DRIVETRUTH: Automated Autonomous Driving
Dataset Generation for Security Applications

Yanmao Man
The University of Arizona
yman@email.arizona.edu

Raymond Muller
Purdue University
mullerr @purdue.edu

Abstract—With emerging vision-based autonomous driving
(AD) systems, it becomes increasingly important to have datasets
to evaluate their correct operation and identify potential security
flaws. However, when collecting a large amount of data, either
human experts manually label potentially hundreds of thousands
of image frames or systems use machine learning algorithms to
label the data, with the hope that the accuracy is good enough
for the application. This can become especially problematic when
tracking the context information, such as the location and velocity
of surrounding objects, useful to evaluate the correctness and
improve stability and robustness of the AD systems.

In this paper, we introduce DRIVETRUTH, a data collection
framework built on CARLA, an open-source simulator for AD
research, which constructs datasets with automatically generated
accurate object labels, bounding boxes of objects and their
contextual information through accessing simulation state and
using semantic LiDAR raycasts. By leveraging the actual state of
the simulation and the agents within it, we guarantee complete

accuracy in all labels and gathered contextual information.

Further, the use of the simulator provides easily collecting data
in diverse environmental conditions and agent behaviors, with
lighting, weather, and traffic behavior being configurable within
the simulation. Through this effort, we provide users a means to
extracting actionable simulated data from CARLA to test and
explore attacks and defenses for AD systems.

I. INTRODUCTION

Autonomous driving (AD) systems are now pervasive,
leading to a greater need for rapid and widespread development

of datasets to evaluate their correctness, safety, and security.

Applications require different types of datasets. For example, a
simple anomaly detection system might be built on a 2D video

dataset, with 2D labeled object bounding boxes as ground truth.

More complex systems require 3D bounding boxes, combined
with LiDAR data detailing the velocities of other objects for
detailed scene perception.

However, it is difficult to collect datasets in real-world
settings with correct annotations under varying environments,
such as different weather, geographic locations, aggressiveness
of other cars, and traffic conditions. One approach to obtain
annotated data is to use machine learning (ML) algorithms to
classify raw data. For example, the popular 2D video dataset

Workshop on Automotive and Autonomous Vehicle Security (AutoSec) 2022
24 April 2022, San Diego, CA, USA

ISBN 1-891562-75-4

https://dx.doi.org/10.14722/autosec.2022.23032

www.ndss-symposium.org

Z. Berkay Celik
Purdue University
zcelik@purdue.edu

Ming Li
The University of Arizona
lim@arizona.edu

Ryan Gerdes
Virginia Tech
rgerdes@vt.edu

BDDI100K [21], known as the Berkeley Deep Drive Dataset,
classifies objects using the DLA-34 algorithm with a 50-60%
accuracy. The 3D bounding-box datasets such as nuScenes [3]
and WayMo [19] rely on manually labelling of the recorded
data from their sensor readings to ensure accuracy, before ex-
trapolating the readings to tangible values, such as 3D bounding
boxes or object velocities. However, manually labeling a large
number of data points is time-consuming and requires human
expertise. Additionally, collecting data with different weather
parameters, initial object positions, vehicle velocities, other
cars, and pedestrian behaviors requires prohibitive amounts of
time. This limits researchers from exploring a large amount
of data patterns and defining benchmarks to fairly compare
attacks and defenses against AD systems.

In this paper, we introduce DRIVETRUTH, a data collection
framework for CARLA! with automated dataset annotations.
CARLA is a popular open-source simulator for autonomous
driving research, built on Unreal Engine 4. It uses the state-
of-the-art rendering engine, physics simulation, and NPC
logic components to simulate a dynamic world with multiple
interacting agents. The simulator enables us to create a realistic
3D environment from which we collect data similar to the real-
world scenarios [6]. DRIVETRUTH enables users to configure
environmental states and agent behaviors at data collection,
e.g., we obtain 2D or 3D bounding boxes of vehicles from
the simulation stored as part of the car’s 3D model. The
weather conditions such as the precipitation on the ground, sun
altitude angle, and the behavior of other cars and pedestrian are
customizable for each simulation to obtain an arbitrary amount
of patterns under different scenarios.

DRIVETRUTH collects a 2D video dataset, splits it into
frames with the raw video, bounding-box-labeled video, LIDAR
projection video, and class-segmented video, and separately
stores each. Additionally, for each frame, it stores the ego
vehicle’s (collector) context, in the form of speed, position,
heading, and control information (throttle, steering wheel angle,
etc.) Similarly, for the non-ego object context, the internal ID,
bounding box coordinates, position, class, relative velocity, and
distance of every vehicle, pedestrian, traffic light, and traffic
sign (by default) in-frame are stored. Lastly, DRIVETRUTH tracks
any type of the desired object in an environment, whether or
not it has a set bounding box within the CARLA simulation
through a semantic raycast system used for the traffic lights
and traffic signs. During data collection, the parameters such
as the number of vehicles/pedestrians, weather distribution, and
collection time can be customized. As DRIVETRUTH is built on

Thttps://carla.org/

TABLE I: Comparison of DRIVETRUTH against commonly used Autonomous Driving datasets

Dataset Properties KITTI [8] Berkeley Deep Drive [21] WayMo [19] NuScenes [3] ApolloScape [10] Cityscapes [S] DriveTruth
2D Bounding Box Support v v v v v v v

3D Bounding Box Support v X v v v X v
LiDAR Support v X v v v X v
Ego Vehicle Context’ PT PT PT PT PT P T PTC
Non-Ego Vehicle Context X X P T X P T X P T
Accurate Ground-truth v X v v v v
Automated Labels X v X X X v

1 P refers to tracking the position of the object(s), T refers to tracking the trajectory (velocity and/or acceleration), and C refers to tracking the control information such as

throttle, brake, and steering angle of a vehicle.

top of the CARLA simulator, it works in tandem with other
scripts or simulator modifications, allowing further tailoring of
the system to suit the needs of users.

Related Work. We provide a brief survey of public real-world
datasets and methods that use CARLA for dataset creation
relevant to the development of AD applications. We focus on
commonly used datasets leveraging multimodal sensor data.

We first compare the DRIVETRUTH with the datasets col-
lected from a real environment. Table I presents the capabilities
and drawbacks of datasets generated by DRIVETRUTH with
popular AD datasets. There exist multiple datasets with 3D
bounding boxes and varying amounts of context in the form of
ego vehicle and non-ego vehicle trajectories. However, these
datasets require manually annotating either the sensor data
or raw image pixels, which are then extrapolated into usable
data. This process involves multiple human experts and several
passes to verify their correctness. Other datasets use ML to
automatically annotate, however, these approaches sacrifice
correctness. For instance, the BDD100K dataset automatically
labels the classes of individual pixels, yet it does not provide
completely accurate ground truth. Lastly, in addition to having
support for all listed types of data and accurate ground-truth
and automatic labels, DRIVETRUTH also includes an extra piece
of context in the form of control information. This information
is useful for determining the intent of the ego vehicle. For
example, by knowing the angle of the steering wheel, we can
tell if the vehicle attempts to turn left, right, or moving straight.

Other works have leveraged CARLA to collect realistic and
accurate datasets by reasoning directly from the simulation state.
The Automatic Vehicle 2D Bounding Box Annotation Module
for CARLA Simulator [1] collects a pure image dataset with
the 2D bounding boxes of vehicles. This approach implements
several functions to transform 3D bounding boxes represented
by CARLA to a 2D bounding box that the camera sees,
which we have integrated into DRIVETRUTH. The Carla Dataset
Runner [4], collects both pedestrian and vehicle bounding
boxes. The Scenic Language can be used to generate different
autonomous driving scenarios in several simulators, including
CARLA [7]. Finally, the Carla Scenic Data collector leverages
CARLA to collect data on anomalous driving scenarios [18].
However, none of these approaches track contextual information,
e.g., object speed and positions and the bounding boxes of
static objects, e.g., traffic lights and traffic signs, fences, poles,
lane markers, sidewalks, and guard rails. This is because static
objects in CARLA by default do not have simulation-stored

bounding boxes. In addition, CARLA supports user-defined and
added objects. Unless the object’s 3D model has a bounding
box object attached, the object is static by default and can not
be tracked by these systems. Rather than using ML algorithms
to label these static objects, which have a margin of error, we
introduce a novel way to track the 3D bounding box of each
static object.

Another line of work uses CARLA as a simulation envi-
ronment to develop reinforcement learning models for driv-
ing [13], build multi-sensor fusion for end-to-end autonomous
driving [20] , and uses conditional affordance learning in urban
environments [16]. However, these approaches mainly focus on
addressing specific problems rather than flexible frameworks
to generate datasets for AD systems.

Contributions. We seek to overcome the shortcoming of
previous works to automate generating AD datasets from the
CARLA simulator with configurable environmental states and
agent behaviors. DRIVETRUTH provides the following additional
properties over existing approaches to collect datasets at scale:

e DRIVETRUTH stores contextual data about the ego vehicle
and the relevant objects in the scene, which supplements
the bounding boxes and sensor data. This provides a more
rigorous verification of the performance of an AD system,
particularly for safety and security applications.

e DRIVETRUTH extends CARLA’s semantic LiDAR (raycast)
system to provide 3D bounding boxes and locations of
static objects, including traffic lights and traffic signs. The
above contextual data is also applied to them.

e DRIVETRUTH code is available at
https://github.com/purseclab/DriveTruth,

for public use and validation.

We note that the semantic LiDAR system allows DRIV-
ETRUTH to track a wider variety of objects than normally
allowed in CARLA, extending to every object in the simulated
environment. The ability to accurately track all objects and their
context, including position and velocity, is crucial for rigorous
AD experimentation and testing. For example, the WayMo
dataset explicitly uses LiDAR, radar, and annotated maps to
track the context of surrounding objects while driving and uses
external cameras to track traffic lights [9]. Tesla Autopilot
integrates a multitude of sensor arrays and GPS data to track

TABLE II: Default Semantic Tags provided in CARLA (0.9.11), all of which can be tracked by DRIVETRUTH

Value Tag Description
0 Unlabelled This category is unused by default, but is assigned to objects with no collision boxes (i.e., intangible objects)
1 Building Buildings like houses, skyscrapers, and the elements attached to them (air conditioners, scaffolding, awnings, ladders, etc.)
2 Fence Wood or wire structures that enclose an area of ground.
3 Other Objects that do not fit into any other category.
4 Pedestrians Humans that walk or ride/drive any vehicle or mobility system.
5 Pole Small, mainly vertically oriented poles, but horizontal poles like those carrying traffic lights are also included.
6 Road Line Markings along the road
7 Road Parts of the street on which cars usually drive.
8 Sidewalk Parts of the ground reserved for pedestrians and cyclists. Delimited by some obstacle like a curb, pole, traffic island, or markings.
9 Vegetation Trees, hedges, and any other vertical vegetation. Ground vegetation is considered part of the terrain category.
10 Vehicles Cars, vans, trucks, motorcycles, bikes, busses, and trains.
11 Walls Individual standing walls that are NOT part of buildings.
12 Traffic Sign Signs installed by a state authority, usually to regulate traffic. This includes only the sign itself, not the pole on which the sign stands.
13 Sky The open sky, including the clouds and sun.
14 Ground Any horizontal ground structure that doesn’t fit into any other category, such as areas shared by both vehicles and pedestrians.
15 Bridge The structure of the bridge, not including fences, people, vehicles, and other elements.
16 Rail Track Rail tracks not drivable by cars, such as subway or train tracks.
17 Guard Rail All types of guard rails and crash barriers.
18 Traffic Light | The traffic light box, not including the poles.
19 Static Unmovable props in the scene, like fire hydrants, fixed benches, fountains, bus stops, etc.
20 Dynamic Elements that can move over time, like movable trash bins, wheelchairs, animals, etc.
21 Water Horizontal water surfaces like lakes, seas, and rivers.
22 Terrain Grass, ground level vegetation, soil, and sand.

Every x frames per second
(x=5 by default)

L
X

(1) Raw Img

(3) LidarImg (4) Semantic Segmentation

Img

(2) Bounding Box Img (5) Context Info

a) Ego Vehicle Context b) Tracked Object
context

Fig. 1: Data types collected by DRIVETRUTH

different unmoving objects, such as lane markers and traffic
lights, and tracks different vehicles in 3D [11].

While DRIVETRUTH generates simulated data rather than
real-world data, specialized simulated data has been used for the
continued development of existing AD systems. For example,
Baidu’s Apollo AD architecture deployed to the robotaxis
comes with a special game-engine-based simulator [2], similar
to CARLA. It is built to help engineers test and validate
new algorithms for Apollo’s perception module. Although
DRIVETRUTH is intended for more general autonomous vehicle
and vision-based systems, it provides similar functionality to
create large datasets to test and validate AD systems.

II. DRIVETRUTH

DRIVETRUTH is built on CARLA 0.9.11, the latest version
of CARLA at the time of writing. It automatically labels 2D
bounding boxes (with 3D bounding boxes support) for vehicles,
pedestrians, traffic signs, and traffic lights. It also supports
tracking and labelling of 23 objects listed in Table II, as well
as user-defined objects set up with the proper bounding boxes

and tags. Control information such as collection rate (frames
per second), simulation runtime, number of simulations to run,
number of vehicles, and number of pedestrians can be set
through provided parameters. For environmental conditions,
e.g., rain, clouds, wind, and sun angle, we provide in-code
variables to specify a weather distribution, and provide a list
of presets that are randomly selected.

DRIVETRUTH, with these parameters set, provides a list
of maps classified as either “residential” or “highway”, rep-
resenting either a high-density area with many pedestrians
for the former or a lower-density, higher-speed road with
little pedestrians for the latter. Users are able to update the
DRrRIVETRUTH’s map list to include different maps available in
the simulator, and add their own maps to CARLA, which can
be easily integrated into DRIVETRUTH’s default maps.

The user then specifies a frame rate at which the system
starts collecting data. Figure 1 shows the five data types
outputted by DRIVETRUTH. First, the simulated sensors capture
the information about the surrounding world, outputting the
raw image, LiDAR image transposed onto the camera, and
a segmented image. DRIVETRUTH then accesses information
about the simulated world to find vehicles, pedestrians, and
objects that the user has specified to track within the code, such
as traffic lights and signs. Depending on whether the object has
a built-in bounding box for its 3D model, DRIVETRUTH uses
different techniques to extrapolate the 3D bounds of the object
to generate the bounding box and location. This data is drawn
onto another image and saved, before polling the attributes of
the objects to retrieve object contexts, such as position and
velocity. Lastly, it polls the ego vehicle for its position, heading,
velocity, and its control data including throttle, steer, and brake,
useful to determine the vehicle’s intent.

A. Bounding Dynamic Objects

For moving objects in CARLA, extracting the bounding
box of pedestrians and vehicles is not challenging because they
are by default provided along with the 3D model. For instance,

Fig. 2: An Illustration of 3D vehicle with its bounding box.

Fig. 3: An illustration of semantic point cloud [17].

Figure 2 shows a vehicle’s 3D model with its bounding box
obtained by DRIVETRUTH.

To compute the bounding box of dynamic objects, we first
set up the ego vehicle with several sensors, including a LiDAR
and a forward-facing camera, used to filter out the relevant
data for 2D bounding box collection. When collecting a frame
as dictated by the set FPS rate parameter, DRIVETRUTH gathers
all vehicles and pedestrians in the scene at the time of capture.
It then filters out those not visible to the camera by taking the
LiDAR data. The filtering process is based on the camera’s
Field of view (FOV) and a set max distance. It then removes
any objects, not in the point cloud. Thereafter, DRIVETRUTH
extracts the bounding boxes from each remaining model and
translates them to the camera’s 2D space, which is then stored
along with the rest of the object information.

DRIVETRUTH additionally pulls a vehicle’s information from
the simulation, such as its internal ID, relative velocity, location,
and distance from the ego vehicle. Every static or dynamic
object in CARLA has a location, rotation, and velocity, which
allows DRIVETRUTH to access and compare with the ego vehicle
to obtain measurements relative to the other objects.

B. Bounding Static Objects

Static objects in CARLA do not have bounding box data
associated with them; thus, they cannot be directly extracted
as opposed to vehicles or pedestrians. DRIVETRUTH uses the
semantic LIDAR sensor, positioned in the same place as the
radar, to extract information from the scene for computing the
bounding box of any static object.

Algorithm 1 Point Cloud to 3D Bounding Box

Input: List of points in point cloud p., list of sought semantic tags s
Output: Dictionary of Bounding Boxes as {“id”: (center, extent)}

1: function POINT_CLOUD_TO_3D_BBOX(pc, S)

2 bounded_objects = |

3 for p € p. do

4 if p.id not in bounded_objects and p.tag in s then

5 bounded_objects < p.id

6: end if

7: end for

8 3d_extent = {}

9: for o € bounded_objects do

10: Initialize 3d_extent|o] with min/max points in each axis

T_min, r_max, y_min, y_max, z_min, z_max all null
11: end for
12: for p € p. do

13: if p.id € bounded_objects and p.tag € s then

14: Update 3d_extent[p.id] with new min/max points in
each axis as necessary

15: end if

16: end for
17: 3d_bbozes = {}
18: for o € bounded_objects do

19: Compute center/extent from coordinates in 3d_extent|o]
20: 3d_bbozes|0] = (center, extent)

21: end for

22: return 3d_bboxes

23: end function

The semantic LiDAR sensor works similarly to the LiDAR
simulator but it uses raycasts that each hit a point in the world
and expose information about the point. A single raycast is
a single ray that shoots out in a given direction and stops as
soon as it hits a point. Unlike the LiDAR, the raycast is not a
“true” point but an internal abstraction; thus, it is not subject
to intensity, drop-off, or noise of a normal light beam.

DRIVETRUTH fires millions of raycasts per second around the
vehicle and obtains a point cloud that blankets its surroundings.
To illustrate, we show an example of point cloud data in a top-
down view of the ego vehicle (in blue) in Figure 3. Each point
in the point cloud contains the following four information:

1) Point coordinates in (x, y, z)

2) Cosine angle between the angle of incidence of the raycast
and the normal of the surface the raycast hit

3) Internal ID of the object hit by raycast
4) Semantic tag of the object hit by raycast

The last two items are of tantamount importance as they
enable DRIVETRUTH to distinguish individual objects within
the point cloud (from their internal ID) and their classes.

We manually add the list of default semantic tags provided
in CARLA (Table II) to the mesh of each unique object within
the simulator to identify the class of each object For example,
for a traffic sign on a pole, the pole has the “pole” semantic
tag while the actual sign has the “traffic sign” semantic tag.
Because tags are specified per-object, a user is also able to add
or redefine their own semantic tags from the CARLA source
code, which are then usable by DRIVETRUTH.

With these tags and the point cloud, DRIVETRUTH obtains an

Computed

Semantic LiDAR Bounding Box

Raycasts

Fig. 4: Tllustration of using point cloud data for extracting the
bounding box of a traffic light.

object and class for every point in the point cloud. Algorithm 1
details the process of converting the point cloud to a set of 3D
bounding boxes. We first scan the point cloud for the desired
tags, and find all object IDs with points associated with tag
(Lines 2-7). We then set up a dictionary that stores the min
and max points of the object in each axis, and return the final
bounding box (Line 8). Lastly, we go through the point cloud
again, scan the portions of the objects with the relevant tags,
and update the min and max points (Lines 9-16). Once the
entire point cloud is scanned, we obtain the min and max points
on each axis for each of our sought objects, which we turn
into a bounding box center and the extent to return as a final
dictionary (Lines 17-22), as shown in Figure 4.

We use the computed center of the 3D bounding box as
the object’s location to store the contextual data. For the rest
of the contextual data (e.g., velocity), we use the Object ID to

pull the simulated state of the object and get the measurements.

This is because, for objects like traffic signs, the internal object
includes more than just the desired object. For example, it may
include the sign and pole rather than just the sign. This means
that the most accurate position measurement is the one we
measure via raycast, but other measurements such as velocity
can be obtained directly from the object. Once the bounding
boxes are obtained, each object is assigned to its computed
bounding box before being processed similarly to the dynamic
objects. We use LiDAR to filter out objects that are not in the
camera’s view, and extract the bounding boxes and translate
them into 2D space.

III. IMPLEMENTATION

DRIVETRUTH is written in Python 3.7, with a combined total
of 1252 LoC. In addition to CARLA, it relies on the NumPy,
Pillow (PIL), and OpenCV libraries to render the bounding
boxes. DRIVETRUTH runs on the latest version of CARLA
(version 0.9.11) at the time of writing. To collect dataset
through DRIVETRUTH, after CARLA is installed, parameter
can be configured using the collect dt data.py script, and
then data collection process can be started. We provide details
of parameters on the project GitHub page.

Figure 5 shows a sample DRIVETRUTH frame with two
vehicles and a traffic sign, with the 2D bounding boxes
transposed onto the image. DRIVETRUTH takes on average 5-10
secs to initialize a run and a further 45-50 mins to capture
1000 frames (200 secs) of data on a laptop equipped with an

Fig. 5: An example frame collected by DRIVETRUTH (best
viewed when printed in color)

NVIDIA GTX 1060 and 16 GB of RAM, set with the system
default of a 5 fps capture rate.

IV. DATASET USE CASES

Datasets generated by DRIVETRUTH contain a wealth of
data, which can be leveraged for diverse AD security and safety
applications, including model pre-training, multi-object tracking,
and multi-sensor fusion. For instance, neural network-based
object perception (e.g., object detection, image segmentation)
models for AD systems are typically deep, with many layers;
thus, they require a large amount of data for training. Due
to the DRIVETRUTH’s realistic simulated world, users can pre-
train a deep neural network (DNN) model with a large-scale
dataset with precise labels generated by DRIVETRUTH, transfer
the knowledge to the DNN model to the real-world small-scale
datasets [19], [21] for fine-tuning.

Evaluating Dataset Usability. We show that datasets generated
by DRIVETRUTH are close enough to real-world images and
can be used for pre-training.

We first tested the official model of YOLOvV3 [15], pre-
viously trained on the COCO object detection dataset [14],
on a sample DRIVETRUTH dataset containing 500 objects. We
obtained an average precision of 47.2% at 50% Intersection
over Union (IoU) with the ground-truth bounding box. This
means that 47.2% of the bounding boxes computed by YOLO
overlap at least 50% of the ground truth. These results are
similar to YOLOv3’s performance on the COCO dataset.

Second, to test object tracking performance on our dataset,
we feed the RGB images to a pre-trained DaSiamRPN [22] net-
work, the state-of-the-art Siamese network for object tracking.
We give the ground-truth bounding box of the first frame to
DaSiamRPN and then let it track the object from all subsequent
frames. For each frame, DaSiamRPN returns a bounding box for
the object, with which we compare the ground-truth bounding
box using IoU. Results on a randomly-sampled dataset with
500 objects show an average precision of 77% at 50% IoU is
achieved. This means DRIVETRUTH can be used to train and
test object tracking algorithms.

Similarly, DRIVETRUTH can be used to collect data to either
pre-train an end-to-end model or train a Kalman filter-based

Red: Computed Bounding Box
Blue: Actual bounding box

7

Semantic LIDAR — o
Raycasts _ /

Part out of semantic LiDAR view

Fig. 6: Illustration of an object with unique geometry that could
throw off the 3D bounding box extents

object tracking model [12]. Since DRIVETRUTH generates data
from both the camera and LiDAR sensors, it facilitates studying
multi-heterogeneous-sensor fusion algorithms.

Usage of Contextual Data. The contextual information pro-
vided by DRIVETRUTH can be used to enrich the robustness
of the above applications. In most video datasets, context
information is not provided, and therefore all information is
relative. For example, if a bounding box moves to the left of
the frame, there is no way for a system to know if the object
is moving left or the camera is turning right. With context
information, it is possible to know the absolute state of the
environment under which the data is collected. For security and
safety applications relying on precise, absolute measurements
of the environment in order to make decisions, this context
information is vital. To illustrate, with the ego velocities
provided by context information, a Kalman filter algorithm
can predict future bounding boxes for tracking purposes more
precisely than without using context information.

V. LIMITATIONS AND DISCUSSION

3D Bounding Boxes. DRIVETRUTH obtains the 3D bounding
boxes of dynamic objects, cars, and pedestrians. For static
objects, it includes functions to detect traffic lights and traffic
signs without any issues. However, when encountering a special
type of elongated geometry in static objects, it may find a
precise 2D bounding box, yet it may fail to find a precise
3D bounding box because of the occlusion from the semantic
LiDAR. We currently use a single semantic LiDAR positioned
on top of the vehicle to generate a point cloud. If the LiDAR
sees the whole object (or at least the minimum and maximum
extents of the object), the 3D bounding box is precise. If more
parts are occluded, the less precise 3D bounding boxes are
obtained, although the 2D bounding box remains precise as
the camera only sees the non-occluded parts. For flat objects
such as traffic signs and traffic lights, because they are placed
perpendicularly to the direction of travel on roads, they are
always viewed head-on or from an angle where their extents
can clearly be seen; thus, occlusion is not an issue.

To illustrate, consider an object with unique geometry in
Figure 6. If an object is viewed head-on and has geometry
built to block the view of the camera or LiDAR, the point
cloud could potentially miss the maximum extent of the 3D

bounding box by certain angles. For objects with this sort of
strange geometry, DRIVETRUTH must use multiple semantic
LiDAR sensors placed around the map and merge them into a
single point cloud for analysis. In this way, there will be no
occlusion, and the 3D bounding box can be extracted correctly.
Future work will expand the capabilities of the semantic LIDAR
system to provide more accuracy for these edge cases.

Simulator Fidelity. There might be issues in the CARLA
simulator that may cause imprecise data collection. For instance,
we found that, for a certain type of traffic light model at
intersections, all types of LiDAR data pass through these
traffic lights. This means that the detection of traffic lights
with DRIVETRUTH may yield errors. We have reported this
issue to the CARLA developers?, who have acknowledged
this bug and are working on a fix. As the CARLA simulator
continues to steadily improve, we plan to integrate new features
into DRIVETRUTH to take advantage of those extra additions
to the simulation. For example, CARLA developers plan to
add snow and thermal cameras in a future update. This will
allow DRIVETRUTH to work with snowy conditions that would
enhance the data collection in varying weather conditions.

Computation Overhead. The CARLA simulator requires a
powerful GPU and at least 8 GB of RAM to run DRIVETRUTH.
As we have illustrated in Figure 5, a frame collected by
DRIVETRUTH on a mid-tier laptop shows a fairly high-quality
and realistic image with bounding boxes. However, higher-end
systems are able to run CARLA’s Town 10 map fitted with
highly realistic textures and meshes. In exchange for the high
computational overhead, DRIVETRUTH is able to generate more
photorealistic datasets.

VI. CONCLUSIONS

We design and develop DRIVETRUTH, a configurable data
collection framework that leverages the CARLA simulator
to collect AD data and automatically labels it. DRIVETRUTH
extends the semantic LiDAR raycasts to compute the bounding
boxes of static, immobile objects that do not have an assigned
bounding box within the simulator. It also pulls the 3D model-
assigned bounding boxes of dynamic objects, and stores the
context of each object it tracks. We hope that DRIVETRUTH
catalyzes the research to improve stability and robustness of
the AD systems, and fulfills the desire to quickly generate
high-quality data for AD applications.

REFERENCES

[1] “Automatic vehicle 2D bounding box annotation module for carla
simulator,” 2020. [Online]. Available: https://mukhlasadib.github.io/
CARLA-2DBBox/

[2] “Apollo game engine based simulator,” https://apollo.auto/gamesim.html,
2021.

[3] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A
multimodal dataset for autonomous driving,” IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.

[4] “Carla dataset runner,” 2019. [Online]. Available: https://github.com/
AlanNaoto/carla-dataset-runner

Zhttps://github.com/carla-simulator/carla/issues/4099

[5]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic
urban scene understanding,” IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” Conference on Robot Learning, 2017.

D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-
Vincentelli, and S. A. Seshia, “Scenic: a language for scenario
specification and scene generation,” Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, Jun 2019. [Online]. Available: http://dx.doi.org/10.
1145/3314221.3314633

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The
kitti dataset,” The International Journal of Robotics Research, vol. 32,
no. 11, p. 1231-1237, 2013.

Google, “Learn how WayMo drives - WayMo help,” 2021. [Online].
Available: https://support.google.com/waymo/answer/9190838%hl=en

X. Huang, P. Wang, X. Cheng, D. Zhou, Q. Geng, and R. Yang, “The
ApolloScape open dataset for autonomous driving and its application,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42,
no. 10, p. 2702-2719, Jul 2019.

S. Ingle and M. Phute, “Semi autonomous driving, an uptick for
future autonomy,” International Research Journal of Engineering and
Technology, vol. 3, no. 9, Sep 2016.

Y. J. Jia, Y. Lu, J. Shen, Q. A. Chen, H. Chen, Z. Zhong, and T. W.
Wei, “Fooling detection alone is not enough: Adversarial attack against
multiple object tracking,” in International Conference on Learning
Representations (ICLR), 2020.

X. Liang, T. Wang, L. Yang, and E. Xing, “Cirl: Controllable imitative
reinforcement learning for vision-based self-driving,” Computer Vision —
ECCV 2018 Lecture Notes in Computer Science, p. 604-620, 2018.

T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays,
P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollar, “Microsoft coco:
Common objects in context,” 2015.

J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

A. Sauer, N. Savinov, and A. Geiger, “Conditional affordance learning
for driving in urban environments,” Robot Learning, 2018.

“Carla sensors reference,” 2021. [Online]. Available: https://carla.
readthedocs.io/en/latest/ref_sensors/#semantic-lidar-sensor

T. Shah, J. R. Lepird, A. T. Hartnett, and J. M. Dolan, “A simulation-
based benchmark for behavioral anomaly detection in autonomous
vehicles,” in 2021 IEEE International Intelligent Transportation Systems
Conference (ITSC), 2021, pp. 2074-2081.

P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine, and et al., “Scalability in perception
for autonomous driving: Waymo open dataset,” IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.

Y. Xiao, F. Codevilla, A. Gurram, O. Urfalioglu, and A. M. Lopez,
“Multimodal end-to-end autonomous driving,” IEEE Transactions on
Intelligent Transportation Systems, p. 1-11, 2020.

F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan,
and T. Darrell, “Bdd100k: A diverse driving dataset for heterogeneous
multitask learning,” IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

Z. Zhu, Q. Wang, L. Bo, W. Wu, J. Yan, and W. Hu, “Distractor-aware
siamese networks for visual object tracking,” in European Conference
on Computer Vision, 2018.

