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Abstract

De Novo design of molecules with targeted properties represents a new frontier in molecule
development. Despite enormous progress, two main challenges remain: (i) generating novel
molecules conditioned on targeted, continuous property values; (ii) obtaining molecules with
property values beyond the range in the training data. To tackle these challenges, we propose a
reinforced regressional and conditional generative adversarial network (RRCGAN) to generate
chemically valid molecules with targeted HOMO-LUMO energy gap (4E#-1) as a proof-of-concept
study. As validated by density function theory (DFT) calculation, 75% of the generated molecules
have a relative error (RE) of <20% of the targeted AE#., values. To bias the generation toward the
AEy. 1 values beyond the range of the original training molecules, transfer learning was applied to
iteratively retrain the RRCGAN model. After just two iterations, the mean 4Ep.; of the generated
molecules increases to 8.7 eV from the mean value of 5.9 eV shown in the initial training dataset.
Qualitative and quantitative analyses reveal that the model has successfully captured the
underlying structure-property relationship, which agrees well with the established physical and
chemical rules. These results present a trustworthy, purely data-driven methodology for the highly
efficient generation of novel molecules with different targeted properties.
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transfer learning



1. Introduction

To develop new molecules, a stepwise procedure of molecule design, property prediction,
chemical synthesis, and experimental evaluation is usually repeated until satisfactory performance
is achieved. While chemical synthesis and experimental evaluations remain bottlenecks of the
process, developing an efficient in silico framework becomes highly valuable. Despite much
progress in the past decades, such a task remains a grand challenge due to two main reasons. First,
the massive, discrete, and unsaturated design space (~10°°) makes the traditional experimental and
computational approaches impractical to fully explore the entire chemical space.! Second, a slight
change in a molecule structure can radically change its properties, making the molecule design
with targeted properties even more difficult.?

High-throughput virtual and experimental screening (HTVS and HTES) methods have
emerged to accelerate molecule discovery in the past three decades.* They iteratively generate,
synthesize, and evaluate the molecules from an enormous library of molecular fragments by
combinatorial enumeration.*” Although they accelerate examination of the design space by 3-5
orders of magnitude, their coverage and success rate are still far from the need of discovering
sufficient amount of novel molecules.* In addition to HTVS and HTES, global optimization (GO)
strategies such as genetic algorithms have made much progress in identifying the top-ranked
molecules,® since they can efficiently screen the molecules with high-ranking scores from a
fraction of possible candidates. However, the GO strategies require prior rules on how to transform
the molecular fragments, thus greatly restricting the number of molecules to be explored.
Moreover, the accuracy dramatically decreases as the structure complexity increases.” Finally,
many evolution steps are required to obtain the optimal candidates, making them not suitable for

on-demand generation of novel molecules with targeted properties.



Recently, machine learning (ML) algorithms, particularly deep learning (DL), have been
applied to discover novel molecules since they can learn hidden knowledge from a large scale of

data.'® For instance, they have been widely implemented to assist or even substitute theoretical
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simulations in HTVS of molecules for photovoltaics,!! photocatalysis,'> and antimicrobial
applications.'® They are also applied as generative models (GMs) for inverse molecule design. A
GM-based inverse design process starts with mapping the high-dimensional representations of the
molecules to reduced latent vectors, which are then used to search for or optimize new molecules.
They can identify hidden patterns from the highly complex, nonlinear data in an automatic and on-
demand fashion without much prior knowledge for creating non-intuitive, even counterintuitive
molecules that outperform the empirically designed ones. Thus, they are well suited for exploratory
optimization problems in the unrestricted design space. For instance, variational autoencoders
(VAEs),'* generative adversarial networks (GANs),! reinforcement learning (RL),!® 7 and
recurrent neural networks (RNNs),!® ¥ or integration of these networks into a new architecture,
have made the inverse molecule design more and more feasible.? ! Gomez-Bombarelli et al.
employed a VAE to map discrete representations of molecules to continuous ones, making the
gradient-based search of the chemical space possible.> For instance, grammar variational
autoencoders (GVAEs)** which represent molecules as parse trees from a context-free grammar,
have been applied for multi-properties optimization.”* * However, VAEs lack a mechanism for
de novo generating molecules conditioned on targeted, continuous property values. If a value of
interest was changed, they should be retrained. An RNN was proposed to generate molecules with
targeted bioactivities but resulted in inaccurate property values compared to the targeted ones. '

Popova et al. proposed an RNN-based generative model within an RL framework to generate

compounds with targeted melting temperatures.' It generates the compounds with properties



following those of the training molecules. Nevertheless, it is still not on-demand generation upon
the targeted property values. The similar problems exist in other proposed models for molecule
design.?>?® Thus, on-demand generation algorithms that can target different values of the property
of interest are highly desired.?

Two proof-of-concept GANs, such as ORGAN*® and ORGANIC,*' were introduced to
generate novel molecules, while the generation is not conditioned on the physicochemical or
biological properties with quantitative and continuous labels. Instead, the property values of the
generated molecules by these models only follow the distribution of the training samples. In other
words, they do not correspond to targeted, specific property values. Our group recently proposed
a regressional and conditional GAN (RCGAN) for the inverse design of two-dimensional
materials.” RCGAN can meet two criteria for inverse material design: 1) generating new structures
that are novel compared to training molecules; 2) generating structures conditioned on the input
quantitative, continuous labels. However, crafting a GM that has both regressional and conditional
capabilities for molecules with significantly larger input dimensions presents a larger challenge.
Hong et al. introduced a framework that combined GAN and VAE but did not consider the targeted
values as the input to the generator.> They incorporated the target property information into the
latent vector only during the decoding process. Consequently, in the encoding phase, the latent
space is not associated with the property. The applied approach worked for simple properties such
as drug likeness (QED) and the water—octanol partition coefficient (log P), which are over-
represented in the generative literature due to their ease of calculation and data abundance.
However, such methodology may not work for more complicated properties such as the energy
gap, which is not linearly related to the structures of the molecules and need to be calculated from

quantum calculations. Additionally, all these GAN-based models generate the structures with the



targeted properties in the range of the initial molecules for training, whose task is so-called
interpolation. To the best of our knowledge, a GM that can perform an extrapolation task of
generating the molecules with targeted properties beyond the range of the training dataset has been
rarely reported, if not any.

To tackle this challenge, we propose a deep generative framework that integrates a reinforced
RCGAN (RRCGAN) architecture. RRCGAN consists of three networks with a transfer learning
algorithm to iteratively update RRCGAN for generation of molecules with targeted quantitative,
continuous property values beyond the initial training dataset. RRCGAN includes an autoencoder
(AE), an RCGAN network, and a reinforcement center. AE encodes the discrete representations
of the molecules to continuous latent vectors, which are then fed as the input to RCGAN. RCGAN
includes regressor, generator, and discriminator networks. The reinforcement center biases
RCGAN towards generating valid and accurate molecules, resulting in RRCGAN. During the
model's training phase on the initial dataset, it learns to discern the intricate relationships that
connect molecular structures to specific properties. Nonetheless, deploying such a trained model
to generate molecules with extreme property values located beyond the training distribution's
boundaries is often impractical due to the inherent limitations posed by the small data challenge.**
Addressing this challenge, we applied transfer learning to iteratively fine-tune RRCGAN on
generating new molecules showing increased property values compared to those of the initial
training data. As a proof of concept, we employed RRCGAN to generate small molecules with the
targeted energy occupied molecular orbital (HOMO) and the lowest energy unoccupied molecular
orbital (LUMO) gap (4Ex.2). The molecules with varying 4Ex.; can be tailored for applications in
electronics, optoelectronics, and energy conversion and storage. In this work, we first trained

RRCGAN by ~132 thousand molecules whose AE ., are distributed from 1.05 to 10.99 eV in the



PubChemQC database.** Then, it was fined-tuned to create a new model for generating new
molecules with much higher 4E.; values than the ones in the PubChemQC database. Novelty of
this iterative generative algorithm can be summarized as follows. First, the generated molecules
are novel and diverse. Second, the model is conditional and regressional, and can generate
molecules with targeted, continuous labels in a batch mode. Third, the generation is purely data-
driven and can be extrapolated beyond the range of the initial training dataset by the transfer

learning.

2. Results and Discussion
2.1 Development of RRCGAN

Architecture of RRCGAN. Fig. 1 represents the schematic of the RRCGAN architecture,
which includes AE, RCGAN, and a reinforcement center. All the initial training molecules are
from the PubChemQC database® and represented by the simplified molecular-input line-entry
system (SMILES) strings (Supplementary Note 1).* Atom and bond information of the molecules
is one-hot encoded in these SMILES strings (Fig. S1). AE consists of an encoder and a decoder
(Fig. 1a). The encoder maps the discrete molecular representations to continuous latent vectors,
while the decoder converts the continuous vectors back to the discrete representations.*® AE is
trained to minimize the error in reproducing the original SMILES strings. The encoder is a
convolutional neural network (CNN) (Fig. S2). It outputs fixed-dimensional latent vectors (6x6x2
matrices) that have the most statistically important information from the input SMILES strings.
The architecture of the decoder was modified from Google Inception V2 (Fig. S3).>” The decoder

converts the latent vectors back to the original SMILES strings.



In this work, RCGAN has a generator, a discriminator, and a regressor network. RCGAN
learns the hidden relationship between the latent vectors and properties of the training molecules
for generating new latent vectors conditioned on targeted 4E ., (continuous labels), which are then
converted to the SMILES strings using the decoder (Fig. 1b). The regressor is modified from
Google Inception V237 (Fig. S4). It is built as a quantitative structure-activity relationship (QSPR)
model for predicting AEn... To generate a latent vector conditioned on a AE.; value, the generator
receives a concatenated vector (129x1) consisting of a targeted 4Ex., and a randomly generated
noise vector z in a 128%1 matrix (Fig. S5). In contrast to the RNN-based models that generate one

18,19 our generator employs a CNN

token at a time based on previously generated tokens,
architecture which can generate the latent vectors in a single step. The generated latent vector has
a dimension of 6x6x2 and is expected to contain chemical information hidden in the high-
dimensional training data. The discriminator is trained by comparing the input concatenated
vectors for both training and generated molecules (Fig. S6). The trained decoder is used to convert
the synthesized latent vectors to SMILES that are then fed into the trained encoder to generate the
latent vectors, which serve as the input to the regressor. The regressor then predicts AEy.; that
corresponds to the generated latent vectors. If the regressor is directly fed with the output of the
generator, it has an R? of 0.80 and MAE of 0.60 eV (comparing the true and predicted values),
which are lower than the ones (R? of 0.90 and MAE of 0.45 eV) afforded by the regressor fed with
the converted latent vectors. The discriminator performs two functions. First, it determines whether
the concatenated vector is from a real (training) molecule or a fake (generated or synthesized) one

by comparing the statistical distribution of the two. Second, it tells whether a generated molecule

corresponds to the targeted 4Ex.; value.



Finally, a reinforcement center is included in the RRCGAN framework to ensure that the
generated molecules are chemically valid and accurate in comparison of the validated AEy.; with
the targeted AEw.. (Fig. 1c). First, the latent vectors generated by the generator are converted to
the SMILES by the decoder and then fed into RDKit*® to ensure that the SMILES are chemically
valid. If a SMILES is valid, then “1” is assigned to the string; otherwise, “0” is assigned.
Subsequently, a relative error (RE) of a targeted 4Ex., compared with the predicted value from the
regressor is evaluated. If RE is less than 20%, “1” is assigned to represent an accurate sample.
Only a latent vector with assigned numbers of both “1”” (valid and accurate molecule) is labeled as
a real sample. Otherwise, it is labeled as a fake one. These two constraints reinforce the
discriminator to consider the molecules with both high chemical validity and high accuracy as the
real molecules and others as the fake ones. In the training process, before the reinforcement center
is activated, the generator and the discriminator are trained in a few epochs. Details about the
architectures of these networks and their training processes are described in Supplementary Note

2. Their loss functions and training processes are described as follows.
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Figure 1. Architecture of the proposed RRCGAN for inverse molecule design with targeted
AEn. (a) AE architecture for converting discrete molecule representations to and from a
continuous latent space. (b) RCGAN architecture. The generator takes targeted property and
Gaussian noise as inputs to generate latent vectors. The discriminator distinguishes the synthesized
molecules from the real ones based on their latent vectors and their assigned AE#... The regressor
predicts the property values from the generated latent vectors. (¢) Scheme of the reinforcement

center that biases the discriminator towards generation of the valid and accurate molecules.

Loss functions of encoder, decoder, regressor, generator, and discriminator. The loss
function (L4r) of AE is the sum of the cross entropy (L4g; for discrete one-hot encoded SMILES
strings) and the mean square error (MSE) (L4k2 for continuous property labels), as shown in the

following equations.

Lag = Lag1 + Lag2 (1)
Lagr = X} —t;log(t) — (1 —t;) log(1 — &) (2)
Lag2 [Y» ?] = %Z?Ll(yi - 371')2 (3)

In Eq. 2, ¢ is the true value (either 0 or 1) showing binary categories in the one-hot encoding
vectors used for each SMILES. The predicted ¢ can be any value between zero and one, while they
must sum to 1 in the last SoftMax layer of the decoder. In Eq. 3, y is the predicted 4E#.., y is the
true 4Ex.1, and N is the number of molecules. The decoder is conditioned on the known AE.. to
improve the accuracy of the decoder. Eq. 3 is to calculate the mismatch between the predicted AE -
1 from the decoder and the true AE.;. The predicted 4Ey.; from the decoder, however, is not used

in the model as it has a lower accuracy compared to the regressor.



The loss function of the regressor is defined as the L, in Eq. 4. It measures the difference
between the predicted and true AEp.1.

Lossg = L,[Y,R(2)] 4)
where Z is a latent vector output from the encoder and Y is the true 4Ex.;. L» is defined in Eq. 5.
Lo[Y, 7] =~ (i — 9)° (5)
where y is the targeted 4E.. value, y is the predicted AE.; value from the regressor or R(Z), and
N is the number of molecules.

As shown in Eq. 6, the loss function of the generator includes two terms. The first one is the
same as the loss for the least square GAN (LSGAN),>* while the second one is the regularized loss
for the regressor.

L0SSg = 2 Byp,)[D(G(2,Y),Y) = 112 + wi (Y, R(E(D2(G(z 1))))) (6)
where [E is the expectation function, the subscript (z ~ P-(z)) shows the synthesized molecules from
the generator, and z is a random noise and the input of the generator. D> and E are the decoder and
encoder, respectively. D is the discriminator that uses the latent vectors generated from the
generator and the predicted 4Ex.. from the regressor to classify them into two groups of the fake
[0] or real [1] molecules. When feeding the regressor with the generated molecules, the L; loss is
calculated and then used as the regularization term in the loss function of the generator. w is the
weight parameter for the regularization term. The combined loss function ensures that the
generator and discriminator are simultaneously trained to avoid mode collapse.

The loss function of the discriminator is the same as the one used for LSGAN (Eq. 7).*°
1 1
LosSp = 3 Ex~pyaea0[D(EX),Y) = 112 + S E,p,»[D(G (2, V), R(E(D: (G V)P ()

where E is the encoder and E(X) is the latent vector output from the encoder. In the pre-training

process, when the reinforcement has not been activated, the subscript X~Puu(X) indicates that the

10



molecule is sampled from the training data, and z~P-(z) refers to all the generated molecules by
the generator. After 5 epochs of initial training of the generator and discriminator, the generator
generates 1000 molecules that are evaluated for validity and accuracy by the reinforcement center.
X~Paaa(X) refers to the generated molecules that are chemically valid and have the predicted 4E .
1 with RE of <20%, and z~P-(z) refers to the generated molecules that do not pass either of the
validity or accuracy tests.

Training of RRCGAN. The process starts with training the AE and the regressor using ~132K
molecules from the PubChemQC database.** 3> We considered AE.;, as the property of interest.
The AE was trained by minimizing the discrepancy between the input SMILES strings to the
encoder and the output ones from the decoder. Fig. S7 shows that the loss of AE is stabilized after
1000 epochs. The latent vectors have dimensions of 6x6x2. Evaluation of the decoder's
performance was done by comparing the true one-hot encoded SMILES strings with those
generated by the decoder. Our findings indicate that 87% of the SMILES strings (from the testing
molecules) were accurately converted back to the original input ones. Also, 90% of the converted
SMILES strings corresponded to the chemically valid molecules. To assess the fidelity of the
reconstruction, we also calculated categorical accuracy, which measures the percentage of
correctly reconstructed characters in the output SMILES strings. Our AE achieved a categorical
accuracy of 98.6%, slightly surpassing the value of 98.5% reported by Gémez-Bombarelli et al.?
Fig. S8 shows three randomly selected one-hot encoded SMILES strings from the testing and
training datasets as well as their respective conversions by the decoder. We also explored
alternative latent vectors with dimensions of 4x4x2 and 8§x8x2. The 4x4x2 latent vectors were
found to be insufficient in capturing necessary information for the decoder to accurately

reconstruct the input SMILE strings. The 8x8x2 latent vectors yielded a comparable accuracy of
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86% in converting the SMILES strings. But as shown in Fig. S9, the model trained with the 8x8x2
latent vectors has a reduced R? of 0.3 compared to an R? of 0.7 from the model trained with the
6x6%2 vectors.

The latent vectors outputted from the pre-trained encoder, along with the corresponding AEn.
1 were used to train the regressor. Fig. S10 shows that the loss of the regressor is stabilized after
150 epochs. As shown in Fig. S11, the regressor affords a coefficient of determination, R-squared
(R?) of 0.98, and a mean-absolute-error (MAE) of 0.19 eV for training and R? of 0.95 and MAE
of 0.33 eV for testing. Table S1 provides a comparison of the regressor’s accuracy with other
models. The pre-trained regressor is used to predict AEx., of the synthesized molecules from the
generator. It is also used in the reinforcement center to screen out the molecules with the
unsatisfactory 4Ex., accuracy.

After the AE and the regressor are pre-trained, the generator and discriminator are first trained
for 5 epochs. After that, the reinforcement center is activated. Then, the generator generates 1000
latent vectors in response to the input 4Ey., values. The reinforcement center groups the molecules
based on two criteria: the SMILES validity and accuracy of the predicted AEy.. values compared
to the targeted ones. To check the validity of the generated molecules, their latent vectors are first
converted to SMILES by the decoder and then validated by RDKit. Meanwhile, these SMILES are
converted to the latent features and then fed to the pre-trained regressor for predicting AEy... The
reinforcement center selects the generated molecules that are chemically valid and have the
predicted 4Ex., within RE of 20% of the targeted values. These selected molecules are labeled as
“1” and the remaining ones are labeled as “0”. Then, these grouped molecules are fed to train the
discriminator. The loss evolution of the generator and discriminator is represented in Fig. S12. It

shows that after the reinforcement center is activated, the loss of the generator is fast reduced and
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stabilized after 150 epochs. The low and stabilized losses of both the generator and discriminator
indicate a successful model training. We conducted a control experiment by disabling the
reinforcement center in the training process. As shown in Fig. S13, the losses of the generator and
the discriminator without the reinforcement center do not converge after 200 epochs.
Hyperparameters for these trained networks are shown in Table S2. Evaluation metrics such as R?,
mean absolute error (MAE), RMSE, MSE, and RE are defined in Eq. S1-S5 (Supplementary Note

3).

2.2 Evaluation of RRCGAN

Performance of RRCGAN was evaluated by comparing the DFT-calculated 4Ex of the
generated molecules with the targeted AE ., and the predicted 4E., by the regressor, respectively.
AEy. values of the molecules that were used to train the initial model were in the range of 1.05-
10.99 eV. A set of 630 molecules was generated, as outlined in the methodology section. The
predicted 4Ex., values by the regressor were first compared with the DFT calculated ones for the
630 evaluated molecules (Fig. 2a). Their R?> and MAE were calculated to be 0.87 and 0.5 eV,
respectively. This high prediction accuracy suggests that the regressor catches the hidden chemical
rules to correlate the molecule structures with 4Ey... Fig. 2b shows RE distribution of the predicted
AEn.1 by the regressor compared with the DFT calculated ones. 91% of the molecules show within
20% RE of the DFT-calculated values. The results shown in Fig. 2a-b suggest a high accuracy of
the regressor in predicting 4Ex.. of the generated molecules. Thus, it is acceptable to use the
regressor for screening the generated molecules for saving time and cost from using the DFT
calculation. In addition, the targeted 4Ex.; and DFT-evaluated AEx.. of the generated molecules

were compared to evaluate the accuracy of the RRCGAN model in generating the molecules (Fig.
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2¢). The data shows R? and MAE of 0.62 and 1.0 eV, respectively. Distribution of RE between the
DFT-calculated and targeted AEx.. is shown in Fig. 2d. ~75% of the molecules have AEx.,
calculated by DFT within 20% RE of the targeted values, showing an acceptable accuracy in such
a de novo molecule generation task in this large range of targeted values. The importance of this
one-to-one comparison lies in its ability to showcase the model's efficacy and precision on
targeting the property values. Compared to some state-of-art molecule generation models as shown
in Table S3, our model shows uniqueness in realizing this important goal. In addition, it is superior
to them in terms of realizing targeted, extrapolative generation of molecules with higher or
comparable accuracy at the same time. In a separate experiment, we targeted a single value to
generate ~2500 valid molecules. Fig. S14 shows the distribution of the predicted values for the
~2500 generated molecules corresponding to a targeted 4Ex., value of 8.29 eV. It shows that 85%
of the generated molecules have a predicted 4Ex.. value within 20% RE of the targeted one. An
obvious disadvantage of the string-based representation methods, e.g., SMILES, is that
information about the bond lengths and 3D configurations is lost. Trained with the molecules
presented by them, the model shows a limitation in accuracy. A better accuracy may require more
input information like the molecules’ 3D configurations,*® while it is a trade-off with the
computational cost. In future, a distance geometry method*' can be used to embed some 3D

information into the SMILES to validate if the accuracy of RRCGAN can be improved.
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(d) distribution of RE of the targeted and DFT calculated AE.;.

2.3 Transfer learning for biasing AEx.1 towards higher values

Table S4 shows statistics of the initial training molecules. Among the 132K molecules, only
461 exhibited a AEy.. value of > 10 eV. Although the initial RRCGAN model occasionally
generates outlier molecules with AEy., of > 10 eV, among the 630 molecules shown in Fig. 2, there

are only three with AEx.; 0f 10.0, 10.10, and 10.15 eV. Importantly, none of these values exceeded
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the range of the original training dataset, which spanned from 1.05 to 10.99 eV, which is expected
for an interpolation model. To train a new model for biasing the generation toward AEx.; of >
10.99 eV, the number of these molecules is not sufficient. In contrast, transfer learning has shown
a great promise in solving the data scarcity problem.>* ** "Transfer learning" refers to the process
of transferring knowledge from an already trained model to a new one, thereby enhancing the
accuracy of the latter even when trained with limited data.** Thus, to bias AEx.. towards higher
values for extrapolating the property space, a transferred model was trained via fine-tuning the

initial RRCGAN on the new molecules with increased AEx.; values.

The workflow of such an iterative generative algorithm is shown in Fig. 3a. As a demo, herein,
only two iterations were investigated. In the first iteration, a set of 1000 molecules with 4Ey 1
values of > 10.0 eV was used for training. Out of those, 461 molecules with AEx., values of > 10.0
eV were sourced from the PubChemQC database (Fig. 3a-ii and Table S5), while the remaining
molecules were newly generated by the model. To generate them, we employed a multiple batch
generation process, each consisting of 50 targeted 4Ex., values uniformly sampled within the range
of 8-11 eV. Subsequently, we screened the generated molecules corresponding to these targeted
AFEn.; values using the regressor model, selecting those with the predicted 4Ex., value greater than
9.5 eV. These molecules were then subjected to DFT calculations for validation, and only those
with DFT-calculated 4Ey.; values of > 10 eV were finally selected. This batch generation process
was repeated using different sampled targeted values until 539 valid, unique, and novel molecules
with the DFT-validated 4En.. values of > 10 eV were obtained. In the second iteration, the
transferred model was fine-tuned using the generated molecules with validated 4Ex.. of > 10.2 eV
from the first transferred RRCGAN model. Fig. 3b shows the distributions of ~132K initial

molecules used for training the initial RRCGAN model and the generated molecules in different
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transfer learning iterations. The AEx.; values of the generated molecules by the initial model are
in the 2-10.15 eV range with a mean 4Ey.; of 6.33 eV, which is close to 5.94 eV, the average of
the original training molecules. Only 0.5% of the outlier molecules have AEx., of > 10 eV. After
the first iteration, the transferred model generates the molecules with a mean AEx.; of 7.4 eV and
a maximum AEx.; of 11.6 eV. The percentage of the molecules with AE., of > 10 eV increases to
5%. After the 2" iteration, the generated molecules have a mean 4E, of 8.7 eV and a maximum
AEgp of 12.9 eV. The percentage of the molecules with the predicted 4Ex., of > 10 eV increases
to 16%. These results illustrate that the iterative transfer learning can push the generation toward

higher AEy.;, values and increase maximum AEp.;.

The application of transfer learning in molecule design has been explored in other studies as
well.** % However, our approach distinguishes itself from the method proposed by Merk et al.**
in terms of our fine-tuning strategy. While they utilized historical data featuring high experimental
activities, we employed newly generated molecules as training samples. This unique approach led
us to uncover a previously unexplored functional group (C-F) that exhibits a strong correlation
with high 4Ex.; values. The fine-tuning process using these newly generated molecules yielded a
pronounced emphasis on exploration over exploitation. Furthermore, our framework differs from

the work introduced by Korshunova et al.*

Although they also employed newly generated samples
for fine-tuning, their framework lacks the capability to target multiple values within the high-value

region. In contrast, with sufficient fine-tuning, our framework has the potential to precisely target

a range of values within the explored high-value region.
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the 1% transferred model and the 2™ transferred model.

2.4 Analysis on the generated molecules
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Analysis of structural features of molecules. The active search strategy outlined earlier
enables the generation of the molecules with the A4Ex., values higher than those found in the
original training dataset. It can be deduced that RRCGAN has successfully learned the chemical
rules contained in the SMILES strings to establish the structure-property relationship. Herein, the
structures of the generated molecules are analyzed to understand how the model captures the
chemical insights. Fig. 4 displays 20 representative molecules with the DFT-calculated 4Ep.,
values ranging from 2.38 to 13.07 eV and have RE within 10% of the targeted values. Fig. 4a
showcases molecules with the 4Ex.; values of < 6.5 eV, while Fig. 4b presents those with the AE .
1 values of > 6.5 eV.

Comparison of the molecules with high and low AEy; values highlights several key
observations. The molecules featuring alternated single and multiple bonds—which are referred
to as conjugated systems, unsaturated rings, and radical electrons, tend to exhibit lower AE..
values. Conversely, the molecules with linear structures which are characterized by single bonds
or saturated rings tend to display higher 4Ey.; values. Moreover, the presence of sulfur (S) and
Nitrogen (N) decreases 4Ey... This effect can be attributed to the increased extent of orbital overlap
facilitated by these elements, ultimately reducing AE.;.*®

In addition to the structure-property relationship disclosed from the initial RRCGAN model,
the transferred model reveals a different but noteworthy correlation. That is the presence of
fluorine (F) atoms bonded to carbon (C) atoms in the molecules increasing 4E.;. That could be
because F is the most electronegative element in the periodic table. In a molecule, F exerts a strong
electron-withdrawing effect, which raises the LUMO level to get a higher AEx...*" But this rule
remains undisclosed by the initial model due to the scarcity of the F-containing molecules in the

initial training dataset. Among the 132K initial training molecules, only 4 molecules contain the F

19



atom and have 4Ex.. of > 10 eV. As depicted in Fig. 4b, the generated molecules by the transferred
model have AEn.; of 13.07 eV. They all include the F-C bonds. This observation illustrates the
effectiveness of the transferred model in learning a critical structural feature even present in the
limited samples when doing the extrapolative generation. Meanwhile, they all include the single
bond and saturated rings. This knowledge is transferred from the initial model that these two
features tend to improve the AEn., values. These observations confirm that the model can
effectively correlate the structures with the properties, aligning with the established chemical
rules.*”> ¥ The strong agreement between the model's predictions and established chemical
principles enhances confidence in the utilization of this deep generative model for the efficient and
cost-effective generation of novel molecules with desired properties. Adding objectives related to
synthetic accessibility for generated molecules is a thoughtful approach to enhance the practical
utility of the proposed generative model. This could include criteria such as the complexity of the
chemical structure, the presence of synthetically challenging motifs, or adherence to established
synthetic rules.* Additionally, involving domain experts in the development and validation
process can significantly enhance the effectiveness of the synthetic accessibility objectives in the

proposed generative model.

20



a) HNe =~ T Y
0 E ) NH '\» NH
H oy S = N N S—oH
(o 500 IR A
CH
DFT: 2.38eV DFT: 2.43 DFT: 3.22 DFT: 3.91 DFT: 4.59
Target: 2.28 eV Target: 2.63 Target: 3.16 Target: 3.61 Target: 4.37
RE: 3.9% RE: 8.3% RE: 2.0% RE: 7.8% RE: 5.0%
NH . o N2
Q V\'\frq HO. H OH
~ 0, Q-
g} A S ot
(0] 0 0
OH 0
DFT: 4.84 DFT: 5.5 DFT: 5.64 DFT: 5.86 DFT: 6.17
Target: 4.46 Target: 5.41 Target: 5.66 Target: 6.35 Target: 6.44
RE: 7.8% RE: 1.5% RE: 4.3% RE: 8.3% RE: 4.3%
M 40!
AAAAA
HO S S oY 0 (0]
DFT: 6.8 eV DFT:7.03 DFT:7.94 DFT: 8.63 DFT: 9.68
Target: 6.2 eV Target: 6.86 Target: 8.73 Target: 8.73 Target: 10.12
RE: 8.8% RE: 2.5% RE: 10% RE: 1.2% RE: 4.6%
. KA >—|— AKX T
DFT: 10.01 DFT:10.4 DFT:11.7 DFT: 12.57 DFT: 13.07
Target: 9.73 Target: 10.23 Target: 10.52 Target: 11.52 Target: 12.56
RE: 2.8% \ RE: 1.6% RE: 10% RE: 8.3% RE: 3.9% J
TL generated

Figure 4. Representative examples of molecules generated by the original and transferred

RRCGAN models: the molecules with (a) 4Ex., of < 6.5 (eV), and (b) 4En.. of > 6.5 (eV).

Visualizing these representative molecules in Fig. 4 affords a qualitative correlation of the
structures with their 4Ex... To establish a quantitative relationship, we trained an XGBoost
regression model which takes 18 structural features (Supplementary Note 4) as input to predict
AEp1. From the feature importance analysis (Fig. S15), we picked four important structural
features that most affect the prediction. They are the number of the saturated rings, number of the
hydrogen-bond acceptors, the heavy atoms molecular weight, and number of the rotatable bonds.
A saturated ring is defined as a cycle composed solely of single bonds, while an aromatic ring

consists of alternating single and double bonds, as exemplified by benzene. The hydrogen-bond
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acceptors are typically electronegative atoms with lone pairs of electrons, such as oxygen (O),
nitrogen (N), and sometimes sulfur (S). The rotatable bonds are non-ring single bonds connected
to non-hydrogen, non-terminal atoms. Amid C-N bonds are excluded due to their high rotation
barriers.>® In Fig. 5, we present the percentage distribution of these selected features presented
within both the training and generated molecules. Feature distributions of the generated molecules
are slightly different from those of the training ones, demonstrating the generator’s capability in
exploring the new design space to generate the molecules with the targeted 4Ex... Specifically,
Fig. 5a reveals a higher percentage of the generated molecules with a single saturated ring
compared to the training molecules. Fig. 5b illustrates a decrease in the occurrence of the generated
molecules with 2 and 3 hydrogen bond acceptors, while the number of the molecules with higher
hydrogen-bond acceptors is increased. Moreover, the heavy atom molecular weights tend to
increase AEn.;, (Fig. 5¢), indicating a tendency for the model to generate larger molecules in request
of higher AEx.;. Additionally, Fig. 5d indicates that the number of the rotatable bonds increases in
correspondence of the higher 4Ey.; values. It is worth noting that these structural features were
not directly used as descriptors for the RRCGAN model. It is likely that such information is
implicitly captured within the latent vectors. Furthermore, Fig. S16 presents the ranking of other
features which are also associated with A4Ex.;. Further explanations and details regarding these

features can be found in Supplementary Note 4.
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Figure 5. Density distribution of the four selected features for the training and generated
molecules: (a) number of saturated rings; (b) number of aromatic rings; (¢) molecular weight of

the heavy atoms; (d) number of rotatable bonds.

Dimension reduction on the latent vectors of the molecules. The latent vectors, which are
the output of the encoder, were used as the input for training the RRCGAN model. These
continuous vectors can connect the discrete SMILES representations with their hidden structural
information for generating the molecules responding to their targeted properties. They are,
however, high-dimensional and are difficult to interpret. We hypothesize that if they can be

mapped to a lower dimensional space, the molecules that share similar structural features would
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be clustered together in the plots, and the generated molecules would follow a similar pattern to
that of the training ones.

To validate the hypothesis, we applied t-distributed stochastic neighbor embedding (t-SNE),
a non-linear dimension reduction method, to project the latent vectors of both training and
generated molecules (Fig. 6). First, we divided 4E ., into four ranges. The ranges for the training
molecules are < 4.4 eV, [4.4-5.7 eV], [5.7-7.5 ¢V], and > 7.5 eV. The ranges for the generated
molecules are < 4.5 eV, [4.5-5.9 eV], [5.9-7.7 eV], and > 7.7 eV. Each range was calculated by
quantiles to have the same number of molecules. The projected latent vectors were then colored
based on their 4Ey.; ranges, where the dark blue and dark red colors represent the low and high
values, respectively. As shown in Fig. 6, the first component of t-SNE (t-SNE1) separates the
molecules based on their AEx.; values. The molecules in the same 4Ey.; range are clustered into
close regions in the plots. Molecules with AEx., > 6 eV are in a region with t-SNE1 < 0 and vice
versa. In Fig. 6a-b, Molecule (7) is a representative sample with AEy.. of < 4.4 eV and < 4.5 eV
for the training and generated molecules, respectively. Molecules (3) and (4) represent the ones
with 4Ey., of > 7.5 eV and > 7.7 eV for the training and generated molecules, respectively. Linear
molecules with single bonds and fewer sulfur and nitrogen atoms are grouped in the high 4Ex.,
value region, while molecules with rings, conjugated systems, and more sulfur and nitrogen atoms
occupy the low 4Ex.; value regions. These results agree well with the observations from Fig. 4.
Moreover, the generated molecules are clustered in the same regions as the ones for the training
molecules (Fig. S17), further validating that the generator has successfully learned the structural
information from the latent vectors of the training molecules for generating novel molecules with
the targeted 4En... As a comparison, we also performed a principal component analysis (PCA)

and a spectral embedding analysis on the same molecules used for the t-SNE analysis. The results
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are shown in Fig. S18. Discussion on the PCA and spectral embedding results is described in
Supplementary Note 5. In conclusion, it is found that t-SNE outperforms the other two methods
for data visualization in this case.

We have also presented some molecules in the boundaries between the two gap ranges of the
highest and lowest AEx.. to show the similarities of the structures although they are in the two
different ranges. When comparing Molecules (1) and (2) in Fig. 6a, the existence of a conjugated
system in Molecule (1) lowers 4E4.., which agrees well with the conclusion shown in Fig. 4. When
comparing Molecules (1) and (2) in Fig. 6b, the existence of radical electrons in Molecule (1)
lowers 4Ep... When compared to Molecule (5), Molecule (6) has the sulfur atom, thus reducing
the AEy., value (Fig. 6a-b). For such molecules with close structures but different AEx.; values,

the reduced latent space is not enough to distinguish them.
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Figure 6. t-SNE plots of the latent vectors of the training and generated molecules output

from the encoder: (a) training molecules; (b) generated molecules. Unit of 4E.1 is eV.

3. Conclusion
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In this study, we designed and implemented a deep generative framework named RRCGAN
for de novo design of molecules toward biased AE ., values. To develop the model, we first trained
the encoder and decoder. Subsequently, the encoded latent features of the molecules were fed to
the regressor to predict 4Ex.., which enables the GAN to generate the molecules that meet the
desired values while remaining chemically valid. It is worth mentioning that only SMILES strings
are used as the input of the model, and no other complicated chemical descriptors are employed in
the study. 4Ey.; of the generated molecules are validated by DFT and compared with the targeted
values. The developed RRCGAN is transferred by using the limited, generated molecules in the
previous iteration for the next-iteration molecule generation toward AEx.; values beyond those in
the initial training data. In just two iterations, the generated molecules exhibit an increased mean
AEp1 of 10.5 eV compared to mean AEx., of 5.94 eV in the PubChemQC database.

To ensure the reliability and efficacy of the model, the structures and the latent features of
both training and generated molecules were qualitatively and quantitatively analyzed. The analyses
reveal that the model has successfully captured the underlying structure-property relationship,
which agrees well with the established physical and chemical rules. The model then correlates the
structural features with the values of 4Ey.; for generating novel molecules with targeted AEy.;.
The proposed RRCGAN framework would afford a trustworthy, purely data-driven methodology
for the highly efficient generation of novel molecules without the need for physical or chemical

inputs.

4. Methods
Data collection and curation. We used ~132K out of 3 million molecules from the

PubChemQC database,> for training the original RRCGAN model. More details of preparing the
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132K training molecules are provided in Supplementary Note 6. PubChemQC is a quantum

! We split the molecules into

chemistry database with molecules from the PubChem Projec
training and testing datasets for training the AE and regressor as shown in Fig. S19. Using RDKit,
canonical SMILES were extracted to represent the molecules.’? To one-hot encode SMILES, a
subset of 27 different characters was used as shown in Fig. S1. We considered 40 as the maximum
number of characters in each SMILES. With padding for sequences with less than 40 characters,
a fixed one-hot encoded matrix size of 40x27 was used. The training molecules have up to 20
heavy atoms of C, O, N, S, P, and F. We reserved the last character as the closing character. As a
result, the generated molecules can have up to 39 heavy atoms. These SMILES representations
were split into training, validation, and test datasets in a ratio of 6:2:2. The training and validation
datasets were used to finetune the hyperparameters of the encoder, decoder, and regressor, while
the test datasets were used to evaluate the final performance of the model. The AE.; values in the
range of 0-15 eV were normalized to 0-1.0 for the model development.

Batch generation. For generating 630 molecules shown in Fig. 2, we used a batch of 70
targeted values that were sampled uniformly in the range of 1-11 eV. We then repeated each of
these sampled targeted values 10 times to generate 700 molecules in one batch. We generated 10
batches with different seeds of random sampling that results in a total of 7000 generated molecules.
Please note that by changing the number of targeted values and repetition times the number of
molecules in one batch can be varied. The directory “model_regular” from the GitHub repository
includes the file related to batch generation. The Jupyter Notebook file named
“Main_model batchgen.ipynb” contains the code for batch generation. We analyzed the generated
molecules regarding their validity, uniqueness, and novelty. Using RDKit, we checked atoms’

valence and consistency of bonds in the aromatic rings for the validity calculation. Novelty is
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indicated by the fraction of the generated molecules that are not present in the PubChemQC
database. Uniqueness is defined as the ratio of molecules that are distinguished from each other in
the same batch. In the example of generating 7000 molecules, 11% were valid of which 95% were
unique. Also, 94% of these valid and unique molecules were novel compared to the training
molecules in the PubChemQC database. The resulting 650 valid, unique, and novel molecules were
then calculated by density functional theory (DFT), and 630 of them were finished simulation
within the set time limit of 8 hours. The DFT output of the final samples are included in “analysis”
directory of the GitHub repository. The transferred models in first and second iterations are also
provided in “model transfer” and “model transfer2” folder of the published GitHub repository.
DFT calculation. We used Open Babel, an open chemical toolbox,*"" 3 to convert the
generated SMILES strings to 3D coordinates. Open Babel adds hydrogens to the molecules and
generated their 3D coordinates. Then, a quick local optimization was carried out in 50 steps by the
MMFF94 force field. The DFT calculations for all molecules were carried out using Gaussian
16.C.01. Geometry optimization and frequency calculations were carried out using the B3LYP
(VWN3) functional®* 3 with the split-valence, double-zeta, and polarized basis 6-31G(2df,p).
Restricted closed-shell calculations were performed for all molecules. 4Ex., values, the energy
difference between HOMO and LUMO eigenvalues, were extracted from the DFT results. To
ensure that the calculation is accurate enough, we calculated 4Ex.. of 59 molecules randomly
selected from the PubChemQC database.** Among them, calculation of 46 molecules was finished
within 8 hours. The calculated values were compared to the ones listed in the PubChemQC

database. The result shows that they have a low MAE of 0.14 eV (Fig. S20).

Data and code availability
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The corresponding data and codes can be available at

https://github.com/linresearchgroup/RRCGAN_Molecules Ehl.
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