A Scientific Machine Learning Framework to Understand Flash Graphene Synthesis
Kianoosh Sattari,' Lucas Eddy,>? Jacob L. Beckham,? Kevin M. Wyss,? Richard Byfield,' Long

* . . *
245" and Jian Lin'

Qian,? James M. Tour,
'Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia,
Missouri 65211, USA
2Department of Chemistry, *Applied Physics Program and Smalley-Curl Institute, *Department of
Materials Science and NanoEngineering, *Department of Computer Science and Engineering,
NanoCarbon Center and the Welch Institute for Advanced Materials, Rice University, 6100 Main
Street, Houston, Texas 77005, United States

*Emails: linjian@missouri.edu; tour@rice.edu

ABSTRACT: Flash Joule heating (FJH) is a far-from-equilibrium (FFE) processing method for

converting low-value carbon-based materials to flash graphene (FG). Despite its promise in
scalability and performance, attempts to explore the reaction mechanism have been limited due to
complexity involved in the FFE process. Data-driven machine learning (ML) models effectively
account for this complexity, but the model training requires considerable amount of experimental
data. To tackle this challenge, we constructed a scientific ML (SML) framework trained by using
both direct processing variables and indirect, physics-informed variables to predict the FG yield.
The indirect variables include current-derived features (final current, maximum current, and
charge density) predicted from the proxy ML models and reaction temperatures simulated from
multi-physics modeling. With the combined indirect features, the final ML model achieves an
average R? score of 0.81 £ 0.05 and an average RMSE of 12.1% + 2.0% in predicting the FG yield,
which is significantly higher than the model trained without them (R? of 0.73 + 0.05 and an RMSE
of 14.3% =+ 2.0%). Feature importance analysis validates the key roles of these indirect features in
determining the reaction outcome. These results illustrate the promise of this SML to elucidate
FFE material synthesis outcomes, thus paving a new avenue to processing other datasets from the
materials systems involving the same or different FFE processes.

KEYWORDS: far-from-equilibrium, flash Joule heating, flash graphene, physics informed,

scientific machine learning.
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1. Introduction

Despite the vast applications of graphene, scalable synthesis of graphene remains a tremendous
challenge. Among the reported various types of processing methods," 2 flash Joule heating (FJH)
was introduced in 2020 to synthesize gram-scale graphene from different carbon feedstocks,® such
as carbon black (CB), metallurgical coke (MC), and waste plastics.* > FJH is an electrothermal
process in which Joule heating, driven by capacitors with very high discharge rates, affords gross
morphological changes.? The generated high temperature (> 3000 K) breaks the chemical bonds
and reorganizes the carbon atoms into thermodynamically stable sp>-hybridized graphene sheets.
Because the whole process is finished in a sub-second scale, the generated graphene sheets form a
metastable state, namely turbostratic graphene, which was termed as flash graphene (FG).? Such
FG remains highly anisotropic in interlayer arrangements. This feature makes it highly dispersible
in solvents and a superior additive for high-performance composites.>©

The scalability of the FJH makes it a promising method for synthesizing the FG, but many
unknowns remain in this far-from-equilibrium (FFE) process,” making it difficult to establish a
processing-property relationship.® * Recently emerged data-driven modeling may provide an
alternative solution. In the past several years, some models have been demonstrated to be powerful
for tackling a variety of challenges including guiding materials synthesis.!*!* Furthermore, we
recently constructed pure data-driven models to discover the parameters that controlled the FG
yield.!> However, despite reaching an impressive accuracy in predicting the FG yield, the model
performance depended on the current parameters measured from the reactions. These intermediate
parameters were therefore unavailable as input parameters for prediction if the experiments had
not yet been performed. As a result, one cannot apply such models to accurately predict the reaction

outcome from a new set of direct input parameters such as voltage, pulse duration, and capacitance



prior to experimentation, which makes them impractical for real applications. Thus, developing a
ML framework that only uses the direct, controllable experimental parameters to accurately predict
reaction outcomes of FJH remains a challenge.

Normally, a data-driven ML model is a “black box”, lacking interpretability in mapping the
relationship of the input and output. Moreover, model training requires considerable amount of
data, a crucial aspect that has been a bottleneck for many materials processing methods such as
FJH for FG synthesis.!®!® In contrast, physics-based models can learn the relationships of the input
and output space. Although these models are highly interpretable, they are often difficult to be
constructed from complex systems due to a lack of information about the behavior of the system.
Thus, the approximations are needed to construct physics-based modeling while they can result in
inherent model bias. Therefore, hybrid models which combine data-driven and physics-based
modeling can be beneficial in successful model training with limited experimental data while
offering high explainability.!”-! These models can be constructed by modifying the cost functions
within data-driven ML models. This modification can adjust the model to obey the outputs of the
physics-based models. Daw ef al. designed a physics-guided neural networks (PGNN) framework
that leveraged the output of the physics-based model and observational features by modifying the
loss function of the neural network.?? Raissi et al. introduced physics-informed neural networks
(PINNs) that obeyed physics laws described by partial differential equations.® The additional
information gained from the physical laws can train the networks with much less data than needed
in pure ML models, thus broadening the applications where data generation is costly.!” However,
in the FJH process, this approach is not practical since there are no defined physical models that
can well describe the FFE reaction. Another method of including physics laws into the ML models

is to extract physics-informed features from the experiments or theory, which are used as the model



input to boost the prediction accuracy.?” >* Sun et al. synergized the indirect physics-informed
descriptors with other direct variables in the ML framework to develop materials with superior
properties.?® To develop thermo-responsive materials, Huang et al. developed a framework where
ML models were informed with physicochemical descriptors derived from quantum chemistry
calculation.?® Such physics-based descriptors can serve as the indirect input features to introduce
partial physical information to the ML framework.

To better understand the FJH process for FG synthesis, herein, we demonstrate a scientific
machine learning (SML) framework that is trained with both direct experimental parameters and
indirect physics-informed ones. The goal is to predict the yield of FG. To estimate the reaction
temperature from the direct experimental parameters (such as pulse time, voltage, capacitance, and
physical information of the input materials), we performed an electrical-thermal multi-physics
simulation by COMSOL. Other important indirect features such as the current parameters of final
current, maximum current, and charge density were predicted from the proxy ML models. We
hypothesize that these current parameters are correlated with the direct experimental parameters
and physical properties of the starting materials. To validate this hypothesis, three proxy ML
models were trained on these direct parameters to predict those intermediate parameters for a new
experiment. In this way, the final ML model does not rely on any intermediate information to
predict the reaction outcome if given a new set of direct experimental parameters. Thus, the
resulting SML framework is generalizable and needs only limited training samples.??

This SML framework has three advantages over our previously reported ML model.!> First, the
models are able to make predictions about the reaction outcome without using any intermediate
parameters. This facilitates the use of our prediction model in a model-based optimization

algorithm to optimize the FG yield in just a few iterations. Second, the physics-informed



descriptors bring additional information to the model, making the black-box ML models more
generalizable and accurate in addition to improving the model interpretability. Third, a general
methodology of using separate ML models to predict unknown, intermediate reaction parameters
from known direct ones is proposed to solve the challenge of lacking enough input features,
particularly related to experiments. Thus, such an approach can be readily applied to other

materials processed by the same or different methods.

2. Results and Discussion

This work used a dataset consisting of 173 separate FJH reactions reported in our previous
work.!> The starting materials were carbon black (CB), metallurgical coke (MC), plastic waste-
derived pyrolysis ash (PA), and waste tire-based carbon black (TCB). The structures of the final
products were assessed by wide-area Raman mapping. We applied custom-written scripts to
analyze the collected Raman spectra (>64 for each FJH reaction), which were used to estimate the
FG yield. In the following sections, we first analyze the dataset and explain how to quantify the
FG yield. We then elaborate the SML framework. Lastly, we present the model performance in

predicting the FG yield.

2.1 Analysis of Input and Output Data

Raman spectroscopy has been considered a powerful technique for characterization of carbon
structures.?” ?® Figure 1a shows Raman spectra of amorphous carbon and synthesized FG. The
spectrum of amorphous carbon shows two main peaks: D-band at ~1350 cm™ and G-band at ~
1600 cm™!. The Raman spectrum of FG has a G-peak at ~1580 cm™! and a 2D band at ~2700 cm™..

The existence of this 2D band suggests formation of a graphitic lattice.”® This resonance-enhanced



single-Lorentzian 2D band has a narrow full-width at half-maximum (FWHM) of ~16 cm™. The
Lp/Ic peak intensity ratio reaches up to 17. Both of them suggest good FG crystallinity.?” From
each sample, we collected 100 Raman spectra, which was then averaged to mitigate the variance
in the collected individual spectrum. Then, the FG yield can be calculated from these averaged
spectra.!> Figure 1b-e represent the histograms and statistics distribution of the collected samples
for each reaction of all the 173 reactions. Specifically, Figure 1b shows the distribution of /2p/I
with a mean of 0.66 and a standard deviation of 0.17. Figure 1c represents a histogram of average
Ip/Ic with amean of 0.54 and a standard deviation of 0.14. Figure 1d represents the average FWHM
of the 2D band with a mean of 43.88 cm™ and a standard deviation of 11.55 cm'. Finally, Figure
le shows a histogram of the FG yield with a mean of 54% and a standard deviation of 27%. Figure
S1 shows the yield distribution of the FG synthesized from the four starting materials.

Figure 1f-g show high correlation of /2p//c with the FG yield, showing a Pearson’s r value of
0.73. Figure 1f shows little dependence of the FG yield on Ip/lg, while the value of FWHM can
well distinguish the samples with a high FG yield (Figure 1g). Most samples have average FWHM
values of > 40 cm™ and Lp/Ig > 0.75. We also analyzed the FG yield from different starting
materials. As illustrated in Figure 1h, the highest FG yield of 72% and the lowest yield of 37%
were obtained for CB and MC, respectively. Figure 11 shows the statistical comparison of the FG
yield obtained from the four starting materials. Except for MC versus TCB, all other two-way
comparisons show significant differences at a set 0.05 significance level.

We hypothesized that the measured parameters including resistant drop, voltage drop, final
current, maximum current, charge density, >p/Ic, Ip/l, FWHM, and reaction yield would depend
on the starting material. To test the hypothesis, we applied t-distributed stochastic neighbor

embedding (t-SNE),*® a non-linear dimension reduction method, to project all of them in 2D space



(Figure 1j). This analysis shows that those obtained from MC and CB are clustered and separated
from the others, which indicates that there do exist combination of the parameters for achieving
the highest FG yield in CB (Figure 1h). The significant difference in the FG yield from different
staring materials indicates that besides the one-hot encoded material type, inclusion of physical
information about the starting materials like particle size (Mps), resistance (Mr), surface area (Ms,),
and percentage of sp? carbon (Mjy2) in the input features would greatly increase model accuracy.

All these physical properties of the starting materials are tabulated in Table S1.
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Figure 1. (a) Raman spectra of flash graphene (FG) synthesized from carbon black and amorphous
carbon. (b-e) Statistical distribution of I>p/Is (b), Ip/lc (¢), FWHM of the 2D band (d), and FG
yield (e). Distribution of I>p/Ig versus FG yield in correlation with (f) Ip/Ic and (g) FWHM. (h)

Distribution of FG yield synthesized from four starting materials. (i) Statistical comparison on the



mean FG yield from four starting materials. (***), (**), and (*) show significant differences at
0.001, 0.01, and 0.05 levels, respectively. (j) t-SNE plots of features in correlation with the four
starting materials. The features include resistance drop, voltage drop, maximum current, charge

density, I>p/lc, Ip/I, FWHM, and reaction yield.

2.2 Model Construction and Performance

The proposed SML framework is shown in Figure 2. The novelty of this framework is that only
three types of input features are used for the model development. They include direct reaction
parameters such as the properties of starting materials including particle size (Mps), resistance
(Mg), and percentage of sp*> (My,2) and FJH controllable parameters including charge density
released from capacitance (CDy), heat (H), pulse time (¢), atmosphere type (4¢m), and pretreatment
voltage (Vpre). Using these direct parameters, three proxy models based on XGBoost were trained
to predict three intermediate parameters of maximum current normalized by mass (/max), ratio of
final current to maximum current (/7/Iyax), and charge density (CDr, total charge integrated from
the current-time curve and then normalized to mass). In this way, measurement of the time-current
curves from a hypothesized experiment is no longer needed. Third, the temperature evolution is
simulated from the direct parameters by multi-physics simulation to obtain the maximum
temperature (T'sin ). Thus, compared to our previous model that predicts the FG yield,'> more
physics-informed input features are used to improve the prediction accuracy and generalizability
of the final model. In the following sections, we will elaborate the proxy models, the multi-physics

simulation, and the overall architecture of the final prediction model.
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Figure 2. Schematic and data flow of the proposed SML framework, where the temperature is
simulated by the multi-physics simulation, predicted current parameters, precursor information,

and direct FJH parameters are used as the input of the final ML model.

2.2.1 Proxy models for predicting current parameters.

The time-current curves are measured from the FJH process. Three parameters of Iuyax, I/Imax,
and CD;r can be extracted from these curves (Figure 3a). The distributions of these current
parameters depending on the starting materials were analyzed (Figure S2). Significantly higher
Imax values could be realized in the reaction outcomes using MC as the staring material than those
in the reactions using other starting materials (Figure S2a). But the higher /yux values do not simply
lead to a higher FG yield for the MC samples, as shown in Figure 1h. Figure S3a shows plots of
the FG yield vs. Iuax grouped by the starting materials. Correspondingly, Pearson’s r values
between Iy and the FG yield for CB, PA, and TCB are 0.41, 0.62, and 0.66, respectively,
indicating that they have high correlations, while the correlation of /yux and the FG yield is not

significant for MC (Figure S3). The positive correlations between Iy and FG yield for CB, PA,
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and TCB show that the Iyux should pass a threshold value of 1000 (A-g™) for these samples to
reach a higher FG yield.

To train the proxy models that predict these three current parameters, the direct reaction
parameters, including the properties of starting materials and FJH parameters, serve as the inputs
of the models which were trained by a five-fold cross-validation approach. To test the models,
20% of the total samples were used as the never-seen samples. The optimized hyperparameters for
these three proxy XGBoost models are listed in Table S2. It is worth mentioning that the inputs to
the proxy models can be hypothesized for predicting reaction outcome of a new experiment
without performing it. As a result, the trained models can be used to predict the three current
parameters for a new reaction. Figure 3b-d shows comparison of the predicted three current
parameters from the proxy models versus their true values, from which their Pearson’s » values
can be calculated to evaluate performance of the proxy models. Pearson’s r values of 0.80, 0.78,
and 0.77 were obtained for Iyax, Ir/Imax, and CDr, respectively. The high correlations between the
predicted and the true values show that the proxy models can predict the output Iy, 17/ Iyax, and
CDyr from the direct parameters so that no prior-measurement on the time-current curves for a

hypothesized FJH experiment would be needed.

11



QO
'
W
(=]
o
o
—

- 3000
IMax a
-S— 2001 - PL_lIse : s 2000
£ d Width i w
o =
= 100+ .
- p
o g 1000
o
0.

1000 2000 3000

C) 0s d) -
i §100. — r=0.77 .
5 0.6 o
s = 75
. Q
5 O 504
: 3
Sl £ 2
. : 50 100
True Ie/lpax True CD;r (C/g)

Figure 3. (a) A represented time-current plot and the current parameters derived from it.
Distributions of predicted and true (b) Iyax; (€¢) IF/Imax; and (d) CDyr values. Their corresponding

Pearson’s r values are shown in the figures.

2.2.2 Simulation of reaction temperature as a physics-informed input feature

In a FJH process, the electrical energy is rapidly discharged from capacitors, leading to a time-
dependent, spatially distributed temperature profile. While temperature is an important parameter
that controls the FG yield, we hypothesize that using it as an input feature would improve the
predictive accuracy of the model. Deng et al. reported the effects of direct reaction parameters like
the mass of the starting materials, physical properties of starting materials, pulse time, pulse

voltage, pre-treatment voltage, and the maximum temperature achieved in the FJH process.’! To
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test the hypothesis, the electrical-thermal multi-physics package in COMSOL was applied to
simulate the temperature evolving over the pulse time of each reaction. The maximum temperature
of the reaction over the pulse time was then used as an input descriptor, represented as Tsin.. In the
simulation, the direct input materials and reaction parameters were used. As shown in Figure S4a-
b, the FJH quartz tube was simulated as a cylinder with a diameter of 8 mm and a length of ~20
mm. Tsin over the pulse time for all the 173 reactions are shown in Figure S4c. It shows that the
relationship between the temperature and pulse time is not a linear one. There are reactions

realizing a higher temperature in a smaller pulse time.

2.2.3 Performance of the final model

The predicted current parameters and 7s;» were combined with the direct FJH parameters and
precursor information to serve as inputs of six different regression models including linear
regression (LR), multilayer perceptron (MLP), Bayesian regression (BR), decision tree (DT),
random forest (RF), and eXtreme Gradient Boosting (XGBoost). By using a 5-fold cross-
validation method for training and testing, the optimized hyperparameters for these models are
listed in Table S3. Figure 4a-b show the coefficient of determination (R?) and root mean squared
error (RMSE) for all six tested models in predicting the FG yield. Among them, the XGBoost
model reached the highest average R? score of 0.81 with a standard deviation of 0.05 and the lowest
average RMSE of 12.1% with a standard deviation of 2.0% on the testing samples for 5 different
train-test splits. Taking a XGBoost model trained from one of the 5 different splits for example,
comparison of the predicted FG yields versus the true values was shown in Figure 4c from which
an R? score of 0.84 and RMSE of 11.8% were calculated. As a comparison purposes, we considered

a base model that predicts the average value of all testing samples for all the samples. The RMSE
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for such a naive model was 29.6% that is significantly higher than that of XGBoost predictions.
Samples flashed with CB as the starting material possessed the highest FG yields, while MC-
derived FG had the lowest FG yield. Figure 4d shows the relative error (RE) distribution of the
predicted FG yields compared with the true values. It shows that 71% of the reactions have the
predicted yields of < 10% error of the true values, and only ~11% of the reactions show the
predicted FG yields with an error of >20%. We further examined the distribution of the residuals,
a difference of the predicted and the true values. The residuals show a biased toward negative
values for samples with the high FG yields, as shown in Figure S5. This indicates that the model
usually predicts a lower FG yield value for the reactions resulting in a higher FG yield value, while
for the training samples with an average FG yield of 54%, the predictions for unsure testing
samples are biased toward the average value.

To test the significance of including the physics-informed features as the input to the model, we
trained a separate XGBoost model without using them as the input. As shown in Figure 4e, if the
Tsim. is excluded, the R? score is reduced to 0.79 and RMSE is increased to 13.7% for the same
testing dataset. If both the simulated temperature and the predicted current parameters are
excluded, the R? score is greatly decreased to 0.74 and RMSE is increased to 15.1% (Figure 4f).
This results because the current parameters may reflect the change of the starting materials’
resistance and the contact resistance between the starting materials and the electrode over the pulse
time. The temperature is a key parameter that determines the reaction outcome. Consequently,
these physics-informed descriptors can offer complementary information to the model with

increased the prediction accuracy.
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Figure 4. Performance of the ML models in predicting the FG yield. (a) R? scores and (b) RMSE
of the predicted FG yield by the six ML models when using five different train-test splitting ways.
The error bars represent the standard deviations from these five testing ways. (¢) Plot of predicted
FG yields by the XGBoost model vs. their true values from different starting materials. (d) Relative

error distribution of the predicted FG yields shown in ¢. Plot of the predicted FG yields by the
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XGBoost model vs. their true values after excluding (e) Tsim. and (f) both Ts;. and predicted current

parameters from the direct input parameters.

2.3 Model Interpretation

Ranking importance of the input features to the well-trained model in predicting the FG yield
would offer additional information about the reaction. The selected features included the CDy, Mps,
MR, Msp>, predicted Iy, predicted Ir/Iyax, predicted CDyr, Tsim., t, Vere, Atm, and H. A Pearson’s
correlation map between these quantitative features is shown in Figure 5a. Low Pearson’s r values
between any two features indicate that they are quite independent features for the model to afford
accurate prediction. For instance, the correlation of the chosen physical properties of the starting
materials is low, indicating that they offer complementary information of the materials properties
when serving as the input features. In contrast, the surface area has a high Pearson’s r value of 0.9
with the particle size, thus we excluded it from the final input features. Figure 5b shows the ranking
of the features. CDy and Tsin. were ranked the Top 2 important features in determining the FG
yield, which explains why they play a critical role in the model accuracy (Figure 4). Other features
such as the predicted current parameters also have a significant importance in the final prediction.

In previous works, %3233

voltage and CDy were reported to have effects on the transformation rate.
Figure 5c¢ shows that the FJH reactions with low CDy values have a lower FG yield. In contrast,
the ones leading to a high FG yield have high CDy values. This observation agrees well the results
shown in these works. In addition, it is found that there is a CDy threshold value of 100 (C/g) for
achieving an FG yield of > 50%. This observation agrees well with other FFE processes. For
instance, laser-induced synthesis of graphene from polymers was only initiated when a laser flux

reaches a threshold value.>* Figure 5d shows the importance of Tsi». in predicting the FG yield. It

shows that when T&;. exceeds a threshold value as indicated in green yellow, and red colors, the
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FG yield is significantly higher than those with low Tsin. A decision tree extracted from the
XGBoost model supports the hypothesis that high 75, and CDy are critical in model accuracy for
predicting the FG yield (Figure S6). Figure S7 compares CDy with C, V), and m in correlating with
the FG yield. It shows that correlation of FG yield with CDy is higher than that with C, ¥y, and m,

which validates the importance of CDy in the accurate prediction of the FG yield.
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Figure 5. Analysis of the input features to the final XGBoost model. (a) Quantitative correlation
map of the input features. (b) Feature importance of the input features. Predicted FG yields versus

the true values when correlated with (¢) CDy and (d) Tsim.. In (d) Tsin. is in a log scale.

3. Conclusion
This study demonstrates a SML framework that bridges a gap between the input processing

parameters with the predicted FG yield. Herein, a systematic method of using proxy ML models
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and multi-physics simulation for extracting physics-informed descriptors, including current-
derived properties and simulated temperature, has been developed. These additional input features
prove to play a critical role in improving the prediction accuracy of the final ML model. Feature
importance analysis further validates this conclusion. Besides the Tsin and CD, the selected
physical properties of the starting materials are also important features. Explainability of the model
by the quantitative analysis offers a glimpse on the reaction mechanism about the FJH. In
summary, development of this SML framework offers a methodology of predicting the outcome
of new experiments, thus saving the cost and time because of performing unnecessary experiments,
which would speed up the FG synthesis. Finally, the methodology can be readily applied to other

material systems processed by other processing methods.

4. Methods and Experimental Section

Materials: Four carbon feedstocks were used as the starting materials. They are carbon black
(Cabot BP2000), metallurgical coke (SunCoke Energy Inc., 70—100 mesh size, 150-210 um grain
size), pyrolysis ash (Shangqiu Zhongming EcoFriendly Equipment Co.), and pyrolyzed rubber
tire-derived carbon black (Ergon Asphalt and Emulsion Co.). We grinded the materials using a
mortar and pestle before and after FJH.

FJH process: A custom FJH apparatus was used for all the 173 experiments. Precursor powders
with a mass between 100 and 400 mg were sandwiched between two graphite electrodes and
compressed inside a quartz tube with an inner diameter of 8 mm. Then, a series circuit with eight
6 mF capacitors (Mouser #80-PEH200YX460BQU2), two 5.6 mF capacitors (80-
ALS70A562QH500), and nine 18 mF capacitors (Mouser #80-ALS70A183QS400) were used.

Arrangement of capacitors was set to reach the peak capacitance values employed in each flash
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reaction. To charge the capacitors, the voltage was supplied by a DC source consisting of an AC
wall outlet fed through an AC-DC converter. FJH reactions were performed inside a desiccator
filled with argon, air, or light vacuum (10 mm Hg) that was used as a categorical descriptor for
atmosphere type (4¢m) among direct input features. After applying the initial voltage, the final
voltage was recorded after each reaction. A voltage drop then was calculated by subtracting the
final voltage from the initial one. Resistance of the samples were measured before and after each
reaction to monitor electrical contact between the electrodes and the samples. Pulse time was
modulated by insulated gate bipolar transistors (IGBTs) using programmable millisecond-level
delay time. It was connected to a Hall effect sensor through an inductor and controlled via custom
LabVIEW scripts. The Hall effect sensor was employed to collect time-current curves. A custom-
written Python script was applied on the time-current curves to extract current parameters for the
proxy model training.

Training of machine learning models: Six different ML models (LR, MLP-R, BR, DT-R, RF-
R, and XGB-R) were trained to predict FG yield. The Scikit-Learn package from Python was used
for constructing all the models. We kept 20% of the dataset unseen for testing. Cross-validation
was applied to optimize the hyperparameters. To test the accuracy of the model for different testing
samples, we tried 5 different train/test splits. The results were reported as metrics’ mean =+ standard
deviation.

Feature engineering: Twelve selected features included the charge density (CDy) released from
the capacitors, starting materials’ type (M), particle size (Mps), resistance (Mr), surface area (Msy),
and percentage of SP? (Msp:), predicted normalized maximum current (/yax), predicted ratios of
final current to the maximum current (/7/Iymax), predicted charge density that is defined as area

under the current-time curve normalized by mass (CD;r), simulated temperature (7s;».), pulse time
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(7), pre-treatment voltage (Vpr.), atmosphere type (4¢tm), and nominal heat (H) were used as the
input features to the final ML models.

CDy, CDir, and H are defined in Eq. 1-3, respectively.

CDy =225 (1)
Ixt
CDIT = % (2)
_
H=x 3)

where V) is the voltage, C is the capacitance of the capacitors, m is the mass of the starting
materials, Mk is the initial resistance of the starting material, and ¢ is the pulse time. M is one-hot
encoding for the types of the starting materials. It was only used as input to the proxy models and
not in the final model. CD;r was calculated by trapezoidal integration of the time-current curve
collected by a Hall effect sensor. Even if CD;rand CDy have the same units, they include different
information about the reaction. CDy depends on the initial nominal voltage V', while CD;r conveys
information about the voltage drop during the FJH process.

Evaluation metrics: The coefficient of determination (R?) is used to evaluate the prediction
accuracy of a model as shown in Eq. 4. The Pearson correlation coefficient (r) defined in Eq. 5, on

the other hand, measures how the predicted values catch the trend compared to the true values.

2 _ 4 I 0i-9)?
k=1 L, (vi=3)? @
N _— 5.3
r= 2i=1 (Vi y)x(yl y) (5)

JE 09 5, (-5
where y is the true values, ¥ is the predicted values, y is the mean value, and N is the number of

samples in both. In Eq. 5, 9 is the average of all predicted .

21



Other evaluation metrics including residuals (R), relative error (RE) and root mean squared error

(RMSE) are defined in Eq. 6-8, respectively.

R=y-y (6)

RE = 'yy;y' x 100% (7)
1 A

RMSE = Jﬁzﬁl(yi - 9)? (®)

where y is the true values, ¥ is the predicted values, and N is the number of samples.

Data inclusion: At the spectra-level, we included all spectra identified as having a G peak with
an SNR of >8 (a maximum in the range of 1500 cm™' < x < 1700 cm™'). Spectra not containing a
G peak were attributed to poor laser focusing and excluded. For samples to be considered valid,
three criteria were checked. First, they should have >64 spectra passing the spectra criterion.
Second, they should have a valid recorded current-time curve. Lastly, they should not result in an
explosion of the quartz tube.

FEA simulation on temperature: The electrical-thermal multi-physics package in COMSOL
was applied to simulate the temperature evolving over the pulse time of each reaction. The starting
materials mass and particle sizes as well as pulse time, voltage, and capacitance of each reaction
were used as the input to the simulation. Also, we considered 140, 130, 120, and 113 (S m™) for
the electrical conductivity and 0.4, 1.2, 2.2, and 2.7 (W m™' K1) for the thermal conductivity of the
starting materials CB, PA, MC, and TCB, respectively. The applied electrical and thermal
conductivity values are in the range of reported experimental values.*7 To set up the electrical
boundary conditions, one side of the simulated cylinder was considered as ground (0 V) and the
other side was applied to the input voltage from dataset. To set up the heat boundary conditions,
we considered the room temperature as the initial temperature of the system and applied heat flux

at all the edges. After finding the location with the maximum temperature in each reaction, we
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used the final simulated temperature (end of each pulse time) of the location as the input to the

SML as Tsipn.
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Figure S6. Distribution of the FG yield (%) synthesized from four starting materials of carbon
black (CB), metallurgical coke (MC), plastic waste-derived pyrolysis ash (PA), and waste tire-
based carbon black (TCB).
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Figure S7. The mixed of box plot and swarm plot showing the distribution of (a) luax; (b) I7/Iyax;
and ¢) CDyr. They are grouped based on the starting materials. The interquartile range (IQR=q3-
q1) is shown as the boxes. The lower end of the box is the 1% quartile (qi) and the upper end is the
3 quartile (q3). The horizontal line in the boxes show the median value. Lower and upper adjacent
mark the first quartile minus 1.5 times of the IQR and third quartile plus 1.5 times of the IQR,
respectively. The rest of the individual points beyond the whiskers are outliers according to the

mentioned 1.5*IQR rule.
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Figure S8. Plots of the FG yield vs. yax colored by the starting materials for (a) reactions with
CB, PA, or TCB with a strong significant correlation and (b) MC with no significant correlation.
The scattered data in both figures is fitted with both linear (orange) and non-linear curves (black)
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Figure S9. Multi-physics simulation of the temperature in the FJH process. (a) A reaction cylinder
of diameter 0.2 m (~8 inch) with 0.1 m length was used for simulation. The length of the simulated
area was modified based on the starting materials’ mass and particle size. (b) A photograph of FJH

apparatus during the flashing. (¢) Simulated temperatures of all 173 reactions over their pulse time.
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Figure S11. (a) An example of a decision tree used in the XGBoost model. In our case, 36 decision
trees were assembled to predict the final FG yield. (b) The index defining features and their ranges

used in Fig. S6a.
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Supplementary Tables

Table S1. Physical properties of the starting materials.

Particle size Sample resistance | Surface area Percent SP2
Starting material
(PS) (pm) (R) (€2) (SA) (m2/g) (%)
Carbon black (CB)
45 2.8 1750 41.2
BP-2000 raw
Pyrolysis ash (PA
oY E4) 125 7.2 62 42.4
raw
Tire-based CB
106 6.3 74 30.6
(TCB) raw
Metallurgical coke
150 0.4 18 459
(MC) raw

Note: Particle size was measured by sieving. Resistance was measured by a simple multimeter.
Brunauer-Emmett-Teller (BET)? was applied to measure the surface area. SP? percentage was

measured from fitting the CKLL edge in the XPS spectra, known as the D-parameter.
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Table S2. Hyperparameters of the trained three proxy models.

Proxy models

Hyperparameters

XGB predicting Iyax

max_depth=5,
min_child weight=12,
n_estimator=25,
learning_rate=0.099223,
gamma=0.001,
subsample=0.7

XGB predicting Ir/Iyax

max_depth=3,
min_child weight=9,
n_estimator=29,
learning_rate=0.099444,
gamma=0.001,
subsample=0.77

XGB predicting CDr

max_depth=4,
min_child weight=3,
n_estimator=30,
learning_rate=0.09947,
gamma=0.001,
subsample=0.75
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Table S3. Hyperparameters of the trained six models sued for the FG yield prediction.

Final models

Hyperparameters

XGBoost (XGB)

max_depth=5,
min_child weight=4,
n_estimator=38,
learning_rate=0. 09333,
gamma=0.001,
subsample=0.7

Random Forest (RF)

max_depth=6,
min_sample_split=3,
n_estimators=500

Decision Tree (DT)

max_depth=4,
min_sample_split=3

Linear Regression (LR)

fit_intercept=True

Multilayer Perceptron (MLP)

hidden_layer size=(100,

100, 100), activation="relu”,
learning_rate="adaptive”,
solver="adam”, alpha=0.05

Bayesian Regression (BR) Default
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