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Abstract 

De Novo design of molecules with targeted properties represents a new frontier in molecule 

development. Despite enormous progress, two main challenges remain: (i) generating novel 

molecules conditioned on targeted, continuous property values; (ii) obtaining molecules with 

property values beyond the range in the training data. To tackle these challenges, we propose a 

reinforced regressional and conditional generative adversarial network (RRCGAN) to generate 

chemically valid molecules with targeted HOMO-LUMO energy gap (ΔEH-L) as a proof-of-concept 

study. As validated by density function theory (DFT) calculation, 75% of the generated molecules 

have a relative error (RE) of < 20% of the targeted ΔEH-L values. To bias the generation toward the 

ΔEH-L values beyond the range of the original training molecules, transfer learning was applied to 

iteratively retrain the RRCGAN model. After just two iterations, the mean ΔEH-L of the generated 

molecules increases to 8.7 eV from the mean value of 5.9 eV shown in the initial training dataset. 

Qualitative and quantitative analyses reveal that the model has successfully captured the 

underlying structure-property relationship, which agrees well with the established physical and 

chemical rules. These results present a trustworthy, purely data-driven methodology for the highly 

efficient generation of novel molecules with different targeted properties. 

Keywords: extrapolation, inverse design, regressional and conditional GAN, targeted property, 

transfer learning  
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1. Introduction 

To develop new molecules, a stepwise procedure of molecule design, property prediction, 

chemical synthesis, and experimental evaluation is usually repeated until satisfactory performance 

is achieved. While chemical synthesis and experimental evaluations remain bottlenecks of the 

process, developing an efficient in silico framework becomes highly valuable. Despite much 

progress in the past decades, such a task remains a grand challenge due to two main reasons. First, 

the massive, discrete, and unsaturated design space (~1060) makes the traditional experimental and 

computational approaches impractical to fully explore the entire chemical space.1 Second, a slight 

change in a molecule structure can radically change its properties, making the molecule design 

with targeted properties even more difficult.2, 3  

High-throughput virtual and experimental screening (HTVS and HTES) methods have 

emerged to accelerate molecule discovery in the past three decades.4 They iteratively generate, 

synthesize, and evaluate the molecules from an enormous library of molecular fragments by 

combinatorial enumeration.4-7 Although they accelerate examination of the design space by 3-5 

orders of magnitude, their coverage and success rate are still far from the need of discovering 

sufficient amount of novel molecules.4 In addition to HTVS and HTES, global optimization (GO) 

strategies such as genetic algorithms have made much progress in identifying the top-ranked 

molecules,8 since they can efficiently screen the molecules with high-ranking scores from a 

fraction of possible candidates. However, the GO strategies require prior rules on how to transform 

the molecular fragments, thus greatly restricting the number of molecules to be explored. 

Moreover, the accuracy dramatically decreases as the structure complexity increases.9 Finally, 

many evolution steps are required to obtain the optimal candidates, making them not suitable for 

on-demand generation of novel molecules with targeted properties.  
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Recently, machine learning (ML) algorithms, particularly deep learning (DL), have been 

applied to discover novel molecules since they can learn hidden knowledge from a large scale of 

data.10 For instance, they have been widely implemented to assist or even substitute theoretical 

simulations in HTVS of molecules for photovoltaics,11 photocatalysis,12 and antimicrobial 

applications.13 They are also applied as generative models (GMs) for inverse molecule design. A 

GM-based inverse design process starts with mapping the high-dimensional representations of the 

molecules to reduced latent vectors, which are then used to search for or optimize new molecules. 

They can identify hidden patterns from the highly complex, nonlinear data in an automatic and on-

demand fashion without much prior knowledge for creating non-intuitive, even counterintuitive 

molecules that outperform the empirically designed ones. Thus, they are well suited for exploratory 

optimization problems in the unrestricted design space. For instance, variational autoencoders 

(VAEs),14 generative adversarial networks (GANs),15 reinforcement learning (RL),16, 17 and 

recurrent neural networks (RNNs),18, 19 or integration of these networks into a new architecture, 

have made the inverse molecule design more and more feasible.20, 21 Gómez-Bombarelli et al. 

employed a VAE to map discrete representations of molecules to continuous ones, making the 

gradient-based search of the chemical space possible.2 For instance, grammar variational 

autoencoders (GVAEs)22 which represent molecules as parse trees from a context-free grammar, 

have been applied for multi-properties optimization.23, 24 However, VAEs lack a mechanism for 

de novo generating molecules conditioned on targeted, continuous property values. If a value of 

interest was changed, they should be retrained. An RNN was proposed to generate molecules with 

targeted bioactivities but resulted in inaccurate property values compared to the targeted ones.18 

Popova et al. proposed an RNN-based generative model within an RL framework to generate 

compounds with targeted melting temperatures.19 It generates the compounds with properties 
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following those of the training molecules. Nevertheless, it is still not on-demand generation upon 

the targeted property values. The similar problems exist in other proposed models for molecule 

design.25-28 Thus, on-demand generation algorithms that can target different values of the property 

of interest are highly desired.29  

Two proof-of-concept GANs, such as ORGAN30 and ORGANIC,31 were introduced to 

generate novel molecules, while the generation is not conditioned on the physicochemical or 

biological properties with quantitative and continuous labels. Instead, the property values of the 

generated molecules by these models only follow the distribution of the training samples. In other 

words, they do not correspond to targeted, specific property values. Our group recently proposed 

a regressional and conditional GAN (RCGAN) for the inverse design of two-dimensional 

materials.9 RCGAN can meet two criteria for inverse material design: 1) generating new structures 

that are novel compared to training molecules; 2) generating structures conditioned on the input 

quantitative, continuous labels. However, crafting a GM that has both regressional and conditional 

capabilities for molecules with significantly larger input dimensions presents a larger challenge. 

Hong et al. introduced a framework that combined GAN and VAE but did not consider the targeted 

values as the input to the generator.32 They incorporated the target property information into the 

latent vector only during the decoding process. Consequently, in the encoding phase, the latent 

space is not associated with the property. The applied approach worked for simple properties such 

as drug likeness (QED) and the water−octanol partition coefficient (log P), which are over-

represented in the generative literature due to their ease of calculation and data abundance. 

However, such methodology may not work for more complicated properties such as the energy 

gap, which is not linearly related to the structures of the molecules and need to be calculated from 

quantum calculations. Additionally, all these GAN-based models generate the structures with the 
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targeted properties in the range of the initial molecules for training, whose task is so-called 

interpolation. To the best of our knowledge, a GM that can perform an extrapolation task of 

generating the molecules with targeted properties beyond the range of the training dataset has been 

rarely reported, if not any. 

To tackle this challenge, we propose a deep generative framework that integrates a reinforced 

RCGAN (RRCGAN) architecture. RRCGAN consists of three networks with a transfer learning 

algorithm to iteratively update RRCGAN for generation of molecules with targeted quantitative, 

continuous property values beyond the initial training dataset. RRCGAN includes an autoencoder 

(AE), an RCGAN network, and a reinforcement center. AE encodes the discrete representations 

of the molecules to continuous latent vectors, which are then fed as the input to RCGAN. RCGAN 

includes regressor, generator, and discriminator networks. The reinforcement center biases 

RCGAN towards generating valid and accurate molecules, resulting in RRCGAN. During the 

model's training phase on the initial dataset, it learns to discern the intricate relationships that 

connect molecular structures to specific properties. Nonetheless, deploying such a trained model 

to generate molecules with extreme property values located beyond the training distribution's 

boundaries is often impractical due to the inherent limitations posed by the small data challenge.33 

Addressing this challenge, we applied transfer learning to iteratively fine-tune RRCGAN on 

generating new molecules showing increased property values compared to those of the initial 

training data. As a proof of concept, we employed RRCGAN to generate small molecules with the 

targeted energy occupied molecular orbital (HOMO) and the lowest energy unoccupied molecular 

orbital (LUMO) gap (ΔEH-L). The molecules with varying ΔEH-L can be tailored for applications in 

electronics, optoelectronics, and energy conversion and storage. In this work, we first trained 

RRCGAN by ~132 thousand molecules whose ΔEH-L are distributed from 1.05 to 10.99 eV in the 
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PubChemQC database.34 Then, it was fined-tuned to create a new model for generating new 

molecules with much higher ΔEH-L values than the ones in the PubChemQC database. Novelty of 

this iterative generative algorithm can be summarized as follows. First, the generated molecules 

are novel and diverse. Second, the model is conditional and regressional, and can generate 

molecules with targeted, continuous labels in a batch mode. Third, the generation is purely data-

driven and can be extrapolated beyond the range of the initial training dataset by the transfer 

learning.  

 

2. Results and Discussion 

2.1 Development of RRCGAN 

Architecture of RRCGAN. Fig. 1 represents the schematic of the RRCGAN architecture, 

which includes AE, RCGAN, and a reinforcement center. All the initial training molecules are 

from the PubChemQC database35 and represented by the simplified molecular-input line-entry 

system (SMILES) strings (Supplementary Note 1).36 Atom and bond information of the molecules 

is one-hot encoded in these SMILES strings (Fig. S1). AE consists of an encoder and a decoder 

(Fig. 1a). The encoder maps the discrete molecular representations to continuous latent vectors, 

while the decoder converts the continuous vectors back to the discrete representations.36 AE is 

trained to minimize the error in reproducing the original SMILES strings. The encoder is a 

convolutional neural network (CNN) (Fig. S2). It outputs fixed-dimensional latent vectors (6×6×2 

matrices) that have the most statistically important information from the input SMILES strings. 

The architecture of the decoder was modified from Google Inception V2 (Fig. S3).37 The decoder 

converts the latent vectors back to the original SMILES strings.  
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In this work, RCGAN has a generator, a discriminator, and a regressor network. RCGAN 

learns the hidden relationship between the latent vectors and properties of the training molecules 

for generating new latent vectors conditioned on targeted ΔEH-L (continuous labels), which are then 

converted to the SMILES strings using the decoder (Fig. 1b). The regressor is modified from 

Google Inception V237 (Fig. S4). It is built as a quantitative structure-activity relationship (QSPR) 

model for predicting ΔEH-L. To generate a latent vector conditioned on a ΔEH-L value, the generator 

receives a concatenated vector (129×1) consisting of a targeted ΔEH-L and a randomly generated 

noise vector z in a 128×1 matrix (Fig. S5). In contrast to the RNN-based models that generate one 

token at a time based on previously generated tokens,18, 19 our generator employs a CNN 

architecture which can generate the latent vectors in a single step. The generated latent vector has 

a dimension of 6×6×2 and is expected to contain chemical information hidden in the high-

dimensional training data. The discriminator is trained by comparing the input concatenated 

vectors for both training and generated molecules (Fig. S6). The trained decoder is used to convert 

the synthesized latent vectors to SMILES that are then fed into the trained encoder to generate the 

latent vectors, which serve as the input to the regressor. The regressor then predicts ΔEH-L that 

corresponds to the generated latent vectors. If the regressor is directly fed with the output of the 

generator, it has an R2 of 0.80 and MAE of 0.60 eV (comparing the true and predicted values), 

which are lower than the ones (R2 of 0.90 and MAE of 0.45 eV) afforded by the regressor fed with 

the converted latent vectors. The discriminator performs two functions. First, it determines whether 

the concatenated vector is from a real (training) molecule or a fake (generated or synthesized) one 

by comparing the statistical distribution of the two. Second, it tells whether a generated molecule 

corresponds to the targeted ΔEH-L value. 
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Finally, a reinforcement center is included in the RRCGAN framework to ensure that the 

generated molecules are chemically valid and accurate in comparison of the validated ΔEH-L with 

the targeted ΔEH-L (Fig. 1c). First, the latent vectors generated by the generator are converted to 

the SMILES by the decoder and then fed into RDKit38 to ensure that the SMILES are chemically 

valid. If a SMILES is valid, then “1” is assigned to the string; otherwise, “0” is assigned. 

Subsequently, a relative error (RE) of a targeted ΔEH-L compared with the predicted value from the 

regressor is evaluated. If RE is less than 20%, “1” is assigned to represent an accurate sample. 

Only a latent vector with assigned numbers of both “1” (valid and accurate molecule) is labeled as 

a real sample. Otherwise, it is labeled as a fake one. These two constraints reinforce the 

discriminator to consider the molecules with both high chemical validity and high accuracy as the 

real molecules and others as the fake ones. In the training process, before the reinforcement center 

is activated, the generator and the discriminator are trained in a few epochs. Details about the 

architectures of these networks and their training processes are described in Supplementary Note 

2. Their loss functions and training processes are described as follows. 
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Figure 1. Architecture of the proposed RRCGAN for inverse molecule design with targeted 

ΔEH-L. (a) AE architecture for converting discrete molecule representations to and from a 

continuous latent space. (b) RCGAN architecture. The generator takes targeted property and 

Gaussian noise as inputs to generate latent vectors. The discriminator distinguishes the synthesized 

molecules from the real ones based on their latent vectors and their assigned ΔEH-L. The regressor 

predicts the property values from the generated latent vectors. (c) Scheme of the reinforcement 

center that biases the discriminator towards generation of the valid and accurate molecules. 

 

Loss functions of encoder, decoder, regressor, generator, and discriminator. The loss 

function (LAE) of AE is the sum of the cross entropy (LAE1 for discrete one-hot encoded SMILES 

strings) and the mean square error (MSE) (LAE2 for continuous property labels), as shown in the 

following equations.  

𝐿𝐴𝐸 = 𝐿𝐴𝐸1 + 𝐿𝐴𝐸2                                                                                                                                  (1) 

𝐿𝐴𝐸1 = ∑ −𝑡𝑖 𝑙𝑜𝑔( 𝑡̂𝑖)
𝑁
𝑖 − (1 − 𝑡𝑖) 𝑙𝑜𝑔( 1 − 𝑡̂𝑖)                                                                                      (2) 

𝐿𝐴𝐸2[𝑌, 𝑌̂] =
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑁
𝑖=1                                                                                                                  (3) 

In Eq. 2, t is the true value (either 0 or 1) showing binary categories in the one-hot encoding 

vectors used for each SMILES. The predicted 𝑡̂ can be any value between zero and one, while they 

must sum to 1 in the last SoftMax layer of the decoder. In Eq. 3, ŷ is the predicted ΔEH-L, y is the 

true ΔEH-L, and N is the number of molecules. The decoder is conditioned on the known ΔEH-L to 

improve the accuracy of the decoder. Eq. 3 is to calculate the mismatch between the predicted ΔEH-

L from the decoder and the true ΔEH-L. The predicted ΔEH-L from the decoder, however, is not used 

in the model as it has a lower accuracy compared to the regressor. 
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The loss function of the regressor is defined as the L2 in Eq. 4. It measures the difference 

between the predicted and true ΔEH-L.  

𝐿𝑜𝑠𝑠𝑅 = 𝐿2[𝑌, 𝑅(𝑍)]                                                                                                             (4) 

where Z is a latent vector output from the encoder and Y is the true ΔEH-L. L2 is defined in Eq. 5. 

𝐿2[𝑌, 𝑌̂] =
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)

2
𝑖                                                                                                       (5) 

where y is the targeted ΔEH-L value, ŷ is the predicted ΔEH-L value from the regressor or R(Z), and 

N is the number of molecules. 

As shown in Eq. 6, the loss function of the generator includes two terms. The first one is the 

same as the loss for the least square GAN (LSGAN),39 while the second one is the regularized loss 

for the regressor.  

𝐿𝑜𝑠𝑠𝐺 =
1

2
𝔼𝑧~𝑃𝑧(𝑧)

[𝐷(𝐺(𝑧, 𝑌), 𝑌) − 1]2 + 𝑤𝐿2 (𝑌, 𝑅(𝐸(𝐷2(𝐺(𝑧, 𝑌)))))                            (6) 

where 𝔼 is the expectation function, the subscript (z ~ Pz(z)) shows the synthesized molecules from 

the generator, and z is a random noise and the input of the generator. D2 and E are the decoder and 

encoder, respectively. D is the discriminator that uses the latent vectors generated from the 

generator and the predicted ΔEH-L from the regressor to classify them into two groups of the fake 

[0] or real [1] molecules. When feeding the regressor with the generated molecules, the L2 loss is 

calculated and then used as the regularization term in the loss function of the generator. w is the 

weight parameter for the regularization term. The combined loss function ensures that the 

generator and discriminator are simultaneously trained to avoid mode collapse.  

The loss function of the discriminator is the same as the one used for LSGAN (Eq. 7).39  

𝐿𝑜𝑠𝑠𝐷 =
1

2
𝔼𝑋~𝑃𝑑𝑎𝑡𝑎(𝑋)[𝐷(𝐸(𝑋), 𝑌) − 1]2 +

1

2
𝔼𝑧~𝑃𝑧(𝑧)[𝐷(𝐺(𝑧, 𝑌), 𝑅(𝐸(𝐷2(𝐺(𝑧, 𝑌))))]

2           (7) 

where E is the encoder and E(X) is the latent vector output from the encoder. In the pre-training 

process, when the reinforcement has not been activated, the subscript X~Pdata(X) indicates that the 
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molecule is sampled from the training data, and z~Pz(z) refers to all the generated molecules by 

the generator. After 5 epochs of initial training of the generator and discriminator, the generator 

generates 1000 molecules that are evaluated for validity and accuracy by the reinforcement center. 

X~Pdata(X) refers to the generated molecules that are chemically valid and have the predicted ΔEH-

L with RE of < 20%, and z~Pz(z) refers to the generated molecules that do not pass either of the 

validity or accuracy tests.  

Training of RRCGAN. The process starts with training the AE and the regressor using ~132K 

molecules from the PubChemQC database.34, 35 We considered ΔEH-L as the property of interest. 

The AE was trained by minimizing the discrepancy between the input SMILES strings to the 

encoder and the output ones from the decoder. Fig. S7 shows that the loss of AE is stabilized after 

1000 epochs. The latent vectors have dimensions of 6×6×2. Evaluation of the decoder's 

performance was done by comparing the true one-hot encoded SMILES strings with those 

generated by the decoder. Our findings indicate that 87% of the SMILES strings (from the testing 

molecules) were accurately converted back to the original input ones. Also, 90% of the converted 

SMILES strings corresponded to the chemically valid molecules. To assess the fidelity of the 

reconstruction, we also calculated categorical accuracy, which measures the percentage of 

correctly reconstructed characters in the output SMILES strings. Our AE achieved a categorical 

accuracy of 98.6%, slightly surpassing the value of 98.5% reported by Gómez-Bombarelli et al.2 

Fig. S8 shows three randomly selected one-hot encoded SMILES strings from the testing and 

training datasets as well as their respective conversions by the decoder. We also explored 

alternative latent vectors with dimensions of 4×4×2 and 8×8×2. The 4×4×2 latent vectors were 

found to be insufficient in capturing necessary information for the decoder to accurately 

reconstruct the input SMILE strings. The 8×8×2 latent vectors yielded a comparable accuracy of 
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86% in converting the SMILES strings. But as shown in Fig. S9, the model trained with the 8×8×2 

latent vectors has a reduced R2 of 0.3 compared to an R2 of 0.7 from the model trained with the 

6×6×2 vectors.  

The latent vectors outputted from the pre-trained encoder, along with the corresponding ΔEH-

L were used to train the regressor. Fig. S10 shows that the loss of the regressor is stabilized after 

150 epochs. As shown in Fig. S11, the regressor affords a coefficient of determination, R-squared 

(R2) of 0.98, and a mean-absolute-error (MAE) of 0.19 eV for training and R2 of 0.95 and MAE 

of 0.33 eV for testing. Table S1 provides a comparison of the regressor’s accuracy with other 

models. The pre-trained regressor is used to predict ΔEH-L of the synthesized molecules from the 

generator. It is also used in the reinforcement center to screen out the molecules with the 

unsatisfactory ΔEH-L accuracy. 

After the AE and the regressor are pre-trained, the generator and discriminator are first trained 

for 5 epochs. After that, the reinforcement center is activated. Then, the generator generates 1000 

latent vectors in response to the input ΔEH-L values. The reinforcement center groups the molecules 

based on two criteria: the SMILES validity and accuracy of the predicted ΔEH-L values compared 

to the targeted ones. To check the validity of the generated molecules, their latent vectors are first 

converted to SMILES by the decoder and then validated by RDKit. Meanwhile, these SMILES are 

converted to the latent features and then fed to the pre-trained regressor for predicting ΔEH-L. The 

reinforcement center selects the generated molecules that are chemically valid and have the 

predicted ΔEH-L within RE of 20% of the targeted values. These selected molecules are labeled as 

“1” and the remaining ones are labeled as “0”. Then, these grouped molecules are fed to train the 

discriminator. The loss evolution of the generator and discriminator is represented in Fig. S12. It 

shows that after the reinforcement center is activated, the loss of the generator is fast reduced and 
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stabilized after 150 epochs. The low and stabilized losses of both the generator and discriminator 

indicate a successful model training. We conducted a control experiment by disabling the 

reinforcement center in the training process. As shown in Fig. S13, the losses of the generator and 

the discriminator without the reinforcement center do not converge after 200 epochs. 

Hyperparameters for these trained networks are shown in Table S2. Evaluation metrics such as R2, 

mean absolute error (MAE), RMSE, MSE, and RE are defined in Eq. S1-S5 (Supplementary Note 

3).  

 

2.2 Evaluation of RRCGAN 

Performance of RRCGAN was evaluated by comparing the DFT-calculated ΔEH-L of the 

generated molecules with the targeted ΔEH-L and the predicted ΔEH-L by the regressor, respectively. 

ΔEH-L values of the molecules that were used to train the initial model were in the range of 1.05-

10.99 eV. A set of 630 molecules was generated, as outlined in the methodology section. The 

predicted ΔEH-L values by the regressor were first compared with the DFT calculated ones for the 

630 evaluated molecules (Fig. 2a). Their R2 and MAE were calculated to be 0.87 and 0.5 eV, 

respectively. This high prediction accuracy suggests that the regressor catches the hidden chemical 

rules to correlate the molecule structures with ΔEH-L. Fig. 2b shows RE distribution of the predicted 

ΔEH-L by the regressor compared with the DFT calculated ones. 91% of the molecules show within 

20% RE of the DFT-calculated values. The results shown in Fig. 2a-b suggest a high accuracy of 

the regressor in predicting ΔEH-L of the generated molecules. Thus, it is acceptable to use the 

regressor for screening the generated molecules for saving time and cost from using the DFT 

calculation. In addition, the targeted ΔEH-L and DFT-evaluated ΔEH-L of the generated molecules 

were compared to evaluate the accuracy of the RRCGAN model in generating the molecules (Fig. 
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2c). The data shows R2 and MAE of 0.62 and 1.0 eV, respectively. Distribution of RE between the 

DFT-calculated and targeted ΔEH-L is shown in Fig. 2d. ~75% of the molecules have ΔEH-L 

calculated by DFT within 20% RE of the targeted values, showing an acceptable accuracy in such 

a de novo molecule generation task in this large range of targeted values. The importance of this 

one-to-one comparison lies in its ability to showcase the model's efficacy and precision on 

targeting the property values. Compared to some state-of-art molecule generation models as shown 

in Table S3, our model shows uniqueness in realizing this important goal. In addition, it is superior 

to them in terms of realizing targeted, extrapolative generation of molecules with higher or 

comparable accuracy at the same time. In a separate experiment, we targeted a single value to 

generate ~2500 valid molecules. Fig. S14 shows the distribution of the predicted values for the 

~2500 generated molecules corresponding to a targeted ΔEH-L value of 8.29 eV. It shows that 85% 

of the generated molecules have a predicted ΔEH-L value within 20% RE of the targeted one. An 

obvious disadvantage of the string-based representation methods, e.g., SMILES, is that 

information about the bond lengths and 3D configurations is lost. Trained with the molecules 

presented by them, the model shows a limitation in accuracy. A better accuracy may require more 

input information like the molecules’ 3D configurations,40 while it is a trade-off with the 

computational cost. In future, a distance geometry method41 can be used to embed some 3D 

information into the SMILES to validate if the accuracy of RRCGAN can be improved.  
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Figure 2. Comparison of the targeted, predicted, and DFT calculated ΔEH-L values of the 

randomly sampled 630 molecules among all the generated ones. (a) Predicted versus DFT 

calculated ΔEH-L colored with RE of those values; (b) distribution of RE of the predicted and DFT 

calculated ΔEH-L; (c) targeted versus DFT calculated ΔEH-L colored with RE of those values; and 

(d) distribution of RE of the targeted and DFT calculated ΔEH-L. 

 

2.3 Transfer learning for biasing ΔEH-L towards higher values 

Table S4 shows statistics of the initial training molecules. Among the 132K molecules, only 

461 exhibited a ΔEH-L value of ≥ 10 eV. Although the initial RRCGAN model occasionally 

generates outlier molecules with ΔEH-L of ≥ 10 eV, among the 630 molecules shown in Fig. 2, there 

are only three with ΔEH-L of 10.0, 10.10, and 10.15 eV. Importantly, none of these values exceeded 
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the range of the original training dataset, which spanned from 1.05 to 10.99 eV, which is expected 

for an interpolation model. To train a new model for biasing the generation toward ΔEH-L of > 

10.99 eV, the number of these molecules is not sufficient. In contrast, transfer learning has shown 

a great promise in solving the data scarcity problem.24, 42 "Transfer learning" refers to the process 

of transferring knowledge from an already trained model to a new one, thereby enhancing the 

accuracy of the latter even when trained with limited data.43 Thus, to bias ΔEH-L towards higher 

values for extrapolating the property space, a transferred model was trained via fine-tuning the 

initial RRCGAN on the new molecules with increased ΔEH-L values. 

The workflow of such an iterative generative algorithm is shown in Fig. 3a. As a demo, herein, 

only two iterations were investigated. In the first iteration, a set of 1000 molecules with ΔEH-L 

values of ≥ 10.0 eV was used for training. Out of those, 461 molecules with ΔEH-L values of ≥ 10.0 

eV were sourced from the PubChemQC database (Fig. 3a-ii and Table S5), while the remaining 

molecules were newly generated by the model. To generate them, we employed a multiple batch 

generation process, each consisting of 50 targeted ΔEH-L values uniformly sampled within the range 

of 8-11 eV. Subsequently, we screened the generated molecules corresponding to these targeted 

ΔEH-L values using the regressor model, selecting those with the predicted ΔEH-L value greater than 

9.5 eV. These molecules were then subjected to DFT calculations for validation, and only those 

with DFT-calculated ΔEH-L values of ≥ 10 eV were finally selected. This batch generation process 

was repeated using different sampled targeted values until 539 valid, unique, and novel molecules 

with the DFT-validated ΔEH-L values of ≥ 10 eV were obtained. In the second iteration, the 

transferred model was fine-tuned using the generated molecules with validated ΔEH-L of ≥ 10.2 eV 

from the first transferred RRCGAN model. Fig. 3b shows the distributions of ~132K initial 

molecules used for training the initial RRCGAN model and the generated molecules in different 
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transfer learning iterations. The ΔEH-L values of the generated molecules by the initial model are 

in the 2-10.15 eV range with a mean ΔEH-L of 6.33 eV, which is close to 5.94 eV, the average of 

the original training molecules. Only 0.5% of the outlier molecules have ΔEH-L of ≥ 10 eV. After 

the first iteration, the transferred model generates the molecules with a mean ΔEH-L of 7.4 eV and 

a maximum ΔEH-L of 11.6 eV. The percentage of the molecules with ΔEH-L of ≥ 10 eV increases to 

5%. After the 2nd iteration, the generated molecules have a mean ΔEH-L of 8.7 eV and a maximum 

ΔEH-L of 12.9 eV. The percentage of the molecules with the predicted ΔEH-L of ≥ 10 eV increases 

to 16%. These results illustrate that the iterative transfer learning can push the generation toward 

higher ΔEH-L values and increase maximum ΔEH-L.  

The application of transfer learning in molecule design has been explored in other studies as 

well.44, 45 However, our approach distinguishes itself from the method proposed by Merk et al.44 

in terms of our fine-tuning strategy. While they utilized historical data featuring high experimental 

activities, we employed newly generated molecules as training samples. This unique approach led 

us to uncover a previously unexplored functional group (C-F) that exhibits a strong correlation 

with high ΔEH-L values. The fine-tuning process using these newly generated molecules yielded a 

pronounced emphasis on exploration over exploitation. Furthermore, our framework differs from 

the work introduced by Korshunova et al.45 Although they also employed newly generated samples 

for fine-tuning, their framework lacks the capability to target multiple values within the high-value 

region. In contrast, with sufficient fine-tuning, our framework has the potential to precisely target 

a range of values within the explored high-value region. 
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Figure 3. Workflow of iterative transfer learning and model performance. (a) Schematic of 

the iterative transfer learning for generating molecules with targeted ΔEH-L beyond the range of 

initial training data. (b) ΔEH-L distributions of the initial training molecules in the PubChemQC 

database, the molecules generated by the initial RRCGAN model, and the molecules generated by 

the 1st transferred model and the 2nd transferred model.  

 

2.4 Analysis on the generated molecules 
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Analysis of structural features of molecules. The active search strategy outlined earlier 

enables the generation of the molecules with the ΔEH-L values higher than those found in the 

original training dataset. It can be deduced that RRCGAN has successfully learned the chemical 

rules contained in the SMILES strings to establish the structure-property relationship. Herein, the 

structures of the generated molecules are analyzed to understand how the model captures the 

chemical insights. Fig. 4 displays 20 representative molecules with the DFT-calculated ΔEH-L 

values ranging from 2.38 to 13.07 eV and have RE within 10% of the targeted values. Fig. 4a 

showcases molecules with the ΔEH-L values of < 6.5 eV, while Fig. 4b presents those with the ΔEH-

L values of > 6.5 eV.  

Comparison of the molecules with high and low ΔEH-L values highlights several key 

observations. The molecules featuring alternated single and multiple bonds—which are referred 

to as conjugated systems, unsaturated rings, and radical electrons, tend to exhibit lower ΔEH-L 

values. Conversely, the molecules with linear structures which are characterized by single bonds 

or saturated rings tend to display higher ΔEH-L values. Moreover, the presence of sulfur (S) and 

Nitrogen (N) decreases ΔEH-L. This effect can be attributed to the increased extent of orbital overlap 

facilitated by these elements, ultimately reducing ΔEH-L.46  

In addition to the structure-property relationship disclosed from the initial RRCGAN model, 

the transferred model reveals a different but noteworthy correlation. That is the presence of 

fluorine (F) atoms bonded to carbon (C) atoms in the molecules increasing ΔEH-L. That could be 

because F is the most electronegative element in the periodic table. In a molecule, F exerts a strong 

electron-withdrawing effect, which raises the LUMO level to get a higher ΔEH-L.47 But this rule 

remains undisclosed by the initial model due to the scarcity of the F-containing molecules in the 

initial training dataset. Among the 132K initial training molecules, only 4 molecules contain the F 
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atom and have ΔEH-L of > 10 eV. As depicted in Fig. 4b, the generated molecules by the transferred 

model have ΔEH-L of 13.07 eV. They all include the F-C bonds. This observation illustrates the 

effectiveness of the transferred model in learning a critical structural feature even present in the 

limited samples when doing the extrapolative generation. Meanwhile, they all include the single 

bond and saturated rings. This knowledge is transferred from the initial model that these two 

features tend to improve the ΔEH-L values. These observations confirm that the model can 

effectively correlate the structures with the properties, aligning with the established chemical 

rules.47, 48 The strong agreement between the model's predictions and established chemical 

principles enhances confidence in the utilization of this deep generative model for the efficient and 

cost-effective generation of novel molecules with desired properties. Adding objectives related to 

synthetic accessibility for generated molecules is a thoughtful approach to enhance the practical 

utility of the proposed generative model. This could include criteria such as the complexity of the 

chemical structure, the presence of synthetically challenging motifs, or adherence to established 

synthetic rules.49 Additionally, involving domain experts in the development and validation 

process can significantly enhance the effectiveness of the synthetic accessibility objectives in the 

proposed generative model. 
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Figure 4. Representative examples of molecules generated by the original and transferred 

RRCGAN models: the molecules with (a) ΔEH-L of < 6.5 (eV), and (b) ΔEH-L of > 6.5 (eV). 

 

Visualizing these representative molecules in Fig. 4 affords a qualitative correlation of the 

structures with their ΔEH-L. To establish a quantitative relationship, we trained an XGBoost 

regression model which takes 18 structural features (Supplementary Note 4) as input to predict 

ΔEH-L. From the feature importance analysis (Fig. S15), we picked four important structural 

features that most affect the prediction. They are the number of the saturated rings, number of the 

hydrogen-bond acceptors, the heavy atoms molecular weight, and number of the rotatable bonds. 

A saturated ring is defined as a cycle composed solely of single bonds, while an aromatic ring 

consists of alternating single and double bonds, as exemplified by benzene. The hydrogen-bond 
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acceptors are typically electronegative atoms with lone pairs of electrons, such as oxygen (O), 

nitrogen (N), and sometimes sulfur (S). The rotatable bonds are non-ring single bonds connected 

to non-hydrogen, non-terminal atoms. Amid C-N bonds are excluded due to their high rotation 

barriers.50 In Fig. 5, we present the percentage distribution of these selected features presented 

within both the training and generated molecules. Feature distributions of the generated molecules 

are slightly different from those of the training ones, demonstrating the generator’s capability in 

exploring the new design space to generate the molecules with the targeted ΔEH-L. Specifically, 

Fig. 5a reveals a higher percentage of the generated molecules with a single saturated ring 

compared to the training molecules. Fig. 5b illustrates a decrease in the occurrence of the generated 

molecules with 2 and 3 hydrogen bond acceptors, while the number of the molecules with higher 

hydrogen-bond acceptors is increased. Moreover, the heavy atom molecular weights tend to 

increase ΔEH-L (Fig. 5c), indicating a tendency for the model to generate larger molecules in request 

of higher ΔEH-L. Additionally, Fig. 5d indicates that the number of the rotatable bonds increases in 

correspondence of the higher ΔEH-L values. It is worth noting that these structural features were 

not directly used as descriptors for the RRCGAN model. It is likely that such information is 

implicitly captured within the latent vectors. Furthermore, Fig. S16 presents the ranking of other 

features which are also associated with ΔEH-L. Further explanations and details regarding these 

features can be found in Supplementary Note 4. 
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Figure 5. Density distribution of the four selected features for the training and generated 

molecules: (a) number of saturated rings; (b) number of aromatic rings; (c) molecular weight of 

the heavy atoms; (d) number of rotatable bonds.  

 

Dimension reduction on the latent vectors of the molecules. The latent vectors, which are 

the output of the encoder, were used as the input for training the RRCGAN model. These 

continuous vectors can connect the discrete SMILES representations with their hidden structural 

information for generating the molecules responding to their targeted properties. They are, 

however, high-dimensional and are difficult to interpret. We hypothesize that if they can be 

mapped to a lower dimensional space, the molecules that share similar structural features would 
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be clustered together in the plots, and the generated molecules would follow a similar pattern to 

that of the training ones.  

To validate the hypothesis, we applied t-distributed stochastic neighbor embedding (t-SNE), 

a non-linear dimension reduction method, to project the latent vectors of both training and 

generated molecules (Fig. 6). First, we divided ΔEH-L into four ranges. The ranges for the training 

molecules are ≤ 4.4 eV, [4.4-5.7 eV], [5.7-7.5 eV], and > 7.5 eV. The ranges for the generated 

molecules are ≤ 4.5 eV, [4.5-5.9 eV], [5.9-7.7 eV], and > 7.7 eV. Each range was calculated by 

quantiles to have the same number of molecules. The projected latent vectors were then colored 

based on their ΔEH-L ranges, where the dark blue and dark red colors represent the low and high 

values, respectively. As shown in Fig. 6, the first component of t-SNE (t-SNE1) separates the 

molecules based on their ΔEH-L values. The molecules in the same ΔEH-L range are clustered into 

close regions in the plots. Molecules with ΔEH-L > 6 eV are in a region with t-SNE1 < 0 and vice 

versa. In Fig. 6a-b, Molecule (7) is a representative sample with ΔEH-L of ≤ 4.4 eV and ≤ 4.5 eV 

for the training and generated molecules, respectively. Molecules (3) and (4) represent the ones 

with ΔEH-L of > 7.5 eV and > 7.7 eV for the training and generated molecules, respectively. Linear 

molecules with single bonds and fewer sulfur and nitrogen atoms are grouped in the high ΔEH-L 

value region, while molecules with rings, conjugated systems, and more sulfur and nitrogen atoms 

occupy the low ΔEH-L value regions. These results agree well with the observations from Fig. 4. 

Moreover, the generated molecules are clustered in the same regions as the ones for the training 

molecules (Fig. S17), further validating that the generator has successfully learned the structural 

information from the latent vectors of the training molecules for generating novel molecules with 

the targeted ΔEH-L. As a comparison, we also performed a principal component analysis (PCA) 

and a spectral embedding analysis on the same molecules used for the t-SNE analysis. The results 
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are shown in Fig. S18. Discussion on the PCA and spectral embedding results is described in 

Supplementary Note 5. In conclusion, it is found that t-SNE outperforms the other two methods 

for data visualization in this case. 

We have also presented some molecules in the boundaries between the two gap ranges of the 

highest and lowest ΔEH-L to show the similarities of the structures although they are in the two 

different ranges. When comparing Molecules (1) and (2) in Fig. 6a, the existence of a conjugated 

system in Molecule (1) lowers ΔEH-L, which agrees well with the conclusion shown in Fig. 4. When 

comparing Molecules (1) and (2) in Fig. 6b, the existence of radical electrons in Molecule (1) 

lowers ΔEH-L. When compared to Molecule (5), Molecule (6) has the sulfur atom, thus reducing 

the ΔEH-L value (Fig. 6a-b). For such molecules with close structures but different ΔEH-L values, 

the reduced latent space is not enough to distinguish them. 
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Figure 6. t-SNE plots of the latent vectors of the training and generated molecules output 

from the encoder: (a) training molecules; (b) generated molecules. Unit of ΔEH-L is eV. 

 

3. Conclusion 
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In this study, we designed and implemented a deep generative framework named RRCGAN 

for de novo design of molecules toward biased ΔEH-L values. To develop the model, we first trained 

the encoder and decoder. Subsequently, the encoded latent features of the molecules were fed to 

the regressor to predict ΔEH-L, which enables the GAN to generate the molecules that meet the 

desired values while remaining chemically valid. It is worth mentioning that only SMILES strings 

are used as the input of the model, and no other complicated chemical descriptors are employed in 

the study. ΔEH-L of the generated molecules are validated by DFT and compared with the targeted 

values. The developed RRCGAN is transferred by using the limited, generated molecules in the 

previous iteration for the next-iteration molecule generation toward ΔEH-L values beyond those in 

the initial training data. In just two iterations, the generated molecules exhibit an increased mean 

ΔEH-L of 10.5 eV compared to mean ΔEH-L of 5.94 eV in the PubChemQC database.  

To ensure the reliability and efficacy of the model, the structures and the latent features of 

both training and generated molecules were qualitatively and quantitatively analyzed. The analyses 

reveal that the model has successfully captured the underlying structure-property relationship, 

which agrees well with the established physical and chemical rules. The model then correlates the 

structural features with the values of ΔEH-L for generating novel molecules with targeted ΔEH-L. 

The proposed RRCGAN framework would afford a trustworthy, purely data-driven methodology 

for the highly efficient generation of novel molecules without the need for physical or chemical 

inputs. 

 

4. Methods 

Data collection and curation. We used ~132K out of 3 million molecules from the 

PubChemQC database,35 for training the original RRCGAN model. More details of preparing the 
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132K training molecules are provided in Supplementary Note 6. PubChemQC is a quantum 

chemistry database with molecules from the PubChem Project.51 We split the molecules into 

training and testing datasets for training the AE and regressor as shown in Fig. S19. Using RDKit, 

canonical SMILES were extracted to represent the molecules.52 To one-hot encode SMILES, a 

subset of 27 different characters was used as shown in Fig. S1. We considered 40 as the maximum 

number of characters in each SMILES. With padding for sequences with less than 40 characters, 

a fixed one-hot encoded matrix size of 40×27 was used. The training molecules have up to 20 

heavy atoms of C, O, N, S, P, and F. We reserved the last character as the closing character. As a 

result, the generated molecules can have up to 39 heavy atoms. These SMILES representations 

were split into training, validation, and test datasets in a ratio of 6:2:2. The training and validation 

datasets were used to finetune the hyperparameters of the encoder, decoder, and regressor, while 

the test datasets were used to evaluate the final performance of the model. The ΔEH-L values in the 

range of 0-15 eV were normalized to 0-1.0 for the model development. 

Batch generation. For generating 630 molecules shown in Fig. 2, we used a batch of 70 

targeted values that were sampled uniformly in the range of 1-11 eV. We then repeated each of 

these sampled targeted values 10 times to generate 700 molecules in one batch. We generated 10 

batches with different seeds of random sampling that results in a total of 7000 generated molecules. 

Please note that by changing the number of targeted values and repetition times the number of 

molecules in one batch can be varied. The directory “model_regular” from the GitHub repository 

includes the file related to batch generation. The Jupyter Notebook file named 

“Main_model_batchgen.ipynb” contains the code for batch generation. We analyzed the generated 

molecules regarding their validity, uniqueness, and novelty. Using RDKit, we checked atoms’ 

valence and consistency of bonds in the aromatic rings for the validity calculation. Novelty is 
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indicated by the fraction of the generated molecules that are not present in the PubChemQC 

database. Uniqueness is defined as the ratio of molecules that are distinguished from each other in 

the same batch. In the example of generating 7000 molecules, 11% were valid of which 95% were 

unique. Also, 94% of these valid and unique molecules were novel compared to the training 

molecules in the PubChemQC database. The resulting 650 valid, unique, and novel molecules were 

then calculated by density functional theory (DFT), and 630 of them were finished simulation 

within the set time limit of 8 hours. The DFT output of the final samples are included in “analysis” 

directory of the GitHub repository. The transferred models in first and second iterations are also 

provided in “model_transfer” and “model_transfer2” folder of the published GitHub repository.  

DFT calculation. We used Open Babel, an open chemical toolbox,41, 53 to convert the 

generated SMILES strings to 3D coordinates. Open Babel adds hydrogens to the molecules and 

generated their 3D coordinates. Then, a quick local optimization was carried out in 50 steps by the 

MMFF94 force field. The DFT calculations for all molecules were carried out using Gaussian 

16.C.01. Geometry optimization and frequency calculations were carried out using the B3LYP 

(VWN3) functional54, 55 with the split-valence, double-zeta, and polarized basis 6-31G(2df,p). 

Restricted closed-shell calculations were performed for all molecules. ΔEH-L values, the energy 

difference between HOMO and LUMO eigenvalues, were extracted from the DFT results. To 

ensure that the calculation is accurate enough, we calculated ΔEH-L of 59 molecules randomly 

selected from the PubChemQC database.34 Among them, calculation of 46 molecules was finished 

within 8 hours. The calculated values were compared to the ones listed in the PubChemQC 

database. The result shows that they have a low MAE of 0.14 eV (Fig. S20). 

 

Data and code availability 
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The corresponding data and codes can be available at 

https://github.com/linresearchgroup/RRCGAN_Molecules_Ehl. 
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