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Abstract—Despite years of research on transport protocols,
the tussle between in-network and end-to-end congestion control
has not been solved. This debate is due to the variance of
conditions and assumptions in different network scenarios, e.g.,
cellular versus data center networks. Recently, the community
has proposed a few transport protocols driven by machine
learning, nonetheless limited to end-to-end approaches.

In this paper, we present Owl, a transport protocol based on
reinforcement learning, whose goal is to select the proper con-
gestion window learning from end-to-end features and network
signals, when available. We show that our solution converges to a
fair resource allocation after the learning overhead. Our kernel
implementation, deployed over emulated and large scale virtual
network testbeds, outperforms all benchmark solutions based on
end-to-end or in-network congestion control.

Index Terms—TCP, congestion control, reinforcement learning

I. INTRODUCTION

A performing congestion control protocol is fundamental

for proper network operation as it ensures telecommunication

stability, fairness in computer network resource utilization,

high throughput, and a low switch queuing delay. Although

many solutions have been proposed in the last decade, Trans-

port Control Protocol (TCP) still constitutes the overwhelming

majority of current Internet and Long Term Evolution (LTE)

communications, and the vast majority of congestion control

mechanisms are implemented on TCP [2].

Despite the wide deployment of TCP, various studies have

shown how it performs poorly in scenarios that require adapt-

ability or that departs from the original network conditions

on which it was designed in the ’70s [3]–[7]. In particular,

problems may occur in cellular and wireless networks, where

TCP, i.e., Cubic since the default on many devices, misinter-

prets the stochastic packet losses as congestion, hence leading

to performance degradation [7]. This issue has motivated many

authors to propose innovative congestion control approaches

that follow a domain-specific design philosophy, in which the

design is limited to a specific network scenario and it leverages

its specific characteristics to boost the performance. Examples

are in data centers [8], [9] and edge networks [6], [7].
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The challenge of adequately updating the congestion win-

dow (cwnd) in resource-constrained networks, such as wireless

networks and IoT, is exacerbated by inherent problems arising

from their limited bandwidth, processing, and battery power,

as well as from their dynamic conditions [10]–[12]. The de-

terministic nature of TCP is indeed more prone to cause cwnd

synchronization problems and higher contention losses, due to

node mobility that continuously modifies wireless multi-hop

paths [11], [13]. Several TCP variations (e.g., PCC [14] and

Copa [15], to mention a few) have been recently proposed

to overcome these shortcomings. Nevertheless, the fixed rule

strategies used by these solutions are often inadequate to adapt

to the rapidly changing environment.

To solve the problem of an adequate congestion window

update strategy, we present Owl, a novel transport protocol

based on reinforcement learning (RL). Differently from other

Machine Learning-based approaches for transport protocols,

we conduct training at the source and decide the next value

of cwnd using also an in-network mechanism, when available.

Many transport protocols have been designed, with reinforce-

ment learning [16], [17] or without for a network-aware

solution [8], [18], [19]. The most recent solutions using RL,

however, do not exploit network intelligence fully.

An optimal cwnd update increases the throughput and

fairness while reducing the number of packets lost and delay.

Our transport protocol Owl is able to achieve these goals

by learning from several end-to-end and in-network metrics.

In particular, our contributions are summarized as follows.

We designed and implemented as a kernel module Owl, a

new congestion control protocol that leverages partial network

knowledge to train a reinforcement learning model based on

Deep Q-Learning [20], improving the network performance

with respect to recent work [21]. The outcome of Owl model

is the next congestion window value, a crucial and volatile

parameter for any reliable telecommunication. We then evalu-

ate our solution extensively: first, we compare Owl with other

seventeen transport implementations. Some of these solutions

were designed for wireless networks, such as Sprout [6] or the

more recent ABC [18], while others [22]–[25] were chosen

since they are widely deployed in several Linux distributions.

Our performance results (obtained using emulations with

real available traces from Verizon and T-Mobile and a deploy-

ment over the GENI testbed [26]) show that Owl has consistent

bandwidth and delay improvements across several scenarios.

We also evaluate the parameters of our deep neural network

used in our reinforcement learning and tested Owl’s fairness

performance, finding that our transport protocol behaves less
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aggressively than others.

Besides, we evaluate the impact of partial network visibility,

and we demonstrate that our agent can efficiently operate with

partial or even without in-network congestion signals. Lastly,

we show that the sender can learn the optimal congestion win-

dow adjustment strategies in a variety of network deployments

and can adequately react to network changes.

The remainder of the paper is outlined as follows. Section II

presents the related work and most relevant mechanisms we

compare with. We then introduce our reinforcement learning

framework and some of its main functionalities in Section III.

In Section IV we explain our problem formulation and our

protocol design, while Section V shows the rate stability

analysis. Section VI summarizes our implementation, which

is then evaluated in Section VII, where we show the benefits

of our protocol. Finally, Section VIII concludes our paper and

indicates some future directions.

II. RELATED WORK

Congestion control and avoidance problems have been

widely discussed in the literature due to the great importance

in reliable data transmissions. To solve the optimal congestion

window inference problem, recent machine learning-based

algorithms have been proposed with promising results in

different network scenarios. In this section, we focus on

highlighting how these solutions differ from our protocol.

Congestion Control is a fundamental service offered by TCP,

so much so that significant improvements and variations have

been proposed over the years. A few examples are TCP

Vegas [24], Compound [27], Fast [28], Exll [29], BBR [25],

and Data Center TCP (DCTCP) [8]. Rather than relying on

indications of lost packets to adjust the cwnd as traditionally

happens, BBR considers RTT and average delivery rate mea-

surements to decide how fast to send data over the network.

This enables BBR to be resilient to the bufferbloat problem,

but it frequently exceeds the link capacity, causing excessive

queuing delays [18]. Other protocols, e.g., Compound [27]

and Fast [28], instead attempt to optimize losses, but they

rely on some predefined functions or rules to handle net-

work conditions. In summary, all these solutions share the

limitation of fixed-rule strategies, that is, their performance

is challenged in networks that require rapid adaptations. Our

solution, instead, uses a (reinforcement) learning approach to

overcome this limitation and predicts the best cwnd update at

each transmission event.

Learning for Congestion Control. As a recent trend, Machine

Learning (ML) has been widely applied to various problems

arising in network operation and management [30]. The ma-

jority of these approaches are specifically designed to cope

with a resource-constrained network, including IoT [10] and

WANETs [11], [13], [31]; others instead address a wider range

of network architectures [5], [14], [32]. Recent end-to-end

congestion control solutions, such as Remy [5], PCC [14],

PCC-Vivace [33], define an objective function to optimize

the process of online actions definition, e.g., on every ACK

or periodically. Remy [5], for example, offline trains every

possible network condition to find the optimal mapping with

the sender’s behavior. These mappings are stored a-priori in a

lookup table and rely on what has been seen and hence can

accommodate new network conditions only by recomputing

the lookup table. On the other hand, PCC [14] and its variants,

i.e., PCC-Proteus [34] and PCC-Vivace [33], perform online

optimizations. For instance, PCC adapts to the varying con-

ditions in the network by searching for more accurate actions

to change the sending rate. However, these online rules are

often complex and require considerable lags in estimating all

the parameters to be accurate.

Based on a similar utility-based behavior idea, Copa [15]

employs a delay-based congestion control algorithm, by ad-

justing the cwnd depending on whether the current rate is

lower or higher than a well-defined target rate. This approach

allows converging quickly to the correct fair rates, even in the

face of significant flow churn. Our protocol also uses a utility-

based approach, but exploiting a deep neural network to better

adapt to a specific network, leaving the utility customization

as a policy that can be tailored to more specific requirements.

Reinforcement Learning-based Congestion Control. Simi-

lar to previous solutions, we use ML to adapt the cwnd esti-

mation, but setting this problem by means of Reinforcement

Learning (RL). Recently, RL has permeated many congestion

control mechanisms, such as Orca [35] and Aurora [21],

where in Aurora, the previous Performance-oriented Conges-

tion Control (PCC) protocol was extended with a Deep-RL

approach. Our RL approach differs from prior work as our

design combines features from both the transport and the

network layers. Furthermore, our implementation uses inter-

process communication between user and kernel space of a

single host, without significant burden to the Linux kernel

module. Moreover, unlike other reinforcement learning-based

algorithms, the actions taken by our agents are guided by a

utility function that has stability guarantees.

In-Network versus End-to-End Congestion Control. Sev-

eral protocols leverage the Explicit Congestion Notification

(ECN) to provide network-level feedback to end hosts. For

example, DCTCP [8] modifies the Red Early Drop thresholds

of ECN to achieve high throughput, high burst tolerance,

while keeping queues empty hence experiencing low latency.

RCP [36], XCP [37], and D3 [9] modify switches behavior to

feedback rates to end-hosts, while recent NATCP [38] and

HPCC [39] leverages switches (or a centralized entity for

NATCP) to send information about bottleneck links. ABC [18]

instead improves on ECN by sending accelerate and brake

signals instead of merely random early drop signals, and hence

more accurately adjusts the source sending rate. More recently,

Swift [40], improved the intra-datacenter communication bas-

ing the congestion control on network delay. As ABC, Owl

also uses network-level information as well (when available),

however, our feedback comes from a network controller, e.g.,

a measurement agent or an SDN controller, that computes

statistics about device utilization. Also, Owl does not need

any modifications to packets headers or custom routing devices

logic, which leads to challenging deployments. In fact, Owl

only relies upon client-side changes and a network statistics

collector, a standard operation across multiple network scenar-

ios. On the one hand, our network-level feedback carries more
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information than a simple bit in the TCP header. On the other

hand, Owl functions properly also without network knowledge,

while ABC and other ECN-based approaches require network

knowledge to work.

III. REINFORCEMENT LEARNING FRAMEWORK

The proposed congestion control algorithm behind

Owl computes the next cwnd values by leveraging statistics

gathered by the sender. In this section, we overview the

reinforcement learning model that we use and describe the

overall idea of our approach.

A. Reinforcement Learning: Background

In every reinforcement learning problem [41], an agent, i.e.,

a decision-maker, tries to learn the behavior of a dynamic

system interacting with it in multiple iterations. Specifically,

at each iteration, an agent receives the current state and the

reward from the dynamic system and outputs an action that

optimizes a given objective.

Thus, state and reward are the values that the agent receives

from the system, whereas the action is the only input that the

system acquires from the agent. A reward value indicates the

success of the agent’s action decisions, and the agent learns

which actions to be selected to provide the highest accumu-

lated reward over time, i.e., the long-term revenue. Hence,

the critical feature for reinforcement learning is to perform

incentive solution searching with regards to the system reward.

Q-Learning [42] estimates the value of executing an action

from a given state. Such estimations are referred to as state-

action values, or sometimes simply Q-values, Q(s, a). This

quality function represents the quality for taking action a at

the current state s. Q-values are learned iteratively by updating

the current Q-value towards the observed reward and estimated

utility of the resulting state s′ according to:

Q(s, a) = Q(s, a)+α
(

r + γmax
a′

Q(s′, a′)−Q(s, a)
)

, (1)

where α ∈ [0, 1) is the learning rate that determines the

override extent of the newly acquired information to the old

one, γ ∈ [0, 1) is the discount factor that determines the

importance of future rewards, and r is the reward at time t.
In this case, the agent utilizes the highest quality function at

state s′ regarding all possible actions.

To handle the complexity of having to keep a separate state-

action pair for too many states, models that approximate the

Q-values are beneficial. To solve our congestion inference

problem, we select a Deep Q-Learning approach [20], in which

the model is a neural network parameterized by weights and

biases collectively denoted as θ.

B. Deep Reinforcement Learning

To deal with the large state and action spaces, we ap-

proximate the Q-table via neural networks, reducing the total

available actions. This technique is referred to as deep rein-

forcement learning and, specifically, deep Q-learning, that uses

neural networks, parameterized by θ, to approximate the Q-

function. Hence, the Q-values are now denoted as Q(s, a; θ),
and the neural network is referred to as Q-network. In our

algorithm, the Q-learning process consists of two parts: (i)

the approximation of Q-values for the action selection, (ii)

the Q-network update, where the loss between predicted Q-

values and target Q-values is used to update the Q-network

parameters θ, using the gradient method:

θ ← θ + α (target Q−Q(s, a; θ))∇θQ(s, a; θ). (2)

The “target Q” is a target value calculated as follows:

target Q = r + γ max
b∈actions

Q(s′, b; θ). (3)

However, it can happen that the Q-function diverges due to

dynamical and frequent changes in the target [41]. Therefore,

a separate network is introduced, the target network. It is a

copy of the Q-function and is used to calculate the target

value. This approach is usually denoted in the literature as

Deep Q Network (DQN), and we configure a periodic update

of the target network with the current Q-function. This ap-

proach, however, arises several challenges, such as a complex

and time-consuming learning phase, which can also cause

catastrophic forgetting: the phenomenon in which the agent

forgets how to perform previously trained tasks [43]–[45].

To efficiently solve these issues derived from using function

approximation, motivated by other studies [20], [46], we use

a technique called experience replay [47]. Experience replay

consists of storing, at each time step, model transitions in a

circular buffer called the replay buffer. Then, during training,

instead of using the latest transition to compute the loss and

its gradient, our agent computes them using a mini-batch of

transitions sampled from the replay buffer. This approach leads

to: better data efficiency by reusing each transition in many

updates and better stability using uncorrelated transitions in

a batch. However, since it can be difficult to use histories

of arbitrary length as inputs to a neural network [46], it is

common to have Q-function operate on fixed length repre-

sentation of histories produced by a function φ(st) or φt for

short. Although more recent versions of DQN have appeared

proposing the use of a dueling DQN [48] or double DQN [49],

we experienced that no particular differences are visible and,

therefore, we stand with a simpler and less memory-consuming

version as the one proposed in [20].

IV. PROBLEM FORMULATION AND PROTOCOL DESIGN

In this section, we present the mechanisms composing

our protocol, whose design aims to continuously select the

next action, i.e., congestion window size, that maximizes

the value of our utility function. Our protocol evaluates the

reinforcement learning action based on the reward perceived

by the sender, used to select the next cwnd adjustment. We

then describe this procedure in a schematic way.

A. Congestion Control via Reinforcement Learning

We now overview our primary components in the RL

method, starting with our considered state set, then with the
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TABLE I: The network statistics gathered for estimating the

upcoming performance.

Features of the Owl congestion window predictor

1 Time-stamp [jiffies]

2 Congestion Window Size (cwnd) [packets]

3 Round Trip Time (RTT) [ms]

4 RTT variation between two consecutive samples [ms]

5 Maximum Segment Size (MSS) [bytes]

6 Number of delivered packets

7 Packets lost during a transport session

8 Current packets in-flight

9 Number of retransmissions [packets]

10 Partial Network Congestion (PNC) [packets]

11 Partial Network Availability (PNA)

12 Percentage of known network [%]

set of actions on the congestion windows, and finally, with the

utility that drives the choice of the next protocol action.

State Space. Table I summarizes the features that we selected

to build our model state space. We consider both end-to-

end statistics (features 1 to 8) and network-level statistics

(features 10, 11 and 12). Thus, the former set of features is

collected at the sender side at each time interval, any jiffy,

where jiffy is the finest time granularity on Linux systems.

Instead, the last three features represent the partial information

coming from the network (features 10 and 11), and a parameter

stating the quantity of knowledge, as a percentage of the whole

network (feature 12), respectively. In particular, the percentage

of the known network is defined as the fraction of controlled

network nodes in the path between a source and a destination

divided by the total number of nodes in such a path. This

value can be accessed for example via traceroute. Our partial

network knowledge is constituted by two main metrics: Partial

Network Congestion (PNC) and Partial Network Availability

(PNA). Partial Network Congestion (PNC) represents an

indicator of the known level of congestion within the network.

In particular, for each switch under control, let Pin be the

total number of packets received in a given time interval (one

second in our implementation), and Pout the total number of

outgoing packets. We then define diff as |Pin−Pout|. Given

a source receiving statistics or updates from z switches on the

path between a source and a destination, PNC is computed

using the following equation:

PNC = max(diff1, diff2, ..., diffz). (4)

While PNC informs about the current congestion level,

and consequently, the loss rate occurring in the network, Par-

tial Network Availability (PNA) informs about the available

(bandwidth) resources in the network. It indicates the spare

capacity of the network, in a similar way to [37]. For any link

j, given C its capacity and cr the current traffic rate, we define

the spare capacity on such a link, scj , as C−cr
C

. Then, given

w links on the path between a source and a destination, we

define PNA as follows:

PNA = min(sc1, sc2, ..., scw). (5)

We choose PNC and PNA as they are easy to compute

and accessible by a vast number of protocols and network mea-

surement applications, such as OpenFlow or NetFlow. Further

information regarding the network environment whereby our

protocol performs best is in Section IV-B. Nonetheless, Owl is

able to automatically understand when network knowledge is

hidden, impractical to obtain, or simply misleading. Inspired

by the more known action masking [50], we decided to equip

the solution with a state masking mechanism so that the same

model has validity both in the presence and absence of the

network feedback, as explained later in this section.

In defining our states, we also consider a history window

of k values for each chosen feature of our state space. This

approach helps our algorithm to predict the network conditions

adequately and to adjust the congestion window accordingly.

The neural network of our deep reinforcement learning algo-

rithm receives a matrix N by k, where k are the historical

values for each of the N features. In our experiments, k has

been set to 5 (more details in Section VII-H). We augment our

state space with a history of generic length k to help the agent’s

learning. However, we do not set this hyperparameter to a large

value in order to prevent the state from growing unreasonably,

and because forgetting history faster is beneficial.

Actions. The congestion window (cwnd) is one of the per-

connection state variables that is used by TCP to limit the

amount of data a sender can transmit before receiving an

ACK. TCP was designed based on specific network conditions

and handles all packet losses as network congestion. As a

consequence, TCP in wireless lossy links unnecessarily lowers

its rate by reducing the cwnd at each packet loss, negatively

affecting the end-to-end performance. Hence, we exploit an

offline training algorithm based on RL to update the cwnd

properly.

The selection of actions is the key to the proposed al-

gorithm’s effectiveness. The list of actions specifies how

Owl should change the cwnd in response to every packet

acknowledge. The set of acceptable congestion window values

is large and tied to the reward of the RL system. Hence, there

is no unique solution across every network condition. After an

empirical evaluation, we converged on the set that has given

us the highest utility, that is:

A = {−10,−3,−1,+0,+1,+3,+10}. (6)

We allow the agent to change the cwnd in any direction with

different intensities. The first three options reduce the size

of the congestion window with a distinct extent, whereas the

last three increase it by three different values. Ultimately,

the intermediate action does nothing to the size of the cwnd,

letting it remains the same as before. We want to encourage

the agent to explore diverse ways to influence the connection

by assigning different magnitudes to the performed change.

Indeed, not only the learning agent should predict when

increasing or decreasing the cwnd, but also to what extent.

For example, our algorithm must learn when the network

state suggests that a large part of the bandwidth is unused

to aggressively increment the window size, while it must

only slightly increase it when the network approaches any

congestion. Our network module starts with an initial cwnd

of 10.
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Due to the opted approach, the protocol learns how to make

control decisions from experience and, thus, eliminates the

need for necessary pre-coded rules to adapt to the variety

of network environments. While the action set A in Eq. 6

represents our default setting, we designed the systems so that

it is a policy that can be tailored to specific use cases. For

example, the action of the RL model can be the value of the

congestion window size (as we did) or other parameters acting

upon other TCP parameters, e.g., timeout estimation or slow-

start threshold.

Utility function (RL reward). The selection of the congestion

control schema relies on a utility function that models the

application-level goal of “high throughput, few losses, and low

delay”. In particular, the utility Ui of sender i is a function of

throughput of client i ( λi), packet loss rate for i (pi), and the

RTT of i (RTTi), as follows:

Ui = λi − δiλi

(

1

1− pi

)

− βi log

(

RTTi

RTTmin
i

)

(7)

where pi ∈ [0, 1), and RTTmin
i is the smallest RTT observed

over a sufficiently long period of time. In our implementation

we consider a period of 10 seconds as suggested by other

studies [15], [51]. The normalization of RTT
(

RTT
RTTmin

)

and the logarithm function enable the applicability to various

contexts and highly varying networks, e.g., cellular networks,

where RTT can abruptly change in a fraction of time; δi and βi

are two adjustable coefficients determining the importance of

the components. For example, a δi larger than βi implies that

lower packet losses are preferable to the packet delay. These

coefficients are per user as it is possible that applications might

have different preferences. The goal of each sender i is to

maximize its utility function Ui. In what follows, we better

motivate the reasons behind such an expression, studying

thoroughly the behavior of our solution when it considers both

aspects in the utility, i.e., loss and delay, or when β = 0 and

it works as a pure loss-based version. We refer to this latter

version with the name of Owl-Loss since it only considers

packet losses and not network delay.

State masking. Consider Table I, where we report the list

of the 12 features that are considered in the DRL model. In

some cases, only a subset of such 12 metrics is available.

Therefore, to make our DRL model general enough and suit-

able regardless from the presence of the network knowledge

(features 10 and 11 in Table I), we use a technique, known in

the literature as masking, over the state space. We refer to this

methodology as state masking, and consists of two steps. First,

the features list is padded to fit a given standard length, so that

the model always expects the same number of inputs. Once all

samples have a uniform length, the features to be ignored are

marked. By doing so, the model is informed of what are the

padded values so that they can be ignored by the DRL when

processing the data. Such state masking pre-processing can

be viewed as adding an extra layer in front of the Q-network

responsible for selecting the best action. The state masking

mechanism can be applied even if the network knowledge is

available, but it is not convenient to use, or it is convenient only

partially. As we show in Section VII, there exist circumstances

where weighting such information may lead to a significant

TCP module

State s:

RTT

Thr

Loss

…

Observe state s

Deep Neural Network

SENDER Reward r

Take action 

a = new cwnd

RECEIVER

Partial Network

Knowledge

Network

Measurements

Agent

Fig. 1: Owl Overview: reinforcement learning sender’s agent

interaction with the network.

performance increase of our solution. The extreme case is

when this information is fully considered or ignored, while in

between reside possible values of weight representing a model

parameter learned by our algorithm during training.

B. Owl Protocol Design

Consider Fig. 1, where we detail the main actions performed

by the sender. All collected metrics are given to the Neural

Network, and the protocol starts (Algorithm 1).

Algorithm 1 Owl cwnd update

1: Let t be the time step, and T total number of steps

2: Let S and D be the target source and destination

3: F← flow connecting S and D

4: At time t = 0 initialize Q0(s, a) with random wights and

set reward r as in Eq. (7)

5: for t = 1 to T do

6: Collect state vector st for flow F
7: cwnd?(t) ← maxcwnd Q(φ(st), st; θ)

8: Set cwnd to cwnd?(t)

9: Observe r and s′

10: Set φt+1 = φ(s′)
11: Store transition (φt, cwnd, r, φt+1) in replay memory

12: Perform a gradient descent step according to Eq. (2)

Specifically, we collect the state of the end-to-end com-

munication, e.g., RTT and throughput, exploiting the TCP

Linux API. Concerning the network feedback, the network

measurement agent computes PNC and PNA by controlling

the underneath topology and notifies these quantities to the

sender. Note that even when the network knowledge (feature

10 and 11 in Table I) is incomplete or unavailable, the neural

network does not use the in-network features but our protocol

can still provides valuable results (Section VII).

Once Owl has collected such values, it selects the next cwnd

by choosing the “action” according to the mapping policy.

During the training phase, the next cwnd value is selected

according to the ε-greedy policy: With probability ε it selects

the action randomly (exploration), and with probability 1− ε
it selects the best action on the basis of the highest expected

reward (exploitation). During the testing phase, the algorithm
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Fig. 2: Packets transmission with asynchronous interaction

between the sender agent and the RL model agent.

avails the states, actions, and reward to select the best value

for the cwnd (as shown in Algorithm 1); once the action is

set, the program updates the experience memory and the Q-

functions. The prediction of the best cwnd occurs every time

a packet is acknowledged to guarantee an adequate refresh of

the cwnd used in the congestion avoidance phase. The state set

is then updated to assure k historical values for each metric

at any interval.

We clarify the process dictating the packet transmission and

the learning phase in Fig. 2. We design our solution with the

goal of processing data efficiently and swiftly by an asyn-

chronous communication between the kernel and user-space.

By separating the responsibilities, we are able to transmit at

line rate, but properly handling the complexity of keeping an

RL process. The kernel module component can thus collect

data and let the user-space module handle them, at a larger

time scale using the logic to select the next cwnd. In particular,

the reinforcement learning-based congestion controller agent

accumulates network statistics from ACKs over a fixed period

and sends the action asynchronously in a separate thread. Such

separation of concerns between user and kernel space is also

necessary since the RL model requires a considerable amount

of memory, which may not be available within the kernel. At

the same time, the user-space component provides immediate

feedback to the kernel, communicating the new increment or

decrement of the window using the model trained so far. In

such a way, the TCP state can evolve regularly.

V. STABILITY ANALYSIS

In this section, we focus on the utility’s motivation, referring

to the Eq. 7 when the weight βi = 0. In particular, we

show that processes running our Owl-Loss converge to a

stable rate assignment. We demonstrate how no sender has the

incentive to deviate its sending rate from the strategy defined

by our Owl protocol objective function, hence reaching a Nash

equilibrium. At the equilibrium condition, we have the n-tuple

of sending rates defined as (λ1, ..., λn). Formally we have that:

Ui(λ1, ..., λi, ..., λn) > Ui(λ1, ..., x, ..., λn), ∀i, (8)

where Ui(λ1, ..., λi, ..., λn) denotes the sender i’s payoff as a

function of its and other strategies, and x is any non-negative

sending rate. The following theorem holds.

Theorem V.1. (Stability). Consider n senders sharing a bot-

tleneck link, and λi to be the rate of sender i; if for every

sender i the objective function is defined by Equation 7, the

sending rates converge to a stable equilibrium. Moreover for

every sender i, we have:

λi =
C
(

n
δi
− ẑ

)

n+ 1
, (9)

where ẑ =
∑

j 6=i
1

δj
.

Proof. We need to show the existence of a Nash equilibrium,

i.e., no sender can increase its objective function value by

unilaterally changing its rate. We consider a network model

with n competing senders sharing a bottleneck link of capacity

C and a FIFO-queue. Assuming a tail drop queue eviction

policy, the loss rate function can be described as:

pi =

{

1− C∑
i
λi

if
∑

i λi > C

0 otherwise
(10)

Let us denote the arrival rate in the queue by S =
∑

i λi.

Since the term 1 − C
S

= S−C
S

is independent of i and it is

equal for all senders, all senders should experience the same

loss rate, we denote pi simply by p. By substituting these new

terms into Equation 7, we obtain:

Ui = λi − δiλi

S

C
.

First we compute the partial derivative, ∂Ui

∂λi
, and we split

S into the two addends S = λi +
∑

j 6=i λj . Thus, for each i
yields:

∂Ui

∂λi

= 1− 2
δi
C
λi −

δi
C

∑

j 6=i

λj .

We then compute the second derivative of Ui, with respect

to the rate, and we obtain the negative quantity − 2δi
C

. Hence,

the utility is concave and the Nash equilibrium is achieved

if, and only if, ∂Ui

∂λi
= 0. Next, to find the rate at which the

equilibrium condition is achieved, we introduce ẑ defined as

ẑ =
∑

j 6=i
1

δj
. Hence we have:

1− 2
δi
C
λi −

δi
C

∑

j 6=i

λj = 0

2λi +
∑

j 6=i

λj =
C

δi

The solution to the stated system of linear equations is:

λi =
C
(

n
δi
− ẑ

)

n+ 1
,

which is the desired sending rate of sender i.
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VI. OWL PROTOTYPE IMPLEMENTATION

Network Scenario. In designing our protocol, we considered

practical scenarios in which networks are partially unknown.

Wide-area networks may require (undesirable) cooperation and

coordination of multiple (federated) gateways, and unstable

network conditions may hide information. Part of our evalu-

ation in Section VII focuses on the performance analysis of

our protocol with such partial network knowledge, showing

that the in-network information may add value if available,

but it is not required as in other in-network congestion control

mechanisms.

To analyze and respect this partial unavailability constraint,

we designed and implemented a system in which a software-

defined network (SDN) controller acts as a measurement

collector and manages only some of the deployed (virtual)

switches. While we use an SDN controller in our implemen-

tation, our approach is not limited to this specific technology.

The controller interacts periodically with the switches to

collect statistics about the number of packets transmitted and

received. Such statistics are then used by our implementation

to learn and predict the end-to-end action to take given the

level of congestion. In our implementation, the controller

receives packets’ statistics from all switches with a (re-

configurable) sampling rate of one-second, a good trade-off

between overload and freshness of information. The controller

also runs a simplistic web server and exposes REST API to

obtain these values, which are part of the input of our RL

algorithm.

Kernel Module. The Owl module is responsible for setting

the optimal congestion window. To operate, it obtains net-

work states by communicating with a measurement agent,

for example, an SDN controller. Fig. 3 shows the main

architecture components of our implementation. Our prototype

is composed of two main processes: one running in the kernel

and one in user-space. The kernel module exploits functions

included in the classical tcp cong.c to have access to the

underlying congestion control functionalities of TCP. Like any

other module, our kernel implementation can be mounted as

a pluggable congestion control algorithm. It can set and get

end-to-end transport states such as Sequence Number, ACKed

Packets, RTT, and efficiently compute the throughput.

The application process running in user-space collects in-

formation about the current TCP socket and uses them to

build the input matrix of a Deep Neural Network running the

reinforcement learning algorithm. The module takes actions in

line with the RL feedback and modifies the cwnd as a reaction

to events (Section IV).

Storing the required states to run a reinforcement learning

algorithm and to keep communications with the network

controller can be costly at the kernel level. As emerged

in [52], exposing congestion signals, i.e., RTT, losses, etc., to

an external module would enable providing new capabilities.

A user-space application can leverage a more extensive set

of libraries to fit the learning algorithm’s needs. Besides,

the transmission of packets to/from the network controller

could arise issues (e.g., delays and losses) and requires proper

management of the socket channel. For these reasons, we

Cwnd update logic

User Space

Controller 

Communication

Trained model

Reinforcement Learning

Historical values

Application 

requirements

Throughput Estimate

Prediction and 

Inference Logic

Socket Interface

RTT Estimate

Netlink server

Kernel Space

Netlink clientACKed Packets

RTT

Throughput

Current cwnd

New cwnd

Fig. 3: Owl has a component that runs in the Linux kernel,

and a component that runs at user-space to collect statistics to

be used by our reinforcement learning algorithm.

implemented the network management components of our

congestion control algorithm at the user-space and marshall

current TCP socket states between user-space and kernel via

the Netlink service, commonly used for this purpose [53].

Moreover, our RL component is in charge of setting con-

gestion window only during congestion avoidance phase of

TCP. As we rely on Cubic for setting other TCP parameters,

such as timeouts and threshold (ssthresh), we also adhere to

the separation into two main phases during cwnd increment:

slow start and congestion avoidance. The former starts with the

initial cwnd and lasts until one packet gets lost or the window

exceeds the ssthresh value. After overcoming this threshold,

the congestion avoidance phase begins. Although the initial

strategy is referred to as slow start, its congestion window

growth is quite aggressive, and certainly more aggressive

than the congestion avoidance phase. We have experienced

that the most critical stage is the latter, since (as the name

suggests) it attempts to avoid sending more data than the

network is capable of forwarding, that is, to avoid causing

network congestion. For this reason, we modify the traditional

behavior of TCP only in the congestion avoidance phase, but

we exploit years of research about TCP. This approach also

balances the disadvantages of RL-based systems, well-known

in the literature [21], [35].

VII. PROTOCOL EVALUATION

To evaluate our proposal, we tested Owl against seventeen

other transport protocols. In this section, we describe such an

evaluation scenario and our application testbed deployment,

followed by our performance results.

A. Trace-Driven Emulation Results

To evaluate our congestion control algorithm, we compare

it with other solutions over LTE networks. We use a virtual

network testbed and Mahimahi [54], an emulator that allows

testing of various network conditions, also by means of real

(cellular) traces. In particular, we run comparisons over traces

collected from three of the largest US telecommunication

providers, Verizon, T-Mobile, and AT&T. The network is

emulated through namespaces via Mininet [55] and consists

of the 14-node NSFNET topology. The transmission goes

through a Software-Defined Network (SDN), where switches
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Fig. 4: LTE Trace-driven emulation. Owl vs. previous schemes (using RL or not) tested over three cellular network traces

(top-right are better). In all cases, Owl outperforms our benchmark, and has the highest performance trade-off, on average, in

our tested use cases.

TABLE II: RL model parameters used for training and com-

puter network settings.

Model parameter Value

Episodes/Epochs 500000

Steps 5000

Learning rate 0.006

batch train True

warmup steps 10

γ 0.93

policy Epsilon Greedy

neurons per-layer 512-256

Comp. Network parameter Value

bottleneck link bandwidth [Mbps] 6 - 100

min RTT [ms] 1 - 40

buffer size [pkts] 3 - 2000

interact with a centralized controller (in our implementation,

we used Ryu [56]). We also evaluate the performance over

real hosts, and we deployed Owl over the GENI testbed [26].

Throughout our experimental campaign, we use the utility

function described in Eq. 7, where δ = β = 0.5 to give

equal importance to packet loss and delay. Unless otherwise

specified, we set a default percentage of known paths to be

20%, the Mininet network to have 1000-packet queue, and

0% random loss. To evaluate each protocol, we used a 95%
confidence intervals, and average 30 experiments in which

each sender-receiver pair runs TCP iperf3 for 100 seconds.

Our RL model is trained offline over an Intel(R) Core(TM)

i7-7500U CPU @ 2.70GHz for 12 hours, varying different

network conditions, e.g., cellular and wired, with different

knowledge percentages (0-100). The intervals of cellular traces

(Verizon, T-Mobile, AT&T as explained later) are different

from the ones of the testing phase in order to avoid visible

tailoring to specific network scenarios and overfitting. We

summarize in Table II the main parameters of our network and

our RL model, such as the number of epochs and learning rate

(see [57] for a full explanation of involved variables).

To understand how Owl performs compared to other so-

lutions, we deployed our protocol over an emulated network

created with Pantheon [58], a well-known fairly recent testbed

developed to evaluate congestion control schemes. In partic-

ular, we compared Owl against seventeen other protocols,

divided into five categories: (i) end-to-end TCP designs:

Cubic [22], Vegas [24], BBR [25], Tao-VA [59], Copa [15],

PCC [14] and its variants; (ii) end-to-end cellular, i.e., LTE

protocols: Verus [7], Sprout [6]; (iii) Machine Learning-based

transport protocols: Indigo [58] and Aurora [21]; (iv) explicit

congestion control: ABC [18] and XCP [37]; and (v) mixed

schemes: LEDBAT [60], SCReAM [61], WebRTC [62]. For

our LTE evaluation settings, we use the publicly available [54]

Verizon and T-Mobile traces, with separate packet delivery

for uplink and downlink. The traces were captured directly on

those networks. These traces are also loaded on our local SDN-

based virtual network testbed. Our OpenFlow controller is only

aware of the virtual switches (instances of Open Virtual Switch

(OVS) [63]) that are connected to the SDN controller. For

in-network algorithms, such as ABC, we emulate compliant

routers as Mininet hosts that marks the packets according to

the algorithm’s logic.

Fig. 4a-b-c shows that Owl performs efficiently in all tested

scenarios. To study separately the Owl’s loss-related properties

from its latency-related properties, our experiments sometimes

involve evaluating our protocol when the latency weight is β =
0, i.e., studying a purely loss-based variant. We refer to this

version as Owl-Loss and to the default combination of weights

simply as Owl, since its utility function is a combination of

loss and delay-based components. In the case of Verizon LTE

traces (Fig. 4a) Owl achieves both good throughput and 95th

percentile per-packet-delay, and no other solution has shown

a better combined throughput-delay performance. At the same

time, we can observe that also Owl-Loss can simultaneously

lower the delay, despite the fact that the RL reward was

designed to achieve high throughput and low loss rate. Similar

conclusions hold even for T-Mobile traffic (Fig. 4b) and AT&T

(Fig. 4c), where both versions of Owl provide a desirable

trade-off between throughput and delay. It is worth noticing

that none of the other algorithms outperform Owl in these

tested environments: our solution appears to be more stable

across traces. Our solution, thus, offers the ability to adapt

to different scenarios, as in diverse cellular networks, given

the effective learning process performed by our agent. This

adapting behavior is a consequence of the effective learning
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performed by our agent, which motivates the choice of the RL

framework.

Fig. 5 shows the shortcomings of transport protocols in

use and the lack of adaptation required for a good transport

protocol. The Fig. 5a represents a sample of the throughput

evolution over the Verizon LTE downlink traces for 60 sec-

onds. For the sake of clarity, we report only our comparison

to Cubic, as it is the default in many Linux implementations,

PCC, as it is one of the best performing within utility-based

approaches, and the loss-based version of Owl, given its ability

to foster high throughput in general and in cellular networks

as manifested in previous results. Owl adapts its sending

rate so as to closely match the bottleneck link’s available

bandwidth (dashed black line in the figure). In contrast, Cubic

slowly reacts to changes in the network, and PCC partially

approximates the link capacity. Our protocol can cope with

rate variations in a reactive manner and closely approximates

the desired behavior by learning the optimal action.

This result is also confirmed in Fig. 5b where we plot the

utility (Eq. 7) obtained with different algorithms over AT&T

LTE downlink. This time, we compare against ABC [18] as

it is the most representative of explicit congestion control

and Aurora as a novel RL-based congestion control algo-

rithm. Moreover, to generalize the findings about throughput-

delays of Fig. 4, we now consider the combined effects over

throughput and losses by means of the loss-based version of

the utility. Likewise, we can observe how Owl-Loss regularly

provides a higher utility than the benchmarks over time. This

is due to the ability of the framework to learn the optimal

behavior during training and then react efficiently during

network dynamics. We can also observe how Aurora and Cubic

fail to react promptly to the events, confirming how our state

space constitutes a valid indicator of the network conditions

and our mechanism can properly react.

B. Network Knowledge Impact

We now discuss our experiments regarding the impact of the

required network state knowledge that Owl needs to train the

RL system effectively. Fig. 6 display the (a) throughput and

the (b) RTT, when different transport protocols run over the

same 14-node topology emulated on our local virtual network

testbed. We set up our network where the maximum length

of a path is 7 switches, all links are 100 MBps, the network

load is at 40%, the base RTT is 30 ms, and the buffer size

of 1 BDP. This network load is generated by sending UDP

packets (via iperf3) until the desired network load is reached.

Specifically, we compare against Cubic [22], as a reference

end-to-end congestion control, Aurora [21], as a reference RL-

based congestion control, and ABC [18], as a reference in-

network control. The performance of Cubic and Aurora are

not affected by the lack of in-network knowledge since they

are both end-to-end congestion control algorithms.

We can observe that when the number of known (or

ABC-compliant) switches is more than 60%, our solution

(i) provides better performance than ABC, (ii) speeds up

the transmission in terms of throughput and (iii) reduces

the end-to-end latency. Besides, ABC performs significantly

worse than Owl when the number of ABC-compliant routers

is relatively low. In conclusion, our evaluation reveal that even

when either limited or very high number of the switches are

utilized to collect statistics, our solution outperforms both end-

to-end approaches (like Cubic) and novel in-network protocols

(like ABC). However, we can also observe how the worst

performance of Owl are seen approximately when half of

the devices are controlled, leading to a lower throughput and

higher delay than Cubic. We attribute such results to the fact

that the RL agent cannot assign the proper importance to the

incoming network states, resulting in occasionally misleading

values. In such particular conditions, the performance of Owl

are worse than those obtained using other end-to-end protocols

(Cubic and Auorora) and a network-assisted solution (ABC).

This issue motivates us to use state masking and weight

the incoming PNA and PNC information, as detailed in

Section IV. Aside from enabling our solution to work as a

pure end-to-end solution or as hybrid in-network / end-to-end,

this technique allows to neglect the network feedback values

when not beneficial. We then show the improvements obtained

by this choice in Fig. 6d-e. In the case only partial network

knowledge (around 50%) is available, Owl can still improve

the overall performance. By masking the state space, the model

does not suffer from a only partial visibility and can consis-

tently outperform other protocols. Furthermore, these results

validate that the value of PNC and PNA are beneficial to

the algorithm, where PNC is a signal of slowing down the

transmission given some traffic congestion, and PNA signals

to increase the rate as some resources are underutilized.

Throughput performance with respect to network size. In

this experiment we compare Owl against a few representative

protocols as we increase the number of informing switches

over randomly generated topologies, i.e., links are randomly

generated while we fix the network size. The link capacity

is also uniformly distributed at random between 50 and

100 Mbps. We are interested in assessing the impact of the

network size on our congestion control algorithm. To this aim,

we compare the perceived throughput when our solution has

no in-network congestion feedback, and when the network is

as informative as it can be, i.e., the in-network feedback arrives

from 100% of the switches. In Fig. 6c, these two Owl policies

are denoted with Owl-0, namely, zero-percent of total switches

are communicating with the source, and Owl-100, respectively.

It is notable how a full network awareness is beneficial and

allows a less prominent (and inevitable) performance degrada-

tion when an increasing number of switches compose an end-

to-end path. However, we note how even Owl-0 provides better

results than recent end-to-end congestion control solutions

based on RL [21]. The efficient solution design, as well as

the set of information chosen to drive the experience, are

key to this positive outcome. Another reason behind such

improvements compared to other RL-based models is that,

since we used the in-network information in different scenarios

during the training, the general policy learned by the system is

valid even when such network feedback is absent, as in Owl-0.
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C. Buffer Size Impact

Later, we consider the bottleneck saturation with varying

buffer sizes. We run a single flow for 100 seconds on an

emulated bottleneck link, comparing the throughput, the RTT

inflation, and the overall power. The network is set up with

30ms of base RTT and capacity on the bottleneck link of

50 Mbps. The RTT inflation is calculated as:

RTT inflation = RTT − base RTT, (11)

while the Power is:

Power =
throughput

delay
, (12)

following the definition in [64]. A high power indicates a high

throughput as well as a low delay in the network.

Starting by analyzing the throughput in Fig. 7a, we com-

pare against a utility-based protocol as PCC-Vivace that can

efficiently handle large and small buffers. Rather than Vegas,

which performs similarly to Cubic, we consider a delay-driven

protocol as Copa. For the sake of clarity, confidence intervals

in the graphs are omitted because they are negligible. From the

graph, we can observe how Owl needs almost the same buffer

size of PCC-Vivace to achieve at least 90% capacity utilization

(45Mbps). However, Owl converges to a higher throughput

value.

Regarding the delay evolution shown in Fig. 7b, Owl can

prevent the bufferbloat phenomena, as opposed to Cubic (used

here as baseline). Having the delay notion in the reward

function, our solution can learn when to reduce the cwnd to

avoid filling up the buffer. Owl and PCC-Vivac can maintain

the inflation a quarter of Cubic’s inflation when the buffer is

greater than 150kB. Fig. 7c confirms the ability of Owl to

jointly maximize the throughput while minimizing delay. Our

protocol can achieve this objective even more accurately than

PCC-Vivace.
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Fig. 7: Buffer Size Impact. The evolution of (a) Throughput, (b) RTT inflation, and (c) Power of Owl for increasing size of

buffer of bottleneck link.
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Fig. 9: Experimental analysis of throughput when multiple

Owl-Loss senders transmit concurrently. The results confirm

the theoretical analysis in Eq. 9.

D. Owl Fairness and Friendliness

In this subsection we evaluate the fairness among several

flows all running Owl-Loss and competing with each other, as

a verification of the stability analysis. We also assess Owl’s

friendliness, i.e., fairness when a Owl flow compete against

different protocols, such as Cubic.

We set up an experiment where the network has a bottleneck

link of 30ms RTT and a bandwidth of 50 Mbps. First,

we evaluate the friendliness against all congestion control

solutions that are installed on Linux by default (Fig. 8a).

We compare the average ratios between throughput values
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Fig. 10: Throughput evolution for increasing duration of the

communication. Owl is suitable for diverse type of applica-

tions.

achieved by each flow with respect to their ideal fair share. We

found that Owl has a higher level of friendliness when multiple

flows run Owl and when Owl competes with other transport

protocols (Fig. 8a.) While perfect friendliness does not hold

for any of the tested schemes, we note how Cubic (that has best

throughput-delay performance among its Linux counterparts),

has a worse level of friendliness than Owl (Fig. 8b). By

having the objective of minimizing the losses in combination

with some network knowledge, our protocol can understand

when reducing the sending rate to improve its and others’

performance. Second, from the same graphs, we can also

derive the level of fairness of our solution compared to Cubic’s
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one. It is easy to conclude that Owl results in a higher level

of fairness.

To further support this conclusion, we also consider the

Jain’s fairness index [65], one of the most widely used

measures of fairness. The Jain’s index is formally defined as:

J =

(
∑k

i=1
fi
)2

k
∑k

i=1
f2
i

, (13)

where fi is the throughput for the i-th connection, k is the

number of flows, and 0 ≤ J ≤ 1. One of the advantages

of this metric is its intuitiveness, i.e., a large value of J
represents a more fair resource allocation. We investigate

how the Jain’s index evolves over time for multiple flows.

Results given in Fig. 8c confirm that Owl can increase the

fairness when compared to other protocols and outperforms

other learning-based solutions. In particular, even when more

flows contend the same resources, our solution is able to

accommodate the demands and provide an equal throughput

to these transmissions.

Finally, to demonstrate the validity of Eq. 9, we quantify the

throughput of multiple Owl-Loss flows sharing a bottleneck

of capacity 100 Mbps. We measure the average throughput

when the number of senders varies between 2 and 3, and all

of them set the value of δ = 0.7 (and β = 0). As shown

in Fig. 9, where we report both the theoretical value and

the obtained one, the empirical analysis confirms the stability

results expressed in Section V.

E. Evaluating the Impact of Traffic Flows Duration Diversity

In this subsection, we analyze the effects of shorter flows

(Fig. 10). We observe how diverse approaches to explicit

congestion control perform well for long-lived flows, where

the devices have time to notify the hosts and the traffic can be

optimized. The performance of end-to-end congestion control

protocols is generally suboptimal for longer communications.

We can see how our solution outperforms the other protocols

picked as benchmarks for both short-lived and long-lived

flows. We attribute the reason for such better performance to

our proposed integration of in-network signals into a learning

module; such technique mitigates the drawbacks of the pure

explicit congestion notification à la ABC [18] and standard

end-to-end approaches as Cubic [22]. This result made explicit

the ability of Owl to adhere to the network conditions it

encounters.

F. Evaluation over the GENI Testbed

To establish the practicality of our approach and understand

how Owl performs over wide-area Internet paths with real

cross-traffic and real packet schedulers, we deploy our solution

on the GENI testbed [26]. In these experiments, we evaluate

how the congestion control schemes under consideration be-

have across two federated GENI aggregates. We measure the

performance of each schema when competing with other flows.

To evaluate our protocol in these realistic settings, we average

the throughput and end-to-end delays obtained over 60-second

flows, while the senders share a bottleneck link with 3ms RTT

and a bandwidth of 100 Mbps.

We compared the performance of our protocol with all other

protocols currently available on Linux, considering also the

loss version of Owl. The results are summarized in Fig. 11a,

where we evaluate the ability to achieve the goal of high

throughput and low loss rate defined by our utility function.

Our prototype evaluation deployed in real settings matches

our emulation results: Our implementation can jointly achieve

high throughput and a low loss rate when compared to other

solutions, effectively balancing the two components. Not only,

but the two versions provide similar results, with a slight

improvement in the loss rate for the loss-based version. Since

the general version of Owl provides valid results, we continue

the experiments with this version in what follows.

We then analyze if our solution is agnostic to the flow

duration, as in our emulated scenarios. To this end, we perform

a set of experiments and report the results in Fig. 11b.

Comparing the obtained throughput, we observe how Owl is

beneficial regardless of the flow duration.

Moreover, we consider how an increased number of concur-

rent flows damages the single transmission (Fig. 11c). Clearly,

as the competing flows increase, the loss rate increases as well.

However, Owl is able to maintain a low loss rate, ensuring

stable transmissions.

G. Study of Our State and Action Space

In the rest of this section we show the results that motivated

our design choice. In particular, we analyzed what is the

most performant state and action set that our reinforcement

learning algorithm should use? This analysis is often omit-

ted in prior reinforcement learning work, while it has been

always lacking in previous work on RL for TCP congestion

control [17], [21], [35].

State Space. We start by considering different set of states

and we define the following policies: (i) State-set-1 or simply

State-1 a state space limited to three features, as described

in [21]. This vector of statistics consists of: latency gradi-

ent, i.e., the derivative of latency with respect to time; the

latency ratio, i.e., the ratio of the current’s mean latency

within the time interval to minimum latency observed in the

connection’s history; sending ratio, i.e., the ratio of packets

sent to packets acknowledged by the receiver. (ii) State-2 a

twenty features list as mentioned in [51]. This list includes

features as in-flight bytes, RTT, RTT variation, and is thus

partially overlapped with our state space, but includes more

statistics regarding the throughout and lost packets. 1 (iii)

State-3 in which we consider nine metrics, as in [35]. This

policy considers the current cwnd, together with both statistics

calculated during the monitoring interval, i.e., throughput, loss

rate, delay, ACKs, elapsed time, and metrics regarding the

overall communication, i.e., the minimum delay, maximum

throughput, and smooth RTT measured since the transmission

started. It is worth noticing that all these space-set policies,

similar to Owl, consider a fixed-length history. Our proposed

1The complete list of features is as follows: last RTT, smooth RTT, min
RTT, standing RTT, RTT variance, delay, cwnd, inflight bytes, writable bytes,
sent bytes, received bytes, re-transmitted packets and bytes, ACKed bytes,
lost packets and bytes, throughput, number of retransmission due to timeout,
number of timeouts, flag indicating congestion. For further details refer to [51].
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Fig. 11: GENI testbed evaluation. (a) Throughput-loss rate trade-off for kernel-level solutions over real networks. Owl
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spaces and (b) action spaces. The results motivate our assump-

tions and our choices.

space set, detailed in Section IV, is denoted in our evaluation

figures with State-4. We offline trained these alternatives under

the same conditions encountered by ours.

In Fig. 12a we show our evaluation results on the impact of

such state set policy in the throughput / losses diagram. The

considered scenario refers to the same GENI network, when

two flows compete on this bottleneck, in order to accentuate

the possible congestion occurrences. We observe how our

design (State-4) successfully balance the importance of having

information from each feature and the complexity of handling

such a large state space. In particular, this experiment shows

how our choice of network statistics that we use as features

represents effectively the TCP transmission state. Aside from

the in-network metrics, all other statistics are easily obtained

by our kernel module, thus having a minor impact on the

data collection process. Besides, the results suggest that also

network knowledge is precious and beneficial rather than a

burden.

Action Space. After analysing the impact of the state space,

we focus on the action space to assess what is the most

effective set. Specifically, we evaluate alternative modification

of the congestion window, as proposed in other RL-based

approaches. We denote with an action set the following:

(i) Action-1 {0,−10,+10,×2, /2} as in [51], (ii) Action-2

cwnd×2α where −2 < α < 2, α ∈ R , as in [35], (iii) Action-

3 {x×(1+0.025a), x/(1−0.025a)} where a ∈ R and x is the

sending rate, as in [21]. Comparing the performance of these

action set allows us to evaluate (i) a different set of discrete

actions operating directly on the TCP window, but including
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Fig. 13: Features Importance Analysis. Visualization of the

role of each feature in the decision process from the highest

degree of importance (dark red) to the lowest (dark green)

when (a) the percentage of known network is low and (b)

high.

more aggressive actions that multiply and divide the current

value; (ii) a large action space, composed by continuous values

(α), and used by an agent acting on the window; (iii) a large

action space, composed by continuous values (a), and used

to set the sending rate. We report results in Fig. 12b, where

we refer to the actions of Section IV as Action-4. It is worth

noticing that these alternatives only refer to the action space

and not to the algorithm applied in the congestion control

protocol. Besides, also in this case, we offline trained the

alternatives before the test experiments.

The obtained results strongly support our choice. First, a

discrete and limited set of actions shortens the convergence

time while assuring adequate exploration. Second, operating

directly on the window reduces the operations in both user

and kernel space. Third, our possible actions allow moderately

increasing and decreasing the cwnd without incurring drastic

and sharp changes, which are harmful to TCP communication

states.

In our considered state space then, we study the importance

of each feature in the decision process. Although more recent

and more advanced techniques can be used, such as PCA [66],

Occlusion and Saliency Maps [67], they mostly find appli-

cability in supervised and unsupervised learning problems.
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Fig. 14: Sensitivity analysis. This analysis is used to justify the choice of our default algorithm parameters; (a) k historical

values of feature are used to make the next cwnd prediction; (b) Neurons per layer for Owl’s neural network configuration;

(c) Time interval for requests of network devices metrics. (d) Combinations of the coefficients δ and β in the reward function.

Therefore, given the deep RL nature of our model, we use an

approach based on observing the weights of the neural network

(NN), where the relative importance of a specific variable

can be determined by identifying all weighted connections

between the nodes of interest [68]. This procedure is based on

the observation that the weights dictate the relative influence

of information that is processed in the NN such that input

variables that are not relevant in their correlation with a

response variable are suppressed by the weights. Then, since

we have a matrix in input, we average the obtained results over

the historical k values to determine the importance of each

single feature. We report in Fig. 13 the graphical visualization

of the features’ importance for (a) limited visibility of the

network and (b) higher visibility. We can observe how the

network feedback plays a minor role when the visibility is

limited while, among the end-to-end signals, the values of

cwnd, RTT, its variation, and delivered packets guide the

model’s decision for the next cwnd value.

H. Sensitivity Analysis

In this subsection, we report our experimental results con-

ducted to establish the best parameter set in our congestion

control algorithms and discuss their sensitivity. In particular,

we focus on the Neural Network (NN)’s shape, the parameter

k of the algorithm (for how long do we need to remember

history for a more accurate cwnd prediction), the frequency

at which we should collect in-network measurements, and the

default values of coefficients δ and β of the utility function.

We evaluate how these values affect performance with 95%
confidence intervals, obtained with 30 trials on the GENI

testbed with the same network conditions of the previous

subsection. First, we examine the impact of the length of the

action history in the augmented state space. Fig. 14a shows

the power obtained at training for varying values of the state

history length k. We can observe that models with k = 0 or 1
struggle to learn, while the best performance is attained with

k = 5 with diminishing returns beyond that value of k.

Further, we also run the same experiment with various

Neural Networks to analyze how this choice may affect

performance. Fig. 14b exhibits the power measured during

the RL testing phase for the following Neural Networks

configurations: (a) two layers comprised of 128 neurons each,

(b) two layers with 256 and 128 neurons respectively, (c)

512 and 256 neurons, (d) three layers with 256, 256, and

128 neurons, (e) 512, 512, and 256 neurons. These results

suggest that a two-layer neural network architecture works

well, and that the combination 512-256 ((c)) provides the best

combination of throughput and delay. Hence, we empirically

set this configuration as the default of our system, but we

realize that this configuration is a policy.

We then investigate the selection of the most valuable

measurement request interval (Fig. 14c). We note that, when

the network measurements are gathered every 1-second, the

power is at its maximum. This value also guarantees the

freshness of data without incurring in too frequent updates.

Finally, we consider how the coefficients δ and β in Eq. 7

impact the power performance. Empirically, we can observe

how giving equal importance to the delay and packet loss, i.e.,

δ = β = 0.5 leads to the highest power value. As mentioned

for previous analyses, we set these values as default, but they

constitute a policy that can be changed if different desiderata

hold, e.g., if a very low delay in the transmission is preferable

in spite of higher losses, it is advisable to set a β higher than

δ.

VIII. DISCUSSION AND CONCLUSION

In this paper, we presented Owl, a reinforced learning-based

transport protocol designed to learn from end-to-end and in-

network signals. Our evaluation, with a kernel implementation

and real traces, confirms that Owl is effective under various

network conditions, and it can speed up transmissions and

reduce delays and loss rate better than most existing protocols

in the vast majority of the tested scenarios. We also analyzed

the stability condition of Owl and evaluated its fairness demon-

strating that it is less aggressive than other performant solu-

tions when it competes with other protocols and when it com-

petes with itself across other sources. Finally, we showed how

taking into account information involving the network layer

leads to increasingly better results, especially when at least

50% of the network congestion state is available at the source.

Since our solution uses reinforcement learning, it inevitably

inherits its shortcomings. For example, its performance de-

pends on the balance between exploration and exploitation

of the learning policy. Moreover, in computer networks with

conditions different from those tested in our evaluation results,

e.g., satellite or data center networks, performance results of

Owl may not hold. As such, despite the obtained promising
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results, we believe that exploring whether or not the reinforce-

ment learning model used in Owl can be transferred to other

computer network scenarios is an interesting open problem.

Knowledge transfer [69], [70] in general and generalizability

of reinforcement learning in particular [71]–[73] are active

areas of research in AI/ML, and hence may apply even in

congestion control.
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