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A B S T R A C T

Investigations of the paleohydrologies of pluvial lake systems have often employed lake carbonate deposits
called ‘‘tufa’’ that grow subaqueously and can be preserved long after the drying of the lake. For this reason,
tufa have been used as a proxy for minimum lake level. However, they exhibit a variety of textures that hold
the potential to reveal richer paleoclimatological information. With the goal of determining if tufa texture can
be used as a proxy for lake environment, this study investigates the textures of tufa at Mono Lake, California
in comparison to the fossil tufa in Searles Valley, California. While observations in the last century suggest
that the tufa in the Mono basin grew in waters similar to the modern, the tufa at Searles formed during
the last glacial period, when the Great Basin contained a system of pluvial lakes on the scale of the modern
Great Lakes. The tufa at both basins have been observed to have a range of classifiable textures, and new
methods of inspecting visual data could be informative about what factors control these textures. To this end,
a t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm is used to project images of the tufa at Searles
and Mono into a coordinate space, allowing for simple, quantitative comparisons of the visual similarity of
textures. The textures of tufa at Searles are compared to each other, as well as to the tufa at Mono. This
study performs a robust assessment of the feasibility of Mono Lake as a modern analogue for Searles Valley. It
finds that there is a justifiable basis for the comparison of certain fossil facies at Searles to the tufa at Mono,
significant progress towards the goal of using texture as a metric for the environment in which tufa formed.

1. Introduction

As remnants of a wetter time, enigmatic deposits called tufa have
been used as proxies for lake level in closed basin lakes. To first
order, these deposits are known to have grown subaqueously. If they
are found in a known or suspected lake system, they can be used to
assign a minimum lake depth. That is, where tufa are found, there
must once have been water. Along these lines, they have been dated
using U/Th and radiocarbon dating, constraining the time when the
observed lake level was reached (e.g. Broecker and Orr, 1958; Kaufman
and Broecker, 1965; Candy and Schreve, 2007). As carbonate deposits,
tufa also hold significant potential for gleaning information about
lake chemistry (e.g. �18O, biological activity, Guo and Chafetz, 2014;
Petryshyn et al., 2016)). But with greater exploration, there is reason
to believe that tufa hold more paleoclimatological information than
simply lake chemistry. Depending on the mechanism of their formation,
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the presence of tufa could also be revealing of specific environmental
factors. For example, if the precipitation of tufa was dependent on
the presence of phototrophic organisms, tufa would only form shallow
enough in the lake that light could penetrate (i.e. the photic zone),
limiting the possible range of depths where tufa could grow (DeMott
et al., 2020). Alternatively, inorganic precipitation of the tufa may
require that the lake have a high alkalinity and an input of Ca ions
(e.g. from springs). Gleaning the signature of these mechanisms in
the geologic record would thus broaden the potential use of tufa as
paleolake proxies. Tufa are found in a number of modern lakes in the
United States and elsewhere (e.g. Green Lake, Pyramid Lake, Mono
Lake), as well as in paleolakes that are now at significantly lower levels
or fully dry (e.g. Lake Bonneville, Lake Manly, Searles Lake) (Ford and
Pedley, 1996; Ku et al., 1998; Guo and Chafetz, 2012; DeMott et al.,
2020).
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Fig. 1. Locations of basins considered in this study: Mono Lake (north) and Searles Valley (south). Locations of tufa considered in this study are indicated by a white box at Mono
Lake and by labeling of sites at Searles Valley. Contours are at 50 m intervals of meters above sea level.

Both preserved and relatively modern tufa exhibit a range of pri-
mary, centimeter-scale textures (e.g. Dunn, 1953; Guo and Chafetz,
2012). Even within a basin, it is likely that tufa formed in different
environments in terms of chemistry, depth, biology, temperature, or
some combination of these factors: changes that may be reflected
in the primary texture of the tufa (Shearman et al., 1989; Benson,
1994). An avenue for exploring this connection could be to make
comparisons of fossil tufa to modern tufa, whose growth environment is
better understood. Traditional methods such as field comparisons and
petrographic observations may be fruitful in these efforts. At Searles
Valley, microscopic examinations of the micrometer scale structure of
tufa suggested the possibility of microbial or bacterial involvement in
the construction of tufa, but could not determine the degree to which
such biology was necessary for tufa growth (Guo and Chafetz, 2012).
Similarly, microscopic inspection of the tufa at Mono find evidence for
microbes living on the tufa, but suggest also that the majority of tufa is
precipitated inorganically (Brasier et al., 2018). Indeed, earlier studies
of the tufa at Mono found evidence for a purely abiotic precipitation
mechanism for the tufa at Mono, driven by mixing of spring and lake
waters (Bischoff et al., 1993). Thus, while it is likely that the tufa at
Mono was precipitated abiotically, ambiguity remains about the tufa at
both of these basins, and new tools may provide valuable perspectives.

To this end, it has been demonstrated that machine learning has
the ability to uncover nuances in data sets that are too subtle or
complicated for human researchers (e.g. Pérez-Ortiz et al., 2019; Fang
and Li, 2019; Huntingford et al., 2019). With relative ease, machine
learning can thoroughly evaluate a data set, while at the same time
rigorous computational iteration allows for confidence that the best
solution has been found. A form of this, the field of computer vision is
concerned with using computers to better understand visual data such
as digital images.

Here, a computer vision algorithm is used to objectively classify tufa
textures in two closed basins lakes: Searles Valley, CA and Mono Lake,
CA (Fig. 1). Closed basin lakes are basins with no outflows. As a result,
the level of these lakes depends on the difference between precipitation
into the lake or its inflows, and evaporation out of the lake (P – E).
Studies have attempted to solidify the relationship between past climate
and paleolake level using hydrological balance models (e.g. Hostetler
and Bartlein, 1990), however these efforts are limited by knowledge
of past lake level. If evidence of the depth of a closed basin lake
can be gleaned from the geologic record, it can be used to constrain
modeling efforts. This work assesses the utility of computer vision as
a complement to more traditional, field-based geologic investigations.
It also investigates the relationship between computer vision-based
classifications of tufa texture and environment, including an assessment
of the comparability of the better understood Mono Lake tufa to the
fossil tufa in Searles Valley. Specifically, a machine learning algorithm
is used to compare tufa textures found within Searles and Mono to
ask the following questions: (1) Is a particular facies of tufa at Searles
objectively visually similar to those at Mono? And (2) Can the variance
of tufa textures at Searles Valley, CA be tied to their elevation –
perhaps corresponding to instances of comparable lake conditions or
background climate?

1.1. Areas of study

1.1.1. Searles valley
During the late Pleistocene, the drainage from the Sierra Nevada

flowed through the Owens River into Owens Lake (Peng et al., 1978,
Fig. 1). When P - E was high enough, Owens Lake would overflow
into China Lake, which, with sufficient precipitation, would in turn
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overflow into Searles. The chain would continue with Panamint Lake
and then Lake Manly (present-day Death Valley, Jayko et al., 2008).
When Searles did not overflow, it was the terminus of the drainage and
could be considered a true closed basin lake. This was the case for much
of the lake’s history, and during these times its level was an indicator
of the up-stream hydrology of the lake system described above (Smith,
2009). The lake level history of Searles is thus of great interest for
deciphering the hydroclimate of the Great Basin in the Late Pleistocene.
Past studies gleaned past lake level by inferring relative lake depth
from salts in sediment cores, revealing a history of dramatic lake level
change (Smith, 2009). However, shoreline studies are necessary to
accurately determine the magnitude of lake level change and constrain
the true depths that the lake reached in its past.

In addition to sediment cores, past researchers have used the ex-
tensive tufa deposits at Searles to investigate its hydrological past. The
tufa in Searles Valley exhibit a variety of morphologies and textures
from the almost 50 m tall Pinnacles in the south of the basin to the
more localized mounds higher on the shores of the paleolake (locations
shown in Fig. 1). In studies based in the Pinnacles, the Searles tufa
offer a distinctive stratigraphy (Scholl, 1960; Guo and Chafetz, 2012).
The four reported facies are: porous, nodular, and columnar tufa; and
finely laminated crusts (Fig. 2). The porous tufa are the most common
in north and central parts of the Pinnacles, and exhibit a somewhat
open texture with subplanar fabrics, resembling the exterior of a wasps’
nest. From stratigraphic context, Guo and Chafetz (2012) suggest that
one interval of porous tufa is believed to be the youngest deposit in the
Searles tufa, and another is believed to be the oldest. The nodular tufa
overlay the older porous tufa layer and occur most commonly in the
northern Pinnacles. They have a popcorn-like texture and are composed
of multiple generations. The columnar tufa overlay the older porous
tufa and occur most commonly in the middle group. They resemble
asparagus bunches and are found in various states of weathering. The
finely laminated crusts areas described, and are found draping either
the nodular or columnar tufa. The stratigraphy defined by Guo and
Chafetz (2012) at the Pinnacles is thus (from inner to outer/oldest to
youngest): older porous tufa, columnar or nodular tufa (depending on
part of the basin), finely laminated crust, younger porous tufa. The
finely laminated crusts are not considered in this study, as the exposure
of this facies is too limited to produce an adequate sample size.

Despite this well defined stratigraphy, the mechanism and condi-
tions surrounding the formation of the tufa and its various facies are
not well known. While some deposits are reasonably interpreted as
‘‘shoreline’’ (i.e. shallow) tufa, others, such as the Pinnacles, seemingly
must have formed at significant depth. The usefulness of these deposits
could thus be improved with a better understanding of how they formed
as well as what controls the observed variability of texture. Should the
variety of textures seen in tufa prove to correspond to a particular depth
or chemical regime in the lake (e.g. saturation state), the carbonate
deposits could be used to more precisely constrain lake level and
environment at the time of deposition. Comparison of the variability
of tufa textures within Searles Valley will address the second question
posed above: does the variability of the textures of tufa in Searles
correspond to their elevation in the basin?

1.1.2. Mono lake
Mono Lake is north of Searles in the Eastern Sierra Nevada. Mono

is in a structural basin of the Eastern Sierra, a tectonically and volcani-
cally active area (Stine, 1990). Also a closed basin lake, the level of
Mono reflects the drainage of the Eastern Sierra. During the late Pleis-
tocene, a larger lake known as Lake Russell filled the Mono basin (Ben-
son et al., 1990). Like most other Great Basin lakes, the most re-
cent highstand in the Mono basin occurred during Heinrich stadial
1 (Munroe and Laabs, 2013). Records of higher lake-level can be found
in shoreline features at high elevation in the basin, cores from the lake,
and other geomorphic evidence including stream cuts through deltas
and other lacustrine deposits (Stine, 1990).

At Mono Lake, the interaction of Ca2+ rich spring water with the
carbonate-rich lake water contributes to the growth of tufa (Dunn,
1953; Scholl and Taft, 1964; Council and Bennett, 1993). These tufa
are home to algal communities that are believed to promote their
growth, though not significantly enough to classify them as ‘‘micro-
bialites’’ (Scholl and Taft, 1964; Brasier et al., 2018). Indeed, the
saturation state of water is believed to be the primary driver of the
deposition of tufa at Mono Lake (Council and Bennett, 1993). One
mechanism for their formation would be that spring water percolates
through the shaft of the tufa and is discharged from the top, and
carbonate is precipitated on the outside of the structure (Scholl and
Taft, 1964). The diversion of Eastern Sierra water by the Los Angeles
Aquaduct lowered Mono Lake’s level by almost 15 m, exposing tufa
along much of the lake’s shoreline (Vorster, 1985). The Mono Lake tufa
can thus be explored in detail from land, though the lake is believed to
still be actively forming the deposits, a process that has been observed
visually within the last century (Dunn, 1953; Bischoff et al., 1993).
Previous researchers (e.g. Dunn, 1953) have noted the presence of 3–4
facies of tufa, with more porous tufa deeper in the lake or at its shore,
and more dense, nodular-type tufa above shore (i.e. from a time when
lake level was higher). These facies were not necessarily observed or
captured in this study. However, given that past workers had access
to the North Shore of Mono Lake (which was not accessible for this
study), it is reasonable to expect that the range of tufa seen at Mono
Lake in this study is smaller than that of previous studies. Likewise, the
tufa available for inspection to this study were all at approximately the
same elevation (modern lake level), thus a within-basin comparison of
tufa texture to elevation was not possible.

Comparison of the tufa observed at Mono Lake will address the first
question posed above: how do the tufa at Searles compare visually to
the tufa at Mono? How does this comparison inform the interpretation
of the environment in which the Searles tufa formed?

2. Methodology

Data for this project were collected during field seasons in October
of 2018 at Searles and Mono Lakes, and January 2020 at Searles. The
data set consists of Ì1500 images collected of the textures of the tufa at
the two lakes. Photo sites were chosen by exposure: all outcrops avail-
able and accessible in Searles and Mono were photographed. Photos
were taken where textures were best exposed: this means that nodular
and porous tufa were imaged in planform, whereas columnar tufa
were imaged in cross section. It is possible that this difference could
introduce unexpected biases to the results of this study. However, the
orientation of images in cross-section or planform was an unavoidable
limitation of how the textures were exposed.

The field of view captured in these images varied somewhat in
size, but were Ì10 cm across (scale bar later removed for processing).
In collecting images, effort was taken to maintain uniform lighting
(e.g. by shadowing on particularly bright days) and to avoid major,
non-primary textural features such as cracks or plant overgrowth. The
data processing of this project was performed in four parts, discussed
in greater detail below: (1) the data were preprocessed to normalize
for visual and structural similarity, (2) A t-SNE algorithm was applied
to the images to reduce the dimensionality of the data, (3) a k-means
clustering algorithm was used on the results of (2), and (4) clusters from
part (3) were compared to environmental data (e.g. elevation, locality).
These steps reduced the data from raw field images into data points
that could be more easily numerically manipulated in later steps, and
compared to each other in a quantitative manner.

2.1. Pre-processing

Images were pre-processed with the goal of eliminating all fea-
tures irrelevant to the textures pictured. The information of color and
lighting were not relevant to the goal of the algorithm: to classify
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Fig. 2. Examples of the endmember facies relevant to this study: (A) Porous tufa, (B) columnar tufa, (C) nodular tufa with well defined, popcorn-like baubles, and (D) a more
weathered example of nodular tufa.

the variability of the textures in the tufa. Thus, all pre-processing
was in effort to normalize images across these parameters (Fig. 4).
Images were considered to be on a reasonably comparable scale as
collected, so scale bars were cropped out and no further steps were
taken to normalize scale. Then, all images were converted to grayscale
to remove color effects. Though the tufa are broadly similar in color,
there is a possibility of differences between images due to lighting
effects and camera white balance. The image histogram was then
equalized to remove remaining lighting effects. Though effort was made
in the field to have uniform lighting in images, this was not always
possible. To minimize the possibility of the algorithm clustering on
lighting effects (rather than actual geologic information), histogram
normalization brightens darker areas in the image and darkens lighter
ones creating the effect of uniform lighting. Finally, the t-SNE algorithm
used here requires image inputs of uniform size. Thus, images were
trimmed to the size of the smallest image in the data set after the scale
was removed. Trimming was done from the edges to retain the center
of the image, where the image taker would have directed their focus.

2.2. Machine learning algorithms

2.2.1. t-Distributed Stochastic Neighbor Embedding
t-Distributed Stochastic Neighbor Embedding (t-SNE) is an algo-

rithm used to transform complex, high-dimensional data sets into a
more manageable space of 2 or 3 dimensions (Van der Maaten and
Hinton, 2008). In addition to Uniform Manifold Approximation and
Projection (UMAP), t-SNE has become one of the standard algorithms
for managing high dimensional data by projecting it into lower di-
mensions, both are used commonly in health care applications (e.g.
Abdelmoula et al., 2016; Li et al., 2017; Kobak and Berens, 2019), and
increasingly in the Earth sciences (e.g. Klimczak et al., 2020; Njock
et al., 2020). In direct comparisons, UMAP and t-SNE have been found
to have similar results (Becht et al., 2018; Kobak and Linderman, 2019).
This study uses t-SNE, but it is expected similar results would be found
using UMAP. Other algorithms exist for comparing the similarity of
images (e.g. Convolutional Neural Nets, Artificial Neural Nets), but this
study focuses solely on the effectiveness of t-SNE.

As mentioned above, the specific function of these algorithms is to
project complicated, high-dimensional data into a more manageable
space. Though images are often (and not incorrectly) thought of as
two-dimensional, in the case of digital images, their dimensionality
can also be considered equal to the number of pixels. In this case,
each pixel is a vector with magnitude equivalent to the pixel’s color
value. When plotting digital image data in this space, the relative
location of the images will correspond to where the variability within
the images lies: their visual similarity (Alfeld et al., 2018; Pouyet
et al., 2018; Linderman and Steinerberger, 2019). However, as this
space has a number of dimensions equal to the number of pixels in
each image, working with data in this way is extremely difficult. t-
SNE allows for the projection of data from higher dimensions into two
dimensions, where they can be more easily manipulated. The projection
step maintains the relative distance of data points to each other and
thus also maintains the overall structure of the data set (Linderman
and Steinerberger, 2019).

In the implementation of t-SNE in this study, each image is consid-
ered an object and each pixel in the image is considered a dimension
of that object. A probability (pij) of similarity between objects (e.g. xi
and xj):

pij =
exp(*Òxi * xjÒ2_2�2i )

⌃këiexp(*Òxi * xkÒ2_2�2i )
(1)

where � is the variance of a Gaussian surrounding object xi. This
Gaussian is computed depending on the parameterization of t-SNE,
and has a larger bandwidth where the spread of the data is greater.
Considering N objects, the probability pij is computed from the above
values as:

pij =
pji + pij

N
(2)

pij is thus the probability that xi and xj would be neighbors if all objects
in the set were lined up by similarity (pii is set to zero). The algorithm
then learns a map with corresponding points (i.e. yi, yj) that represent
the similarities in pij . From this space, the probability of similarity
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Fig. 3. Comparable textures at Searles (left) and Mono (right), as well as similar large-scale structures (bottom row). The ‘‘towers’’ found at Searles (such as those shown here)
are found most commonly at the Amphitheatre site, which was found to have the highest proportion of columnar tufa.

Fig. 4. Steps in preprocessing tufa images: (A) Original image (scale bar left for reference in this paper but would otherwise be removed), (B) image converted to grayscale
to avoid color effects (e.g. the orange on the left of the original image), and (C) equalizing of image histogram for uniformity of shading. This step has the added benefit of
emphasizing the textures pictured. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

between y-space points (qij) is computed:

qij =
(1 + Òyi * yjÒ2)*1

⌃këi(1 + Òyi * ykÒ2)*1
(3)

qii is also set to zero. Finally, the locations on the final map are found
by reducing the Kullback–Leibler divergence of the distribution of Q
from that of P using gradient descent:

KL(P fl Q) =
…
iëj

pij log
pij
qij

(4)

In the resulting data, objects are projected from their higher di-
mensional space into two dimensions. In simplest terms, the t-SNE
algorithm calculates distances between objects in a high dimensional
space. It then iteratively organizes objects in lower dimensional space,

so that their relative distances are the same as (or as close as possible
to) in their original higher dimensionality.

In this implementation, the ‘‘distances’’ are calculated based on the
grayscale pixel values of the data, so the distances between objects
should correlate to their visual similarity. Each object began with a
dimensionality equal to the number of pixels, and ended as a 2-D object,
each dimension a value between zero and one. When plotted by these
dimensions, with the Euclidean distances between points proportionate
to the visual similarity between corresponding images, we are able
to observe the similarity of images as numerical data and view once
qualitative relationships, quantitatively.
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Table 1
Parameterizations that were run on the full data set, after
testing on a representative subset. Bottom row (bold) was
ultimately used for the analysis below.
Perplexity Number of Iterations

17 250
19 250
9 250
19 3000
20 250

18 20,000

2.2.2. k-means
An unsupervised k-means clustering algorithm was then applied to

each set of images corresponding to the basins (Mono and Searles). k-
means clustering seeks to sort a data set into k clusters by similarity,
with the Euclidean distances between clusters relating to the similarity
between them (Pedregosa et al., 2011). In this study the k-means
clustering was applied to the two dimensions resulting from the t-SNE
algorithm, with the dimensions corresponding to visual similarity (Ce-
lik, 2009). The parameter k (the prescribed number of clusters) was set
to three to correspond to the hypothesized number of facies (nodular,
columnar, porous). A sensitivity analysis of the value of k is provided
in the appendix.

Following the clustering of images from Searles alone, the algorithm
was then run on the full combined set of images, determining the best
clustering for the full data set including the images from Mono. A
machine learning technique such as this is favored for its objectivity
in image comparison, as well as the relative facility with which it can
process 1500+ images (Kanungo et al., 2002).

2.2.3. Choice of parameters
Two parameters are adjustable when using t-SNE: the number of

iterations the algorithm goes through, and the perplexity. The algo-
rithm ‘‘learns’’ each time it iterates through the steps defined above.
One must then allow it enough ‘‘tries’’ to learn how to best project the
data into a smaller dimensional space. However, too many iterations
will make the algorithm unnecessarily slow. Perplexity is a measure
of how the algorithm should weigh the similarity of neighboring data
points as compared to the data set on a whole (Wattenberg et al.,
2016). Since the nature of the clustering of the data was not well
understood a priori, multiple parameterizations were tried to determine
which would be best suited to the data. First, the algorithm was run
on a representative subset of 20 images with each combination of
perplexity 1–20 and for iterations of 250, 500, 1000, 2000, 3000, 5000,
7000, 10000, and 20000, with the intention of narrowing down the
best possible parameterization while optimizing computing time. From
these results, the algorithm was then run on the full data set using the
parameterizations defined in Table 1.

For each of these t-SNE parameterizations, k-means clustering was
performed and a number of clustering metrics were computed (Silo
score, Calinski score, Davies Bouldin index; (Palacio Niño and Berzal,
2019)). Unfortunately, the t-SNE parameterizations that were able to
produce the k-means clusterings with the best metrics, also were in-
terpreted as demonstrating artifacts of overfitting, including elongated
mapping into lower dimensional space, as if points were plotted along
a line (Wattenberg et al., 2016). Thus, the t-SNE parameterization
with the least appearance of overfitting was chosen, a perplexity of
18 with 20,000 iterations, though its clustering metrics were relatively
unfavorable. The realization that while the resulting clusters were less
tight or separated, they generally contained the same set of points
instilled confidence in this choice of parameters.

Table 2
General distribution of facies between clusters. The right column (‘‘20 endmembers’’)
shows the division of the 20 images from each cluster that plotted farthest from the
mean image of the whole data set. The process for this selection is described in-text.
Examples of the textures described here can be found in Fig. 2.
Cluster Number Facies 20 endmembers

1 Weathered nodular 11 weathered nodular, 9 porous
2 Columnar 7 columnar, 13 porous
3 Nodular 2 weathered nodular, 9 nodular, 9 porous

3. Results

The products of the t-SNE and k-means algorithms on the Searles
data alone as well as with Mono data are shown in Fig. 5. The clusters
found by k-means abut each other and are not separated by space. If
the clusters found by k-means are defined by visual similarity, they
ought to each correspond to the three facies defined by Guo and
Chafetz (2012, nodular, columnar, porous), which were also defined
by visual similarity. Images in each cluster were manually inspected to
determine which facies were most common in each cluster — the result
of this inspection can be found in Table 2. Porous tufa were distributed
approximately evenly between clusters, seemingly not recognized as
a separate facies. Rather, the more weathered facies, particularly the
weathered nodules shown in Fig. 2, were mostly in cluster 1 with
some porous images. Cluster 2 was primarily the columnar tufa, with
porous tufa that had a more elongate texture. Similarly, cluster 3 was
nodular tufa with porous tufa with a somewhat nodular-like texture.
None of the clusters excluded any of the facies, but roughly maintained
the groupings described here with proportionally more of the relevant
facies. Images of porous tufa were evenly distributed between clusters,
likely because the texture of the porous tufa can at times appear like
that of the other facies. Thus, in the following discussion the porous
tufa will be ignored and the clusters will be referred to by the other
facies they contained (per 2).

To confirm the facies assignments, the 20 images that plotted the
furthest from the center of all the clusters were found for each cluster.
That is, all three clusters are plotted on axes that range from 0–1 in
x and y: the 20 points for each cluster were the farthest from the
coordinate (0.5, 0.5). These points should be farthest from the ‘‘average
image’’ for the whole data set, which would plot at (0.5, 0.5), and
should thus be ‘‘endmember examples’’ of each cluster. A facies was
then assigned to the set of 20 from each cluster. About half of each set
of 20 were images of porous tufa, but the rest were as described above
(cluster 1: weathered nodular, cluster 2: columnar, cluster 3:nodular).
The results of this analysis are described in Table 2.

Black points in Fig. 5 are the images collected at Mono Lake. Their
distribution demonstrates that the textures of Mono overlap well with
those at Searles, indicating that it is not necessary to consider them to
be a separate facies from Searles. Likewise, the distribution of Searles
data between clusters did not change with the inclusion of the Mono
Lake data. That is, the addition of the Mono data did not significantly
skew the distribution of clusters. This confirms a general observation
in the field that the Mono Lake tufa are visually comparable to some
tufa found at Searles.

The distribution of clusters between basins shows a marked prefer-
ence for columnar tufa at Mono Lake and for weathered nodular tufa
at Searles (Fig. 6). The remaining images are approximately evenly
distributed between the other two clusters at each basin, but with
slightly more nodular tufa at Mono and slightly more columnar tufa at
Searles. Almost half of the images from each basin are in the dominant
cluster.

The clustering of images collected at Searles was compared to the
spatial and elevational distribution of those images (Fig. 8). Despite
the >200 m spread in the elevation of data collected at Searles, no
real elevation dependence can be observed between tufa facies. The
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Fig. 5. Clusters found by k-means, clustering on the output of the t-SNE algorithm for (left) the images taken at Searles Valley and (right) the images taken at both Searles and
Mono Lake. The 0–1 scale on each axis is dimensionless, the output of the t-SNE algorithm. Nominally, the Euclidean distance between points corresponds to their visual similarity.
Points plotted in black are the Mono Lake data. Note that the plot on the right is approximately equivalent to the left plot rotated by Ì 45˝ clockwise.

Fig. 6. Distributions of each cluster by basin. Mono is skewed towards cluster 2 (columnar), while Searles is skewed towards cluster 1 (weathered nodules).

latitudinal and spatial distribution of clusters were also considered
(Fig. 8). Latitude and field site were treated as separate variables to
allow for inspection of local effects such as the exposure of a site
(i.e. sheltered from the wind versus exposed to wave action). There
is not a strong relationship between the clusters found in this study
and latitude/field site. Roughly, though, columnar tufa tend to be more
common south in the basin, whereas nodular is proportionally more
northern. The northern sites (North Shore and Pioneer Point) have on
average 46% nodular and 19% columnar, whereas the southern sites
(Amphitheatre, Desperate Forest, and Pinnacles) have on average 22%
nodular and 40% columnar.

Nodular tufa is generally found more commonly at the site re-
ferred to as ‘‘Pioneer Point’’. Weathered nodular and columnar tufa are
found at the site referred to as ‘‘the Amphitheater’’ (Fig. 7). Indeed,
the Amphitheatre is the only site at Searles with more than 50% of
images falling in the ‘‘columnar’’ classification. This is notable, as the
Amphitheater is the site in Searles with the most prominent and well-
preserved ‘‘towers’’, structures similar to those found at Mono where
columnar tufa was also the dominant facies (Fig. 3).

4. Discussion

The poor clustering of the results of the t-SNE projection could be
attributed to a number of factors. First, the processes (e.g. biotic or
abiotic precipitation of carbonate) producing end-member tufa textures
could be acting at the same time most cases, producing intermediate
textures. For example, it is possible that subsequent generations of tufa
do not fully erase past textures, and instead work over them. It was
observed in the field that columnar tufa may appear to grade into
nodular as a primary texture (i.e. not as an effect of weathering). This is

not mutually exclusive with the observation of Guo and Chafetz (2012)
that these textures are distinct in different regions of the Pinnacles.
Rather, it suggests that these facies could be coeval, but variations of
lake conditions lead to different morphological expressions. It is also
possible that the poor clustering of the data could be a result of a failure
or poor parameterization of the t-SNE algorithm. However, this seems
unlikely given the number of parameterizations that were tested.

Since cluster 1 seems to be a primarily weathered facies, the dom-
inance of cluster 1 at Searles could simply be because the tufa there
are older, and thus more likely to be weathered. However, a statistical
basis for correlating tufa texture to elevation could not be found. Thus,
this study finds the answer to question (2) above (‘‘Can the variance
of tufa textures at Searles Valley, CA be tied to their elevation –
perhaps corresponding to instances of comparable lake conditions or
background climate?’’) is that the variance of tufa textures at Searles
Valley, CA cannot be tied to their elevation in the basin.

The preponderance of columnar tufa at Mono Lake could indicate
that the process responsible for producing this facies dominates tufa
production at Mono Lake. Precipitation of tufa at Mono Lake is believed
to be a primarily abiotic process, the result of spring discharge into
the lake (Council and Bennett, 1993). Also relevant to this comparison
is the result that columnar tufa is the most common facies at Mono,
as well as at the Amphitheater in Searles. As mentioned above, the
Amphitheater at Searles is notable for the tufa ‘‘towers’’ that are
prevalent there. These towers are found elsewhere in Searles, but are
most common at the Amphitheater. Interestingly, Mono’s second most
prevalent facies, the nodular tufa, is the dominant facies at Pioneer
Point, a site where towers can also be found. The co-occurrence of these
facies, especially the columnar tufa, with towers could indicate that the
towers at Searles (of unclear origin) are the product of processes similar
to those working at Mono (i.e. spring discharge).
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Fig. 7. Distribution of facies within sites. The Amphitheater has the highest proportion of columnar tufa and is the only Searles site with more than 50% columnar. Mono Lake
similarly had proportionally more columnar tufa (Fig. 6).

5. Future work

In this study, t-SNE is used largely as an unsupervised algorithm.
That is, all the data are used together to allow the algorithm to find
a ‘‘best’’ (most statistically defensible) solution; there does not exist a
‘‘training set’’ of data from which the algorithm learns. Since one of the
aims of this work was to determine if t-SNE was able to find the same
set of facies as human researchers, it was not considered necessary or
even favorable to use a supervised algorithm. However, in light of this
study, it would be worthwhile to compare the results found here to the
facies defined by humans on the same data set. Such an effort would
direct future work to refine the t-SNE and k-means algorithms for use
on tufa data sets. It would likewise be of interest to compare the results

of this study to the same analyses performed using different algorithms
(e.g. UMAP, Convolutional Neural Nets, Artificial Neural Nets, etc.).
This work demonstrates the utility of just one algorithm, and expanding
to others would allow for more robust interpretations of tufa textures
and their contexts.

While this study uses a ‘‘large’’ data set of 1500+ images, machine
learning algorithms almost always benefit from more data. A conclusion
of the January 2020 field campaign was that (short of the discovery of
new outcrops) further imagery is not necessary from Searles, as images
have been collected of virtually all outcrops. However, future works
could improve this effort by collecting more images from Mono Lake.
An even richer study could include data from other basins with tufa
grown in waters with a distinct chemistry such as Bonneville Basin,
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Fig. 8. Comparison of Searles clusters to environmental data. In the top panel, images
are binned into hundredths of a degree bins. In the bottom panel, boxes extend from
lower to upper quartile of data, whiskers show range. Orange horizontal line is plotted
at the median. Blue circles are outliers. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Pyramid Lake, and Death Valley (Lake Manly), or in the Altiplano-Puna
plateau of the central Andes. The Eocene Green River Formation in
Colorado could be another target for future work, particularly since
they are rarely exposed in three dimensions (Awramik and Buchheim,
2015; Jagniecki et al., 2021). That is, for more ancient tufa, texture may
be one of the only properties available for investigating these deposits.

Applying this method to other basins would require comparable
numbers of images from all basins considered (i.e. hundreds of images).
Given a basin with enough tufa outcrop to produce such a data set, a
similar procedure to that presented in this paper would be performed.
Whether or not images from different basins clustered together or apart
would inform the viability of tufa texture as a proxy across basins. The

parameterization of the algorithm or algorithms used would need to
be adjusted to suit the expanded data set, including allowing for the
possibility of different k values in k-means. However, diversifying the
data set with a set of images from a totally distinct watershed, one
whose chemistry is known to be distinct from others in the data set
(i.e. Mono), would allow for a more thorough testing of the hypothesis
that a different lake chemistry produces different textures of tufa.
If comparable tufa textures are found across multiple lake systems,
that texture could be indicative of a comparable growth environment
between basins, at the time of deposition of the tufa. This information
would allow for the tufa texture to be used as a direct proxy of lake
chemistry and, in turn, depth.

Similarly, analyses like the one above would be made more rich
with the inclusion of other environmental data. With the addition of
data from more modern lakes, it would be possible to compare tufa tex-
ture to direct measurements of lake chemistry (e.g. alkalinity). Though
beyond the scope of this study, future works could perform these kinds
of analyses at Mono Lake. In older tufa, it could be revealing to compare
tufa texture to the other proxies (e.g. Sr isotopes for groundwater).
This work was limited to physical measurements in the field, but future
works could improve upon it by including other basins or types of data,
with the ultimate goal of using tufa texture as a proxy for depth in
paleolakes.

6. Conclusions

The finding that the tufa at Mono are most visually similar to the
columnar facies at Searles, and that the columnar facies is found most
commonly at sites in Searles where tufa towers are also found, suggests
that the response to question 1) posed above (‘‘Is a particular facies of
tufa at Searles objectively visually similar to those at Mono?’’) is that
there is reasonable basis for the columnar facies being analogous to the
tufa found at Mono Lake. In the context of past work, this study suggests
a more abiotic, Mono-like origin for the Searles tufa, particularly in
sites where columnar tufa can be found. That is, if the tufa at Mono
are representative of the endmember spring-contribution facies, then
these results would imply that a higher prevalence of columnar tufa is
indicative of a greater spring contribution. This is a step towards the
goal of tying tufa texture to formation environment.

The findings above do not exclude the possibility of a biological
mechanism contributing to the formation of the tufa at Searles, but
they also do not validate it. Thus, this study cannot recommend any
biologically-based assumptions about the depth at which the tufa at
Searles Valley formed. Future work is certainly needed to solidify
these results. However, this work demonstrates that, with some tuning,
machine learning studies of this kind have the potential to be useful in
gleaning rich information from the geologic past. Considering images
as 2-dimensional data that can be plotted and utilizing clustering
methods allows for more rich comparisons of geologic images and their
environment.

Machine learning and computer vision methods such as the ones
used in this paper have the potential to draw further information from
the geologic record than has previously been possible. As demonstrated
here, these methods have the ability to represent data differently:
images can be plotted by similarity, visual trends in facies can be
quantified. By pursuing these new avenues of interrogating the geologic
record, the geologic community has the potential to uncover new
information from data sets and formations that have already been
investigated with other techniques. Machine learning, in combination
with more traditional methods and in the context of past research, can
thus be a tool for deepening understanding of the Earth’s past.
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Fig. A.1. Clusters derived using k = 2 and k = 4.
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Code availability section

Repository name: tsne-nd
Contact: mfend@mit.edu, 978-460-0862
Hardware requirements: These scripts will run without a graphics

card, but will be much more efficient with one. This was tested using
a machine with a Nvidia GeForce GTX 1060.

Program language: Python

Software required: This program was tested with Tensorflow 2.2.0,
Keras 2.4.3, Scikit-Learn 0.23.1, on Python 3.7.5

Program size: 5 KB
The source codes are available for downloading at the link: https:

//github.com/mfend/tsne-nd

Appendix. k-means sensitivity

Sensitivity analyses were performed for the value of k in clustering.
These tests were performed upon the results of t-SNE as described in-
text (perplexity = 18; 20,000 iterations). New clusters were found using
each k = 2 and k = 4 (Fig. A.1). The 20 ‘‘endmembers’’ of each cluster
(farthest from mean of data, as described in-text) were then visually
inspected and assigned a facies (Table A.1, Table A.2). The composition
of clusters for k = 2 and k = 4 were essentially the same: these clusters
were not aligned with the facies as defined above (Fig. 2), indicating
that the boundaries of these clusters were not defined by the boundaries
between facies. k = 3 was thus the optimal choice of k for this study.

Table A.1
General distribution of facies between clusters using k = 2.
Cluster Number Weathered Nodular Columnar Nodular Porous

1 5 1 1 13
2 6 1 2 11

Table A.2
General distribution of facies between clusters using k = 4.
Cluster Number Weathered Nodular Columnar Nodular Porous

1 6 1 2 11
2 5 2 2 11
3 6 1 1 12
4 6 0 2 12
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