2022 IEEE International Conference on Networking, Architecture and Storage (NAS) | 978-1-6654-5408-7/22/$31.00 ©2022 IEEE | DOI: 10.1109/NAS55553.2022.9925540

Approximate Network-on-Chips with Application to
Image Classification

Yuechen Chen Ahmed Louri

The George Washington University — The George Washington University ~ New Mexico State University

Email: yuechen@gwu.edu Email: louri@gwu.edu

Abstract— Approximation is an emerging design methodology for
reducing power consumption and latency of on-chip
communication in many computing applications. However,
existing approximation techniques either achieve modest
improvements in these metrics or require retraining after
approximation. Since classifying many images introduces
intensive on-chip communication, reductions in both network
latency and power consumption are highly desired. In this paper,
we propose an approximate communication technique (ACT) to
improve the efficiency of on-chip communications for image
classification applications. The proposed technique exploits the
error-tolerance of the image classification process to reduce power
consumption and latency of on-chip communications, resulting in
better overall performance for image -classification. This is
achieved by incorporating novel quality control and data
approximation mechanisms that reduce the packet size. In
particular, the proposed quality control mechanisms identify the
error-resilient variables and automatically adjust the error
thresholds of the variables based on the image classification
accuracy. The proposed data approximation mechanisms
significantly reduce packet size when the variables are
transmitted. The proposed technique reduces the number of flits
in each data packet as well as the on-chip communication while
maintaining an excellent image classification accuracy. Cycle-
accurate simulation results show that ACT achieves 27% in
network latency reduction and 28% in dynamic power reduction
as compared to existing approximate communication techniques
with less than 0.85% classification accuracy loss.

Keywords— Image Classification, Network-on-Chips (NoCs),
Approximation.

I. INTRODUCTION

Image classification applications widely use deep
convolutional neural networks (CNNs) and are deployed from
cloud to edge computational frameworks for a variety of
scenarios, such as search engines and self-driving cars [1], [2].
As the complexity of these applications and the resolution of
images continue to increase, conventional homogeneous
architectures (such as multicore CPU/GPU) are constrained due
to excessive communication latencies and significant power
dissipation [3]-[5]. To efficiently process these applications,
heterogeneous architectures have been proposed with pre-
processing and inference cores [3]-[8]. Pre-processing cores
are designed to prepare data by resizing the raw image and then
normalizing the value for each pixel into a specific range.
Inference cores are designed to fetch the processed data and
parameters of the CNN model to perform inference.

Network-on-chips (NoCs) have been widely used to
efficiently connect cores, memory interfaces, and caches in
these architectures [9]. Recent research [3], [10] has shown that

978-1-6654-5408-7/22/$31.00 ©2022 IEEE

Shanshan Liu Fabrizio Lombardi
Northeastern University

Email: ssliu@nmsu.edu Email: lombardi@ece.neu.edu

with a heterogeneous architecture, data transfer can account for
up to 34% of the execution time and up to 40% of the overall
chip power consumption. Since image classification
applications can tolerate errors in the parameters and the inputs,
approximation techniques have been proposed for reducing
data transfer, thus reducing network latency and power
consumption [11], [12]. Existing approximation techniques can
be categorized as follows:

o Existing approximate communication techniques [13]-[17]
reduce communication latency and power consumption by
utilizing packet approximation in NoCs. However, existing
techniques only rely on the relative error for data
approximation. Since relative error tolerance is limited for
image classification applications, only few packets can be
approximated using existing approximate communication
techniques.

e Existing CNN approximation techniques [18]-[22] reduce
the size of the model using quantization or pruning.
However, these techniques do not specifically target image
classification. Moreover, as quantizing and pruning the
parameters can significantly reduce the classification
accuracy, existing techniques require the model to be
retrained prior to inference. The retraining process requires
substantial time to complete while incurring considerable
power consumption.

To address the above issues, an approximate
communication technique (ACT) that enhances communication
efficiency for image classification is proposed for
heterogeneous systems; it leverages the error-tolerance of the
image classification application to reduce the transmitted
packet size, thus reducing power consumption and network
latency. ACT utilizes two approximate communication
schemes: an approximate communication for the pre-
processing cores (ACT-P) and an approximate communication
for the inference cores (ACT-I). Each scheme includes quality
control and data approximation mechanisms to leverage the
error tolerance in multiple steps of the image classification
process. Specifically, the contributions of this paper are as
follows.

e The proposed approximate communication technique (ACT)
is utilized in the pre-processing cores (ACT-P) and the
inference cores (ACT-I) to reduce network latency and
dynamic power consumption for image -classification
applications by leveraging the error tolerance of the
application.

e The ACT is implemented with software-hardware co-design.

e Performance evaluation results show that compared to the
existing approximate communication techniques, ACT

Authorized licensed use limited to: The George Washington University. Downloaded on November 23,2022 at 23:39:28 UTC from IEEE Xplore. Restrictions apply.

reduces network latency and dynamic power consumption

by 27% and 28%, respectively, with less than 0.85%

classification accuracy loss.

This paper is organized as follows. Section II presents a
background for the proposed technique; Section III outlines the
basic operational principles of the ACT. The implementation is
presented in detail in Section IV, while Section V deals with its
evaluation. Section VI concludes this manuscript.

II. BACKGROUND

Approximation techniques are widely used to enhance the
efficiency of image classification applications and CNNs [18]—
[22]. Existing approximation techniques can be categorized into
two types based on on-chip communication:

e Approximate communication techniques to reduce power
and latency of communication during the execution of an
application;

e Approximation techniques for the CNN model to reduce the
model size prior to the execution.

These techniques will be reviewed next as relevant to the
proposed scheme.

A. Approximate Communication Techniques

Approximate communication is considered to be an
effective approach to improve network performance when an
application can tolerate errors [13]-[17]. With a reduced
accuracy during communication, approximation techniques
significantly reduce network latency and the power
consumption for on-chip communication.

Fig. 1 shows an approximate communication NoC [13]-[17]
implemented in a heterogeneous multicore system [3]-[8] with
an L2 shared cache for CNN inference. Consider a cache miss
during a memory load or store operation by a CPU for image
pre-processing. When a cache miss occurs during a memory
load operation, a read request packet is sent to the memory or
the shared cache through the NoC. Then, the memory or shared
cache uses a read reply packet to send the required data back to
the core. When a cache miss occurs during a memory store
operation, the data are incorporated into a write request packet
and sent to the memory or shared cache through the NoC. After
the memory or shared cache receives the data, a write reply is
sent back to the core to confirm a successful memory write. The
data approximation module in the network interface reduces the
packet size by truncation or lossy compression according to the
approximation information, which includes variable error
tolerance and type (e.g., integer or floating-point). Various data
approximation methods [14], [16], [17], [23] have been
proposed to reduce the packet size according to the
approximation information. However, existing techniques
achieve a limited improvement when CNNs are utilized for
image classification applications because the parameters of the
model and the inputs cannot be approximated using methods
based on the relative error.

B. CNN Approximation Techniques

Quantization and pruning methods are widely used for deep
CNNs in image classification applications to reduce
communication traffic and computation [20]. For example, in
[22], the size of the deep neuron network is significantly
reduced using quantization, pruning, and compression. Existing
image classification applications [24]-[31] are implemented
using Pytorch [32] and TensorFlow[33] frameworks, which

— MEM
L1/L2

L2 L2 MEM
LR R

g gl g g R| {RT R
o (-3 @ | <
sl = s T
25| 2|2 [[ez | [rem]
L3 NIj L1 NI L1 NIj L1 NIj L1
5 R I I
= = LRy LRY 1=
= Data Data
% | Approx Recov | cPu cru | |....e.e..ce| I.Me eeeee
8 Core Core Core Core
g + * NIj L1 NI| L1 NIj L1 NIj L1
£ rl—l—l /l—l—, /I—l—l
E I'F IF IF
= | Packet Packet I:R_l 1RJ 1R 1R
5 D
% MEM L2 L2 MEM
— v |
Packet
I'F I I'F
Router @) [R] {rf R R

Network Interface (NI)

Read Rep.

Packet Data |
Encoder Approx

Packet
Packet Data | ooadBed.,
Decoder Recov 4,

Fig. 1: Heterogeneous multicore architecture with an approximate
communication NoC

Write Rep.

support CNN quantization and pruning on generic inference

cores (e.g., CPUs, GPUs, CNN Accelerators). However,

existing model approximation techniques have two major
limitations.

1. They are developed for generic CNN inference. The
performance improvement methods are not designed
specifically for image classification. Thus, system
performance can be further improved with dedicated
optimization techniques.

2. They require the model to be retrained or fine-tuned before
classifying images, because these techniques incur a
significant reduction in classification accuracy.

This paper aims to approximate the image classification
application during the execution process for communication
efficiency enhancement by incurring only a very limited impact
on accuracy.

III. PROPOSED APPROXIMATE COMMUNICATION TECHNIQUE

The proposed approximate communication technique
(ACT) reduces network latency and power consumption of on-
chip communication in NoCs. This is mainly accomplished by
reducing the size of each packet and exploiting the error-
tolerant features of image classification applications. The image
classification applications tolerate two types of errors [18],
[19], [34]: the first type is image contrast reduction during
image pre-processing; the second type is quantization errors in
the fully connected layer during model inference. Thus, ACT
includes two sets of approximate communication techniques to
leverage two types of error tolerance.

1. The approximate communication for image pre-processing
(ACT-P) includes quality control and data approximation
mechanisms.

o The quality control mechanism dynamically adjusts the
image contrast and monitors the accuracy of the
application to balance it with the communication efficiency.

o The data approximation mechanism for image pre-
processing reduces the data size by reducing the image
contrast.

2. The approximate communication for model inference
(ACT-I) includes quality control and data approximation
mechanisms.

e The quality control mechanism monitors the values of the
variables when a fully connected layer is processed.

e After recording the maximum/minimum values of the
variables by the quality control mechanism, the data

Authorized licensed use limited to: The George Washington University. Downloaded on November 23,2022 at 23:39:28 UTC from IEEE Xplore. Restrictions apply.

il S T

>
z
e - - - -
§ - o, "
9% & e e ° T~
§ s0% L °
S a0% °
% 30% °
2
© 0 23 -a5 68 -90 -113 -135 -158
Contrast Reduction Level (C)
- o AlexNet - .@= . VGG19 = Y ShuffleNet X1.0
- x GoogleNet - 4 DenseNet201 = =& = ResNet152

Fig. 2: Classification accuracy versus contrast reduction level (C).

Raw Image

\
€
/

Pre-process
Raw Image

Model
Inference

Compare
Results with
True Value

age Classification Application Testin,

Fig. 3: Proposed quality control mechanism for image pre-processing.

approximation mechanism utilizes data quantization to
reduce data size.
A. Approximate Communication for Image Pre-processing

(ACT-P)

Recent research has shown that image -classification
applications are resilient to contrast reduction on the raw image
prior to inference [18], [34]. In this paper, it is assumed that the
level of contrast C ranges from —255 to infinity. When C = 0,
there is no adjustment to the image, but when C € (—255,0),
the image contrast is reduced. When € = —255, all values of
the pixels (R, G, B) in an image are 128, making the image of
a solid grey color. Hence, Eq. (1) describes the relationship
between the contrast correction factor F and the level of
contrast C.

_ 259(C+255)
~ 255(259-C)

(1)

As per F above, the contrast reduction for each pixel is
performed by Eq. (2), in which the variable P is the value of a
color of a pixel (in a range from 0 to 255), and P’ represents
the corresponding value with contrast reduction.

P’ = round(F(P — 128) + 128))

Fig. 2 shows the classification accuracy for a few widely-
used image classification applications [2] versus the level of
contrast reduction; image -classification applications can
tolerate 23 levels of contrast reduction (i.e., C = —23) with
negligible accuracy reduction (0.07% accuracy reduction on
average). Fig. 2 also shows that different image classification
applications have different accuracy tolerance for image
contrast reduction; for example, for a classification accuracy
loss of up to 1%, AlexNet [25] can tolerate 23 levels of contrast
reduction, while VGG19 can tolerate -90 levels. Thus, a quality
control mechanism is needed to select the appropriate contrast
reduction level for the different image classification
applications to avoid a significant loss in classification
accuracy.

1) Quality Control
A quality control mechanism for image pre-processing is
utilized to maintain the accuracy of image classification. Fig. 3

G Contrast

?

[soit] e [Bbit] » o o [gbit]
L]

A)eee[EBR] ,
JQ_L — ~

a =1

* e X X| o ee
128-128F 128-128F
s e ¢ e
| | _r- : J 1 ¢
L 1
[] -—
[[
[Base] * » « (i | [Base] » » [oir |
&) G o) C

Fig. 4: Design of data approximation for image pre-processing.

TABLE I: RELATIONSHIPS BETWEEN QUALITY CONTROL SUPPORTED
CONTRAST REDUCTION LEVEL (C) AND CONTRAST CORRECTION FACTOR (F).

Supported Contrast Reduction Level (C) Contrast Correction Factor (F)
0 1

-23 0.835

45 0.701

-68 0.581

90 0.480

-113 0.388

-135 0.309

-158 0.236

shows the proposed design of the quality control for image

classification. This mechanism adjusts the contrast level during

the testing process. This is the last step prior to the classification
of the images by the application. Testing includes three phases.

1. The raw images in the test data set are processed by the core.
Different from the images that the application processes, the
data set contains the query data (raw image) and the true
value for each image (label).

2. The model inference is then accomplished by fetching the
processed data and the classification model.

3. Finally, the generated result is processed by the core to
compare it with the true value. The model accuracy is
calculated by comparing the predictions generated by the
model with the true value.

The quality control mechanism utilizes the accuracy
calculated by the core to adjust the image contrast. When
considering the potential accuracy reduction caused by
applying approximate communication for model inference, the
accuracy reduction due to the image contrast reduction is
limited to less than 1%. The proposed quality control
mechanism supports eight contrast reduction levels that are
shown in the left column of Table I. Thus, the following novel
procedure is proposed to determine the image contrast
reduction level:

1. During the first phase of the test process, the classification
accuracy of the image application is calculated with no
image contrast reduction. The classification accuracy is
calculated as in Eq. (3).

Number of Correct Classifications (3)
Total number of Classificaitons

Classification Accuracy =

The correct classification is defined as the image category
(e.g., cat, dog, car) with the highest probability (as predicted
by the model); this must be exactly the same as the expected
answer (label).

2. The quality control mechanism gradually reduces the image
contrast levels by choosing a contrast reduction level
according to the left column of Table I until there is more
than 1% loss (as threshold) in the classification accuracy
compared to the estimated base accuracy in the next testing
process.

Authorized licensed use limited to: The George Washington University. Downloaded on November 23,2022 at 23:39:28 UTC from IEEE Xplore. Restrictions apply.

3. The value prior to the last contrast reduction level is chosen
for image classification. For example, if the classification
error exceeds 1% at level -68, the lower consecutive level (-
45 according to Table I) is selected for image classification.
During image classification, the contrast reduction level is
fixed and registered in the network interface.

2) Data Approximation

The data approximation mechanism reduces the amount of
transmitted data for image contrast reduction. The so-called
base-delta approximation mechanism is proposed to take
advantage of the reduced image contrast for data reduction.
Since the difference in values between pixels in an image is
small, the base-delta compression mechanism can significantly
reduce the number of bits needed to represent each pixel.
Moreover, the proposed image contrast reduction process
further reduces the difference between pixels, so the data size
can be substantially reduced by only transmitting the difference
between pixels. Fig. 4 shows the design of the proposed base-
delta approximation mechanism for image pre-processing. The
data approximation process consists of two steps.

Step 1: The image contrast reduction operation is activated
with a contrast reduction level.

Step 2: The multipliers and adders then adjust the value for
each pixel based on Eq. (1) and Eq. (2).

To reduce its complexity, ACT-P supports eight levels of
image contrast reduction. Table I shows the mapping of the
conversion of the supported contrast reduction level (C) into the
contrast correction factor (F). The first 8-bit data in a write
request or read reply is chosen as the base; the remaining data
is represented as the distance to the base. Fig. 4 (a) shows the
approximation process when the image contrast reduction is
deactivated (Contrast Reduction Level = 0). The data bypass
the contrast reduction operation and is compressed with full
accuracy. Fig. 4 (b) shows the approximation process when the
image contrast reduction is activated.

B. Approximate Communication for Model Inference (ACT-I)

Existing work [21] has shown that the classification
accuracy reduction in image classification applications is
negligible after quantizing the parameters and activation of the
fully connected layers (IEEE standard 32-bit floating-point)
into 8-bit integers. As floating-point data type is widely used in
image classification applications [24]-[31] to represent
parameters and activation, the quantization process consists of
mapping a floating-point value x € [a, 8] to a b-bit integer
Xq € [ag, Bql; this is computed as per Eq. (4) (where ¢ and d
are variables).

Xq = floor(%x —-d) 4

Note that when performing quantization, the floating-point
0 must be mapped to a b-bit integer 0. Thus, the relationship
between c, d and the ranges of x and x, are given as follows.

B =c(By+d)
{a c(az +d))

In Eq. (5), @ and 8 are the minimum and maximum of the
floating-point value, respectively. a, and f; are the minimum
and maximum of the integer value (i.e., quantized floating-
point value), respectively. ¢ and d are the two variables that

must be solved for the quantization process. Eq. (6) illustrates
the solution for Eq. (5).

B-a
CcC =
Bq—aq
e ©
i

However, as per Eq. (6), the range of x (i.e., @ and) must
be considered when performing data quantization. Since data
(i.e., x) exceeding the range is basically clipped (by truncation)
during the quantization process, the range must be dynamically
determined for different data items. Therefore, a novel quality
control mechanism is developed to estimate the range of inputs
and parameters in the proposed scheme.

1) Quality Control

Fig. 5 shows the proposed process of quality control for
model inference. The proposed quality control mechanism
constantly monitors the parameters and inputs of the fully
connected layer. To reduce the complexity of data quantization,
a new variable { is introduced based on the following
observations.

Observation I: Quantization maps data from the original
range to another range with different granularity, thus causing
quantization errors. For example, when quantizing 32-bit
floating-point data into 8-bit integers, the granularity of the data
range increases from 1/16777216 to 1/255; in this case, the
error originates from the decimal part.

Observation 2: For an integer, a deviation within (0, 1) (i.e.,
adding the integer with a decimal value) is only reflected on a
few lower mantissa bits in its floating-point representation, and
it has an almost negligible impact on all upper bits. Moreover,
the changed mantissa bits are separated from the upper bits
related to the sign and the integer part of the data.

Observation 3: The expansion of a floating-point value by
2! times only changes its exponent bits (where i is a positive
integer). Consider Eqgs. (7) and (8) that calculate the value of a
32-bit floating-point data D [36] and the corresponding
enlarged value with 2! times respectively; only the exponent
value increases by i, while the sign and mantissa remain the
same.

D = (—1)sign . pexponent=127 . (1 4 mantissa) (7)
D- 2i — (_1)sign . 2(exponent+i)—127 . (1 + mantissa) (8)

Therefore, as per the above observations, a conventional
data quantization approach can be replaced by expanding the
original data by 2! times and then rounding it down (i.e.,
mapping the floating-point data to an integer).

Thus, when the quality control mechanism receives the
minimum («) and the maximum () values of the weights and
biases, i is calculated based on a and the f using Eq. (9).

i = log2(max(|al,181)) ©)

However, the dynamic range of the inputs is not fixed
because the query image is changed after each image
classification. Thus, the inputs of the fully connected layer are
constantly monitored during the image classification to
establish the dynamic range of the input to calculate i. To
reduce the hardware overhead, i is limited to 8 bits, and the
initial { values for the inputs and parameters are calculated
during the image classification application testing and

Authorized licensed use limited to: The George Washington University. Downloaded on November 23,2022 at 23:39:28 UTC from IEEE Xplore. Restrictions apply.

TABLE II. MAPPING BETWEEN 8-BIT EXPONENT PATTERNS AND 3-BIT
SYMBOLS.

Integer Exponent Patten Symbol
0 00000000 000
20 01111111 001
[2',2%) 10000000 010
[22,2%) 10000001 011
[2°,2% 10000010 100
[24,2%) 10000011 101
[2°,2) 10000100 110
[2¢,27) 10000101 111

registered in the network interface before processing images.
Since the increase of the value range leads to a decrease of i,
the quality control mechanism automatically reduces i by 1
when an input value exceeds the dynamic range during the
classification.

2) Data Approximation

The proposed data approximation mechanism quantizes
data by enlarging the original data by 2 times and then
rounding it down. Thus, the quantization error is bounded
within a few lower mantissa bits. Only the sign bit, the exponent
bits, and a few upper mantissa bits need to be transmitted
because they are separated from the lower bits. Moreover, to
perform the multiplication with 2¢, a binary sequence of i needs
to be added to the exponent part, i.e., only a binary addition
operation is required, rather than floating-point arithmetic
operations. As the ranges of inputs and parameters of the fully
connected layers can be determined by utilizing the quality
control mechanism proposed in the previous section, then the
value of i is adjusted to guarantee that the quantized data
belong to an integer range with an acceptable granularity.

To further reduce the size of the transmitted data, the
exponent part is compressed by mapping the data patterns into
symbols with a shorter length. Since all integers within the
range of [2/, 2/+1) share the same exponent pattern as per Eq.
(7) (where j =1, 2, ..., 127), then only a few patterns are used
for representing the quantized data that belongs to a range
significantly smaller than the entire floating-point field. For
example, when quantizing data into the 8-bit integer range, only
eight exponent patterns may appear (i.e., 00000000 for value 0,
01111111 for value 2°, 10000000 for values within [21, 22),
10000001 for values within [22, 23), etc.). In this case, 3-bit
symbols that provide eight different combinations can be used
for mapping all possible exponent patterns (and so transmitted),
thus reducing the size for each exponent from 8 to 3 bits.

The hardware design for the proposed data approximation
mechanism for data quantization is illustrated in Fig. 6. Once
data approximation is enabled, an 8-bit adder is utilized to
perform the binary addition between the original exponent and
the binary sequence of i obtained by the quality control logic
for quantization (i.e., enlarge the data by 2! times); then the
mapping hardware compresses the quantized exponent (Table
II) to further reduce the data size. Finally, the approximated
data is sent to the packet encoder for transmission.

IV. IMPLEMENTATION OF THE APPROXIMATE COMMUNICATION
TECHNIQUE (ACT)

An architecture based on hardware-software co-design is
proposed in this section to implement ACT for image
classification applications. The proposed implementation
includes a software interface and an architectural design. The
software interface is designed to identify the variables that need

Inputs

N, 1
= e

| |

Model Inference

Results
Fig. 5: Quality control mechanism for image classification model inference.

|st31)] Exp | Martifze0p | S |sa1) Exp | | §

Parameters

32(31:0)
Approxi?: o 1 Approxit
8(30:23
@1 6(22:17) ei22x17)
22{31:0) 32(31:0)
3230
B IExpe[B:Sﬁanti(B:O}] [=t# [Expote:e)] Manti(s:0) |
Te Packet Encoder To Packet Encoder

{a) Data Approximation Disabled (b) Data Approximation Enabled
Fig. 6: Hardware design of data approximation for model inference.

to be monitored or approximated during image classification.
The network interfaces in the heterogeneous architecture are
augmented with data approximation and quality control.
A. Software Interface for Approximate Communication

ACT approximates pixels in the images when the pre-
processing cores convert the raw image. Also, ACT quantizes
the inputs and parameters when the inference cores process the
fully connected layers. Hence, ACT monitors and approximates
the pixels, inputs, and parameters when the image classification
application is executed on the heterogeneous architecture.
Specialized instructions are developed to identify these
variables in the source code and the on-chip communication.
During the execution of an application, these new instructions
allow the network interface to identify these variables in the
requests or replies.

B. Architecture Design of ACT

The ACT arguments the network interfaces (NIs) for the
pre-processing cores, model inference cores, shared cache, and
memory controller with specific hardware for approximation
and recovery (Fig. 1). Since the approximation logic needs to
handle different data at different nodes, the approximation and
recovery logics are specifically designed according to the
functionality of the node, such as pre-processing or model
inference.

1) Approximate Network Interface (Pre-processing Cores)

To support the ACT-P, the data approximation logic
approximates image pixels according to the contrast reduction
level. Since images must be processed by the pre-processing
core, the write requests and read replies carry image pixels and
data in these packets can be approximated.

Fig. 7 shows the proposed approximation logic for the pre-
processing core. The approximation logic includes the data
approximation logic and the quality control logic to adjust the
image contrast. The design of the data approximation logic for
a pre-processing core is described in Section III.A.2. For
clarity, only the control signal for the quality control logic is
shown in Fig. 7. The quality control logic monitors the write
requests. If the write requests contain raw images, then the
quality control logic instructs the data approximation logic to
approximate the requests according to the current contrast
reduction level. If the write request cannot be approximated, the

Authorized licensed use limited to: The George Washington University. Downloaded on November 23,2022 at 23:39:28 UTC from IEEE Xplore. Restrictions apply.

Read

Req.

Read Data Approx. Logic For Model
Rep. _.L PP g

Inference

+| Attach Contrast Level
To Mem/

Cont.I To Packet Shared
Lev. Approx. Size > From Cache?

Core and L1

Form 0
Core and L1| Pxe/?

Org. Size ?

Quality Control Logic

Approx?|
Cont.
Write

Quality Control Logic
Data Approx. Logic
For Model Inference

Data Approx. Logic For
L ing C

P ore

To Packet

Cont. T

Lev. To Packet

Quality Control Logic

Lov.
Data Approx. Logic for Req.
Pre-processing Core]

Fig. 7: Approximation logic for pre-processing
cores.

cores.

data approximation logic applies base-delta compression
without contrast reduction (level 0). Then, the quality control
logic checks the length of the write requests. If the length is
larger than the original write request (Approx. Size > Org.
Size), the original request is sent to the packet encoder.

During the image load, the quality control logic attaches the
information of contrast reduction mode (3 bits) to the read
requests. Once the read reply packet arrives at the core, the data
recovery logic recovers the data into its original form if the
packet is compressed. Otherwise, the data recovery logic
directly sends the read reply to the core.

2) Approximate Network Interface (Model Inference
Cores)

Since the core directly loads and stores data from/to memory
or shared cache, the read and write requests are generated by
the node and sent to the memory controller or shared cache. To
support ACT-I, the data approximation logic monitors the write
requests and read replies to update the dynamic range of the
parameters and the inputs for the fully connected layer.

Fig. 8 shows the proposed approximation logic for the
model inference. The quality control logic monitors all requests
and replies to update { for the inputs; it also controls two
demultiplexers and the data approximation logic. Since the
destination of the write request could be another node for model
inference or a memory controller or a shared cache, i
(monitored at a specific node) can be the dynamic range of a
section of the inputs for the fully connected layer. To find the
dynamic range of the inputs for the entire layer, the following
procedure is proposed. (1) The quality control logic attaches i
of the inputs to the read request packet if the destination of the
packet is the memory controller or shared cache. (2) The quality
control logic constantly monitors the i of the write reply
packets from the memory controller or shared cache. If the
received i is smaller than the current i, the value of i for the
inputs in the current node is updated.

As a model inference core needs to fetch images,
parameters, and inputs, the data recovery logic contains two
decompression functions to recover approximated data.

3) Approximate Network Interface (Memory Controller
and Shared Cache)

Since the memory controller and shared cache handles
requests from both pre-processing and model inference cores,
this interface performs data approximation and recovery
functions for both tasks.

Fig. 9 shows the approximation logic for the memory
controller and shared cache. The approximation logic consists
of the data approximation and quality control logic. The quality
control logic monitors the read request packets for the i value
from the node for inputs. If the i value is smaller than the value
stored in the quality control logic, the stored i is updated. The
updated i is attached to the write replies to update i stored in
the network interface at the node for model inference. The

Fig. 8: Approximation logic for model inference

Fig. 9: Approximation logic for memory
controllers and shared caches.

TABLE III: SIMULATION ENVIRONMENT.

Heterogeneous | CPU/NDLA

Architecture

Pre-Processing | X86 CPU * 8

Cores

Model- NVIDIA Deep Learning Accelerator(NDLA) * 28 [37]

Inference Cores

NoC Parameter | Network type: Garnet; Topology: 6 x 6 2D mesh; Data
packet size: 5 Flits; Link width: 128 bits; Routing
algorithm: X-Y routing; Flow Control: Wormhole
Switching; Number of Router Pipeline Stage: 6

System 32 kB L1 instruction cache; 32 kB L1 data cache; 8-bank
Parameter fully shared 16 MB L2 cache
Data Set ImageNet Large Scale Visual Recognition Challenge [2]
Approximation | Approximate Communication Framework(ACF) [17];
Techniques Approx-NoC [14]; AxBA [16]; Proposed Technique
TABLE IV: IMAGE CLASSIFICATION APPLICATIONS
Name Acc. C Name Acc. C
AlexNet [25] 56.55% | -45 || DensNet169 [24] | 77.20% |-158
VGG11 [26] 69.02% | -68 || DensNet201 [24] | 77.65% |-135
VGG13 [26] 69.93% | -68 ResNet101 [29] 77.37% | -45
VGG16 [26] 71.59% | -68 ResNet152 [29] 78.31% | -45
VGG19 [26] 72.38% | -90 || NASNet-4A [30] | 74.00% |-135

ShuffleNet X1.0 [27] | 67.60% | -45 || EfficientNet BO [31] | 76.30% | -68

GoogleNet [28] 69.78% | -113|| EfficientNet B7 [31] | 84.40% | -23

quality control logic also monitors the read request packets for
receiving the contrast level for the read reply packet
approximation. When the read reply has the data for image pre-
processing or model inference, the corresponding data
approximation logic is activated to approximate the data based
on the contrast level or i. Similar to the quality control logic in
the pre-processing core, the quality control logic checks the
length of the read reply to the pre-processing core; if the length
is greater than the original read reply after base-delta
compression, the original reply is sent to the packet encoder.

Since the traffic contains the pixels, model parameters, and
inputs, the data recovery logic has the recovery functions for
both model inference and pre-processing.

V. EVALUATION

In this section, the performance of the approximate
communication technique (ACT) is evaluated by using the
SMAUG [3] simulator. The SMAUG simulation model is
modified to support the ACT for image classification. Table I11
shows the settings for the SMAUG simulator. The hardware for
data approximation, data recovery, and quality control is
implemented in the network interface. The CPU/NDLA is
based on Simba [4], and all the cores in the system are
connected using 6x6 2D mesh NoC. Table IV shows the
executed image classification applications [24]-[31] with their
original classification accuracy (Acc.) and the corresponding
contrast reduction levels (C).

We evaluate the proposed technique by comparing it with
approximate communication framework (ACF) [17], Approx-
NoC [14], AxBA [16], and the baseline (i.e., NoC with no

Authorized licensed use limited to: The George Washington University. Downloaded on November 23,2022 at 23:39:28 UTC from IEEE Xplore. Restrictions apply.

100% - - - _
goo br o br BE bE b b2 b2 b b b be e e i
2 80%
_§70%] '- ':]
goo% bo Q= L= |-
Z 50% LY '.l\ i.l‘ il‘

=
=
m
-
Y
L]
-
Y
il
-
e
]
-
by
[y
-
53
n
-
)
nm
-
™
nE
-

S 7 o J o > 34 v \od N 4 2
& & P & P & & N P @ F
& © © © © x ¥ ¢ ¢ ¢ Ol & Q O 3
R AR R G &
» o S S E S egp‘“ & & ¢
o * F

H Approx-NoC O AxBA = ACF BACT

"
8
R

Ssoo Boo B Do 2 02 12 12 b= b2 L - - 1= 1 1=
Sw FEEEEEEEEEEEEEE
an% - :- Lo (I 1 I P Vo :-\ F-: !-‘ p-‘ N 3
ESeow 5 15 B5 Ln Lin Ly Lo Ioan 1% BPen Jes st e Le L
ool PR R R R R N S O P VN N .:'n el Al
O R RS S S R & 8
v\a‘\ L EEE e,,d' ao‘}@e & 5@" é’@ é"\e‘ g} @ K@‘ v@"’
<€

m Approx-NoC | AxBA B ACF |2 ACT

Fig. 10: Network latency for CPU/NDLA heterogeneous system (normalized to Fig. 12: Dynamic power consumption for CPU/NDLA heterogeneous system

the baseline).
+~ 100%

80%
60%
40%
20% I
0% - = = - - .
> N
& R

Fully Connected Laye!

& & P P o @ & & & N >
& & é’ TP T T FFESESL
v &N °° £ & S S © é&‘ é&‘ ¥

& [on Qeo < S

Fig. 11: The size of a fully connected layer in the image classification models.

approximation) from the communication efficiency perspective
including network latency and dynamic power consumption.
A. Network Latency

The network latency is defined as the number of clock
cycles elapsed between sending a packet at the source node and
the successful delivery of the packet to the destination. Thus,
the network latency includes the time of three procedures:
packet generation at the source node, packet transmission in the
network, and data extraction at the destination node.

Fig. 10 shows the results for the network latency normalized
with respect to the baseline. ACT achieves an average network
latency reduction of 29% and 27% compared to the baseline and
ACF, respectively. This occurs because image classification
applications have limited tolerance to the relative error for a
smaller reduction in data size compared to ACT. The largest
network latency reduction achieved by ACT in the experiment
is VGG11 (45% reduction), while the smallest network latency
improvement is obtained for EffcientNet B7 (14% reduction).

Compared to the baseline, existing approximate
communication techniques achieve marginal improvement in
network latency (less than 5% on average), as these techniques
only rely on the relative error to approximate data. As a result,
existing techniques miss the opportunity of data approximation
for image classification applications; however, ACT can
achieve a significant latency reduction due to the dual
approximate communication scheme. Moreover, the proposed
technique significantly reduces the network latency when the
model frequently uses the fully connected layer and can tolerate
a significant image contrast loss. For example, Fig. 11 shows
the size of the fully connected layer in the image classification
models. VGG11 uses 86% of the data, which includes inputs
and parameters for the fully connected layers. As Table IV
shows that VGGs can tolerate -68 levels of contrast reduction
(€ = —68) with minimal accuracy loss, then the combined
effect of two packet approximation mechanisms leads to a high
reduction in packet size when VGGI1 is executed on the
heterogeneous system with ACT.

B. Dynamic Power Consumption

Dynamic power includes the power consumed by the
switching activity for all transistors in the NIs and routers. For
all on-chip communication, the results are normalized with
respect to the baseline. Fig. 12 shows the dynamic power
consumption for the CPU/NDLA heterogeneous system. ACT
achieves an average dynamic power reduction of 32% and 28%

(normalized to the baseline).

> > o
& & & Y SN 5 A\
& © & & &8 & & & & 0
L S A N & & ¢
& & & & & g W & <&
o& & & ¥ ES
n CPU/NDLA with ACF 01 CPU/NDLA with ACT

Fig. 13: Accuracy loss for image classification applications.

compared with the baseline and ACF, respectively. The power
reduction for the rest of the applications is between 48% and
17% compared to the baseline. Therefore, ACT achieves a
significant improvement in dynamic power consumption due to
the effective packet approximation. The technique can
significantly reduce packet size using the proposed data
approximation mechanisms.

C. Accuracy Loss

Fig. 13 shows the accuracy loss (i.e., loss of classification
accuracy) for different image classification applications when
ACT and ACF are applied to different heterogeneous systems.
The classification accuracy is measured using the testing data
set of ImageNet [2]. 512 randomly selected images from the
testing data set are used for testing and setting the contrast
reduction level. The rest of the images are used to measure the
accuracy loss of the application. The accuracy loss for all
applications is less than 0.99% for the ACT. However, ACF has
a significantly higher quality loss compared to ACT. The
highest accuracy loss (2.2%) is observed when NASNet-4A is
executed on heterogeneous systems with ACF. This is mainly
due to the low relative error tolerance of the image
classification application. The highest accuracy loss (0.85%) is
observed when NASNet-4A is executed with ACT. Moreover,
the incurred accuracy loss is consistent across all systems, thus
indicating that the proposed quality control mechanisms are
effective in maintaining a low accuracy loss.

D. Overheads

The ACT is implemented using Verilog to evaluate the area,
static power, and latency. The entire system is synthesized with
32 nm technology using Synopsys Design Vision software.
The synthesis results show that for each NI, the proposed
hardware implementation incurs in an area of 4.79 ym?. When
the supply voltage is 1.0 Volt, the proposed technique incurs a
static power overhead of 1.7 mW for each NI. For a 6x6 2D
mesh NoC, the ACT modules occupy 1.7% of the total NoC
area and consume 4.7% of the total static power consumption.
As for the latency, the approximation process and data recovery
for pre-processing cores require one cycle each. Also, the
approximation process and data recovery for the mode-
inference cores require one cycle each. As for the overhead of
this process, 5 iterations of testing are needed on average for
the quality control mechanism to choose the appropriate
contrast reduction level. Compared to the overhead of several
epochs of retraining required by CNN approximation

Authorized licensed use limited to: The George Washington University. Downloaded on November 23,2022 at 23:39:28 UTC from IEEE Xplore. Restrictions apply.

techniques [18]-[22], testing is very efficient. Moreover, testing
overhead can be further reduced for the proposed technique by
using a small test data set or a predetermined contrast reduction
level.
VI. CONCLUSION

In this work, we have proposed an approximate
communication technique (ACT) to enhance on-chip
communication efficiency for image classification applications.
The proposed technique leverages the error tolerance of image
classification applications to enhance communication
efficiency during the execution of an application. Two
approximate communication techniques are developed for pre-
processing (ACT-P) and inference (ACT-I), respectively, thus
reducing the transmitted data while maintaining the image
classification accuracy. Novel approximate network interfaces
for the pre-processing core, inference core, memory controller,
and shared cache have been proposed to implement ACT in
network-on-chips (NoCs). Compared to existing convolutional
neural network (CNN) approximation techniques, ACT
eliminates the retraining process, which is time and energy
consuming. Compared to existing approximate communication
techniques, ACT significantly reduces the transmitted data by
efficiently approximating image classification applications.
The detailed evaluation shows that compared to the state-of-
the-art approximate communication techniques, the proposed
approximate communication technique reduces dynamic power
consumption and network latency by 28% and 27%,
respectively, with less than 0.85% accuracy loss.

ACKNOWLEDGMENT

This research is supported by NSF grants CCF-1953961, CCF-
1812467, CCF-1812495 and CCF-1953980.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol.
521, no. 7553, Art. no. 7553, May 2015.

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-scale Hierarchical Image Database,” in IEEE Conference on
Computer Vision and Pattern Recognition, Jun. 2009, pp. 248-255.

[3] S. (Likun) Xi, Y. Yao, K. Bhardwaj, P. Whatmough, G.-Y. Wei, and D.
Brooks, “SMAUG: End-to-End Full-Stack Simulation Infrastructure
for Deep Learning Workloads,” ACM Trans. Archit. Code Optim., vol.
17, no. 4, p. 39:1-39:26, Nov. 2020.

[4] Y. S. Shao et al., “Simba: Scaling Deep-Learning Inference with Multi-
Chip-Module-Based Architecture,” in Proceedings of the 52nd
MICRO, New York, NY, USA, Oct. 2019, pp. 14-27.

[5] D. Shin, J. Lee, J. Lee, J. Lee, and H.-J. Yoo, “DNPU: An Energy-
Efficient Deep-Learning Processor with Heterogeneous Multi-Core
Architecture,” IEEE Micro, vol. 38, no. 5, pp. 85-93, Sep. 2018.

[6] N. Chandramoorthy ef al., “Exploring Architectural Heterogeneity in
Intelligent Vision Systems,” in Proceedings of the 21" HPCA, Feb.
2015, pp. 1-12.

[7] N. Bohm Agostini et al., “Design Space Exploration of Accelerators
and End-to-End DNN Evaluation with TFLITE-SOC,” in Proceedings
of the 32nd SBAC-PAD, Sep. 2020, pp. 10-19.

[8] S. Venkataramani et al., “ScaleDeep: A Scalable Compute Architecture
for Learning and Evaluating Deep Networks,” in Proceedings of the
44" ISCA, New York, NY, USA, Jun. 2017, pp. 13-26.

[9] H. Zheng and A. Louri, “Agile: A Learning-enabled Power and
Performance-Efficient Network-on-Chip Design,” IEEE Transactions
on Emerging Topics in Computing, vol. 10, no. 1, pp. 223-236, Jun.
2020.

[10] H. Zheng, K. Wang, and A. Louri, “Adapt-NoC: A Flexible Network-
on-Chip Design for Heterogeneous Manycore Architectures,” in
Proceedings of the 2021 HPCA, Feb. 2021, pp. 723-735.

[11] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural
Acceleration for General-Purpose Approximate Programs,” in
Proceedings of the 45" MICRO, Dec. 2012, pp. 449-460.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

S. Mittal, “A Survey of Techniques for Approximate Computing,”
ACM Comput. Surv., vol. 48, no. 4, pp. 1-33, Mar. 2016.

F. Betzel, K. Khatamifard, H. Suresh, D. J. Lilja, J. Sartori, and U.
Karpuzcu, “Approximate Communication: Techniques for Reducing
Communication Bottlenecks in Large-Scale Parallel Systems,” ACM
Comput. Surv., vol. 51, no. 1, pp. 1-32, Jan. 2018.

R. Boyapati, J. Huang, P. Majumder, K. H. Yum, and E. J. Kim,
“APPROX-NoC: A Data Approximation Framework for Network-On-
Chip Architectures,” in Proceedings of the 44" ISCA, Toronto, ON,
Canada, Jun. 2017, pp. 666-677.

V. Fernando, A. Franques, S. Abadal, S. Misailovic, and J. Torrellas,
“Replica: A Wireless Manycore for Communication-Intensive and
Approximate Data,” in Proceedings of the 24" ASPLOS, New York,
NY, USA, Apr. 2019, pp. 849-863.

J. R. Stevens, A. Ranjan, and A. Raghunathan, “AxBA: An
Approximate Bus Architecture Framework,” in Proceedings of the
ICCAS, San Diego California, Nov. 2018, pp. 1-8.

Y. Chen and A. Louri, “An Approximate Communication Framework
for Network-on-Chips,” [EEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 6, pp. 1434—1446, Jun. 2020.

S.F. Dodge and L. J. Karam, “Quality Robust Mixtures of Deep Neural
Networks,” IEEE Transactions on Image Processing, vol. 27, no. 11,
pp. 5553-5562, Nov. 2018.

J. Qiu et al., “Going Deeper with Embedded FPGA Platform for
Convolutional Neural Network,” in Proceedings of the 2016 FPGA,
New York, NY, USA, Feb. 2016, pp. 26-35.

L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model Compression and
Hardware Acceleration for Neural Networks: A Comprehensive
Survey,” Proceedings of the IEEE, vol. 108, no. 4, pp. 485-532, Apr.
2020.

T. J. Yang, Y. H. Chen, and V. Sze, “Designing Energy-Efficient
Convolutional Neural Networks Using Energy-Aware Pruning,” 2017,
pp. 5687-5695.

S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and
Huffman Coding,” arXiv:1510.00149 [cs], Feb. 2016.

S. Xiao, X. Wang, M. Palesi, A. K. Singh, and T. Mak, “ACDC: An
Accuracy- and Congestion-aware Dynamic Traffic Control Method for
Networks-on-Chip,” in Proceedings of the 2019 DATE, Mar. 2019, pp.
630-633.

G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
Connected Convolutional Networks,” arXiv:1608.06993 [cs], Jan.
2018.

A. Krizhevsky, “One weird trick for parallelizing convolutional neural
networks,” arXiv:1404.5997 [cs], Apr. 2014.

K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” arXiv:1409.1556 [cs], Apr. 2015.
X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An Extremely
Efficient Convolutional Neural Network for Mobile Devices,”
arXiv:1707.01083 [cs], Dec. 2017.

C. Szegedy et al., “Going Deeper with Convolutions,” in Proceedings
of the 2015 CVPR, Jun. 2015, pp. 1-9.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” 2016, pp. 770-778.

B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning
Transferable Architectures for Scalable Image Recognition,” in
Proceedings of the 2018 CVPR, Salt Lake City, UT, Jun. 2018, pp.
8697-8710.

M. Tan and Q. Le, “EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks,” in Proceedings of the ICML, May
2019, pp. 6105-6114.

A. Paszke et al., “PyTorch: An Imperative Style, High-Performance
Deep Learning Library,” Advances in Neural Information Processing
Systems, vol. 32, 2019.

M. Abadi et al., “TensorFlow: A System for Large-Scale Machine
Learning,” 2016, pp. 265-283.

S. Dodge and L. Karam, “Understanding How Image Quality Affects
Deep Neural Networks,” in Proceedings of the 8" QoMEX, Jun. 2016,
pp. 1-6.

N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet V2: Practical
Guidelines for Efficient CNN Architecture Design,” arXiv:1807.11164
[cs], Jul. 2018.

“IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2008,
pp. 1-70, Aug. 2008.

“NVIDIA Deep Learning Accelerator.” http://nvdla.org/.

Authorized licensed use limited to: The George Washington University. Downloaded on November 23,2022 at 23:39:28 UTC from IEEE Xplore. Restrictions apply.

