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Abstract— Objective: In this work, we introduce a quan-
titative non-contact respiratory evaluation method for fine-
grain exhale flow and volume estimation through Thermal-
CO2 imaging. This provides a form of respiratory analysis
that is driven by visual analytics of exhale behaviors, cre-
ating quantitative metrics for exhale flow and volume mod-
eled as open-air turbulent flows. This approach introduces
a novel form of effort-independent pulmonary evaluation
enabling behavioral analysis of natural exhale behaviors.
Methods: CO2 filtered infrared visualizations of exhale be-
haviors are used to obtain breathing rate, volumetric flow
estimations (L/s) and per-exhale volume (L) estimations.
We conduct experiments validating visual flow analysis to
formulate two behavioral Long-Short-Term-Memory (LSTM)
estimation models generated from visualized exhale flows
targeting per-subject and cross-subject training datasets.
Results: Experimental model data generated for training
on our per-individual recurrent estimation model provide
an overall flow correlation estimate correlation of R2 =
0.912 and volume in-the-wild accuracy of 75.65-94.44%. Our
cross-patient model extends generality to unseen exhale
behaviors, obtaining an overall correlation of R2 = 0.804
and in-the-wild volume accuracy of 62.32-94.22%. Conclu-
sion: This method provides non-contact flow and volume
estimation through filtered CO2 imaging, enabling effort-
independent analysis of natural breathing behaviors. Sig-
nificance: Effort-independent evaluation of exhale flow and
volume broadens capabilities in pulmonological assess-
ment and long-term non-contact respiratory analysis.

Index Terms— Exhale visualization, CO2 exhale flow,
Non-contact exhale analysis, Quantitative exhale analysis

I. INTRODUCTION

IDENTIFYING abnormalities in continuous respiratory
waveforms is one of the most prevalent diagnostic tools

used to identify and evaluate pulmonary impairments ranging
from acute respiratory failure [1] to the onset of chronic
conditions [2]. Accurate quantification of these pulmonary
indicators enables condition trajectory analysis, preventative
solutions for in-hospital catastrophic events, and interventions
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for severe declines in pulmonary function. Metrics including
Respiratory Rate (RR or BPM) and Pulmonary Function Test
(PFT) volumetric flow measures (VC, FVC, ERV, TV, etc.)
are used to provide feature descriptors of breathing behaviors
that signify unique signatures of chronic conditions such as
asthma, apnea in Sleep Disordered Breathing (SDB), and
Chronic Obstructive Pulmonary Disease (COPD) [2]. These
indicators are also critical for both the detection and prevention
of severe respiratory conditions encountered in Intensive Care
Units (ICUs) including cardiac and respiratory arrest, Pul-
monary edema, Systematic Inflammatory Response Syndrome
(SIRS), and Acute Respiratory Distress Syndrome (ARDS).
To broaden the form of respiratory analysis used to monitor
both acute and chronic conditions, we introduce a new form of
non-contact, effort-independent evaluation that enables quan-
titative analysis (unit measures) of natural breathing through
predictive CO2 exhale flow waveform modeling.

An ongoing challenge in the improvement of abnormal
behaviors that contribute to chronic and acute condition diag-
nosis is the quantification of exhale flow in natural breathing.
The problem is that most respiratory monitoring methods
record breathing that is effort-dependent or is subject to
device interference. These factors incorporate how physical
effort and usability alter how metrics are obtained. This
incurs subtle differences in how the pulmonary behavior is
quantified, leading metrics to exhibit secondary characteristics
caused by the measurement itself. This may include limiting
body movement, breathing through a tube, and strain from
continuous unnatural breathing. This introduces implications
for most existing methods in that: (1) they are not well adapted
for capturing natural breathing and (2) are limited to short-
term evaluation which is better suited for momentary function
and severe symptom identification. Effort also interferes with
reproducibility of specific behaviors that may indicate early
traits of intermittent conditions due to symptoms that may not
be exhibited during short monitoring durations. This limits the
ability to detect condition progression and early intervention
opportunities for broadening pulmonary pathology diagnostics.

To provide an effort-independent respiratory evaluation
method, we present a novel vision-based approach for directly
evaluating exhale flow and volume through visual flow ana-
lytics. The principle of our approach is to quantify exhaled
CO2 through thermography paired with spectral band-pass
filtering (3-5µm) and exhale tracking to evaluate volumetric
flow associated with pulmonological function [3] through
Long-Short-Term-Memory (LSTM) neural network modeling
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[4]. In this approach, the aim is to measure and quantify

visualized exhale CO2 density and flow behaviors as both

detailed flow fields and quantitative metrics compatible with

standard PFTs. We build on the synergy between thermal

CO2 exhale visualization and apparent visual flow behavioral

analysis to generate an accurate quantitative evaluation of

breathing rate (BPM), flow rate (L/s), and exhale volume

(L). Based on this, the proposed solution provides a novel

step towards non-contact, quantitative flow analysis of exhale

breathing behaviors. The significance of this approach is that

it enables the development a new form of long-term respi-

ratory evaluation that identifies subtle differences in natural

breathing behaviors while enabling the foundation of long-

term longitudinal studies where gradual changes in respiratory

behavior can be quantified and correlated with condition

progression. This has broad applicability to a wide variety of

different conditions where specific signature traits are difficult

to capture due to intermittent occurrences and short monitoring

durations provided by existing flow measurement devices.

II. RELATED WORK

Numerous techniques exist for both contact and non-contact

respiratory analysis [5]. From the wide variety of available

monitoring solutions, most devices can be categorized into

one of four primary design spaces: (1) the device is a contact
solution in which the user actively breathes on or through

the device (pneumotach spirometer), (2) wearable solutions

that track behaviors through movement or heat fluctuations

(transducer belts, thermistors), (3) non-contact monitors that

are based on radar, ultrasonic, wireless [6] signals or forms

of imaging including depth [7], and thermal [8]–[11], and (4)

environmental sensors (pressure, load cells) [12]. The primary

differentiating factors of our approach is that we aim to obtain

accurate physical measurements of flow through visual CO2

density to volume analysis [3] as shown in Fig. 1. Of the

existing related devices, the primary subset of solutions that

directly measure air-flow and CO2 pressure/concentrations

are various forms of spirometry and capnography [13], [14].

The closest related non-contact exhale evaluation method is

based on exhale characterization through Schlieren imaging

[15] of exhale behaviors; however, while this similar form of

analysis has been well studied, there has not been a direct

quantification of exhale flow and volume based on visualized

behaviors. Additionally, this method requires a precise exper-

imental setup (large mirror, extensive camera setup) making

it difficult to use with varied clinical settings. In contrast to

prior efforts that evaluate exhale flow and tidal volume as

indicators driving many PFT metrics, our method provides a

first step towards direct analysis of exhale behaviors to obtain

Exhale Flow Region Volume ProjectionTurbulent Flow

Thermal        Image

Camera FOV

Fig. 1. Illustration of projected exhale volumetric turbulent flow as
captured through the infrared (IR) thermal camera for each pixel pi,j

to obtain the discrete volume density estimate V (ei,j) [3].
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Fig. 2. Conceptual design. Visualized exhale behaviors are measured
quantitatively through gold-standard (spirometer) and correlated visual
optical-flow measurements integrated into a trained predictive model.

quantitative metrics based on visualized airflow. In contrast to

complex 3D simulation models formed by flow observation

constraints that closely replicate Navier-Stokes fluid dynamics

(flow reconstruction), our aim is to formulate a computa-

tionally efficient data-driven approach suitable for real-time

estimates in clinical settings. This enables our method to be

used in a wide variety of clinical use-cases currently under-

addressed by existing technologies used in sleep studies [16],

pediatrics, and neonatal care [17].

III. QUANTITATIVE ANALYSIS OF VISUAL EXHALE FLOWS

Visual analysis of breathing behaviors for obtaining quan-

titative metrics represents a form of non-contact respiratory

monitoring method that directly extracts breathing behaviors

from exhaled CO2 turbulent flows. The main objective of this

method is to expand the availability of new measurements

used in pulmonary evaluation based on generating behavioral

metrics from visualized CO2 flow patterns. This form of

analysis can lead to measurements of breathing rate, flow,

exhale volume, and the natural distribution between nose and
mouth breathing [3]. By capturing effort-independent, natural

breathing, the visual representation of projected turbulent flows

is quantified directly from open-air flows. We then formulate

a method of correlating open-air visual flow measurements
representing exhaled CO2 concentrations with volumetric flow

measurements obtained using a gold-standard. This enables

quantitative measurements of flow by correlating measured

volumetric flow with the visual flow from imaged CO2

thermal exhale distributions as illustrated in Fig. 2.

A. Linking to a Quantitative Ground-truth
Standard solutions for directly measuring respiratory flow

or CO2 density enforce a controlled flow that is captured by

breathing through a tube connected to a measurement device

(spirometry, plethysmography, capnography). These devices

capture flow characteristics based on a variety of different

methods (pressure, ultrasonic) that sample the rate of flow

as it passes through an enclosed region (the tube of the

device). We consider this an instantaneous measurement of

the flow as it passes through the measurement region of the

device. These measurements are straight-forward to compute

and are generally accurate due to how the direct measurement

is performed. Unlike prior non-contact respiratory analysis

methods that indirectly infer breathing measurements, our

approach measures the quantity of exhaled air through the

direct analysis of CO2 flow. This inherits the benefits of a

direct method, but enables the analysis of natural breathing and

long-term monitoring. To provide quantifiable metrics for the
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Fig. 3. Signal generation pipeline for measuring flow and intensity of exhales within CO2 filtered thermal images (1). We use optical flow (2)
to isolate exhale behaviors and then convert the dense flow-field representations into 1D waveforms (3) that will be used inputs used to estimate
exhale behavior measurements including flow in (L/s) and volume in (L). This represents the exhale flow extraction processing pipeline.

measurement of the observed behaviors, our method employs a

predictive model to correlate our image-generated waveforms

with the physical units provided by a gold-standard. We

establish a tight correlation between this metric and the visual

flow that links measurements of the physical quantity (flow in

L/s) and the signals extracted from our image analysis. This

provides a prediction model that establishes the link between

visual analysis of apparent flow and a quantitative ground-truth

for method validation, model training, and evaluation.

B. Measuring Unconstrained Exhale Behaviors
Sensing and quantitatively measuring respiratory behaviors

through open-air analysis presents unique challenges in rep-

resenting pulmonary health. Recent advances in inexpensive

wireless technologies estimate flow [6], but only address a

portion of our overall objective in vision-based pulmonary

analysis. Our objective is to provide flow and volume mea-

surements as a baseline, but also drastically expand respiratory

diagnostic methods to include direct behavioral analysis to

identify effort-to-flow relations, nose-mouth separation, and

complex secondary behaviors as trace indicators for various

pulmonary conditions. In our approach, our analysis generates

a measure (SI units) of the apparent fluid dynamics repre-

senting flow, heat dissipation, and diffusion of carbon dioxide

into open-air that we define as a mixed-signal representing a

combination of the thermal energy and CO2 concentration.

This presents several challenges including: flow behaviors

are spatially ambiguous, data is lost due to volume-to-plane

projection (Fig. 1), viewing angle, and environmental factors

alter flow behaviors (air movement, temperature, humidity).

Due to this complexity, we focus on how to efficiently extract,

track, and translate visual flow measurements [18], [19] with

unconstrained open-air exhale behaviors. To address this, we

build upon isolating detailed flow behaviors [3] to build a

diagnostic viable for various forms of pulmonary evaluation,

including polysomnography (PSG) studies in SDB (Fig. 4)

that include visual flow measures [8] used for apnea event

detection [20] as well as clinical out-patient PFT evaluations.

Sleep Sequence: 1 2 3

Fig. 4. Sequence illustration of quantified natural respiratory behavior
tracking through our direct exhale tracking for SDB pulmonary analysis.

IV. METHOD

The principle of our approach is based on establishing

a correlation between visual flow behaviors extracted from

CO2 thermal image sequences through flow-field analysis and

volumetric flow measured as the flow rate of exhaled CO2. We

exploit the periodic behavior of the respiratory cycle to pair

this correlation with a recurrent prediction model that provides

an estimate of the flow as physical measurement in (L/s).

This semi-continuous waveform prediction is then numerically

integrated to obtain an estimated measurement of total exhale

volume measured in (L). We then broaden the capabilities

of this approach to inferred inhale predictions, breathing

abnormality detection, and long-term monitoring. The pro-

posed method utilizes a multi-stage pipeline where we define

five primary steps: (1) real-time CO2 paired thermal/depth

image recording or streaming, (2) extraction of flow behaviors

through flow-field analysis, (3) conversion of detailed flow

vector-fields into continuous waveforms, (4) generation of

datasets on a per-individual and cross-subject basis, and (5)

the creation of data-driven models that predict continuous

flow behaviors. The construction and training of these models

provides the basis for predicting the rate waveforms of the

observed flow which are then numerically integrated to obtain

individual volume estimates for each exhale episode (ξ). The

trained models and volume calculations can then be used to

directly monitor and measure open-air exhale behaviors.

To establish our flow prediction models, we develop a new

set of image-based datasets used to generate waveforms of

apparent flow that quantify exhale behaviors as shown in Fig.

3. In the constructed datasets, we employ two strategies: (1)

the construction of per-subject models that can accurately

replicate individualized behaviors unique to each subject and

(2) a generalized cross-subject model that incorporates all

recorded data into a consolidated prediction model. Unlike

the per-subject model which provides accurate predictions

but requires training for each individual, the cross-subject

approach provides a practical solution by eliminating the need

for per-patient training at a slight cost to accuracy due to gen-

eralization. Both models predict the flow rate as compared with

the ground-truth, in which we evaluate the characteristics of

the predicted signals, correlation with spirometer readings, and

directly compare measurements. Evaluation of our method is

performed based on three primary metrics including: breathing

rate (BPM), flow (L/s), and volume (L) on a preliminary study

size of 12 subjects for individual and cross-subject models.
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Fig. 5. Signal generation pipeline for measuring flow and intensity of exhales within CO2 filtered thermal images (1). We use optical flow (2)
to isolate exhale behaviors and then convert the dense flow-field representations into 1D waveforms (3) that will be used inputs used to estimate
exhale behavior measurements including flow in (L/s) and volume in (L). This represents the exhale flow tracing/extraction processing pipeline.

A. CO2 Imaging and Respiratory Signals
To enable a real-time stream of quantitative metrics based

on the sequence of thermal images, we integrate the dense

optical flow result into a waveform generation pipeline. From

the observed optical flow, we can isolate exhale behaviors

based on vector classification and extract two measurements

to define intensity and flow measurements over time. The

thermal image stream provides sequential images used to

compute the optical flow vector field �Ft, which is then used

to isolate detailed flow behaviors (|fi,j | ∈ �Ft > ε). This

produces two discontinuous wave-forms from the two real-

time image streams that contain: (1) a CO2 image It for an

intensity signal i(t) and (2) the paired field �Ft representing

quantitative measurement of the visualized exhale flow signal

as f(t). We perform a parallel variant of dense Optical Flow

[19]. This fulfills two requirements: (1) isolation of flow

behaviors from background heat sources/movement and (2)

enables identification and quantification of minute flow details

from which we can build respiratory metrics. We minimize

standard intensity and smoothness constraints [19] of the form:

min

∫∫
(∇I · v + ∂I

∂t
)2 + α(‖∇vx‖2 + ‖∇vy‖2) dxdy (1)

Where �v ∈ R
2 and α ∈ [0, 1]; we select small values:

α = 0.15 to retain fine flow movements for detailed behav-

ioral analysis. For the minimization problem, we employ an

iterative optimization scheme executed in parallel. This leads

to a formulation based on two input images: Iti and Iti−1
,

two intermediate images U and V , and the time derivative

image It. We compute ∂I/∂t using backward differences

and compute both ∂I/∂x and ∂I/∂y using x and y filters

respectively. Illustrated results are shown in Fig. 5.

vi+1
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[ ∂I
∂x v̄
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α+ ∂I
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2
+ ∂I

∂y

2

]
∂I
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∂x v̄
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i
y +

∂I
∂t

α+ ∂I
∂x

2
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2

]
∂I

∂y
= Vi (3)

Where the update to the vx and vy flow vectors are based

on the discrete iterative formulation [21] based on Equation 1

where all filter processing is done on the GPU [22].

Flow Signal. To provide an estimate of the flow obtained

by an instantaneous measurement at each captured frame, we

convert the sum of the magnitudes of the segmented optical

flow vectors into a semi-continuous waveform. This formulates

the changes in the observed exhale patterns as an estimate

of the apparent flow, which represents the changes in CO2

movement throughout each exhale ξ. For a given optical flow

vector field �F at time t computed from optical flow using

images Iti−1
and Iti , where the discrete form of the flow

magnitude is computed in Equation 4.

f(t) =
∑

�fi,j∈�Ft

|�fi,j | ; �Ft = OptF low(Iti−1 , Iti) (4)

Each optical flow field �Ft also performs the pre-processing

required for segmenting the exhale flow from body movement

and other thermal objects within the monitored area. This

provides segmentation for both flow and intensity behaviors

from the surrounding environment. The flow vectors �fi,j can

be classified (movement, noise) and then used to generate a

weighted mask applied to the intensity image (pi,j > 0) to

isolate exhale contributions for each quantitative measurement.

A consequence of this approach is that the flow segmentation

introduces bias the intensity behavior towards the characteris-

tics exhibited by the flow signal, but is required to effectively

isolate exhale behaviors from the surrounding environment.

Intensity Signal. The intensity of the thermal signature in

the filtered wavelength provides a snap-shot representation of

the CO2 density as a function of detected CO2 emission and

thermal intensity. This density contributes to the overall exhale

volume due to the higher sensor activations from the mixed

thermal-CO2 signature. To compute the total amount of exhale

within each frame, we consider the flow-segmented intensity

image and generate the sum of the non-zero pixel values pi,j
of image Iti as shown in Equation 5.

i(t) = Intensity (Iti) =
∑

pi,j∈It

pi,j ∀pi,j > εflow (5)

This generates two signals that measure approximations of

the visual changes in air movement as a representation of flow

signal f(t) and CO2 density over time as the intensity signal

i(t). These signals represent our recurrence model inputs.
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Signal Processing. Turbulent exhale flows naturally exhibit

complex fluid dynamics that are lost in the imaging process.

This is due to complex flow behaviors and the projection of

the 3D phenomena to the 2D image plane, heat distribution

changes, and the chaotic dissipation of the CO2 into the

open air. To address this, we implemented two forms of

signal filtering: (1) windowed average filtering (n = 12
@ 30Hz) and (2) Gaussian weight filtering. The filtering

reduces the high-variance regions of the signal create large

fluctuations that exist within the peaks of exhale signals due

to chaotic dissipation behaviors. To minimize the variance of

the signal spikes during each exhale, we weighting higher flow

magnitudes in the Gaussian window that softens high-variance

peaks. The aim is to align the waveform characteristics of

the generated signals with ground-truth measurements. The

resulting raw and filtered signals are shown in Fig. 6.
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Fig. 6. Raw and filtered intensity i(t) and flow f(t) signals. Zero
regions within the generated signals correspond to inhale segments.
The exhale behavior has been varied to illustrate different exhale sizes.

B. Volumetric Flow Estimation Model
The aim of our approach is to provide an efficient method

for estimating the volumetric flow which represents the rate

of exhaled CO2 measured over time. The model accounts

for the similarity of the data characteristics in the periodic

exhale signal and is formulated as a recurrent model that takes

(s) prior steps into account for each prediction. We define

this model as F(t) = M(i(t), f(t), s) where i(t) and f(t)
represent the input signals and F(t) is the predicted waveform.

The structure of the model is presented in Fig. 7.

Intensity

Flow Recurrent Model

Predicted

(L/s)

(a) (b)

Flow

Fig. 7. Model overview. (a) The inputs of the model i(t) and f(t) are
used to estimate the rate of volumetric flow representing the amount
of CO2 exhaled breath per second measured in (L/s). The model
prediction is then shown in (b) as an estimate of the total volume Vi

from exhale at index i from associated (end - start) duration ξe − ξs.

The prediction of the model represents the conversion from

visual flow measured as an arbitrary unit (a.u) to the volumetric
flow defined as the rate of exhaled CO2 over time, measured in

liters per second (L/s). The error of this prediction is evaluated

as the deviation from the ground-truth flow waveform provided

by the reference spirometer acting as our gold standard.

Support Stands

Heating Element

Spirometer (Gold Standard)

CO2 Injector (Nozzle)

Thermal Insulation

Heat Conductor
Control Fan

Flow Duct

Constructed Validation Setup

AirflowAirflow

Assembled Validation System Design

Validation System Design

Heated Airflow
CO2 Flow

Fig. 8. Exhale flow validation device design. This device provides a
reoccurring control for evaluating synthesized behaviors. The validation
system emulates the heat, CO2 concentration, and airflow of a typical
expiratory episode as measured by both our method and spirometry.

C. Volume Estimation
The flow estimation model M(i, f, s) provides an estima-

tion of the volumetric flow F(t) representing the quantity of

CO2 during each exhale episode based on the input intensity

i(t) and flow f(t) signals. To obtain the ith per exhale volume

in liters as Vi, we integrate the predicted signal from the start

(ξs) to the end (ξe) of the ith exhale episode as shown in Fig.

7 (b). From the model prediction, the volume is computed

through integration as shown in Equation 6.

Vi =

∫ ξe

ξs

F(t) dt where F(t) = M(i, f, s) (6)

The discrete form of the predicted waveform is integrated

using Simpson integration. This represents the total volume

exhaled within a single episode measured in liters (L).

V. METHOD VALIDATION

Unconfined turbulent exhale flows exhibit high levels of

variance due to several factors including: exhale and ambi-

ent temperature, moisture contained in the exhale, and C02
density, all of which determine the visual flow behavior and

dissipation rate of each expiratory episode. Establishing an

accurate flow prediction model capable of potentially rep-

resenting quantitative measurements requires a experimental

control for establishing the validity of the relationship between

visualized exhale behaviors and accurate flow measurements.

A. Visual Flow Measurement Control
We validate this approach by creating consistent and repeat-

able exhale behavior analogue for measurement verification.

To do this, we have designed an experimental control setup

(Fig. 8) for accurately emulating exhale behaviors that can

be measured with both an existing gold standard as well as

the proposed model. The premise of this validation is based on

heating controlled CO2 concentrations that are forced through

the validation system at a fixed interval using a programmat-

ically controlled fan. This simulates expiratory episodes that

are simultaneously captured by both the imaging system and
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Validation Setup - Controlled Exhale Emulation  

Thermal CO2 Camera

Spirometer Flow Rate (L/s)

Spirometer

Controller (Pi-3)

CO2 Line

Flow RegionDepth Camera

Fig. 9. Validation setup. This setup has been created to provide an
idealized flow region where the flow measurements of turbulent exhale
behaviors can be calibrated for controlled timing, temperature, distance,
and CO2 concentrations compared with spirometer measurements.

spirometer measurements of flow (L/s) and volume (L). The

experimental setup for validating our control measurements

is shown in Fig. 9. To maintain an accurate level of CO2

density within the flow, we exhale into an external reserve

that holds exhaled breath and limit the CO2 flow through

an injector nozzle to ensure a constant release that will mix

with the air drawn in from a 40mm control fan. To precisely

control the fan speed and duration, we utilized a simple

motor controller (TI-SN754410) connected to a Raspberry

Pi [23]. Through Pulse Width Modulation (PWM) we alter

the duty cycle of the fan to provide varying exhale strengths

and durations generated 2.0s apart. This setup is then used

to vary experimental parameters including: (1) fan speed for

exhale strength, (2) duration for volume, and (3) camera-to-

flow distance, while fixing CO2 mixture rate and temperature.

B. Flow and Volume Measurement Validation

To establish a baseline of the variance incurred by quanti-

fying turbulent flow behaviors, we used the validation setup

to demonstrate the accuracy of the relational model. We

formed a preliminary validation dataset to train an initial

prediction model to estimate flow magnitude and account for

the differences in waveform characteristics between the flow,

intensity, and spirometer measurements. The model was then

used to predict the flow waveform for 12 simulated exhale

flows, with the results of the predictions shown in Fig. 10.
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duration, and strength. This is also exhibited at the peak

magnitudes of each exhale. Capturing this variance presents

the primary challenge of establishing an adequate neural

network model for accurate predictions, motivating the use
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Computed Volume Spiro Volume Error
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m
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)

Computed [vs] Spirometer Volume Validation (L)

Fig. 11. Model flow estimations integrated per exhale validating control
volume measurements. Variance of turbulent flow measurements are
illustrated in the volume differences across the 12 exhale episodes.

of a recurrent model to capture these behaviors. Validation

of the per-episode (ξi) volumes generated from the predicted

waveforms are obtained by integrating each exhale instance

from Fig 10, with the computed volumes shown in Fig. 11.

VI. EXHALE MODEL GENERATION AND TRAINING

The proposed model must provide a transformative rela-

tionship between the observed thermal distribution of CO2

and volumetric flow measurements provided a gold-standard.

This requires capturing quasi-periodic but volatile exhale flow

behaviors as a continuous recurrent waveform representing

flow predictions over time. To achieve this, we employ an

LSTM network architecture to provide a predictive model

architecture that can estimate both waveform characteristics

and physical quantified metric from apparent flow. The contin-

uous prediction of flow based on the input signals then forms

the basis of a discontinuous non-linear regression encoded

into the trained model predicted using the last s (look back)

samples. To evaluate the loss within the model based on the

observed value provided from the spirometer sample S(t)
and the predicted flow generated by our model F(t), we use

Mean Squared Error where MSEloss = 1/n
∑n

i=1(Si−Fi)
2.

In our approach we formulate two models: (1) an individ-
ual and (2) cross-subject model. The individual model is

per-subject and accurately predicts waveforms with unique

breathing behaviors. The cross-subject model provides an

inter-subject prediction that only requires initial training on

a larger dataset to generalize across expected flow behaviors,

increasing practical use and utility. An overview of the data

collection and model separation is shown in Fig. 12. We

form three dataflow training procedures: (a) randomized cross-

subject (mixed), (b) individual datasets, and (c) selective data

as shown in Fig. 13. We employ parallel (GPU) LSTM layers

[24] provided by Cuda [25] in Keras [26] with TensowFlow

back-end [27]. We select a recurrent architecture to capture

the time dependency across input sequences; however, other

architectures (1D CNN/etc.) are also viable alternatives.

A. Dataset Generation
High variance within turbulent exhale data requires that

we account for significant fluctuations within the observations

included within the training data. To establish an accurate

correlation between visual flow measurements and exhale vol-

ume, we select best candidate exhale episodes to form training

datasets. This is achieved by selecting exhale measurements

that closely represent the same area under the spirometer

flow curve as primary candidates for the training set. First,
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Training Data Generation:

Thermal Exhale Signal

Cross-patient Dataset

Spirometer
Signal

(flow, intensity)
Individual 1 Individual 2 Individual

...

Data Recording

Filter Window

Training ValuesFiltered Data Aggregate

Filter Window

Intensity/Flow FilteringRaw Intensity/Flow Filtered-Cropped Spiro

Fig. 12. Model training datasets. We formulate individual and cross-subject datasets used to train different measurement objectives including
per-subject accuracy (individual) and train towards generalization through mixing randomized exhale behaviors within the (cross-subject) model.

both signals are aligned through re-sampling to account for

data acquisition rates. Then each individual dataset D is

composed of at least 25 exhale episodes collected in 4 recorded

sessions for each subject S01 - S12 (n = 12) to generate a

training dataset defined as: Dt = {D0, ...,D4}. Each dataset

is composed of an average range of 9, 000-20, 000 samples.

As there are portions of null measurements between exhales

representing the inspiratory phase (I), the valid sample size

of each dataset is approx. 6, 000 non-zero measured samples.

In our datasets, depending on subject, each exhale typically

contains 50-70 filtered samples (an average ξ duration of 2s
@ ∼ 30Hz). After acquisition, each exhale is separated as an

individual episode, each of which can be randomized within

the training data to avoid individual behavioral bias.

Image Sequence
Thermal Parallel (GPU)

Optical Flow Flow Signal

Intensity Signal

Training DatabaseIndividual_0

Individual_1

Individual_n
+ Signal Alignment
+ Signal Filtering

Cross-subject Data
Individual_0

Individual_1

Individual_2

Individual_n

Cross-Subject (mixed)
LSTM

LSTM Model Model(s)

Individual

Model Training (GPU)

Flow Rate (L/s)

Visual Exhale Flow Measurement and Modeling

Exhale Runtime (real-time)
Randomize of all Subject Data Randomize

Numerical Integration

Volume (L)

Per-individual
Selected LSTM Model

Cross-subject
(or)

Spirometer Signal

Volume (L) Volume (L)

Flow (L/s) Flow (L/s)

(a) (b) (c)

Fig. 13. Dataflow overview: Flow behaviors are extracted from CO2

image sequences and correlated with spirometer readings to generate
training databases for predictions of flow (L/s) and volume (L).

To identify exhales that will be added to the training set

Dt, we select a subset for training based on relational area

constraints. Each exhale ξ is bound by non-zero start ξs and

end ξe to form each individual episode. For each exhale in the

filtered thermal exhale signal, we define the average area of

the flow f(t) and intensity i(t) signals as Ti. Similarly, the

expiratory area of the spirometer for exhale i is defined as Si.

Ti =
1

2

∫ ξe

ξs

[
f(t) + i(t)

]
dt ; Si =

∫ ξe

ξs

s(t) dt (7)

Where the ratio of the overlapped signal area of each exhale

is evaluated as the primary selection criteria. This is defined

as Oi = Ti/Si. These overlap values are computed for all

exhales in each dataset. The average and standard deviation

of these overlaps are computed as d = mean(Oi) and ε =
std(Oi) ∀i ∈ D. For the secondary selection criteria, we

evaluate the similarity of the waveform. We compute the mean

correlation of both signals as γ = 1
2 [r

2
f,s + r2i,s] where r2f,s

and r2i,s are the correlations between the flow, intensity, and

spirometer waveforms respectively. This provides the formu-

lation of two numerical constraints C1 and C2 that define the

per-exhale training data given the following selection criteria:

C1 = (d− ε) < Oi < (d+ ε)

C2 = r2i > γ
(8)

where r2i is the correlation of exhale ξi. Exhale episodes satis-

fying both of these constraints are selected for the construction

of each training dataset Dt. That is: ξi ∈ Dt iff C1 ∧ C2.

B. Model Architecture

To formulate the layer architecture of the proposed model,

we perform parallel feature extraction that leverages features

from both intensity i(t) and flow f(t) signals to establish

an accurate flow estimate defined as the expected volumetric

flow provided by the spirometer. The motivation for this

architecture is to extract characteristics of the signals that

include CO2 density and flow behaviors that contribute to the

volumetric flow measured by the spirometer. Using subsequent

LSTM layers, features are extracted in parallel streams which

are then combined in a layer concatenation that consolidates

these features into a single prediction F that represents the ex-

pected volumetric flow. An overview of the model architecture,

layers with unit sizes (individual, cross-subject), activations

(layer activation, recurrent activation), and input (batch size,

look back, 1) is shown in Fig. 14. In training, the model

is trained for a total of 144 epochs with a batch size of

Input:        Intensity (64,32,1) Input:        Flow (64,32,1)

LSTM Layer: (16,32)LSTM Layer: (16,32)

LSTM Layer: (8,32) LSTM Layer: (8,32)

LSTM Layer: (4,16) LSTM Layer: (4,16)

Dropout: (5%, 15%) Dense: (16, 8, 1) Output: Flow Prediction (L/s)

Activations: tanh/sigmoid

Activations: tanh/sigmoid

Layer Concatenation  
Fig. 14. Model architecture. Parallel feature extraction for both inputs
providing an estimation of the expected spirometer flow measured in L/s.
Each RNN layer is implemented on the GPU through Cuda.
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Fig. 15. Independent model results for three select subjects (S10, S09, S12). The flow plots (top) provide the predicted flow rate directly compared
to the spirometer measurements and the volume plots (bottom) show the volume for each of the 10 episodes (E01 - E10) with associated error.

64. Each training dataset for both the individual and cross-

subject models is set to a 80%/20% training/validation split.

For the recurrent look back (input length s) the motivation is to

capture typical episode behavior and was empirically obtained

as s = 32 (@30Hz). For model optimization, we use ADAM
[28] with parameters: learning rate = 0.002, β1 = 0.9,

β2 = 0.99, and decay = 0.001. Dropout rate is defined as 5%
and 15% for individual and cross-subject models respectively.

The model architecture has been implemented in Keras using

the functional model API to account for the parallel input and

layer concatenation. For the cross-subject model, the model

unit sizes are increased to aid in accounting for the higher

potential variance in exhale waveform characteristics.

VII. EXPERIMENTAL DESIGN

Experimental evaluation of the proposed method is based

on two primary metrics: (1) the LSTM prediction of the volu-

metric flow waveform measured in (L/s) and (2) the resulting

estimation of the per-episode exhale volume (L). This was

completed through the collection of subject data used to train

both individual and cross-subject LSTM models to evaluate

their performance on data obtained from n = 12 healthy

subjects within the normative range of lung function. The

overall experimental setup is similar to the monitoring design

shown in Fig. 9, adapted for each subject to sit comfortably

and breathe naturally for the required monitoring period. The

setup is composed of: (1) the depth/thermal camera device,

(2) background (projector screen), and (3) the subject sitting

1.5m from the camera. Subject data collection included the

collection of 4 to 6 trials, each recorded for 120 seconds,

resulting in an average of 24.67 exhales obtained for each

trial with an average of 14626 samples. Environmentally we

ensured limited surrounding airflow, constant humidity, and

interior ambient temperature (22◦C − 26◦C), which require

initial calibration. Due to the direct visualization of exhale

flow, any form of covering that prevents visual analysis of

flow (tubes, masks, etc.) are not included within the study.

From the paired depth/thermal imaging system, the thermal

stream is captured using a FLIR-A6788sc (640x512 @ 30Hz)

thermal camera with an actively cooled band-pass spectral

filter 3-5μm generating 16-bit raw signal through the Gigabit

Ethernet Vision Protocol (GigE Vision). These are then paired

with registered depth images (512x424 @ 30Hz) and stored as

encoded video files. The gold-standard measurements for flow

are provided by a Vernier spirometer, calibrated with a sample

rate 30Hz, running concurrently with the recording. The

overall experimental design was then separated into two train-

ing/evaluation sets based on the individual and cross-subject

models respectively. Each exhale is then randomized on a per-

exhale basis for model training. Extending the train/test split in

the training phase, we also evaluate the accuracy using unseen

data that evaluates new subject data trained models have not

encountered. Human subject evaluation approved as part of

the Colorado Multiple Institutional Review Board (COM-IRB

FB F490): Non-contact Remote Breathing Analysis through

Visualization of Thermal and CO2 Flow (VTCF).

VIII. RESULTS

Evaluation of the proposed method is divided into two

primary results: (1) the individual model and (2) the cross-

patient model for both predicted flow and computed volume.

Representing a selection of the computed results, Fig. 15

presents select predicted exhale waveforms and associated

volumes. These present the advantage of an individual model

that captures subtle characteristics of each subject’s exhale

breathing patterns can be captured and identified within the

visual flow. This is due to the training data exhibiting the

same characteristics as newly provided unseen data from the

same subject, demonstrating the possibility of creating longi-

tudinal studies to identify variance trends through long-term

monitoring. Based on our evaluation of the individual model

accuracy we obtained an average correlation R2 = 0.912 and

average volume accuracy of 90.92 within the 80/20 training

split with an overall accuracy of 88.02% for newly collected

unseen data. The absolute error in flow between the prediction

and spirometer |F(t) − S(t)| associated with the individual

model for each subject is shown in Fig. 16 with an overall

analysis of the individual subject model presented in Table I.
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Fig. 16. Predicted flow error as measured by the absolute difference
between the model prediction and spirometer ε = |F(t) − S(t)|.
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TABLE I
INDIVIDUAL SUBJECT MODEL FLOW AND VOLUME RESULTS - LEFT: PREDICTED FLOW (L/S), RIGHT: ESTIMATED VOLUME (L)

Subject Data Raw Signal RMSE Raw Signal Correlation R2 LSTM Prediction-Spiro Results (L/s) 20% Split Test (Vol. Diff. Error in L) Unseen Test Data (Result)

SID SIS Age Flow-Spiro Int-Spiro Flow-Spiro Int-Spiro Mean S.D. RMSE R2 Improvement (%) Error (L) S.D. Accuracy (%) Error (L) S.D. Accuracy (%)

S01 F 32 0.184 0.174 0.602 0.625 0.614 0.016 0.098 0.891 27.75% 0.096 0.077 91.09% 0.174 0.139 84.55%

S02 F 30 0.155 0.171 0.698 0.691 0.695 0.005 0.059 0.925 23.03% 0.087 0.801 91.26% 0.044 0.029 90.55%

S03 F 46 0.065 0.120 0.807 0.841 0.824 0.024 0.029 0.966 14.20% 0.049 0.039 91.56% 0.047 0.037 92.64%

S04 M 40 0.153 0.169 0.740 0.740 0.740 0.001 0.036 0.913 17.28% 0.052 0.035 90.53% 0.037 0.019 93.94%

S05 M 29 0.135 0.172 0.822 0.829 0.826 0.005 0.023 0.963 13.75% 0.029 0.020 93.42% 0.036 0.024 91.09%

S06 M 25 0.110 0.117 0.797 0.808 0.803 0.008 0.095 0.845 42.50% 0.131 0.100 83.62% 0.174 0.130 76.44%

S07 F 66 0.157 0.164 0.521 0.520 0.520 0.001 0.042 0.910 38.98% 0.037 0.033 94.04% 0.060 0.038 90.15%

S08 M 75 0.217 0.221 0.603 0.617 0.610 0.010 0.127 0.811 20.10% 0.221 0.149 80.69% 0.248 0.198 82.30%

S09 M 44 0.157 0.165 0.630 0.637 0.634 0.005 0.083 0.926 29.25% 0.067 0.047 95.72% 0.369 0.131 93.51%

S10 M 31 0.132 0.128 0.742 0.744 0.743 0.001 0.072 0.940 19.73% 0.088 0.060 92.34% 0.289 0.111 94.44%

S11 F 31 0.344 0.338 0.463 0.476 0.470 0.010 0.161 0.939 46.95% 0.084 0.064 94.66% 0.159 0.125 91.27%

S12 M 25 0.153 0.150 0.545 0.576 0.560 0.022 0.054 0.941 38.09% 0.041 0.037 92.11% 0.239 0.070 75.65%

Mean 39.5 0.164 0.174 0.664 0.675 0.670 0.009 0.073 0.912 24.45% 0.082 0.064 90.92% 0.163 0.089 88.02%

S.D. 16.1 0.068 0.059 0.121 0.121 0.120 0.008 0.042 0.046 12.28% 0.053 0.038 4.423% 0.124 0.060 6.659%

Breaths Per Minute (BPM). Peak detection is used on

smoothed predicted waveforms to estimate the total number of

breaths per minute. Due to the large number of exhale samples

within the training datasets, we randomly select one trial from

each subject and compute the BPM. The Bland-Altman plot

for the BPM for the selected set of trials is shown in Fig. 17.
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Fig. 17. Bland-Altman plot for all subjects measured as peak-to-peak
time comparing predicted and spirometer BPM (one trial per subject).

Estimated Exhale Volume. Across all collected data, the flow

associated with each exhale episode is numerically integrated

to get a per-episode estimate of the total exhaled CO2.

Typically exhale volume at rest ranges between 0.5 and 1.0L

for most adults [5]. The Bland-Altman plot for all exhale

volumes for all subjects is shown in Fig. 18.
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Fig. 18. Bland-Altman plot for predicted volume [vs] spirometer volume
computed by integration for all subjects based on the individual model.

To establish the overall accuracy of the correlation between

the BPM and volume measurements compared to the recorded

spirometer measurements, we provide the correlation plots

in Fig. 19. This demonstrates the overall correlation for the

selected BPM measurements as R2 = 0.95 and overall cor-

relation of volume measurements as R2 = 0.867. The strong

correlation in these estimations provides a valid foundation

for the development of new breathing metrics established on

the independent subject model while maintaining a basis for

mapping the results with standard PFT evaluations.

5 10 15 20 25 30
5

10

15

20

25

30

35

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

2.0
Flow [vs] Spirometer Rate (BPM) Spiro [vs] Predicted Volume (L)

Fl
ow

 B
re

at
hi

ng
 R

at
e 

(B
PM

)

Pr
ed

ic
te

d 
Vo

lu
m

e 
(L

)

Spirometer Breathing Rate (BPM) Spirometer Volume (L)
35 1.82.0

1.8
R2 = 0.867

y = 0.864x + 0.087

R2 = 0.95

y = 0.965x + 0.531

Fig. 19. Correlation of BPM and Volume for all subject data.

Cross-subject Model Flow and Volume. Training exhale

prediction models for each subject presents a practical lim-

itation within a clinical setting where time and healthcare

resources are limited. To address this, we introduce a cross-
subject model defined by a dataset composed of randomized

exhale episodes from all subjects. The aim of the cross-subject

model is to remove the requirement for training for each new

subject. For the twelve subjects, an average of 24 episodes

were collected for an average of 14626 samples per subject.

From the cross-subject model, predicted flow exhibits lower

correlation R̄2 = 0.804 and higher average RMSE = 0.121
presented in Table II. Due to generalization, we see a drop in

volume accuracy from 88.02% to 81.05%.

Inferred Inhale Estimation. A consequence of directly mea-

suring the visual signature for respiratory analysis is that

the inspiratory portion of the respiratory period cannot be

directly measured; however, it can still be predicted through

constrained inference. To extend the flow waveform gener-

ated by our approach to incorporate the inhale phase of the

respiratory cycle, we construct an estimate of the complete

respiratory waveform through dual models that predict both

the inhale and exhale portions independently to construct

the full waveform. This is done by delaying the prediction

by a half-cycle and using the current exhale to infer flow

characteristics of the inhale (exhale-inhale inference) where

we link exhale volume with the volume of the prior inhale.

This is not a direct relationship, but provides an estimate of

the complete waveform under regular, natural breathing. Using

this inference, the inhale model is trained on the relationship

between the current exhale ξt and the preceding inhale It−1.
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TABLE II
CROSS-SUBJECT MODEL FLOW (LEFT) AND VOLUME (RIGHT)

Experimental Data Prediction-Spiro Volume Difference (L) Volume

SID Exhales Samples RMSE R2 Error (L) S.D. Accuracy (%)
S01 23 14310 0.088 0.867 0.071 0.068 92.59%
S02 22 20814 0.073 0.880 0.041 0.038 94.22%
S03 26 15568 0.099 0.780 0.072 0.042 89.04%
S04 30 15882 0.119 0.726 0.165 0.090 73.82%
S05 19 8138 0.148 0.691 0.160 0.040 67.06%
S06 28 16546 0.162 0.774 0.299 0.132 66.58%
S07 30 13712 0.098 0.760 0.060 0.044 87.96%
S08 23 24004 0.174 0.752 0.387 0.227 75.89%
S09 23 10764 0.073 0.890 0.035 0.028 94.99%
S10 24 9382 0.081 0.873 0.038 0.022 94.62%
S11 24 12910 0.183 0.854 0.497 0.129 62.32%
S12 24 13484 0.152 0.799 0.203 0.062 73.50%

Mean 24.67 14626 0.121 0.804 0.169 0.077 81.05%
S.D. 3.284 4493.25 0.041 0.067 0.152 0.060 12.39%

The limitation is that this only provides an estimated descrip-
tion of the inhale behavior, which is only valid when current

exhale flow is directly proportional to the prior inhale. Based

on this modeling approach, we impose two constraints: (1)

natural, regular breathing and (2) It−1 ∝ ξt. The dual-model

prediction that combines both the expiratory and inspiratory

phases from the measured visible exhale is shown in Fig. 20.
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Fig. 20. Inferred inhale: Dual model estimation that predicts It−1 and
ξt portions independently to provide a complete interleaved waveform.

IX. LIMITATIONS AND FUTURE WORK

Visual exhale analysis is subject to various vision-

based limitations including: field-of-view, hardware sensitiv-

ity/resolution, image-to-signal conversion, and model gener-

alization. Trained model correlation of visual flow also has

challenges related to the volatility of rapid dissipation, environ-

mental factors, training domain selection, model architecture,

and hyperparameter optimization. Future work incorporates

broadening training heterogeneity and image-based evaluation

to improve this form of diagnostic in pulmonary pathology.

X. CONCLUSION

In this work, we presented a computationally efficient

method for the direct measurement of exhale flow and volume

through spectral-filtered thermal CO2 imaging for clinical

pulmonary evaluation. Our method presents a direct vision

approach for evaluating pulmonary function to enable long-

term monitoring, natural breathing, and the identification of

subtle variance in breathing behaviors that are difficult to cap-

ture using exiting devices. For flow estimations, we formulated

two regression model datasets that account for individual and

cross-patient characteristics obtaining an average flow corre-

lation of R2 = 0.912 and R2 = 0.804 with average volume

estimation accuracy of 88.02% and 81.05% respectively.
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