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Abstract— Objective: In this work, we introduce a quan-
titative non-contact respiratory evaluation method for fine-
grain exhale flow and volume estimation through Thermal-
CO, imaging. This provides a form of respiratory analysis
that is driven by visual analytics of exhale behaviors, cre-
ating quantitative metrics for exhale flow and volume mod-
eled as open-air turbulent flows. This approach introduces
a novel form of effort-independent pulmonary evaluation
enabling behavioral analysis of natural exhale behaviors.
Methods: CO, filtered infrared visualizations of exhale be-
haviors are used to obtain breathing rate, volumetric flow
estimations (L/s) and per-exhale volume (L) estimations.
We conduct experiments validating visual flow analysis to
formulate two behavioral Long-Short-Term-Memory (LSTM)
estimation models generated from visualized exhale flows
targeting per-subject and cross-subject training datasets.
Results: Experimental model data generated for training
on our per-individual recurrent estimation model provide
an overall flow correlation estimate correlation of R?> =
0.912 and volume in-the-wild accuracy of 75.65-94.44%. Our
cross-patient model extends generality to unseen exhale
behaviors, obtaining an overall correlation of R> = 0.804
and in-the-wild volume accuracy of 62.32-94.22%. Conclu-
sion: This method provides non-contact flow and volume
estimation through filtered CO, imaging, enabling effort-
independent analysis of natural breathing behaviors. Sig-
nificance: Effort-independent evaluation of exhale flow and
volume broadens capabilities in pulmonological assess-
ment and long-term non-contact respiratory analysis.

Index Terms—Exhale visualization, CO2 exhale flow,
Non-contact exhale analysis, Quantitative exhale analysis

[. INTRODUCTION

DENTIFYING abnormalities in continuous respiratory

waveforms is one of the most prevalent diagnostic tools
used to identify and evaluate pulmonary impairments ranging
from acute respiratory failure [1] to the onset of chronic
conditions [2]. Accurate quantification of these pulmonary
indicators enables condition trajectory analysis, preventative
solutions for in-hospital catastrophic events, and interventions
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for severe declines in pulmonary function. Metrics including
Respiratory Rate (RR or BPM) and Pulmonary Function Test
(PFT) volumetric flow measures (VC, FVC, ERYV, TV, etc.)
are used to provide feature descriptors of breathing behaviors
that signify unique signatures of chronic conditions such as
asthma, apnea in Sleep Disordered Breathing (SDB), and
Chronic Obstructive Pulmonary Disease (COPD) [2]. These
indicators are also critical for both the detection and prevention
of severe respiratory conditions encountered in Intensive Care
Units (ICUs) including cardiac and respiratory arrest, Pul-
monary edema, Systematic Inflammatory Response Syndrome
(SIRS), and Acute Respiratory Distress Syndrome (ARDS).
To broaden the form of respiratory analysis used to monitor
both acute and chronic conditions, we introduce a new form of
non-contact, effort-independent evaluation that enables quan-
titative analysis (unit measures) of natural breathing through
predictive C'O9 exhale flow waveform modeling.

An ongoing challenge in the improvement of abnormal
behaviors that contribute to chronic and acute condition diag-
nosis is the quantification of exhale flow in natural breathing.
The problem is that most respiratory monitoring methods
record breathing that is effort-dependent or is subject to
device interference. These factors incorporate how physical
effort and usability alter how metrics are obtained. This
incurs subtle differences in how the pulmonary behavior is
quantified, leading metrics to exhibit secondary characteristics
caused by the measurement itself. This may include limiting
body movement, breathing through a tube, and strain from
continuous unnatural breathing. This introduces implications
for most existing methods in that: (1) they are not well adapted
for capturing natural breathing and (2) are limited to short-
term evaluation which is better suited for momentary function
and severe symptom identification. Effort also interferes with
reproducibility of specific behaviors that may indicate early
traits of intermittent conditions due to symptoms that may not
be exhibited during short monitoring durations. This limits the
ability to detect condition progression and early intervention
opportunities for broadening pulmonary pathology diagnostics.

To provide an effort-independent respiratory evaluation
method, we present a novel vision-based approach for directly
evaluating exhale flow and volume through visual flow ana-
Iytics. The principle of our approach is to quantify exhaled
CO; through thermography paired with spectral band-pass
filtering (3-5um) and exhale tracking to evaluate volumetric
flow associated with pulmonological function [3] through
Long-Short-Term-Memory (LSTM) neural network modeling
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COs exhale visualization and apparent visual flow behavioral
analysis to generate an accurate quantitative evaluation of
breathing rate (BPM), flow rate (L/s), and exhale volume
(L). Based on this, the proposed solution provides a novel
step towards non-contact, quantitative flow analysis of exhale
breathing behaviors. The significance of this approach is that
it enables the development a new form of long-term respi-
ratory evaluation that identifies subtle differences in natural
breathing behaviors while enabling the foundation of long-
term longitudinal studies where gradual changes in respiratory
behavior can be quantified and correlated with condition
progression. This has broad applicability to a wide variety of
different conditions where specific signature traits are difficult
to capture due to intermittent occurrences and short monitoring
durations provided by existing flow measurement devices.

[l. RELATED WORK

Numerous techniques exist for both contact and non-contact
respiratory analysis [5]. From the wide variety of available
monitoring solutions, most devices can be categorized into
one of four primary design spaces: (1) the device is a contact
solution in which the user actively breathes on or through
the device (pneumotach spirometer), (2) wearable solutions
that track behaviors through movement or heat fluctuations
(transducer belts, thermistors), (3) non-contact monitors that
are based on radar, ultrasonic, wireless [6] signals or forms
of imaging including depth [7], and thermal [8]-[11], and (4)
environmental sensors (pressure, load cells) [12]. The primary
differentiating factors of our approach is that we aim to obtain
accurate physical measurements of flow through visual C'O,
density to volume analysis [3] as shown in Fig. 1. Of the
existing related devices, the primary subset of solutions that
directly measure air-flow and COs pressure/concentrations
are various forms of spirometry and capnography [13], [14].
The closest related non-contact exhale evaluation method is
based on exhale characterization through Schlieren imaging
[15] of exhale behaviors; however, while this similar form of
analysis has been well studied, there has not been a direct
quantification of exhale flow and volume based on visualized
behaviors. Additionally, this method requires a precise exper-
imental setup (large mirror, extensive camera setup) making
it difficult to use with varied clinical settings. In contrast to
prior efforts that evaluate exhale flow and tidal volume as
indicators driving many PFT metrics, our method provides a
first step towards direct analysis of exhale behaviors to obtain

Thermal CO, Image density(z)
¢ Camera FOV
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Turbulent Flow Exhale Flow Region
Fig. 1. lllustration of projected exhale volumetric turbulent flow as
captured through the infrared (IR) thermal camera for each pixel p;_;
to obtain the discrete volume density estimate V' (e;, ;) [3].
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Fig. 2. Conceptual design. Visualized exhale behaviors are measured

quantitatively through gold-standard (spirometer) and correlated visual
optical-flow measurements integrated into a trained predictive model.

quantitative metrics based on visualized airflow. In contrast to
complex 3D simulation models formed by flow observation
constraints that closely replicate Navier-Stokes fluid dynamics
(flow reconstruction), our aim is to formulate a computa-
tionally efficient data-driven approach suitable for real-time
estimates in clinical settings. This enables our method to be
used in a wide variety of clinical use-cases currently under-
addressed by existing technologies used in sleep studies [16],
pediatrics, and neonatal care [17].

Il1. QUANTITATIVE ANALYSIS OF VISUAL EXHALE FLOWS

Visual analysis of breathing behaviors for obtaining quan-
titative metrics represents a form of non-contact respiratory
monitoring method that directly extracts breathing behaviors
from exhaled C'O; turbulent flows. The main objective of this
method is to expand the availability of new measurements
used in pulmonary evaluation based on generating behavioral
metrics from visualized CO, flow patterns. This form of
analysis can lead to measurements of breathing rate, flow,
exhale volume, and the natural distribution between nose and
mouth breathing [3]. By capturing effort-independent, natural
breathing, the visual representation of projected turbulent flows
is quantified directly from open-air flows. We then formulate
a method of correlating open-air visual flow measurements
representing exhaled C'O, concentrations with volumetric flow
measurements obtained using a gold-standard. This enables
quantitative measurements of flow by correlating measured
volumetric flow with the visual flow from imaged CO-
thermal exhale distributions as illustrated in Fig. 2.

A. Linking to a Quantitative Ground-truth

Standard solutions for directly measuring respiratory flow
or C'O4 density enforce a controlled flow that is captured by
breathing through a fube connected to a measurement device
(spirometry, plethysmography, capnography). These devices
capture flow characteristics based on a variety of different
methods (pressure, ultrasonic) that sample the rate of flow
as it passes through an enclosed region (the fube of the
device). We consider this an instantaneous measurement of
the flow as it passes through the measurement region of the
device. These measurements are straight-forward to compute
and are generally accurate due to how the direct measurement
is performed. Unlike prior non-contact respiratory analysis
methods that indirectly infer breathing measurements, our
approach measures the quantity of exhaled air through the
direct analysis of C'Oy flow. This inherits the benefits of a
direct method, but enables the analysis of natural breathing and
long-term monitoring. To provide quantifiable metrics for the

from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TBME.2023.3236597

TRANSUE et al.: EXPIRATORY FLOW AND VOLUME ESTIMATION THROUGH THERMAL-CO, IMAGING 3

Thermal and Depth Camera Setup

Optical Flow Input

Exhale Flow Sequence | Flow Magnitude

Apparent Flow: f(t)

Depth I,
\ ¢ > - -
g '. Py - (= il >
Jis€F, REES
—>f N ] """""" g Exhale Intensity: i(t)
0 t7
” ==So0 e
","It‘ RS — 1(t) :Z Dij >
Thermal Real-time Sequence I, o Fy = OptFlow(1,, ,,1;,) i€l

(1) CO4 Filtered Thermal Imaging
Fig. 3.

(2) Parallel Optical Flow (GPU)
Signal generation pipeline for measuring flow and intensity of exhales within CO2 filtered thermal images (1). We use optical flow (2)
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(3) Exhale Signal Generation (flow, intensity)

to isolate exhale behaviors and then convert the dense flow-field representations into 1D waveforms (3) that will be used inputs used to estimate
exhale behavior measurements including flow in (L /s) and volume in (L). This represents the exhale flow extraction processing pipeline.

measurement of the observed behaviors, our method employs a
predictive model to correlate our image-generated waveforms
with the physical units provided by a gold-standard. We
establish a tight correlation between this metric and the visual
flow that /inks measurements of the physical quantity (flow in
L/s) and the signals extracted from our image analysis. This
provides a prediction model that establishes the link between
visual analysis of apparent flow and a quantitative ground-truth
for method validation, model training, and evaluation.

B. Measuring Unconstrained Exhale Behaviors

Sensing and quantitatively measuring respiratory behaviors
through open-air analysis presents unique challenges in rep-
resenting pulmonary health. Recent advances in inexpensive
wireless technologies estimate flow [6], but only address a
portion of our overall objective in vision-based pulmonary
analysis. Our objective is to provide flow and volume mea-
surements as a baseline, but also drastically expand respiratory
diagnostic methods to include direct behavioral analysis to
identify effort-to-flow relations, nose-mouth separation, and
complex secondary behaviors as trace indicators for various
pulmonary conditions. In our approach, our analysis generates
a measure (SI units) of the apparent fluid dynamics repre-
senting flow, heat dissipation, and diffusion of carbon dioxide
into open-air that we define as a mixed-signal representing a
combination of the thermal energy and C'Os concentration.
This presents several challenges including: flow behaviors
are spatially ambiguous, data is lost due to volume-to-plane
projection (Fig. 1), viewing angle, and environmental factors
alter flow behaviors (air movement, temperature, humidity).
Due to this complexity, we focus on how to efficiently extract,
track, and translate visual flow measurements [18], [19] with
unconstrained open-air exhale behaviors. To address this, we
build upon isolating detailed flow behaviors [3] to build a
diagnostic viable for various forms of pulmonary evaluation,
including polysomnography (PSG) studies in SDB (Fig. 4)
that include visual flow measures [8] used for apnea event
detection [20] as well as clinical out-patient PFT evaluations.

. TN Ty ™

Fig. 4. Sequence illustration of quantified natural respiratory behavior
tracking through our direct exhale tracking for SDB pulmonary analysis.
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IV. METHOD

The principle of our approach is based on establishing
a correlation between visual flow behaviors extracted from
CO4 thermal image sequences through flow-field analysis and
volumetric flow measured as the flow rate of exhaled C'O5. We
exploit the periodic behavior of the respiratory cycle to pair
this correlation with a recurrent prediction model that provides
an estimate of the flow as physical measurement in (L/s).
This semi-continuous waveform prediction is then numerically
integrated to obtain an estimated measurement of total exhale
volume measured in (L). We then broaden the capabilities
of this approach to inferred inhale predictions, breathing
abnormality detection, and long-term monitoring. The pro-
posed method utilizes a multi-stage pipeline where we define
five primary steps: (1) real-time C'Oy paired thermal/depth
image recording or streaming, (2) extraction of flow behaviors
through flow-field analysis, (3) conversion of detailed flow
vector-fields into continuous waveforms, (4) generation of
datasets on a per-individual and cross-subject basis, and (5)
the creation of data-driven models that predict continuous
flow behaviors. The construction and training of these models
provides the basis for predicting the rate waveforms of the
observed flow which are then numerically integrated to obtain
individual volume estimates for each exhale episode (£). The
trained models and volume calculations can then be used to
directly monitor and measure open-air exhale behaviors.

To establish our flow prediction models, we develop a new
set of image-based datasets used to generate waveforms of
apparent flow that quantify exhale behaviors as shown in Fig.
3. In the constructed datasets, we employ two strategies: (1)
the construction of per-subject models that can accurately
replicate individualized behaviors unique to each subject and
(2) a generalized cross-subject model that incorporates all
recorded data into a consolidated prediction model. Unlike
the per-subject model which provides accurate predictions
but requires training for each individual, the cross-subject
approach provides a practical solution by eliminating the need
for per-patient training at a slight cost to accuracy due to gen-
eralization. Both models predict the flow rate as compared with
the ground-truth, in which we evaluate the characteristics of
the predicted signals, correlation with spirometer readings, and
directly compare measurements. Evaluation of our method is
performed based on three primary metrics including: breathing
rate (BPM), flow (L/s), and volume (L) on a preliminary study
size of 12 subjects for individual and cross-subject models.

from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TBME.2023.3236597

4 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. XX, NO. XX, XXXX 2023

Intensity [Frame 20]

Intensity [Frame 40]

Subject Data - S10

Intensity [Frame 60]

1.0
Intensity [Frame 80] Intensity [Frame 100]

Computed Flow [Frame 20] Computed Flow [Frame 40]

Subject Data - S10

Fig. 5.

Computed Flow [Frame 60]

Computed Flow [Frame 80] Computed Flow [Frame 100]

0.1

0.0

Signal generation pipeline for measuring flow and intensity of exhales within COx filtered thermal images (1). We use optical flow (2)

to isolate exhale behaviors and then convert the dense flow-field representations into 1D waveforms (3) that will be used inputs used to estimate
exhale behavior measurements including flow in (L/s) and volume in (L). This represents the exhale flow tracing/extraction processing pipeline.

A. CO, Imaging and Respiratory Signals

To enable a real-time stream of quantitative metrics based
on the sequence of thermal images, we integrate the dense
optical flow result into a waveform generation pipeline. From
the observed optical flow, we can isolate exhale behaviors
based on vector classification and extract two measurements
to define intensity and flow measurements over time. The
thermal image stream provides sequential images used to
compute the optical flow vector field Fy, which is then used
to isolate detailed flow behaviors (|f; ;| € ﬁt > ¢). This
produces two discontinuous wave-forms from the two real-
time image streams that contain: (1) a COs image I; for an
intensity signal i(¢) and (2) the paired field F‘t representing
quantitative measurement of the visualized exhale flow signal
as f(t). We perform a parallel variant of dense Optical Flow
[19]. This fulfills two requirements: (1) isolation of flow
behaviors from background heat sources/movement and (2)
enables identification and quantification of minute flow details
from which we can build respiratory metrics. We minimize
standard intensity and smoothness constraints [19] of the form:

min//(VI “v+ %)2 + a(||Vg|? + ||V, ||?) dedy (1)
Where & € R? and o € [0,1]; we select small values:
o = 0.15 to retain fine flow movements for detailed behav-
ioral analysis. For the minimization problem, we employ an
iterative optimization scheme executed in parallel. This leads
to a formulation based on two input images: I, and I, ,,
two intermediate images U and V, and the time derivative
image I;. We compute OI/0t using backward differences
and compute both 0I/0x and 0I/0y using x and y filters
respectively. llustrated results are shown in Fig. 5.

oI —i oI —i oI
,Ui+1 _,Di _ %’U;—'—Oiyv;—'_m g = U. (2)
. T ar2 | ar2 | 9x "
OZ+£ +87y
oI i oI —i a1
it — 5 _ oV 5,0 t 5 ﬁ_v_ 3)
Y Yy o912 912 ay_ z

Oé+% +07y

Where the update to the v, and v, flow vectors are based
on the discrete iterative formulation [21] based on Equation 1
where all filter processing is done on the GPU [22].
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Flow Signal. To provide an estimate of the flow obtained
by an instantaneous measurement at each captured frame, we
convert the sum of the magnitudes of the segmented optical
flow vectors into a semi-continuous waveform. This formulates
the changes in the observed exhale patterns as an estimate
of the apparent flow, which represents the changes in C'Os
movement throughout each exhale £. For a given optical flow
vector field F' at time t computed from optical flow using
images I, , and I;,, where the discrete form of the flow
magnitude is computed in Equation 4.

f&y="3" 1figl 5 Fi=OptFlow(l, ,. 1) 4
ﬁ',j cF,

Each optical flow field F, also performs the pre-processing
required for segmenting the exhale flow from body movement
and other thermal objects within the monitored area. This
provides segmentation for both flow and intensity behaviors
from the surrounding environment. The flow vectors f;j can
be classified (movement, noise) and then used to generate a
weighted mask applied to the intensity image (p; ; > 0) to
isolate exhale contributions for each quantitative measurement.
A consequence of this approach is that the flow segmentation
introduces bias the intensity behavior towards the characteris-
tics exhibited by the flow signal, but is required to effectively
isolate exhale behaviors from the surrounding environment.

Intensity Signal. The intensity of the thermal signature in
the filtered wavelength provides a snap-shot representation of
the CO5 density as a function of detected C'O5 emission and
thermal intensity. This density contributes to the overall exhale
volume due to the higher sensor activations from the mixed
thermal-C'O5 signature. To compute the total amount of exhale
within each frame, we consider the flow-segmented intensity
image and generate the sum of the non-zero pixel values p; ;
of image I;, as shown in Equation 5.

i(t) = Intensity (I;,) = Z Pij YDij > E€flow  (5)
pi,j €Lt
This generates two signals that measure approximations of
the visual changes in air movement as a representation of flow
signal f(t) and C'O2 density over time as the intensity signal
i(t). These signals represent our recurrence model inputs.
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Signal Processing. Turbulent exhale flows naturally exhibit
complex fluid dynamics that are lost in the imaging process.
This is due to complex flow behaviors and the projection of
the 3D phenomena to the 2D image plane, heat distribution
changes, and the chaotic dissipation of the C'Oy into the
open air. To address this, we implemented two forms of
signal filtering: (1) windowed average filtering (n = 12
@ 30Hz) and (2) Gaussian weight filtering. The filtering
reduces the high-variance regions of the signal create large
fluctuations that exist within the peaks of exhale signals due
to chaotic dissipation behaviors. To minimize the variance of
the signal spikes during each exhale, we weighting higher flow
magnitudes in the Gaussian window that softens high-variance
peaks. The aim is to align the waveform characteristics of
the generated signals with ground-truth measurements. The
resulting raw and filtered signals are shown in Fig. 6.

Raw and Filtered Exhale Magnitude (intensity/flow)
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Fig. 6. Raw and filtered intensity ¢(¢) and flow f(t) signals. Zero

regions within the generated signals correspond to inhale segments.
The exhale behavior has been varied to illustrate different exhale sizes.

B. Volumetric Flow Estimation Model

The aim of our approach is to provide an efficient method
for estimating the volumetric flow which represents the rate
of exhaled C'Oy measured over time. The model accounts
for the similarity of the data characteristics in the periodic
exhale signal and is formulated as a recurrent model that takes
(s) prior steps into account for each prediction. We define
this model as F(t) = M(i(t), f(t),s) where i(¢) and f(¢)
represent the input signals and F (¢) is the predicted waveform.
The structure of the model is presented in Fig. 7.

Intensity 7(¢) —|_, Pr?lj(i)ssed & F(b) Ee

M(i, f,8) > F(t)

Flow f(t) = Recurrent Model (L/s) '
(@) (b)

Fig. 7. Model overview. (a) The inputs of the model #(t) and f(t) are
used to estimate the rate of volumetric flow representing the amount
of CO2 exhaled breath per second measured in (L/s). The model
prediction is then shown in (b) as an estimate of the total volume V;
from exhale at index ¢ from associated (end - start) duration £&c — &s.

The prediction of the model represents the conversion from
visual flow measured as an arbitrary unit (a.u) to the volumetric
Jflow defined as the rate of exhaled C'O5 over time, measured in
liters per second (L/s). The error of this prediction is evaluated
as the deviation from the ground-truth flow waveform provided
by the reference spirometer acting as our gold standard.
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Fig. 8. Exhale flow validation device design. This device provides a
reoccurring control for evaluating synthesized behaviors. The validation
system emulates the heat, CO2 concentration, and airflow of a typical
expiratory episode as measured by both our method and spirometry.

C. Volume Estimation

The flow estimation model M(, f, s) provides an estima-
tion of the volumetric flow F(¢) representing the quantity of
COs during each exhale episode based on the input intensity
i(t) and flow f(t) signals. To obtain the i*" per exhale volume
in liters as V;, we integrate the predicted signal from the start
(&) to the end (&) of the i* exhale episode as shown in Fig.
7 (b). From the model prediction, the volume is computed
through integration as shown in Equation 6.

&e
V= F(t)dt where F(t)=M(i, f,s) (6)
&s
The discrete form of the predicted waveform is integrated
using Simpson integration. This represents the total volume
exhaled within a single episode measured in liters (L).

V. METHOD VALIDATION

Unconfined turbulent exhale flows exhibit high levels of
variance due to several factors including: exhale and ambi-
ent temperature, moisture contained in the exhale, and C05
density, all of which determine the visual flow behavior and
dissipation rate of each expiratory episode. Establishing an
accurate flow prediction model capable of potentially rep-
resenting quantitative measurements requires a experimental
control for establishing the validity of the relationship between
visualized exhale behaviors and accurate flow measurements.

A. Visual Flow Measurement Control

We validate this approach by creating consistent and repeat-
able exhale behavior analogue for measurement verification.
To do this, we have designed an experimental control setup
(Fig. 8) for accurately emulating exhale behaviors that can
be measured with both an existing gold standard as well as
the proposed model. The premise of this validation is based on
heating controlled C'O concentrations that are forced through
the validation system at a fixed interval using a programmat-
ically controlled fan. This simulates expiratory episodes that
are simultaneously captured by both the imaging system and
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Fig. 9. Validation setup. This setup has been created to provide an
idealized flow region where the flow measurements of turbulent exhale
behaviors can be calibrated for controlled timing, temperature, distance,
and CO2 concentrations compared with spirometer measurements.

spirometer measurements of flow (L/s) and volume (L). The
experimental setup for validating our control measurements
is shown in Fig. 9. To maintain an accurate level of C'O,
density within the flow, we exhale into an external reserve
that holds exhaled breath and limit the COy flow through
an injector nozzle to ensure a constant release that will mix
with the air drawn in from a 40mm control fan. To precisely
control the fan speed and duration, we utilized a simple
motor controller (TI-SN754410) connected to a Raspberry
Pi [23]. Through Pulse Width Modulation (PWM) we alter
the duty cycle of the fan to provide varying exhale strengths
and durations generated 2.0s apart. This setup is then used
to vary experimental parameters including: (1) fan speed for
exhale strength, (2) duration for volume, and (3) camera-to-
flow distance, while fixing C'O5 mixture rate and temperature.

B. Flow and Volume Measurement Validation

To establish a baseline of the variance incurred by quanti-
fying turbulent flow behaviors, we used the validation setup
to demonstrate the accuracy of the relational model. We
formed a preliminary validation dataset to train an initial
prediction model to estimate flow magnitude and account for
the differences in waveform characteristics between the flow,
intensity, and spirometer measurements. The model was then
used to predict the flow waveform for 12 simulated exhale
flows, with the results of the predictions shown in Fig. 10.

Fan Flow Rate (control) [vs] Spirometer Rate (L/s)

—— Spirometer Flow = —— Fan Model Prediction Error

AARAARARAAL

1000
Sample (n)

Fig. 10. Flow validation: Predicted F(t) versus Spirometer flow S(t).

Flow Rate (L,

1250 1500 1750 2000

Errors between the spirometer and predicted flow are a
product of the variance exhibited by the turbulent flow, even
in the instance where every episode is similar in temperature,
duration, and strength. This is also exhibited at the peak
magnitudes of each exhale. Capturing this variance presents
the primary challenge of establishing an adequate neural
network model for accurate predictions, motivating the use
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100 Computed [vs] Spirometer Volume Validation (L)
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I Spiro Volume
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Exhale Episodes (n)

Fig. 11. Model flow estimations integrated per exhale validating control
volume measurements. Variance of turbulent flow measurements are
illustrated in the volume differences across the 12 exhale episodes.

of a recurrent model to capture these behaviors. Validation
of the per-episode (&;) volumes generated from the predicted
waveforms are obtained by integrating each exhale instance
from Fig 10, with the computed volumes shown in Fig. 11.

VI. EXHALE MODEL GENERATION AND TRAINING

The proposed model must provide a transformative rela-
tionship between the observed thermal distribution of C'O4
and volumetric flow measurements provided a gold-standard.
This requires capturing quasi-periodic but volatile exhale flow
behaviors as a continuous recurrent waveform representing
flow predictions over time. To achieve this, we employ an
LSTM network architecture to provide a predictive model
architecture that can estimate both waveform characteristics
and physical quantified metric from apparent flow. The contin-
uous prediction of flow based on the input signals then forms
the basis of a discontinuous non-linear regression encoded
into the trained model predicted using the last s (look_back)
samples. To evaluate the loss within the model based on the
observed value provided from the spirometer sample S(t)
and the predicted flow generated by our model F(t), we use
Mean Squared Error where M SEj,ss = 1/n > " (S —F;)>.
In our approach we formulate two models: (1) an individ-
ual and (2) cross-subject model. The individual model is
per-subject and accurately predicts waveforms with unique
breathing behaviors. The cross-subject model provides an
inter-subject prediction that only requires initial training on
a larger dataset to generalize across expected flow behaviors,
increasing practical use and utility. An overview of the data
collection and model separation is shown in Fig. 12. We
form three dataflow training procedures: (a) randomized cross-
subject (mixed), (b) individual datasets, and (c) selective data
as shown in Fig. 13. We employ parallel (GPU) LSTM layers
[24] provided by Cuda [25] in Keras [26] with TensowFlow
back-end [27]. We select a recurrent architecture to capture
the time dependency across input sequences; however, other
architectures (1D CNN/etc.) are also viable alternatives.

A. Dataset Generation

High variance within turbulent exhale data requires that
we account for significant fluctuations within the observations
included within the training data. To establish an accurate
correlation between visual flow measurements and exhale vol-
ume, we select best candidate exhale episodes to form training
datasets. This is achieved by selecting exhale measurements
that closely represent the same area under the spirometer
flow curve as primary candidates for the training set. First,
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Training Data Generation: Raw Intensity/Flow
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Model training datasets. We formulate individual and cross-subject datasets used to train different measurement objectives including

per-subject accuracy (individual) and train towards generalization through mixing randomized exhale behaviors within the (cross-subject) model.

both signals are aligned through re-sampling to account for
data acquisition rates. Then each individual dataset D is
composed of at least 25 exhale episodes collected in 4 recorded
sessions for each subject SO1 - S12 (n = 12) to generate a
training dataset defined as: D; = {Dy, ..., D4}. Each dataset
is composed of an average range of 9,000-20,000 samples.
As there are portions of null measurements between exhales
representing the inspiratory phase (Z), the valid sample size
of each dataset is approx. 6,000 non-zero measured samples.
In our datasets, depending on subject, each exhale typically
contains 50-70 filtered samples (an average ¢ duration of 2s
@ ~ 30H z). After acquisition, each exhale is separated as an
individual episode, each of which can be randomized within
the training data to avoid individual behavioral bias.

Visual Exhale Flow Measurement and Modeling

Thermal CO,
Image Sequence

|Spirometer Signal |-
Parallel (GPU) _>|
Optical Flow

Flow Signal |-

Model Training (GPU) Intensity Signal |'
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Fig. 13. Dataflow overview: Flow behaviors are extracted from CO2
image sequences and correlated with spirometer readings to generate
training databases for predictions of flow (L /s) and volume (L).

To identify exhales that will be added to the training set
D,, we select a subset for training based on relational area
constraints. Each exhale ¢ is bound by non-zero start & and
end &, to form each individual episode. For each exhale in the
filtered thermal exhale signal, we define the average area of
the flow f(t) and intensity i(¢) signals as 7;. Similarly, the
expiratory area of the spirometer for exhale ¢ is defined as S;.

£ e
=3 [ o) a s s= [ swa o

Where the ratio of the overlapped signal area of each exhale
is evaluated as the primary selection criteria. This is defined

s s
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as O; = T;/S;. These overlap values are computed for all
exhales in each dataset. The average and standard deviation
of these overlaps are computed as d = mean(O;) and ¢ =
std(O;) Vi € D. For the secondary selection criteria, we
evaluate the similarity of the waveform. We compute the mean
correlation of both signals as v = §[r7  + r7 ] where 7}
and 7"12,5 are the correlations between the flow, intensity, and
spirometer waveforms respectively. This provides the formu-
lation of two numerical constraints C; and C5 that define the

per-exhale training data given the following selection criteria:

Ci=(d—¢e)<O; < (d+¢)

8
CQ:T§>7 ®)

where 72 is the correlation of exhale &;. Exhale episodes satis-
fying both of these constraints are selected for the construction
of each training dataset D;. That is: &; € D, iff C; A Cs.

B. Model Architecture

To formulate the layer architecture of the proposed model,
we perform parallel feature extraction that leverages features
from both intensity i(¢) and flow f(¢) signals to establish
an accurate flow estimate defined as the expected volumetric
flow provided by the spirometer. The motivation for this
architecture is to extract characteristics of the signals that
include C'O4 density and flow behaviors that contribute to the
volumetric flow measured by the spirometer. Using subsequent
LSTM layers, features are extracted in parallel streams which
are then combined in a layer concatenation that consolidates
these features into a single prediction F that represents the ex-
pected volumetric flow. An overview of the model architecture,
layers with unit sizes (individual, cross-subject), activations
(layer_activation, recurrent_activation), and input (batch_size,
look back, 1) is shown in Fig. 14. In training, the model
is trained for a total of 144 epochs with a batch size of

Input: i({) Intensity (64,32,1) Input: f(t) Flow (64,32,1)

LSTM Layer: (16,32) LSTM Layer: (16,32)
LSTM Layer: (8,32) LSTM Layer: (8,32)

LSTM Layer: (4,16) LSTM Layer: (4,16)

v
Dropout: (5%, 15%) —»Dense: (16, 8, 1) » Output: Flow Prediction (L/s)

Fig. 14. Model architecture. Parallel feature extraction for both inputs

providing an estimation of the expected spirometer flow measured in L/s.
Each RNN layer is implemented on the GPU through Cuda.
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Fig. 15. Independent model results for three select subjects (S10, S09, S12). The flow plots (top) provide the predicted flow rate directly compared

to the spirometer measurements and the volume plots (bottom) show the volume for each of the 10 episodes (EO1 - E10) with associated error.

64. Each training dataset for both the individual and cross-
subject models is set to a 80%/20% training/validation split.
For the recurrent look back (input length s) the motivation is to
capture typical episode behavior and was empirically obtained
as s = 32 (@30Hz). For model optimization, we use ADAM
[28] with parameters: learning-rate 0.002, B4
B2 = 0.99, and decay = 0.001. Dropout rate is defined as 5%
and 15% for individual and cross-subject models respectively.
The model architecture has been implemented in Keras using
the functional model API to account for the parallel input and
layer concatenation. For the cross-subject model, the model
unit sizes are increased to aid in accounting for the higher
potential variance in exhale waveform characteristics.

VIlI. EXPERIMENTAL DESIGN

Experimental evaluation of the proposed method is based
on two primary metrics: (1) the LSTM prediction of the volu-
metric flow waveform measured in (L/s) and (2) the resulting
estimation of the per-episode exhale volume (L). This was
completed through the collection of subject data used to train
both individual and cross-subject LSTM models to evaluate
their performance on data obtained from n = 12 healthy
subjects within the normative range of lung function. The
overall experimental setup is similar to the monitoring design
shown in Fig. 9, adapted for each subject to sit comfortably
and breathe naturally for the required monitoring period. The
setup is composed of: (1) the depth/thermal camera device,
(2) background (projector screen), and (3) the subject sitting
1.5m from the camera. Subject data collection included the
collection of 4 to 6 trials, each recorded for 120 seconds,
resulting in an average of 24.67 exhales obtained for each
trial with an average of 14626 samples. Environmentally we
ensured limited surrounding airflow, constant humidity, and
interior ambient temperature (22°C' — 26°C'), which require
initial calibration. Due to the direct visualization of exhale
flow, any form of covering that prevents visual analysis of
flow (tubes, masks, etc.) are not included within the study.

From the paired depth/thermal imaging system, the thermal
stream is captured using a FLIR-A6788sc (640x512 @ 30H z)
thermal camera with an actively cooled band-pass spectral
filter 3-bpum generating 16-bit raw signal through the Gigabit
Ethernet Vision Protocol (GigE Vision). These are then paired
with registered depth images (512x424 @ 30H z) and stored as
encoded video files. The gold-standard measurements for flow
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are provided by a Vernier spirometer, calibrated with a sample
rate 30Hz, running concurrently with the recording. The
overall experimental design was then separated into two train-
ing/evaluation sets based on the individual and cross-subject
models respectively. Each exhale is then randomized on a per-
exhale basis for model training. Extending the train/test split in
the training phase, we also evaluate the accuracy using unseen
data that evaluates new subject data trained models have not
encountered. Human subject evaluation approved as part of
the Colorado Multiple Institutional Review Board (COM-IRB
FB F490): Non-contact Remote Breathing Analysis through
Visualization of Thermal and CO2 Flow (VTCF).

VIII. RESULTS

Evaluation of the proposed method is divided into two
primary results: (1) the individual model and (2) the cross-
patient model for both predicted flow and computed volume.
Representing a selection of the computed results, Fig. 15
presents select predicted exhale waveforms and associated
volumes. These present the advantage of an individual model
that captures subtle characteristics of each subject’s exhale
breathing patterns can be captured and identified within the
visual flow. This is due to the training data exhibiting the
same characteristics as newly provided unseen data from the
same subject, demonstrating the possibility of creating longi-
tudinal studies to identify variance trends through long-term
monitoring. Based on our evaluation of the individual model
accuracy we obtained an average correlation R? = 0.912 and
average volume accuracy of 90.92 within the 80/20 training
split with an overall accuracy of 88.02% for newly collected
unseen data. The absolute error in flow between the prediction
and spirometer |F(t) — S(¢)| associated with the individual
model for each subject is shown in Fig. 16 with an overall
analysis of the individual subject model presented in Table I.
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Fig. 16. Predicted flow error as measured by the absolute difference
between the model prediction and spirometer e = |F(t) — S(t)|.
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TABLE |
INDIVIDUAL SUBJECT MODEL FLOW AND VOLUME RESULTS - LEFT: PREDICTED FLOW (L/s), RIGHT: ESTIMATED VOLUME (L)

Subject Data ‘ Raw Signal RMSE ‘ Raw Signal Correlation 12? LSTM Prediction-Spiro Results (L/s) 20% Split Test (Vol. Diff. Error in L) Unseen Test Data (Result)
SID SIS Age Flow-Spiro Int-Spiro Flow-Spiro Int-Spiro Mean S.D. | RMSE R?  Improvement (%) Error (L) S.D.  Accuracy (%) | Error (L) S.D. Accuracy (%)
S01 F 32 0.184 0.174 0.602 0.625 0.614 0.016 | 0.098  0.891 27.75% 0.096 0.077 91.09% 0.174 0.139 84.55%
S02 Il 30 0.155 0.171 0.698 0.691 0.695 0.005 | 0.059 0.925 23.03% 0.087 0.801 91.26% 0.044 0.029 90.55%
S03 F 46 0.065 0.120 0.807 0.841 0.824  0.024 | 0.029 0.966 14.20% 0.049 0.039 91.56% 0.047 0.037 92.64%
S04 M 40 0.153 0.169 0.740 0.740 0.740  0.001 | 0.036 0.913 17.28% 0.052 0.035 90.53% 0.037 0.019 93.94%
S5 M 29 0.135 0.172 0.822 0.829 0.826  0.005 | 0.023 0.963 13.75% 0.029 0.020 93.42% 0.036 0.024 91.09%
S06 M 25 0.110 0.117 0.797 0.808 0.803 0.008 | 0.095 0.845 42.50% 0.131 0.100 83.62% 0.174 0.130 76.44%
S07 F 66 0.157 0.164 0.521 0.520 0.520 0.001 | 0.042 0910 38.98% 0.037 0.033 94.04% 0.060 0.038 90.15%
S8 M 75 0.217 0.221 0.603 0.617 0.610  0.010 | 0.127  0.811 20.10% 0.221 0.149 80.69% 0.248 0.198 82.30%
S09 M 44 0.157 0.165 0.630 0.637 0.634 0.005 | 0.083 0.926 29.25% 0.067 0.047 95.72% 0.369 0.131 93.51%
S10 M 3] 0.132 0.128 0.742 0.744 0.743  0.001 | 0.072  0.940 19.73% 0.088 0.060 92.34% 0.289 0.111 94.44%
S11 E 31 0.344 0.338 0.463 0.476 0.470 0.010 | 0.161 0.939 46.95% 0.084 0.064 94.66% 0.159 0.125 91.27%
S12 M 25 0.153 0.150 0.545 0.576 0.560  0.022 | 0.054 0.941 38.09% 0.041 0.037 92.11% 0.239 0.070 75.65%

Mean 39.5 0.164 0.174 0.664 0.675 0.670  0.009 | 0.073 0912 24.45% 0.082 0.064 90.92% 0.163 0.089 88.02%

S.D. 16.1 0.068 0.059 0.121 0.121 0.120  0.008 | 0.042  0.046 12.28% 0.053 0.038 4.423% 0.124 0.060 6.659%

Breaths Per Minute (BPM). Peak detection is used on

smoothed predicted waveforms to estimate the total number of

breaths per minute. Due to the large number of exhale samples

within the training datasets, we randomly select one trial from

each subject and compute the BPM. The Bland-Altman plot

for the BPM for the selected set of trials is shown in Fig. 17.
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Fig. 17. Bland-Altman plot for all subjects measured as peak-to-peak
time comparing predicted and spirometer BPM (one trial per subject).

Estimated Exhale Volume. Across all collected data, the flow
associated with each exhale episode is numerically integrated
to get a per-episode estimate of the total exhaled COs.
Typically exhale volume at rest ranges between 0.5 and 1.0L
for most adults [5]. The Bland-Altman plot for all exhale
volumes for all subjects is shown in Fig. 18.

Predicted [vs] Spiro Volume (Bland-Altman)
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Fig. 18. Bland-Altman plot for predicted volume [vs] spirometer volume
computed by integration for all subjects based on the individual model.

To establish the overall accuracy of the correlation between
the BPM and volume measurements compared to the recorded
spirometer measurements, we provide the correlation plots
in Fig. 19. This demonstrates the overall correlation for the
selected BPM measurements as R? = 0.95 and overall cor-
relation of volume measurements as R? = 0.867. The strong
correlation in these estimations provides a valid foundation
for the development of new breathing metrics established on
the independent subject model while maintaining a basis for
mapping the results with standard PFT evaluations.
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Fig. 19. Correlation of BPM and Volume for all subject data.

Cross-subject Model Flow and Volume. Training exhale
prediction models for each subject presents a practical lim-
itation within a clinical setting where time and healthcare
resources are limited. To address this, we introduce a cross-
subject model defined by a dataset composed of randomized
exhale episodes from all subjects. The aim of the cross-subject
model is to remove the requirement for training for each new
subject. For the twelve subjects, an average of 24 episodes
were collected for an average of 14626 samples per subject.
From the cross-subject model, predicted flow exhibits lower
correlation R2 = (.804 and higher average RM SE = 0.121
presented in Table II. Due to generalization, we see a drop in
volume accuracy from 88.02% to 81.05%.

Inferred Inhale Estimation. A consequence of directly mea-
suring the visual signature for respiratory analysis is that
the inspiratory portion of the respiratory period cannot be
directly measured; however, it can still be predicted through
constrained inference. To extend the flow waveform gener-
ated by our approach to incorporate the inhale phase of the
respiratory cycle, we construct an estimate of the complete
respiratory waveform through dual models that predict both
the inhale and exhale portions independently to construct
the full waveform. This is done by delaying the prediction
by a half-cycle and using the current exhale to infer flow
characteristics of the inhale (exhale-inhale inference) where
we link exhale volume with the volume of the prior inhale.
This is not a direct relationship, but provides an estimate of
the complete waveform under regular, natural breathing. Using
this inference, the inhale model is trained on the relationship
between the current exhale & and the preceding inhale Z;_;.
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The limitation is that this only provides an estimated descrip-
tion of the inhale behavior, which is only valid when current
exhale flow is directly proportional to the prior inhale. Based
on this modeling approach, we impose two constraints: (1)
natural, regular breathing and (2) Z;_; o &;. The dual-model
prediction that combines both the expiratory and inspiratory
phases from the measured visible exhale is shown in Fig. 20.

Estimated Inhale Predicted [vs] Spirometer (L/s)
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Fig. 20. Inferred inhale: Dual model estimation that predicts Z, _; and

& portions independently to provide a complete interleaved waveform.

[X. LIMITATIONS AND FUTURE WORK

Visual exhale analysis is subject to various vision-
based limitations including: field-of-view, hardware sensitiv-
ity/resolution, image-to-signal conversion, and model gener-
alization. Trained model correlation of visual flow also has
challenges related to the volatility of rapid dissipation, environ-
mental factors, training domain selection, model architecture,
and hyperparameter optimization. Future work incorporates
broadening training heterogeneity and image-based evaluation
to improve this form of diagnostic in pulmonary pathology.

X. CONCLUSION

In this work, we presented a computationally efficient
method for the direct measurement of exhale flow and volume
through spectral-filtered thermal C'O, imaging for clinical
pulmonary evaluation. Our method presents a direct vision
approach for evaluating pulmonary function to enable long-
term monitoring, natural breathing, and the identification of
subtle variance in breathing behaviors that are difficult to cap-
ture using exiting devices. For flow estimations, we formulated
two regression model datasets that account for individual and
cross-patient characteristics obtaining an average flow corre-
lation of R? = 0.912 and R? = 0.804 with average volume
estimation accuracy of 88.02% and 81.05% respectively.
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