entire platoon’s movements due to the modeling and computation complexity. Recent studies (e.g., Lioris et al., 
2016) showed that the platoon-level eco-driving strategies outperform vehicle-level speed advisory in improving flow efficiency. Thus, 
they attracted extensive research interest in recent literature (Zhao et al., 2018; Qin et al., 2021; Zhen et al., 2022) and motivated this 
study. 

Apart from the model-based approaches, researchers recently started to use learning-based methods, especially deep reinforcement 
learning, to develop eco-driving algorithms (Hu et al., 2018; Shi et al., 2018; Qu et al., 2020; Guo et al., 2021; Peng et al., 2022; Huo 
and Meckl, 2022) by leveraging their merits in tracking vehicle dynamics and handling complex driving scenarios. However, those 
learning-based methods consider individual vehicles to be non-cooperative. They learn responsive instruction without rigorously 
factoring the entire platoon’s performance and thus cannot ensure system optimality. On the other hand, it is challenging to develop 
platoon-level eco-driving strategies by reinforcement learning approach. This is because the dimensions of CAVs’ actions and states 
will grow exponentially when more CAVs are considered as platoon members under a reinforcement learning control. It will further 
jeopardize the computation efficiency and convergence of the reinforcement learning. 

Along with the above thoughts, this study intends to use model-based approaches to develop a novel platoon-level eco-driving 
scheme. Specifically, we will develop a hybrid MPC control system, which guides the platoon through traffic intersections smartly and 
smoothly by responding to given traffic signal schedules. The hybrid MPC control system involves several enhanced features which fill 
in the research gaps in literature and also distinguish our study from existing efforts. 

First of all, many existing model-based eco-driving strategies apply open-loop planning schemes to suggest platoon trajectories 
during a time horizon periodically rather than using feedback based closed-loop control (Wei et al., 2017; Faraj et al., 2017; Li et al., 
2018; Zhao et al., 2018; Wang et al., 2019; Chen et al., 2021). Although showing improved platoon performance in saving energy 
consumption and reducing emissions, these planning schemes usually cannot adapt to the trajectory deviations in a planning horizon 
resulting from various uncertain factors. Accordingly, many studies work on a pure CAV platoon (Wei et al., 2017, Faraj et al., 2017, Li 
et al., 2018; Ma et al., 2021). Even though several recent efforts have started to consider mixed-flow traffic (Zhao et al., 2018; Wang 
et al., 2019; Chen et al., 2021), they often ignore the driving behavior variations of the human-driven vehicles (HDVs), such as reaction 
time variation under different traffic environments. On the other hand, most platoon-level eco-driving strategies use deterministic 
double-integrator vehicle dynamics without factoring in control uncertainty resulting from powertrain delay, aerodynamic drag, etc. 
Nevertheless, modeling these uncertainties into platoon-level eco-driving strategies will lead to nonconvex optimizers or controllers. It 
consequently raises the extra difficulty of theoretically analyzing the control property and developing an efficient solution approach 
for this real-time application. This study intends to partially bridge these gaps by developing a robust model predictive control (MPC), 
factoring the uncertainties resulting from both CAV and HDV. 

We also noticed that majority of platoon-level eco-driving strategies only optimize the leading vehicle’s trajectory while imple
menting the following vehicles with existing car-following control, such as adaptive cruise control (ACC) (Marsden et al., 2001; Xiao 
and Gao, 2010; Guanetti et al., 2018) or cooperative adaptive cruise control (CACC) (Milanés et al., 2013; Wei et al., 2017; Li et al., 
2018; Smith et al., 2020; Ma et al., 2021). These traditional ACC and CACC are vehicle-centered responsive controllers for individual 
CAVs to determine their own optimal driving decisions. They do not directly optimize the platoon performance and thus cannot 
mathematically guarantee the system optimality, even though some control features such as string stability can be ensured (Ploeg 
et al., 2011, Öncü et al., 2014). Given this weakness, this study considers an entire platoon as a system and employs a system optimal 
MPC to systematically control the trajectories of all CAVs in a platoon in real time. This type of platoon-centered control has 
demonstrated superior performance in maintaining platoon driving efficiency and smoothness (Gong et al., 2016; Gong and Du, 2018). 
However, these merits come with new challenges, particularly for this study. Specifically, MPC often involves an optimizer, which 
must be solved within a control interval (< 1 s) to ensure control continuity. When the MPC is built for the entire platoon, it will 
introduce a large-scale optimizer that is challenging to be solved promptly, especially when the platoon is long, or the MPC uses a long 
prediction horizon in this study. In addition, existing platoon-centered MPC control (Gong et al., 2016; Gong and Du, 2018; Shen et al., 
2022) applies a constant desired spacing policy to facilitate control stability. It leads to a low-capacity usage and does not fit the urban 
road scenario. To address these challenges, this study integrates an adaptive desired spacing policy in the MPC and then designs a new 
customized distributed optimization algorithm to solve MPC efficiently. 

Furthermore, platoon-level eco-driving strategies often meet the challenge to properly split a long platoon if it cannot wholly pass 
the intersection within one green interval. Some existing studies (Faraj et al., 2017; Li et al., 2018; Zhao et al., 2018; Chen et al., 2021) 
used heuristic splitting rules to maximize traffic throughputs. Other studies (Guanetti et al., 2018) proposed platoon splitting control 
integrated with platoon merging control, aiming to have individual vehicles cut in the platoon quickly (Dasgupta et al., 2017; Duret 
et al., 2020; Pauca et al., 2021; Zhang et al., 2022). Those approaches with a single objective often cause severe traffic fluctuation and 
jeopardize traffic smoothness. This study, therefore, intends to develop an optimal platoon spitting scheme by co-considering traffic 
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throughput, smoothness, and energy consumption. More importantly, we noticed that splitting a platoon at an intersection will induce 
three platoon-control states, respectively for the car-following, splitting, and intersection passing. Accordingly, finding the optimal 
splitting point and generating trajectory control instructions under each state should cooperate and enable smooth state switching. 
Most existing literature ignored these control transitions. This study intends to bridge this gap by designing a hybrid MPC system, 
which harmonizes three MPC controllers and the splitting point searching optimizer so that we can ensure optimal platoon perfor
mance while facilitating the smooth state switching process. 

The aforementioned research gaps and enhanced features of our MPCs raise new research challenges and then highlight the unique 
methodology contributions of this study. Overall, this study develops an efficient system optimal platoon-centered control for eco- 
driving (PCC-eDriving) at a signalized intersection, which instructs a mixed flow platoon to smoothly and efficiently approach, 
split, and then pass signalized intersections reducing red idling as much as possible. The development of the PCC-eDriving control 
contributes the following mathematical modeling, theoretical analyses, and algorithm design. 

First of all, we designed a hybrid MPC system to enable the PCC-eDriving control. The hybrid MPC system involves three MPC 
controllers and a mixed-integer nonlinear program (MINLP), which together generate optimal control laws/switching signals for the 
platoon to approach an intersection, split into sub-platoons, and then sequentially pass the intersection during different green 
intervals. 

Next, this study designed an online adaptive curve learning algorithm and integrated it into each MPC controller so that the PCC- 
eDriving control can quickly learn and predict the HDVs’ real-time driving behaviors. It outperforms existing approaches (Zhang, 
1994; Gong and Du, 2018) by using shorter warm-up time and fewer computation resources. Thus, it fits the urban road scenarios 
better since HDV behavior varies more frequently. Besides, the platoon has a shorter time to learn the HDV behaviors when 
approaching an urban intersection than running on a long stretch freeway segment. 

The MPC controllers employ a long prediction horizon (>30 s) for factoring traffic variation during a traffic signal phase in the PCC- 
eDriving control. But it leads to large-scale optimization problems and poses tremendous challenges to solution approaches. We 
designed an active-set based optimal condition decomposition approach (AS-OCD) and proved its convergence performance by taking 
advantage of the problem features. The AS-OCD algorithm distributes the computation loads to individual CAVs in the platoon. It 
effectively solves the computation difficulty and sustains the continuity of PCC-eDriving control. 

Last, this study conducted numerical experiments to validate the performance of the PCC-eDriving control and the involved ap
proaches. Our experiments showed that the adaptive curve learning algorithm can accurately and quickly predict the HDV driving 
behaviors and the AS-OCD approach can efficiently solve the MPC controllers online within 0.2 s. Besides, the employment of the 
adaptive desired spacing policy can significantly improve the road capacity by 44% compared with that using the constant desired 
spacing policy. Incorporating CAV and HDV uncertainties into the platooning control smoothened the traffic oscillations and reduced 
energy consumption. Furthermore, we compared the proposed PCC-eDriving control with an existing CACC controller and eco-driving 
strategy developed by Faraj et al. (2017) in the literature. The results indicated that the PCC-eDriving control can improve the traffic 
throughputs and smoothness while significantly reducing the energy consumption and emission by 50 and 7%. 

To the best of our knowledge, this is the first research to use hybrid MPC system to study the entire process of platoon approaching, 
splitting and then passing intersections. It significantly contributes the methodology development and practice for the field of eco- 
driving at intersections. 

The rest efforts of this study are presented by the structure as follows. Section 2 formally defines the research problem, assumptions 
and notations, and Section 3 introduces vehicle dynamics and constraints. Built upon that, we develop the hybrid MPC system in 
Section 4, which is solved by the AS-OCD solution approach and adaptive curve learning approach developed in Section 5 and Section 
6, respectively. The performances of the PCC-eDriving and the associated approaches are validated by the numerical experiments in 
Section 7, and finally we draw a conclusion for the whole study in Section 8. To be noted, the theoretical properties of the MPC 
controller and the AS-OCD will be analyzed and proved in Part II. 

Fig. 1. Sample platoon at the signalized intersection.  
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2. Problem statement 

This study proposes a system optimal platoon-centered control for eco-driving (PCC-eDriving), which guides a mixed flow platoon 
to efficiently approach and pass signalized intersections with the aim to improve traffic smoothness and throughputs and reduce 
energy consumption and emission. It considers a sample mixed flow platoon moving toward a signalized intersection on an urban road 
in Fig. 1. The sample platoon may either follow a leading HDV 0̂ or drive freely without leading HDV. It contains three sequential 
platoon segments: a CAV platoon segment C1 including n-many CAVs labeled as {1, …, n}, a HDV platoon segment H including m̂-many 
HDVs indexed by {1̂,…, m̂}, and then a CAV platoon segment C2 with CAVs labeled as {n + 1, …, N}. CAV platoon segments C1 and C2 
form a CAV set C = C1 ∪ C2. A more general mixed flow platoon can be easily generated via repeating this sample platoon. 

Within a CAV platoon, we consider a preceding-and-following communication network topology, which reduces the communi
cation delay to the maximum extent. Specifically, we think that the CAVs in the platoon segments C1 and C2 are well connected without 
communication failures and will communicate with their immediately preceding and following CAVs through V2V communication 
without unbounded delay. Particularly, CAV i = n in CAV platoon segment C1 can communicate with CAV i = n + 1 in CAV platoon 
segment C2 assuming they are within the communication range. Accordingly, the first leading CAV i = 1 will only communicate with its 
immediately following CAV i = 2. Besides, this study considers the movements of the HDVs 0̂, 1̂ and m̂ can be detected by the adjacent 
CAVs using on-board sensors. 

To mathematically model the proposed study, we use notations xi, vi ui for ∀i ∈ IC = {1, …, N} and x̂i, v̂i uî for ∀̂i ∈ IH = {0̂, 1̂, …, m̂}

to represent the longitudinal position, speed, and acceleration of the ith CAV and the î th HDV, respectively. The platoon control is 
conducted at discrete time steps (indexed by k ∈ Z+ := {0,1,2,…}) with a control time interval τ > 0. Control inputs ui (i ∈ IC) keep 
constant during an interval τ. For notational simplicity, we use xi(k), vi(k) ui(k) to substitute xi(τk), vi(τk) ui(τk) hereafter. 

When the leading platoon segment C1 reaches the communication zone, namely r distance from the traffic signal, it will acquire and 
receive the real-time traffic signal information. This information includes green and red phase intervals Tg/Tr as well as the remaining 
time of the current phase, either a green interval denoted by T̃g or a red interval denoted by T̃r. Moreover, we represent traffic signal 
intervals by Tg = τkg, Tr = τkr, T̃g = τk̃g, T̃r = τk̃r, where kg/k̃g and kr/k̃r describe the number of control time steps covered by the 
green and red intervals, respectively. To be noted, a recent report “Adaptive Signal Control Technology” issued by DOT FHWA in
dicates that the traffic signal will be updated at most every several minutes. Given the PCC-eDriving control typically guides the 
platoon to pass the intersection in a few seconds, we assume that these traffic signal information Tg, Tr, T̃g, T̃r will keep constant during 
the PCC-eDriving. 

In reality, a long platoon under PCC-eDriving control may need to split into several sub-platoons to sequentially pass the inter
section during different consecutive traffic cycles. We use hybrid MPC system including three states q0,q1,q2, and two switching signals 
σ0, σ1 to mathematically describe this process. Specifically, the mixed flow platoon A on urban road is originally under car-following 
state q0 approaching the signalized intersection. When it enters the communication zone and obtains traffic signal information, a 
switching signal σ0 optimizer is used to determine the optimal platoon splitting point. Following this splitting decision, platoon A 
under the car-following state q0 in Fig. 2 splits into two sub-platoons A1 and A2. The leading sub-platoon A1 under intersection passing 
state q1 is expected to pass the intersection within the current cycle’s green interval, whereas the latter sub-platoon A2 under splitting 
state q2 consists of the rest vehicles that cannot pass the intersection in the current traffic signal cycle under our prediction. As the 

Fig. 2. Platoon splitting scheme.  
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leading sub-platoon A1 under state q1 passes the intersection, the switching signal σ1 is triggered and sub-platoon A1 restores car- 
following state q0. When the sub-platoon A2 reaches the communication zone of the traffic signal, the above-mentioned procedure 
repeats. Specifically, the optimal platoon splitting point will be determined again and sub-platoon A2 will further split into two sub- 
platoons if it cannot pass the intersection entirely in one green interval. Keep using this strategy, the proposed PCC-eDriving control 
modeled as a hybrid MPC system can be applied to any long platoon with any traffic signal setting. Besides, the mixed flow platoon can 
pass multiple signalized intersections by following the PCC-eDriving control for each traffic signal. 

This PCC-eDriving control and the hybrid MPC system bring in technical challenges from mathematical modeling, theoretical 
analyses, and solution approach development. It thus motivates the novel methodology developed in this study. We formally present 
them in the following sections. To be noted, although this study considers one lane scenario to develop the PCC-eDriving control, it can 
be adapted to the traffic setup with multiple lanes by integrating other advance platooning control algorithms. More exactly, those 
advance platooning control algorithms will instruct the vehicles targeting the intersection’s different (left-turn, right-turn, and going- 
through) lanes to switch lanes and form a platoon at a region farther away from the intersection (at least beyond the zone where the 
PCC-eDriving is activated). After that, the formed platoon on each lane will approach the intersection, start the PCC-eDriving control, 
and then pass the intersection under the eco-driving control independently. Please note that those advance control algorithms for 
diverging a platoon into different lanes and the platoon control involving left-turn and right-turn maneuvers are out of the scope of this 
study. Our other on-going or future work will address them. 

3. Vehicle dynamics, constraints 

This section introduces vehicle dynamics and constraints of the hybrid MPC system. It first introduces CAV dynamics, factoring the 
uncertainty at each control time step k ∈ Z+. Considering vehicles’ powertrain delay and aerodynamic drag are stochastic and time- 
variant, this study adopts the robust double-integrator model in Eqs. (1) and (2) to describe CAV i’s dynamics at step k. 

xi(k + 1) = xi(k) + τvi(k) +
τ2

2
(ui(k) − Δui(k)), i ∈ IC (1)  

vi(k + 1) = vi(k) + τ(ui(k) − Δui(k)), i ∈ IC (2) 

In Eqs. (1) and (2), Δui(k) factors CAV i’s powertrain delay and aerodynamic drag by Eq. (3), which was proposed by Montanaro 
et al., (2020). 

Δui(k) = εivi(k) + ηiui(k) − ηiui(k − 1), i ∈ IC (3) 

In Eq. (3), parameter εi is the coefficient of a linearized aerodynamic force and ηi represents the time lag in the powertrain for each 
CAV i ∈ IC. We consider εi and ηi are time-varying random parameters but bounded as 0 < εi ≤ εi ≤ ε̄i, 0 < ηi ≤ ηi ≤ η̄i, where εi, ̄εi, ηi 

and ̄ηi are corresponding lower and upper bounds for each CAV i ∈ IC. Accordingly, the control disturbance Δui(k) of CAV i is bounded 
as Δi ≤ Δui(k) ≤ Δ̄i. For MPC at every time step, εi and ηi are randomly generated as parameters following a given distribution (e.g., 
uniform distribution). 

The movements of HDVs are described by well-known Newell’s car-following model (Newell, 2002) in Eq. (4) since it is linear and 
simple, compared with other complicated models such as Wiedemann (1991) or IDM (Treiber et al., 2000) models. Those advance 
car-following models present complicated nonlinear or nonconvex mathematical features and will make the MPC optimizer unsolvable 
during a second (a typical time interval used for CAV platooning control). To facilitate the computation, most existing MPC studies will 
choose to locally linearize the nonconvex function in the optimizer. This approximation will inevitably cause errors, which in turn 
dampens the advantages of using these complicated car-following models. Besides, these models involve many parameters and make it 
hard to calibrate parameters in real time. Considering the trade-off mentioned above, this study chooses to use Newell model, which is 
linear and quite friendly to the computation. What is more, MPC, as a feedback control, has the capability to correct the prediction 
error (see our discussions later in Section 4). This study will also develop an online adaptive curve learning approach (see Section 6) to 
update the displacement parameters in the Newell model in real-time. These instruments together ensure that Newell’s model work 
well in our study (see the experiments results in Sections 7.1 and 7.2.) 

x̂i(k) = x̂i−1(k − t̂i) − dî, î ∈ IH , (4)  

where t̂i and dî represent the time and distance displacement of the HDV ̂i. It considers the distance-time trajectory of the following 
vehicle is essentially the same with the leading vehicle except a time and distance displacement. Given this study only needs to know 
the trajectory of last vehicle (m̂) in the HDV segment H, we describe its movement using the aggregated form of Newell’s car-following 
model in Eq. (5), 

xm̂(k) = xn(k − Tm̂) − Dm̂, (5)  

where Tm̂ and Dm̂ represent the aggregated time step and distance displacement of the HDV segment H. Mathematically, Tm̂ = ⌈(tm̂ +

tm̂−1 + … + t1) /τ⌉, Dm̂ = dm̂ + dm̂−1 + … + d1̂. Using Eq. (5) with given parameters Tm̂ and Dm̂, we can predict the trajectory of HDV m̂ 
using the trajectory of CAV n. Nevertheless, we noticed that HDVs’ time and distance displacement Tm̂ and Dm̂ are highly heterogenous 
and may vary under different driving environments. It is challenging but important to capture the time-varying HDV behavior for the 
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PCC-eDriving control accurately. Our study addresses this technical difficulty from two aspects. First, MPC approach in Section 4 itself 
is closed-loop feedback control, which can correct the HDV behavior prediction errors by updating the new observed system state at 
each control time step (see more discussions in Section 4). Next, we will develop an adaptive curve learning approach in Section 6 to 
learn the values of parameters Tm̂ and Dm̂ online for human driver’ s real-time driving behaviors. Our numerical experiments also 
indicated that Newell’s car-following model combined with the adaptive curve learning approach could predict the HDV driving 
behaviors well in our MPC system. 

Furthermore, we consider the CAV control input, speed and the safe distance need to satisfy the physical constraints shown in Eqs. 
(6), (7) and (8), respectively. 

amin,i ≤ ui(k) ≤ amax,i, i ∈ IC (6)  

vmin ≤ vi(k) ≤ vmax, i ∈ IC (7)  

xi−1(k) − xi(k) ≥ Li + δ1τvi(k) + δ2τ(vi(k) − vi−1(k)), i ∈ IC (8) 

Here, amax,i and amin,i in Eq. (6) are used to describe the predefined acceleration/ deceleration bounds for CAV i. Similarly, vmin and 
vmax in Eq. (7) are the pre-specified bounds of driving speed on urban roads. Regarding the driving safety, an adaptive safe distance 
constraint is enabled by Eq. (8), which considers the safe time headway and the speed difference between leading and following 
vehicles to ensure the safety and improve the traffic throughputs. Specifically in Eq. (8), parameter Li > 0 represents CAV i’s length plus 
minimum car-following distance; δ1τ with δ1 ≥ 1 is the safe time headway; δ2τ(vi(k) − vi − 1(k)) with δ2 ≥ 0 factors the speed dif
ference and enables a smaller (or larger) safe spacing adaptively when the leading vehicle drives faster (or slower) than the following 
vehicle (i.e., vi(k) > vi − 1(k) vs. vi(k) < vi − 1(k)). The idea of Eq. (8) is consistent to GM’s car-following model (Chakroborty and 
Kikuchi, 1999). We expect it can utilize road capacity better than the linear safe constraints (Wu et al., 2020) as well as the highway 
quadratic safe constraints (Gong et al., 2016). Our experimental results further confirm this merit. It can also achieve collision-free 
safety performance by using conservative parameters δ1 and δ2 in sacrifice of traffic throughputs though. 

According to the adaptive safe distance constraints, this study uses the adaptive desired spacing policy in Eq. (9), which will be used 
in the objective function of the MPC control. 

si(k) = Li + δ1τvi(k) + δ2τ(vi(k) − vi−1(k)) + δ, (9) 

In Eq. (9), si(k) represents the desired spacing for CAV i at step k. Positive δ > 0 is introduced to make the desired spacing si(k) 
slightly larger than the safe car-following distance in Eq. (8). This makes the control system hardly trigger the activation of the safe 
distance constraints in Eq. (8) when the platoon is stabilized. It will facilitate the control robustness and smoothness. 

Next, we define the CAV i’s spacing and speed errors Δxi(k), Δvi(k) at step k in Eqs. (10) and (11), respectively according to 
Ghasemi et al., (2013), Wang and Nijmeijer (2015) and Zuo et al., (2021). Please note that the platoon reaches an equilibrium state 
when the spacing and speed errors Δxi(k), Δvi(k) become zeros for all the CAVs i ∈ I. 

Δxi(k) = xi−1(k) − xi(k) − si(k), i ∈ IC, (10)  

Δvi(k) = vi−1(k) − vi(k), i ∈ IC, (11) 

Built upon the spacing and speed errors Δxi(k), Δvi(k) in Eqs. (10) and (11), the platoon control dynamics z(k), z′(k) are 
summarized in Eqs. (12) and (13). 

z(k) := (Δx1(k), …, ΔxN(k))
T

∈ RN , (12)  

z’(k) := (Δv1(k), ⋯, ΔvN(k))
T

∈ RN . (13) 

Finally, to ensure the stability of the MPC with constraints, we define a terminal constraint at time step k + P as follows in Eq. (14), 

Φf := (z(k + P) ∈ ζ, z’(k + P) ∈ ζ’), (14)  

where P is the MPC prediction horizon. The terminal constraint in Eq. (14) requires the platoon’s spacing and speed errors at final time 

step k + P of the MPC are confined to small domains ζ =
[

− τ2

2 Δ̄iP, −τ2

2 ΔiP
]

and ζ′

= [ − τΔ̄iP, − τΔiP], respectively, where Δi and Δ̄i 

are the lower and upper bound of the CAV control input uncertainty in Eqs. (3). According to Eqs. (3), (6) and (7), Δi = εivmin 

+ηi(amin.i −amax,i) < 0 and Δ̄i = εivmax + ηi(amax.i − amin,i) > 0. If there is no control uncertainty (i.e., Δui(k) = 0), then the terminal 
constraint requires the platoon to reach the steady state at final step k + P, namely ζ = 0, ζ′ = 0. 

4. Hybrid MPC system 

This section designs the hybrid MPC system to mathematically enable the PCC-eDriving control. Recall that the PCC-eDriving 
control seeks to instruct the movement of a mixed flow platoon so that it can approach and then pass signalized intersections 
smoothly. Below we first justify the properness of using the hybrid MPC system and then present our methodology development. 

MPC is a closed-loop modern control method. It predicts the system future behaviors in the prediction horizon (e.g., next P time 
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steps) and then uses a constrained optimization model to find the optimal control law for next P steps but only implements the first-step 
control law. This prediction and optimization are repeated at each time step so that the MPC can respond to the control and prediction 
errors timely and smoothly, such as the CAV control uncertainties and the HDV prediction errors in this study. Therefore, it fits the 
PCC-eDriving control very well. However, as we mentioned in the introduction and problem statement, using a single MPC model is not 
enough to describe the entire dynamic process of the PCC-eDriving control. Specifically, the platoon will experience three physical 
states before, during and after the platoon splitting. We formally define them as follows. (i) The entire platoon approaches the 
intersection before splitting (state q0). (ii) The first sub-platoon passes the intersection (state q1). (iii) The second sub-platoon continues 
to approach intersection avoiding sharp deceleration and reducing red idling time (state q2). Movements of the first and second sub- 
platoons under state q1 and q2 together split the original platoon. We note that these three states have different control goals and 
constraints, and thus cannot be described using a single MPC model. Accordingly, three different MPC controllers MPC-q0, MPC-q1 and 
MPC-q2 are designed to carry out the platooning control under these three states q0, q1 and q2 individually. Apart from it, the platoon 
movement is a continuous and smooth dynamic process, though involving platoon splitting is a discrete event. Then, a fundamental 
question is how to connect the controllers under these three states properly so that the entire PCC-eDriving control performs 
continuously and smoothly. To solve this problem, we adopt and design the hybrid system since it has been proved to be a very 
promising approach and fits the MPC controllers well according to Bemporad et al., (2002); Borrelli et al., (2017). Using Fig. 3, below 
we explain the design of the hybrid system for this study. Briefly, the hybrid system involves two switching signals σ0 and σ1 to trigger 
the state switching between the states q0, q1,q2 and their corresponding MPC controllers. 

Without loss of generality, we consider the dynamic process starts from state q0 that the entire mixed flow platoon A approaches the 
signalized intersection under the guide of MPC-q0. Once it enters the communication zone of the traffic signal, the PCC-eDriving 
control starts a mixed integer non-linear programming optimizer (MINLP) to search for the optimal platoon splitting point within 
one control interval (1 s). The completion of this step generates switching signal σ0, indicating that the platoon A will split into sub- 
platoons A1 and A2 at the optimal point (e.g., q0 →

σ0 q1, q2). Then, the PCC-eDriving implements MPC-q1 and MPC-q2, which, respec
tively guide the movements of sub-platoons A1 and A2 so that A1 can smoothly pass the intersection during the current cycle’s green 
interval, and A2 can approach the intersection efficiently. Furthermore, when the sub-platoon A1 passes the intersection, switching 
signal σ1 triggers the switching of the state q1 back to state q0 (i.e., sub-platoon A1 restores MPC-q0). Later, when the sub-platoon A2 
enters the communication zone, if A2 can entirely pass the intersection in the current cycle’s green interval, the PCC-eDriving control 
switches from MPC-q2 to MPC-q1 for A2 to pass the intersection efficiently. Otherwise, A2 will split again (2nd split) to form new A1 and 
A2; then we repeat the same process above until the resulted sub-platoon A2 can entirely pass the intersection. In Fig. 3, we denote the 
states and the sub-platoons after the κth split as q1(κ),q2(κ) and A1(κ), A2(κ) and assume the splitting process is done after K splits. Note 
that in the final Kth split, sub-platoon A2(K − 1) can entirely pass the intersection and thus state q2(K − 1) only switches to q1(K) 
without further splitting. Normally, the maximum number of splits K is not large (e.g., K ≤ 2). Besides, we should notice that the 
switching signal σ1 is triggered when the sub-platoon A1 physically passes the intersection and thus no mathematical model is needed 
for switching signal σ1. Please note that the states and switching signals in the hybrid system are highly intertwined so that the 
corresponding MPC controllers and switching signal optimizer should be well designed to ensure the state switching feasibility and 
hybrid system continuity. Below we formally introduce the mathematical formulations of MPC-q0, MPC-q1, MPC-q2 and the signal 
MINLP-σ0 in the sequential Sections 4.1–4.4. Then we analyze and prove the switching feasibility and continuity of the hybrid system 
in Section 4.5. 

4.1. MPC controller for state q0 (MPC-q0) 

This study considers the platoon is approaching the intersection under a platoon-centered car-following control. Accordingly, we 
develop the MPC-q0 to conduct CAV trajectory control at any step k ∈ Z+ before the platoon enters the communication zone and 
triggers the switching signal σ0. The MPC-q0 optimizer includes the objective function defined in Eq. (15) subject to the vehicle dy
namics and constraints in Eqs. (1)-(14) developed in Section 3. If there is no vehicle ahead leading the platoon, then the first platoon 

Fig. 3. Hybrid MPC system under normal traffic condition.  
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CAV i = 1 will lead the traffic and keep the desired speed (see Appendix-I for the desired speed control). The MPC-q0 predicts the 
platoon states at any time step k + p, for ∀ p = 1, …, P (p ∈ P). We simplify step k + p to p hereafter throughout the Section 4 to 
simplify notation. 

MPC − q0  

Min Γ(u(p)) =
∑P

p=1

{
1
2

[
zT (p)Qzz(p) + (z

′

(p))
T Qz′ z

′

(p)
]

+
τ2

2
ω1‖ u(p − 1) ‖

2
2

}

(15) 

Subject to, for p ∈ P: 
Constraints in Eqs. (1)-(14), where u(p) = (u1(p),…, uN(p)) is the control input vector at time step k + p for CAVs i ∈ IC; 

Qz:= diag(α1, …, αN) and Qz′ := diag(β1, …, βN) are diagonal matrices; αi > 0 and βi > 0 are penalty weights of the spacing and speed 
errors for each CAV i ∈ IC. 

Next, we will move forward to present the mathematical model for switching signal σ0 (MINLP-σ0), MPC-q1 and MPC-q2. Never
theless, it is noted when the platoon enters the traffic signal communication zone, the current signal phase may be either green or red. 
These two different traffic signal scenarios will lead to slightly different models and controllers. Therefore, we will first introduce our 
models under the green scenario in the following Section 4.2-4.4. Then we extend the results to the red scenario in Remark 2. 

4.2. Switching signal MINLP-σ0 

This section develops a mixed integer nonlinear programming optimizer (MINLP-σ0) to find the optimal location to split the platoon 
A into two sub-platoons A1 and A2 while predicting A1 can pass the intersection in the current green interval. If A2 cannot pass the 
intersection in the next green interval, it will further split into two sub-platoons using MINLP-σ0 again (see details in Fig. 3). Note that 
the solution of the MINLP-σ0 will trigger the switching signal σ0 and the implementation of MPC-q1 and MPC-q2 for the splitting. 
Therefore, to ensure the control continuity, this MINLP-σ0 optimizer should factor the platoon’s future movements and control during 
the remaining green interval and the sequential red interval. It should also keep the same constraints as the followed controllers MPC- 
q1 and MPC-q2 to facilitate the switching feasibility. Along with this idea, we develop the MINLP-σ0 with the thoughts below. 

We first introduce binary variable yi ∈ {0, 1}, ∀i ∈ Īc = {1, 2, …, n, n +1, …N, N +1} to describe the location of the platoon splitting 
point, which are around CAVs. For example, yi* = 1 represents that the platoon splits immediately ahead of CAV i*. Please note that the 
platoon splitting point must locate in front of a CAV because HDVs are not under our control. In addition, to make our control adaptive 
to the future traffic uncertainties, we regulate the platoon only splits into two sub-platoons every time nearby the intersection and 
repeat the process until all the platoon vehicles pass the intersection. Then, we have Eq. (16) below to allow only one splitting point in 
the mixed flow platoon. 

∑

i∈Īc

yi = 1; yi ∈ {0, 1} (16) 

Denote i* as the platoon splitting point, then the last CAV in the sub-platoon A1 is CAV i* − 1. We thus have Eq. (17) to ensure that 
the CAV i* − 1 must have passed the intersection at the end of the current green interval at time step p = k̃g. This constraint will be 
consistently used by MPC-q1. Here the intersection location is set as the longitude coordinate 0. And M > 0 is a given large positive 
number so that Eq. (17) takes effect only for CAV i* − 1. 

xi−1
(
k̃g

)
≥ −M(1 − yi), i ∈ Īc, (17) 

On the other side, the first CAV in the second sub-platoon A2 is CAV i*. Eq. (18) regulates that the CAV i* (i.e., sub-platoon A2) 
cannot pass the intersection until the end of the sequential red interval at time step p = k̃g + kr. This constraint will be consistently used 
by MPC-q2. 

xi
(
k̃g + kr

)
≤ M(1 − yi), i ∈ Īc, (18) 

We also recognized that the downstream capacity limits the number of vehicles in the sub-platoon A1 that can pass through the 
intersection. This observation is captured by Eq. (19), where constant C corresponds to the rest downstream capacity according to 
current traffic condition. 

i ⋅ yi ≤ C, i ∈ Īc, (19) 

Next, we consider the future platoon splitting carried by MPC-q1 and MPC-q2 will greatly enlarge the inter-vehicle spacing at the 
splitting point and consequently enlarge the speed difference between two sub-platoons. Accordingly, the MINLP-σ0 involves this 
prediction and modifies the measurement of spacing and speed errors by Eqs. (20) and (21), 

Δxi(p) = xi−1(p) − xi(p) − si(p) − yi ⋅ D , i ∈ Īc, (20)  

Δvi(p) = vi−1(p) − vi(p) − yi ⋅ D
’, i ∈ Īc, (21)  

where parameters D and in D
′

represent the estimated spacing and speed errors between two sub-platoons A1 and A2. Note that Eqs. 
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(20) and (21) are same to the Eqs. (10) and (11) except the spacing and speed errors at the platoon splitting point. 
Wrapping up the thoughts above, we summarize the Optimizer MINLP-σ0 as follows. 

MINLP − σ0  

min J(u, y) = J1(u, y) + ω2J2(u, y) (22) 

Subject to, for p ∈ P, i ∈ Īc: 
Constraints in Eqs. (1)-(9), (12)- (13), (16)-(21), where 

J1(u, y) =
∑P=k̃g+kr

p=1

{
1
2

[
zT (p)Qzz(p) + (z′

(p))
T Qz′ z′

(p)
]

+
τ2

2
ω1‖ u(p − 1) ‖

2
2

}

J2(u, y) = −
∑

i∈Īc

i ⋅ yi 

The objective function J in Eq. (22) consider the tradeoff between traffic smoothness and traffic throughputs by tuning weight ω2. 
The first component J1(u,y) promotes traffic smoothness in the next P = k̃g + kr steps, whereas the second component J2(u,y) considers 
maximizing the traffic throughputs. Overall, the MINLP-σ0 will find the optimal platoon splitting point by predicting the future platoon 
control and movements during the current green and sequential red intervals, namely the next P = k̃g + kr time steps. It should be 
noted that the MINLP-σ0 can always find a feasible solution. The extreme case is the entire platoon A can (yN + 1 = 1) or cannot (y1 = 1) 
completely pass the intersection during the current green interval. Note that we define a dummy CAV N + 1 in the CAV set Īc to cover 
the extreme case yN + 1 = 1 when the entire platoon A can completely pass the intersection. 

4.3. MPC controller for state q1 (MPC-q1) 

We next develop the MPC-q1 for state q1. It seeks to instruct the platoon splitting trajectory control of the leading sub-platoon A1 
and guide A1 to pass the intersection during the current green interval while factoring the platoon system performance and traffic 
smoothness. Based on the development of the MPC-q0 and MINLP-σ0, MPC-q1 is given below. 

MPC − q1  

Min Γ(u) =
∑P

p=1

{
1
2

[
zT (p)Qzz(p) + (z′

(p))
T Qz′ z′

(p)
]

+
τ2

2
ω1‖ u(p − 1) ‖

2
2

}

(23) 

Subject to, for i ∈ Â1 , p ∈ P where P = k̃g, k̃g − 1, …,1: 
Constraints in Eqs. (1)-(13), and 

xi*−1(P) ≥ 0, (24)  

where Â1 represents the CAV set in the sub-platoon A1; the MPC prediction horizon P is a shrinking horizon that decreases at each time 
step by one as the control proceeds (i.e., P = k̃g, k̃g − 1, …, 1). Besides, i* represents the optimal platoon splitting point determined by 
the MINLP-σ0 and thus i* − 1 is the last CAV of A1. Accordingly, Eq. (24) ensures that the sub-platoon A1 passes the intersection within 
the remaining green interval. It is derived from Eq. (17) in the MINLP-σ0. 

4.4. MPC controller for state q2 (MPC-q2) 

This section develops the MPC-q2 for state q2, which instructs sub-platoon A2 to split from the original platoon A and smoothly 
approach the intersection for reducing or even avoiding red idling. Once the sub-platoon A2 reaches the communication zone of the 
traffic signal, it will trigger the switching signal σ0 again and calculates the optimal platoon splitting point for itself. If the splitting 
point is at the end of the sub-platoon A2, the entire sub-platoon A2 can pass the intersection in one green interval. Otherwise, it will 
further split into two sub-platoons following the same procedure discussed in Fig. 3. 

It is noted that the sub-platoon A2 does not have a leading HDV while it splits from the sub-platoon A1. Hence, we consider the first 
CAV i* in A2 as the leading vehicle and generates its eco-driving trajectory as reference for the following vehicles in A2. Consequently, 
our MPC-q2 consists of two controllers as follows: (i) eco-driving trajectory control for leading CAV i*; (ii) following vehicles’ eco- 
driving trajectory optimizer. 

MPC-q2-(i) Eco-driving Trajectory Reference of Leading CAV i*. 

Min F(ui* ) =
∑P

p=1
‖ ui* (p − 1) ‖

2
2 − ω3xi* (P) (25) 

Subject to, for p ∈ P, P = k̃g + kr, k̃g + kr − 1, …, 1: 
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CAV i* dynamics and constraints in Eqs. (1)-(3) and (6)-(8) 

xi* (P) ≤ 0, (26)  

where P is the shrinking prediction horizon, P = k̃g + kr, k̃g + kr − 1, …, 1 as the control proceeds. To be noted, if the last HDV in A1 
does not pass the intersection, it will be the leading vehicle for the sub-platoon A2 and pose a safe car-following constraint to the first 
CAV i* in A2. Our MPC-q2-(i) controller for the leading CAV i* considered the safe car-following distance constraint in Eq. (8), and thus 
can handle the scenarios when there exists HDV ahead. Besides, constraint in Eq. (26) illustrates that the leading CAV of A2 cannot pass 
the intersection until the red phase runs out. This is derived from Eq. (18) and thus facilitates the switching feasibility (see Section 4.2 
in Part II for technical details). The objective function in Eq. (25) co-considers the traffic throughputs and smoothness. On one hand, we 
intend to improve the traffic throughputs by driving the platoon as close as possible to the intersection (i.e., minimizing the distance 
between the leading CAV i*’s and the intersection) at the beginning of the next green interval. On the other hand, we penalize the 
aggressive acceleration/deceleration for traffic smoothness and reducing energy consumption and emission according to Huang et al. 
(2018) and USDOE (2022) “USDOE, Driving more efficiently”. The two conflicting interests can be tuned by the weight parameter ω3 in 
practice. 

MPC-q2-(ii) Following Vehicles’ Trajectory Control. 

Min Γ(u) =
∑P

p=1

{
1
2

[
zT (p)Qzz(p) + (z′

(p))
T Qz′ z′

(p)
]

+
τ2

2
ω1‖ u(p − 1) ‖

2
2

}

(27) 

Subject to, for i ∈ Â2 \i*, p ∈ P where P = k̃g + kr, k̃g + kr − 1, …, 1 :

Constraints in Eqs. (1)-(13), where Â2 denotes the CAV set in the sub-platoon A2. The MPC-q2-(ii) ensures a system optimal car- 
following control with given leading trajectory provided by the MPC-q2-(i). It is similar to MPC-q0 but with a shrinking prediction 
horizon P. 

Overall, MPC-q1 and MPC-q2 follow the optimal splitting decision made by the MINLP-σ0. They are well designed to instruct and 
enable the feasible and smooth platoon splitting trajectory. Below we discuss the extension of this hybrid MPC system from the green 
scenario to the red scenario in Remark 2. 

Remark 1. It should be noted that the sub-platoon A1 may fail to pass the intersection wholly in the current green interval because 
some unexpected accidents block the downstream traffic. Our PCC-eDriving model can be extended to handle this extreme scenario. 
Specifically, MPC-q1 controller for sub-platoon A1 can immediately detect this unexpected situation by checking the constraint in Eq. 
(24), which regulates that the last CAV i* − 1 in A1 should pass the intersection by the end of the green interval. If Eq. (24) is not 
satisfied, it means A1 cannot entirely pass the intersection as expected. To solve this problem, the platoon splitting control (i.e., MINLP- 
σ0) can be triggered again to split A1 into sub-platoons A1.1 and A1.2 further. This way, the first sub-platoon A1.1 can pass the inter
section in the current green interval while the sub-platoon A1.2 will further split and pass the intersection in the next green intervals 
using the similar strategy in Fig. 3. This strategy can be repeatedly used as illustrated in Fig. 4 anytime during the PCC-eDriving control 
when the first sub-platoon finds it cannot pass the intersection within the current green interval. 

Remark 2. Extension to Red Scenario: The above hybrid MPC system can be extended to red scenario by doing the following minor 
changes. Note that under the red scenario, the first sub-platoon A1 cannot pass the intersection in the current red interval. Then to 
ensure the traffic safety and efficiency, we add the eco-driving trajectory optimizer (i.e., Eqs. (25) and (26)) for the leading CAV i = 1 in 
A1 (MPC-q1). It aims to guide A1 to smoothly approach the intersection even though it cannot pass it until the current red interval runs 
out. 

Apart from it, we also need to increase the prediction horizon of the MPC-q1, MPC-q2 and the MINLP-σ0. More exactly, the MPC-q1 

needs to change the prediction horizon from P = k̃g, k̃g − 1, …1 under the green scenario to P = k̃r + kg, k̃r + kg − 1, …, 1 time steps 
under the red scenario. The similar modification is applied for the MPC-q2 and MINLP-σ0. 

5. Distributed optimization algorithm 

To implement the hybrid MPC system above, we need to solve the MPC controllers and switching signal optimizer within a control 
time interval (<1 sec) to sustain the control continuity. The large prediction horizon of these MPC controllers leads to large-scale 
optimization problems and consequently poses tremendous difficulty in developing efficient numerical solvers. The MINLP-σ0 opti
mizer can be efficiently solved by the distributed branch and bound algorithm developed in Androulakis and Floudas (1999). However, 
for those MPC controllers, this study tested existing well-known distributed optimization algorithms such as distributed primal and 
dual (Yuan et al., 2011), block coordinate descent (Beck and Tetruashvili, 2013) and ADMM (Boyd et al., 2011). They cannot converge 
to a global optimal solution efficiently within one second. This section thus develops a distributed optimization algorithm: active-set 
based optimal condition decomposition (AS-OCD) to solve the MPC-q0, MPC-q1 and MPC-q2 efficiently. Below we present the technical 
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details. 
This study noticed that most of the constraints in the three MPC controllers are inequality constraints and they are inactive1 under 

normal traffic conditions. For example, vehicles seldom reach maximum acceleration/deceleration and usually run within speed 
limits. When the desired spacing and safe distance are designed properly, the safe distance constraints are also inactive at most control 
time steps. Therefore, physical constraints in Eqs. (6)-(8) are usually inactive. These problem features invoke this study to use active set 
method (AS) to solve the MPC optimizer efficiently (Nocedal and Wright, 2006). AS method first neglects all the inequality constraints 
to solve the optimizer and then iteratively adds active constraints back until convergence. It has been widely used particularly in 
optimization-based control problems (Nak et al. 2023) with extensive redundant inequality constraints in the optimization model. 
However, the AS method is a centralized algorithm. It does not fit our control problem very well since CAV platoon is a self-organized 
system subject to frequent platoon topology changes and lack of centralized computation recourse. With this concern, this study 
further develops the optimal condition decomposition algorithm (OCD) according to Conejo et al. (2002). By integrating AS and OCD 
approaches into AS-OCD algorithm, we can solve the MPC optimizer efficiently in a distributed manner. 

The rest of this section focuses on developing the OCD approach and finally presents the flowchart of the AS-OCD algorithm. To do 
that, using MPC-q0 as an example, we first rewrite the MPC controllers in this study by the optimizer F below in Eq. (28) only subject to 
active set constraints. 

Optimizer F : Min Γ(u) =
∑N

i=1

{

zT
i Qzi zi +

(
z

′

i

)T
Q

z
′

i
z

′

i +
τ2

2
‖ ui ‖

2
2

}

(28) 

Subject to l-many gAS(uj−1,uj) = 0, l -many cAS(uj ) = 0, where zi = (zi(0), …, zi(P −1)), z′

i = (z′

i(0), …, z′

i(P −1)) represent the spacing 
and speed error control state for CAV i, ∀i ∈ IC at each time step during the prediction horizon P; Similarly, ui = (ui(0),…, ui(P − 1)) 
represents control input in the active constraints for CAV i, i ∈ IC. gAS(uj − 1, uj) = 0 is an active coupled2 constraint such as safe distance 
constraints in Eq. (8) and cAS(uj ) = 0 is an active uncoupled constraint such as acceleration and speed limit constraints in Eqs. (6) and 
(7). For this optimizer F, we assume there are l-many active coupled constraints gAS(uj − 1, uj) = 0 and l -many uncoupled constraints 
cAS(uj ) = 0. Then, the Lagrangian function of the above optimizer F is given by: 

LAS(u, η, λ) = Γ(u) + ηT cAS(u) + λT gAS(u),

with Lagrange multipliers η = [η1, …, ηl ]
T
, λ = [λ1, …, λl]

T. 
It is noted that the optimizer F is strictly convex with quadratic objective function subject to linear equality constraints. Then, its 

Karush–Kuhn–Tucker (KKT) conditions (Boyd et al., 2004) indicate that the global optimal solution of optimizer F can be obtained by 
solving a system of linear equations. The Newton’s method (Nocedal and Wright, 2006) has been widely applied to solve the 
large-scale system of linear equations efficiently. Mainly, it iteratively computes the searching direction Δu,  − Δη,  − Δλ by 
solving K Δ = −f in Eq. (29), and then improves the current solution by u ← u + Δu, η ← η + Δη, λ ← λ + Δλ until converging to an 
optimal solution. 

Fig. 4. Repeated Platoon Splitting Control for Accidents.  

1 Given an optimization problem, an inequality constraint g(x) ≥ 0 is called active at x if g(x) = 0 and inactive at x if g(x) > 0, whereas equality 
constraints are always active.  

2 Coupled constraints refer to the constraints involving more than two agents (two CAVs in this study). Conversely, uncoupled constraints involve 
only one agent (one CAV). 
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⎛

⎝
∇2LAS(u, η, λ) ∇T cAS(u) ∇T gAS(u)

∇cAS(u) 0 0
∇gAS(u) 0 0

⎞

⎠

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
K

⎛

⎝
Δu

−Δη
−Δλ

⎞

⎠

⏟̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅⏟
Δ

= −

⎛

⎝
∇LAS(u, η, λ)

cAS(u)

gAS(u)

⎞

⎠

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
f

⇔ K Δ = −f (29) 

Even though Newton’s method holds a super linear convergence rate, it cannot be computed in a distributed manner due to the 
coupling component of ∇2LAS(u,σ, λ) and ∇TgAS(u) in the KKT matrix (denoted as K in Eq. (29)). To adapt the Newton’s method to a 
distributed optimization algorithm, we approximates ∇2LAS(u,σ, λ) and ∇TgAS(u) in the KKT matrix K to block diagonal matrices3 H and 
A in Eq. (30). 

H = diag
(

∂2LAS(u, η, λ)

∂u2
1

, ⋯,
∂2LAS(u, η, λ)

∂u2
N

)

; A = diag
(

∂g1(u)

∂u1
, ⋯,

∂gN(u)

∂uN

)

(30) 

This approximation provides us an approximated KKT matrix K̄ in Eq. (31), which are separable in terms of CAV control inputs. 
Accordingly, we solve the search direction by Δ̄ = − K̄−1f . The computation load can be distributed to individual CAVs Δ̄i = −K̄−1

i fi 

shown in Eq. (31), 
⎛

⎝
K̄1 0 0
0 ⋱ 0
0 0 K̄N

⎞

⎠

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
K̄

⎛

⎝
Δ̄1
⋮

Δ̄N

⎞

⎠

⏟̅̅̅̅ ⏞⏞̅̅̅̅ ⏟
Δ̄

= −

⎛

⎝
f1
⋮
fN

⎞

⎠

⏟̅̅̅ ⏞⏞̅̅̅ ⏟
f

⇔ Δ̄i = −K̄−1
i fi, ∀i = 1, …, N, (31)  

where K̄i represents the CAV i’s matrix block in the approximated KKT matrix K̄; Δ̄i and fi are CAV i’s search direction and corre
sponding gradient. The mathematical formulations of K̄i, Δ̄i, fi can be seen in Appendix-II. Please note that the approximation of the 
KKT matrix in this study will not affect the solution optimality and convergence of the OCD algorithms. We will discuss these details in 
Part II. Besides, note that MPC-q0, MPC-q1 and MPC-q2 share similar mathematical features (e.g., quadratic objective function, linear 
constraints, etc.). Thus, this AS-OCD can be applied to solve all three MPC controllers efficiently. 

Finally, we present in detail how the AS-OCD algorithm works and distributes the computation loads to different CAVs in Algo
rithm 1. First of all, each CAV i initializes an empty active set Ai ∈ ∅. Then each CAV i will solve its own search direction Δ̄i = −K̄−1

i fi 
parallelly in a recursive manner. The K̄−1

i and fi are generated according to the active constraints in the active set Ai. Based upon the 
calculated search direction, each CAV will update its solution [ ui ηi λi ]

T←[ ui ηi λi ]
T

+ Δ̄i where Δ̄i = [ ui ηi λi ]
T . Then all the 

CAVs will synchronize to have the overall Δ̄ = {Δ̄1, …, Δ̄n}. If Δ̄ is small enough, the CAVs will stop solving the search direction Δ̄i,

∀i ∈ I. Next, each CAV i will check and adds its related infeasible constraints into the active set Ai, while removing the active con
straints with negative Lagrange multipliers (e.g., ηi, λi). Finally, CAVs will synchronize to have an overall active set A = {A1,…, An}. If 
the active set A is empty, the current solution is the global optimal solution. 

6. Online adaptive curve learning approach 

Recall that this study estimates the movements of HDVs by Newell’s car-following model in Eq. (5). The two parameters Tm̂ (the 
aggregated time displacement) and Dm̂ (the aggregated distance displacement) corresponding to human drivers’ responses to traffic 
play a key role in affecting the performance of the MPC controllers. Considering human drivers may have different driving behaviors 
under different environments, these two parameters are likely to vary accordingly. To make our MPC adaptive to this traffic uncer
tainty, we prefer accurately estimating these two parameters online at each MPC time step rather than using predefined parameters 

Algorithm 1 
AS-OCD.  

Each CAV i initializes an empty active set Ai ∈ ∅. 
Do: 
Repeat until Δ̄ small enough: 
Each CAV i solves Δ̄i = −K̄−1

i fi parallelly, subject to Ai. 

Each CAV i updates solution 

⎡

⎣
ui
ηi
λi

⎤

⎦←

⎡

⎣
ui
ηi
λi

⎤

⎦ + Δ̄i where Δ̄i =

⎡

⎣
Δui
Δηi
Δλi

⎤

⎦

Synchronize Δ̄ = {Δ̄1, …, Δ̄n}

Each CAV i checks and adds its infeasible constraints into Ai. 
Each CAV i removes active constraints with negative (ηi, λi) from Ai. 
Synchronize A = {A1,…, An} 
Repeat until A∈∅.  

3 In block matrix A, gi(u) represents the couping constraint for CAV i. If gi(u) is not active, ∂gi(u)

∂ui
= 0. 
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observed from historical data. To do that, the curve matching algorithm (Zhang, 1994) is a good candidate method. However, existing 
study (Gong and Du, 2018) showed that the standard curve matching algorithm requires a relatively long warm-up time and cannot 
quickly adapt to the frequent traffic variations nearby urban traffic intersections. Hence, it cannot fit this study well. 

Motivated by the above view, we develop a new adaptive curve learning algorithm by taking advantage of the unique features of 
the Newell’s car-following model. It seeks to learn and update parameters Tm̂ and Dm̂ at each control step based on the trajectory data, 
requiring short warm-up time, small computation load and data storage space. Below we illustrate the technical details, including 
adaptive learning approach and point matching algorithm in the next Sections 6.1 and 6.2, respectively. 

6.1. Adaptive learning approach 

Newell’s car-following model indicates that the trajectory of the following vehicle is essentially the same as the leading vehicle with 
a time and distance displacement (e.g., Tm̂, Dm̂ in Fig. 5 (a)). By moving the trajectory data of the HDV m̂ at time step k + 1 (red dots in 
Fig. 5 (a)) with optimal temporal and spatial displacement to match the historical trajectory data of the CAV n, we can learn the time 
and distance displacement t(k + 1), d(k + 1) at the current step k + 1. Using the same method, we can find t(k), d(k) at previous 
step k and then k − 1, …, 0. However, the learned t(k), d(k) may be inaccurate if the algorithm uses a small set of trajectory data 
collected by the adjacent CAV. With this concern, the traditional curve matching approach requires large amounts of trajectory data 
and consequently long warm-up time to guarantee accuracy. To make the learning prompt and accurate, we develop an adaptive 
learning approach with the main ideas as follows. 

First of all, the adaptive learning introduces a time discount factor γ to each trajectory data. Consequently, the curve matching 
factors most recent trajectory data more, considering they reflect HDVs’ current driving characteristics better. Besides, we observed 
that a larger speed fluctuation reflects more apparent driving behavior variation such as the reaction time delay. Accordingly, this 
learning approach introduces another weight w(k) to value the importance of each trajectory data for learning the driving behavior 
variation at step k. Last, to reduce the required computation loads and data storage space, we consider using aggregated T(k), D(k) to 
describe all the historical time and distance displacement t(k), d(k) learned until time step k. Eqs. (32)-(34) below wrap up the ideas, 

W(k) =
∑k

j=0
w(k), (32)  

T(k) =
∑k

j=0
γk−jt(j)w(j)

/
W(k), (33)  

D(k) =
∑k

j=0
γk−jd(j)w(j)

/
W(k), (34)  

where W(k) is the aggregated weight of {w(0), …, w(k)} at step k; the time discount factor γ satisfies 0 < γ ≤ 1. Then, the key question is 
how to determine values of w(k), d(k) and t(k) accurately. We introduce the point matching algorithm in the next Section 6.2 to 
determine d(k) and t(k). Below we first present the formulation to determine the weight w(k) in Eq. (35). 

w(k) = |vm̂(k) − vm̂(k − 1)| (35) 

Eq. (35) measures the weight of trajectory data at time step k by the absolute velocity change of HDV m̂ from step k − 1 to k. When 

Fig. 5. Online Adaptive Curve Learning Approach.  
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the speed of HDV m̂ does not vary, i.e., vm̂(k) − vm̂(k − 1) = 0, we have the weight w(k) = 0 in the learning. It means that we do not use 
the trajectory information collected at time step k to update T(k), D(k) because the learned d(k), t(k) do not have much value for 
update. On the other hand, when the speed of HDV m̂ fluctuates apparently at step k, we have w(k) > 0 because we consider the learned 
d(k), t(k) will capture the new driving behavior. This scheme can be explained from the traffic reality. Specifically, we can only clearly 
observe the following vehicle’s reaction when it responds to varying traffic conditions. 

However, the learned T(k), D(k) using Eqs. (33)-(34) may have small prediction errors at each step. To avoid error accumulation, 
this study particularly introduces feedback error gains eD(k) and eT(k) obtained from the trajectory prediction errors at step k to further 
calibrate the time and distance displacement D(k + 1) and T(k + 1) at the next step. 

At last, the learning scheme in Eqs. (33)-(34) is modified into the following Eqs. (36) and (37), which relate T(k + 1), D(k + 1) to T 
(k), D(k) and t(k + 1), d(k + 1). 

T(k + 1) =
W(k)

W(k) + w(k + 1)
γT(k) +

w(k + 1)

W(k) + w(k + 1)
t(k + 1) + eD(k) (36)  

D(k + 1) =
W(k)

W(k) + w(k + 1)
γD(k) +

w(k + 1)

W(k) + w(k + 1)
d(k + 1) + eT (k) (37) 

As such, our adaptive learning approach in Eqs. (36) and (37) only relies on the most recent trajectory data. It thus can record and 
track all the historical information with small data storage space and computation load. The error gains eD(k) and eT(k) in Eqs. (36) and 
(37) are calculated based on previous trajectory matching errors. The technical details can be seen in Appendix-III. 

6.2. Point matching algorithm 

Following the adaptive learning scheme above, we design a point matching algorithm to learn the values of d(k + 1), t(k + 1) at 
each time step using recent trajectory data. We use notation H m̂(k +1) to represent the data set containing newly detected sample 
trajectory data of HDV m̂ at time step k + 1 (red dot in Fig. 5 (b)) and the recent sz-many historical trajectory data collected after step k 
+ 1 − sz (blue dots in Fig. 5(b)). Set H m̂(k +1) includes |H m̂| = (sz + 1)-many sample data, represented as H m̂(k + 1) = {p l

m̂ = (xl,tl),

l = 1,…,|H m̂|}. We then define a search domain at time step k + 1, which includes the sample trajectory data set C n(k +1) of CAV n. It 
includes |C n|-many sample data, mathematically C n(k + 1) = {p l

n = (xl,tl), l = 1,…,|C n|}. The proposed search domain confines the 
candidate matching data points, in which we will search for the historical sample data of CAV n that optimally pair with the sample 
data H m̂(k +1) of HDV m̂. 

The point matching algorithm wipes every possible |H m̂|-many consecutive data points in data set C n(k + 1). N = |C n| − |H m̂|

represents the number of possible pairs. For any possible pair j , ∀j = 1,…,N , a motion vector J j = (−dj , tj ) is searched for the least 
errors in Eq. (38). 

minF j
(
J

j
)

=
1

|H m̂|

∑|H m̂ |

l=1
‖ p l

n − p l
m̂ + J

j
‖ ;2, ∀j = 1, ⋯, N (38) 

Obviously, we can have an explicit solution for the unconstrained quadratic optimization problem in Eq. (38), by making dF
j (J

j
)

/ dJ
j

= 0. The explicit optimal solution Ĵ
j 

is given below in Eq. (39). 

Ĵ
j

=
1

|H m̂|

∑|H m̂ |

l=1

(
p l

n − p l
m̂

)
, ∀j = 1, ⋯, N (39) 

Then the corresponding optimal objective function is denoted as F̂
j

. Accordingly, we will obtain an optimal motion vector Ĵ
j 

=

(−d̂
j

, t̂ j
) with objective value F̂

j 

for each possible data pair j , ∀j = 1,…,N . We find the best data points pair j which minimizes these 
objective values F j (*) in Eq. (40). 

j * = argmin
{

F
j (*), ∀j = 1, ⋯, N

}
(40) 

Wrapping results above, we obtain the newly learned distance and time displacement d(k + 1) and t(k + 1) as follows in Eq. (41). 

d(k + 1) = d̂
j *

; t(k + 1) = t̂ j *

(41) 

The pseudo-code of the adaptive curve learning algorithm is given in the Appendix-IV. It is clear that the adaptive curve learning 
algorithm only needs to store the data H m̂(k + 1), C n(k +1) and compute d(k + 1), t(k + 1) by iterating over N = |C n| −

|H m̂|-many trajectory data points. Hence, the space complexity of this algorithm is O(|C n| + |H m̂|) and the time complexity is 
O(|C n| − |H m̂|). It should be noted that |H m̂| represents the number of recent measurement data, usually |H m̂| ≤ 10. And |C n| is the 
number of measurement data in the search domain, usually |C n| ≤ 30. The computation efficiency and prediction accuracy of the 
proposed adaptive curve learning algorithm will be further demonstrated in the simulation experiments in Section 7. 
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7. Numerical experiments 

This section conducts three sets of numerical experiments to verify the performance and merits of our approaches from three 
aspects. (i) Validate the efficiency of the adaptive curve learning and the AS-OCD algorithms by Experiment-I. (ii) Demonstrate the 
advantages of the MPC controllers (using MPC-q0 as example) by involving adaptive desired spacing policy and CAV/HDV un
certainties by Experiment-II. (iii) Validate the merits of the PCC-eDriving control in smoothening traffic, reducing energy consumption 
and emission by Experiment-III. 

Experiment-I and Experiment-II are mainly set up on a sample mixed flow platoon shown in Fig. 1. It is a platoon with 10 vehicles 
including 7 CAVs (n = 7): a leading vehicle 0̂ followed by 4 CAVs, 3 HDVs and then 4 CAVs. The leading vehicle follows the trajectory 
collected on Lankershim Boulevard in the Universal City neighborhood of Los Angeles, CA, on June 16, 2005 given in NGSIM dataset. 
The initial CAV speed and spacing are set as 10 m/s and 15 m. Experiment-III uses a longer mixed flow platoon, which involves an HDV 
platoon with 3 vehicles sandwiched in between an upstream CAV platoon with 6 vehicles and a downstream CAV platoon with 7 
vehicles. CAVs’ initial speed and spacing are set as 20 m/s and 30 m. The used physical parameters are given in Table 1. 

In Table 1, the spacing and speed penalty weight αi and βi are different in MPC controllers and the switching signal MINLP-σ0. The 
MPC controllers assigns different weights to different spacing and speed errors for platoon’s good stability performance. However, this 
setting is not proper for the MINLP-σ0, which aims to determine the platoon splitting point. Specifically, each spacing and speed error 
in the platoon should be assigned equal penalty weights, to make sure every inter-vehicle spacing has equal opportunity to become 
splitting point. 

7.1. Solution approach performance 

We first validate the computation performance of the adaptive curve learning algorithm, the AS-OCD and the DBB algorithms 
through Experiment-I. To do that, we, respectively used Newell’s car-following model and intelligent driver model (IDM) (Treiber 
et al., 2000) to simulate the HDV driving behaviors, and then applied online adaptive curve learning approach with Newell’s 
car-following model to predict the HDV trajectories in the MPC. Fig. 6 (a) and (b) present the predicted HDV trajectory by the MPC 
using Newell’s model to simulate field HDV trajectory, while Fig. 6 (c) and (d) present the prediction results using the IDM model to do 
the simulation. 

The results in Fig. 6 (a) and (b) indicate the adaptive curve learning algorithm takes less than 20 s for warm-up. After that, the MPC 
(combining Newell’s model and the adaptive curve learning algorithm) accurately predicted the HDV’s trajectory curve, which was 
simulated by Newell’s car-following model (i.e., the predicted trajectory curve is almost coincided with the simulated trajectory in 
both location and speed). The average spacing prediction error is 0.1255 (m). More importantly, Fig. 6 (c) and (d) demonstrate that the 
MPC also well predicted the HDV’s trajectory curve, which was simulated by IDM model. The average spacing prediction error is 
0.3983 (m). Although the prediction accuracy is worse than that in Fig. 6 (a) and (b), these prediction errors will be further corrected 
by MPC closed-loop control and thus do not harm the control performance very much. Moreover, the average computation time at each 
time step is less than 0.002 sec. Therefore, we conclude that Newell’s model combined with the adaptive curve learning algorithm fits 
this study very well to predict HDVs’ trajectories. 

Next, we tested the performance of the AS-OCD and DBB algorithms to solve MPC-q0 controllers and MINLP-σ0 by setting the MPC 

Table 1 
Parameter setting.  

Parameters Values 

Sample time interval τ 1 (s) 
Vehicle length Li 3 (m) 
Maximum deceleration amin,i -5 (m/s2) 
Maximum acceleration amax,i 4 (m/s2) 
Minimum speed vmin 0 (m/s) 
Maximum speed vmax 22 (m/s) 
Aerodynamic coefficient εi [0.2, 0.3] (Montanaro et al, 2020) 
Powertrain lag σi [0.1, 0.2] (Automobile drag coefficient, 2021) 
Safety parameter δ1 1 
Safety parameter δ2 0.5 
Desired spacing parameter δ 5 (m) 
Penalty weight ω1 1 
Discount factor γ 0.99  

MPC-q0, MPC-q1, MPC-q2 

Penalty weight αi 0.3*N2 − 0.6*(N + 1 − i) (Gong et al., 2016) 
Penalty weight βi 0.4*N2 − 1.2*(N + 1 − i) (Gong et al., 2016)  

Switching signal MINLP-σ0 

Penalty weight ω2 N2*P2 

Penalty weight αi 0.3N2 

Penalty weight βi 0.4N2 

Splitting spacing difference D 200 (m) 
Splitting speed difference D

′ 10 (m/s)  
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prediction horizons P = {20, 30, 40, 50, 60} for different mixed-flow platoons n = {7, 10, 13}. The mixed flow platoons were formed 
based on the sample platoon (i.e., 4 CAVs + 3 HDVs + 4 CAVs) in Experiment-I with n = 7 CAVs. More CAVs were added to the sample 
platoon at the end of the platoon to form longer platoons with n = 10 and n = 13. The results are shown in Table 2. Note that we also 
tested the longer platoon by adding more HDVs and noticed that it did not affect the computation performance of AS-OCD and DBB 
algorithms very much. Thus, these results were not presented in Table 2. 

The results in Table 2 demonstrate that the computation time increases as the platoon size or prediction horizon P increases. 
However, the computation time is always less than 0.3 s, which satisfies the computation requirement (< 1 s, the control interval) of 
the MPC. Therefore, we conclude that the AS-OCD algorithm can efficiently solve the MPC-q0 controllers with long prediction horizons 
for different mixed-flow platoons. Similar computation performances were observed when we used the AS-OCD algorithm to solve 
other MPC controllers such as MPC-q1 and MPC-q2. Besides, Table 2 also shows that the DBB algorithm can solve the MINLP- 
σ0 optimizer with platoon size n = 13 within 0.3 s, which also meets the computation efficiency demand and can ensure the control 
smoothness and continuity of the hybrid MPC system. 

Fig. 6. Comparison of the predicted and actual trajectory of HDV simulated by Newell and IDM models.  

Table 2 
AS-OCD and DBB algorithms computation performance (sec).  

AS-OCD algorithm DBB algorithm 
MPC horizon MPC-q0 n = 7 MPC-q0 n = 10 MPC-q0 n = 13 MINLP-σ0 n = 13 

Mean Variance Mean Variance Mean Variance Mean Variance 

P = 20 0.0412 2.82e-05 0.0433 1.82e-05 0.0432 1.61e-05 0.1122 3.36e-05 
P = 30 0.0601 5.56e-05 0.0630 2.12e-05 0.0992 2.93e-05 0.1338 5.29e-05 
P = 40 0.0810 5.15e-05 0.0891 1.16e-05 0.1463 7.33e-06 0.1599 1.76e-05 
P = 50 0.1037 5.07e-05 0.1529 1.04e-05 0.1838 1.90e-05 0.2104 7.09e-05 
P = 60 0.2122 2.44e-05 0.2464 9.65e-05 0.2521 5.08e-05 0.2688 2.08e-06  

H. Zhang and L. Du                                                                                                                                                                                                   



Transportation Research Part B xxx (xxxx) xxx

17

7.2. Traffic flow smoothness and throughputs 

Next, this study demonstrates the benefits of improving the platoon stream smoothness, throughputs and efficiency from involving 
the adaptive desired spacing policy and CAV/HDV uncertainties in the optimizer of the MPC controllers. To do that, we use MPC-q0 as 
example and compare its platooning control performance to the CACC control (Chen et al., 2019) and other platooning control. The 
results are shown in Figs. 7, 8 and 9. 

Specifically, Fig. 7 (a1, a2), (b1,b2) and (c1,c2), respectively illustrate the distance and spacing variations in the experiments under 
the MPC with adaptive spacing policy (i.e., MPC-q0), MPC with constant desired spacing policies (i.e., MPC-q̄0) and the CACC. Fig. 7 

Fig. 7. Distance-time and spacing-time trajectories (MPC-q0, MPC-q̄0, CACC).  
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(a2,b2) together indicate that MPC-q0 allows variant spacing, of which the spacing varies from 8 m to 23 m with the minimum equal to 
8 m (including vehicle length) when vehicles stop, whereas the MPC-q̄0 applying constant spacing around 23 m to ensure the safety. As 
such, Fig. 7 (a1,b1) demonstrates that the adaptive desired spacing policy reduces the inter-vehicle spacing compared to the constant 
desired spacing policy and it improves the road capacity by about 44%. Although the CACC controller in Fig. 7 (c1,c2) also enables 
adaptive spacing, Fig. 7 (a2,c2) show that the spacing under CACC control vary more violently and need more time to get stabilized 
than the MPC-q0. Therefore, we conclude that the MPC-q0 outperforms the CACC in traffic smoothness. 

Fig. 8 demonstrates the speed and control input variations under the corresponding control schemes. It is observed that the speed 
and control input fluctuations under the MPC-q0 in Fig. 8 (a1,a2) are milder than the MPC-q̄0 with constant desired spacing policy in 
Fig. 8 (b1,b2) and the CACC controller in Fig. 8 (c1,c2). The mild speed and control input variations can improve driving comfort, and 

Fig. 8. Speed-time and control input-time trajectories (MPC-q0, MPC-q̄0, CACC).  
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more importantly lead to energy consumption and emission reductions. The results in Figs. 7 and 8 indicate the MPC-q0 with adaptive 
desired spacing policy can effectively mitigate traffic oscillations and improve smoothness and throughputs, compared with CACC 
control and the MPC using constant desired spacing policy. 

We next tested how the online adaptive curve learning helps the MPC to improve traffic smoothness and efficiency. Specifically, 
Fig. 9 (a1, a2) and Fig. 9 (b1, b2) illustrate the CAV spacing and speed variations under the MPC-q0 control, where we, respectively 
use Newell’s car-following model and IDM model to simulate HDV trajectories. To differentiate them, we denote the controller MPC- 
q0-N for Fig. 9 (a1, a2) and the controller MPC-q0-I for Fig. 9 (b1, b2). We can observe that MPC-q0-I controller performs as well as 
MPC-q0-N for smoothing CAV’s trajectories, except for CAV i = 8. We can also observe that the trajectory of CAV i = 8 under MPC-q0-I 
fluctuates more violently than other CAVs. A key reason is that CAV i = 8 is the first CAV following the HDV platoon segment and 
suffers from the prediction errors of HDV driving behavior. Nevertheless, the traffic oscillation behind CAV i = 8 (e.g., CAV i = 9, 10) is 
mitigated to the minimum extent. Accordingly, the energy consumption under MPC-q0-I (shown in Fig. 9 (b1,b2)) only increased about 
0.4% compared with that under MPC-q0-N in Fig. 9 (a1,a2). Overall, we confirm the significance of using online adaptive curve learning 
to smoothen traffic using this MPC. 

Fig. 9 (c1, c2) and (d1, d2) further illustrate the CAV spacing and speed variations under MPC-q̂0 control ignoring CAV control 
uncertainty and MPC-q̃0 control without integrating online adaptive learning. Both MPC-q̂0 and MPC-q̃0 used Newell’s car-following 
model to simulate the HDV driving behaviors. Comparing Fig. 9 (c1, c2) and (d1, d2) to Fig. 9 (a1, a2), we can demonstrate the 
importance of involving CAV control uncertainties and online adaptive curve learning approach in the controllers. Specifically, vehicle 
trajectories under MPC-q0-N in Fig. 9 (a1,a2) are smoother than those under MPC-q̂0 in Fig. 9 (c1, c2) and those under MPC-q̃0 in Fig. 9 
(d1, d2). Therefore, we conclude that MPC-q̂0 and MPC-q̃0 suffers from ignoring the errors resulting from the uncertainties of CAV and 
HDV dynamics. Even though these errors can be corrected by the feedback controller and the traffic fluctuation of the platoon can be 

Fig. 9. Spacing-time and speed-time diagrams, respectively under MPC-q0-N, MPC-q0-I, MPC-q̂0, MPC-q̃0.  
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bounded around the steady-state (Input-to-State stability) shown in Fig. 9 (c1, c2) and (d1, d2), it indeed wastes fuel consumption 
and emission by 1% in Fig. 9 (c1, c2) and 1.5% in Fig. 9 (d1, d2) as compared with results in Fig. 9 (a1, a2) that factor the un
certainties.4 Therefore, those observations necessitate factoring in the uncertainties of CAV and HDV dynamics in the MPC. 

7.3. Performance of the PCC-eDriving control 

This study finally validates the traffic performance of the PCC-eDriving control for guiding a platoon to pass the signalized 
intersection. The experiments compared the PCC-eDriving control with an existing CACC controller and a PAVSOS controller devel
oped in Faraj et al. (2017) under both green and red scenarios. Fig. 10 (a1,b1,c1) provide the results under green scenario, where we set 
the remaining green interval as ̃kg = 25s, when the mixed flow platoon arrives at the communication zone (r =300 m away from the 
intersection). Fig. 10 (a2,b2,c2) demonstrate the results under the red scenario, where we set there remains red interval as k̃r = 25s. 
Both green and red scenarios use the same traffic signal setting: kr = kg = 40s. The experiments use the VT-micro model to estimate the 
fuel consumptions and emissions (Ahn et al., 2002). 

Fig. 10 (a1,a2) shows that the PCC-eDriving control can improve the traffic smoothness, save energy consumption and emission 
compared with the performance of the CACC control in Fig. 10 (b1,b2) and the PAVSOS control in Fig. 10 (c1,c2) under both green and 
red scenarios. More exactly, under the green scenario, Fig. 10 (a1) shows that the platoon under the PCC-eDriving control split into two 
sub-platoons, and then they sequentially passed the intersection without sharp deceleration. It is noted that the latter sub-platoon 
decelerated gently and smoothly to avoid red idling and save fuel consumption and emission. The PCC-eDriving control saved 
approximately 59% fuel consumption and CO2 emissions for the entire trip, compared with CACC control in Fig. 10 (b1), which led to 
sharp deceleration at the intersection and consequently consumed more fuel and produced more CO2 emission. Compared with the 
PAVSOS control in Fig. 10 (c1), our results showed that the PCC-eDriving control saved about 5.4% fuel consumption and CO2 
emission, even though the PAVSOS control also avoided red idling. The PCC-eDriving control outperformed the PAVSOS control since 

Fig. 9. (continued). 

4 The fuel consumption and emission are estimated using VT-micro model developed in Ahn et al., (2002). 
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it generated smoother vehicle trajectories. Under the red scenario, Fig. 10 (a2) shows that the platoon under the PCC-eDriving control 
decelerated in advance and passed the intersection in one green interval without sudden deceleration or stop-and-go motions. It saved 
about 66% and 9.3% fuel consumption and emission, respectively compared with CACC control in Fig. 10 (b2) and PAVSOS control in 
Fig. 10 (c2). It is interesting to observe that the fuel consumption saving under the red scenario is more significant than that under the 
green scenario. This is because more vehicles in the platoon need to decelerate under the red scenario. Wrapping above, the PCC- 
eDriving control in this study can significantly improve the traffic smoothness and efficiency compared with existing CACC and 
eco-driving control. 

Fig. 10. Distance-time trajectory (PCC-eDriving, CACC and PAVSOS).  
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8. Conclusion 

Existing studies mainly use open-loop trajectory planning, speed advisory, or responsive control to develop eco-driving strategies. 
Although showing improved performance in saving energy and reducing emission, those approaches lack robustness to uncertainty 
occurring in the traffic environment. On the other hand, closed-loop (feedback) platoon-centered control can sustain better stream 
traffic smoothness and efficiency, but leads to significant modeling and computation challenges. Motivated by this view, this study 
develops a system optimal platoon-centered control for eco-driving (PCC-eDriving) to address these gaps, aiming to guide a mixed flow 
platoon passing the signalized intersections smoothly and efficiently while factoring uncertainties. Mathematically, we design a hybrid 
MPC system involving three MPC controllers and one mixed integer nonlinear programming optimizer to enable this eco-driving 
control. It mathematically captures and instructs the dynamic control process for a platoon to approach an intersection, split into 
sub-platoons and then sequentially pass the intersection during different green intervals. Besides, the MPC controllers of the hybrid 
system employ adaptive desired spacing policy and online learning algorithm to factor the uncertainties resulting from CAV control 
and HDV variant driving behavior. An active-set based optimal condition decomposition approach (AS-OCD) is developed to solve 
large-scale MPC optimizers efficiently in a decentralized manner. 

Our simulated experiments show that the online adaptive curve learning approach could accurately predict the HDV driving 
behavior, and the AS-OCD algorithm can efficiently solve the large-scale MPC optimizers in 0.2 s. Moreover, it is observed that the PCC- 
eDriving control can significantly improve traffic smoothness and efficiency compared to existing CACC and MPC controllers in 
literature. Finally, our numerical experiments demonstrate that the PCC-eDriving control could save approximately 50% and 7% fuel 
consumption and emission compared to an existing CACC control and eco-driving strategy. 

There are several interesting future topics motivated by this study. One of them is considering the interaction between the vehicle 
platooning control and traffic signal control. Accordingly, the traffic signal setup will not be predefined but adaptive to the upcoming 
traffic flow. This extension may further smoothen traffic and reduce energy consumption at the system level. However, it will bring in 
new challenges, such as the coordination between the platoon trajectory control and traffic signal control. Furthermore, we can extend 
this study to consider left or right-turn intents at the intersection. This extension may raise new challenges associated with platoon 
diverging and latitude trajectory control. They will significantly complicate the mathematical modeling and algorithm design in this 
study. We propose to address these extensions in our future study. 
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Appendix 

Appendix-I 

We present the reference speed controller for the leading CAV i = 1 as follows in Eq. (42): 

Min Γ(u1) =
∑P

p=1

{

τ ‖ v1(p) − vr‖
2
Q +

τ2

2
ω1‖ u(p − 1) ‖

2
2

}

(42) 

Subject to for i = 1, p ∈ P: 

Constraints in Equations (1) − (3) and (6) − (7)

where vr represents the reference speed for the leading CAV i = 1. Q is the positive penalty diagonal matrix for the speed errors. 

Appendix-II 

The mathematical formulations of K̄i, Δ̄i, fi are presented as follows according to Eqs. (29) and (31). 

H. Zhang and L. Du                                                                                                                                                                                                   



Transportation Research Part B xxx (xxxx) xxx

23

K̄i =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2LAS(u, η, λ)

∂u2
i

∂T ci(ui)

∂ui

∂T gi(ui−1, ui)

∂ui

∂ci(ui)

∂ui
0 0

∂gi(ui−1, ui)

∂ui
0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; Δ̄i =

⎡

⎣
Δui

−Δηi
−Δλi

⎤

⎦; fi =

⎡

⎢
⎢
⎢
⎢
⎣

∂LAS(u, η, λ)

∂ui

ci(ui)

gi(ui−1, ui)

⎤

⎥
⎥
⎥
⎥
⎦

Appendix-III 

The error gains eD(k) and eT(k) in Eqs. (36) and (37) are calculated based on trajectory matching errors e(k) using the following Eqs. 
(43)–(45), 

e(k) = H̃(k) − H(k), (43)  

eD(k) = aDe(k), (44)  

eT (k) =
aT e(k)

max(vm̂(k), 1)
, (45)  

where aD and aT are gain coefficients for distance error gain eD(k) and time error gain eT(k), respectively; vm̂(k) is the speed of HDV m̂ at 
step k; H(k) is the actual trajectory point of a HDV m̂ at step k; H̃(k) is the predicted trajectory point of a HDV m̂ at step k using the 
historical trajectory of the CAV n with the distance and time displacement D(k) and T(k) at step k; e(k) represents the trajectory 
matching error of the following HDV m̂ at step k. Below we explain the technical details to develop Eqs. (43)–(45). 

We consider two trajectories H(k) for HDV m̂ and C(k) for CAV n. Then we pick a point A:(k, H(k)) on H(k). According to the learned 
displacement T(k) and D(k) at time step k, we can match the point of (k, H(k)) on HDV m̂ trajectory to the point of B: (k − T(k), C(k −
T(k))) on CAV n trajectory. From the matching point B, we can calculate a predicted trajectory point for the HDV m̂ at time step k at 
point C:(k, C(k − T(k)) − D(k) = H̃(k)). It is very likely that points A and C won’t match exactly and generate the trajectory matching 
error e(k) in Eq. (43). According to the error e(k), we further develop the error gain eD(k) and eT(k) considering that e(k) can be either 
positive or negative. Using the case e(k) > 0 as an example, we explan our main idea as follows. The same idea can be applied for the 
case e(k) < 0. To make H̃(k) consistent to H(k), we can increase either the predicted distance displacement D(k) by e(k), or the predicted 
time displacement T(k) by e(k)/vm̂(k). Using this logic, we can derive Eqs. (44) and (45), where we substitute vm̂(k) with max(vm̂(k), 1)

to handle extreme scenarios when vm̂(k) = 0. Since we do not know what proportion we should increase D(k) and T(k) just based on the 
prediction errors at step k, gain coefficient aD and aT are designed small (e.g., 10−3 ∼ 10−2) to calibrate D(k) and T(k) bit by bit and 
ensure the stability. Introducing this error gain is particularly useful to avoid the prediction error accumulation. 

Appendix-VI 

The pseudo-code of the online adaptive curve learning algorithm is presented below. 
Initialize W(k = 0) = 0 and D(k = 0), T(k = 0) according to the estimated number of HDVs (Hall, 1996) and calibrated pa

rameters of Newell’s Car-following model (Punzo and Simonelli, 2005) 
Repeat for control time step k + 1: 
Allocate data H m̂(k + 1) = {pl

m̂ = (xl, tl)}, C n(k + 1) = {p l
n = (xl, tl)}

Determine d(k + 1), t(k + 1), w(k + 1) according to Eqs. (35),(38)–(41). 
Update D(k + 1), T(k + 1), W(k + 1) according to Eqs. (32), (35), (36). 
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