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ABSTRACT

Many block-based programming environments have proven to be effective at engaging novices in
learning programming. However, most offer only restricted access to the outside world, limiting
learners to commands and computing resources built in to the environment. Some allow learners
to drag and drop files, connect to sensors and robots locally or issue HTTP requests. But in a world
where most of the applications in our daily lives are distributed (i.e., their functionality depends on
communicating with other computers or accessing resources and data on the internet), the limited
support for beginners to envision and create such distributed programs is a lost opportunity. We
argue that it is feasible to create environments with simple yet powerful abstractions that open up
distributed computing and other widely-used but advanced computing concepts including networking,
the Internet of Things, and cybersecurity to novices. The paper presents the architecture of and design
decisions behind NetsBlox, a programming environment that supports these ideas. We show how
NetsBlox expands opportunities for learning considerably: programs can access a wealth of online
data and web services, and they can communicate with other projects. Moreover, the tool infrastructure
enables young learners to collaborate with each other during program construction whether they share
their physical location or study remotely. Importantly, providing access to the wider world will also
help counter widespread student perceptions that block-based environments are mere toys, and show
that they are capable of creating compelling applications. Finally, we hope to show that tools can be

designed to democratize access to powerful ideas in computing.

1. Introduction

There are many block-based educational programming
environments designed to make programming accessible to
novices. With inspiration from Logo [43], block-based envi-
ronments have been popular tools for introducing program-
ming and computational thinking (CT) to young learners.
Moreover, research has shown that important aspects of this
enthusiasm are well grounded in empirical effectiveness of
block-based environments to support learners in compre-
hending code [51]; exploring and conceptualizing what is
possible [49]; building self-confidence [31, 37, 42, 51]; and
developing algorithmic and computational thinking [20, 21].

As the strengths of blocks as a representational infras-
tructure and medium for learning gather an empirical basis,
additional questions emerge about how this innovation might
enable a restructuration [52] of the conceptual domains that
students engage with in their introduction to programming,
computational thinking, and computer science. We propose
that distributed computing is a promising domain, contain-
ing a family of powerful ideas [35] that can be made con-
ceptually accessible through the block-based restructuration.
We argue that this shift would not only be educationally
meaningful, but that it also could offer an increase in the
power and social relevance of student projects, which could
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counteract impressions that students (and teachers) can har-
bor about block-based programming as inauthentic [13] or
otherwise limited [50].

However, a key design limitation of many block-based
learning environments impedes the field’s ability to ex-
plore these conjectures. Specifically, many environments
for learning programming keep students and their projects
confined within the tool. This paper argues that removing
these walls can be highly beneficial—both to be able to
teach more advanced concepts and to broaden participation
in computing among young learners.

We propose a design for a block-based environment
that highlights and leverages analogies between fundamental
ideas of distributed computing on one hand (including Re-
mote Procedure Calls and messaging) and sociable human
communication on the other. In this approach, mechanisms
of distributed computation are expressed analogously across
their many manifestations (including facilitating commu-
nications between human users, calling encapsulated pro-
cedures, managing inter-process communication, sending
commands to embedded devices like robots, and receiving
data from IoT sensors), in ways that, we argue, both build
upon and extend the core strengths of block representations.

Alongside this philosophical approach, we take a distinc-
tive perspective on implementing an extensible, connected,
and collaborative environment to promote and illuminate
novice programmers’ learning of distributed computing. In
particular, over the past several years we have explored
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the learning potential of providing uniform support, in the
form of a few intuitive abstractions, to open up block-based
programming so that students can create truly distributed
applications. We have found that construction environments
can capitalize on this opportunity by taking three key design
commitments to heart.

A first design commitment is that modern environments
need to be easily extensible and afford loosely coupled,
easily-discoverable methods of integration with external re-
sources such as web APIs. Adding a new resource should re-
quire no code changes or user interface changes on the client
(i.e., no new blocks). This not only reduces the implementa-
tion effort required but also presents the external resources
in a uniform, predictable way to the young learners.

Second, environments should support methods of com-
munication between projects. Distributed computing is ubiq-
uitous both generally and in the applications popular among
today’s youth. Block-based environments, designed to make
computing accessible and engaging, seem to be missing a
crucial opportunity when they restrict learners from creating
“social” applications that leverage the internet for commu-
nications and real data sources for broad engagement.

Finally, collaborating with peers can be fun and engag-
ing, and it can also improve learning [39] and tap into the
identity-building value of computational participation [23].
Furthermore, collaboration and teamwork are vital parts
of industry applications. Supporting equitable collaboration
that goes beyond co-located pair-programming can help to
promote engagement and valuable 21% century skills, and
also to dispel misconceptions about software being devel-
oped in isolation.

For the rest of the paper, an extended version of our
conference publication [8], we use the open source NetsBlox
tool [33, 9] to demonstrate how advanced distributed com-
puting concepts can be made accessible to novice program-
mers. We begin with an overview of related work that has
aimed to use visual programming environments to make core
concepts and practices in computer science accessible to
novices (Section 2). We then introduce the innovations cen-
tral to NetsBlox’s approach to provide a conceptual introduc-
tion to the powerful ideas of distributed computing: Remote
Procedure Calls and Messages (Sections 3 and 4). Next, we
show how these ideas allow exciting application areas in
educational computing to be reframed in terms of distributed
computing, including physical and virtual robotics; Internet-
of-Things sensing and location-aware mobile computing;
and voice-assistant integration (Sections 5-7). Then, we
show how NetsBlox’s foregrounding of connectivity also
enables novel forms of collaboration at small-group and
whole-class levels, supporting teachers in the challenging
task of facilitating and coordinating computing activities
(Section 8). Next, we show how NetsBlox can maintain
its status as a ‘“high-ceiling” [35] environment, through
architectural extensibility and a pedagogical commitment to
supporting students as they transition from blocks-based,
visual programming to text-based languages like Python
(Sections 9 and 10). NetsBlox’s design thus enables it to

be a flexible and accessible construction environment for
learners to create personally-meaningful projects that use
the lens of distributed computing. In the last three sections,
we give examples of extended use and evaluation studies
that (a) indicate that NetsBlox has delivered on its design
commitments, and (b) lay the groundwork for its ongoing
research agenda (Sections 11-13).

2. Related Work

Scratch [30] is arguably one of the most popular tools
among block-based programming environments. Although
it was not the first visual environment designed for younger
learners (Alice [12] and Agentsheets [38] predate it), Scratch
owes its popularity in large part to making programming
accessible through visual programming, creative effects,
and affordances that help novice programmers avoid many
pitfalls while also encouraging engagement and creativity. It
facilitates the creation of “Scratch extensions” with blocks
that bring new capabilities to the environment, including
language translation and support for interacting with a num-
ber of physical devices, such as Micro:bit [40] and Makey
Makey [11]. At the time of this writing, there are 11 sup-
ported extensions: 6 for interacting with physical devices, 2
related to language, and 3 providing custom blocks for local
capabilities such as drawing or playing music. However,
with each of these extensions, Scratch brings in a number
of new blocks, which can make it harder to find blocks and
may steepen the learning curve. Scratch supports limited
distributed data sharing via Cloud Variables that enable
instances of the same program to share variables.

Snap! is a conceptual descendant of Scratch designed
to support more advanced features including first class lists
and functions, as well as to provide richer support for cus-
tom blocks [22]. Snap! also allows for extensions (e.g., to
physical devices via libraries), and it provides a block for
making HTTP requests. However, processing the informa-
tion returned by such requests is anything but intuitive,
making internet-connected applications brittle and adding
unnecessary complexity that block-based environments are
designed to remove in the first place.

BlockyTalky [24], used largely in research settings, sup-
ports the development of distributed applications for devices
like the Raspberry Pi [48] and Micro:bit [40]. It facilitates
communication between the devices allowing network mes-
sages which can be sent to a given IP address and port, but
it does not support generic internet access or the creative
programming elements present in both Scratch and Snap!.

MIT App Inventor is designed for development of mobile
applications [36] and consists of “Designer” and “Blocks”
editors. The “Designer” editor is used to add components
to the app’s user interface and the “Blocks” editor is used
to program the app’s behavior. App Inventor has native
support for HTTP requests, and for communicating with
Lego Mindstorms and Firebase [32]. Additional capabilities
are supported using “extensions” that consist of new types
of components and their corresponding blocks, similar to
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Scratch. (In contrast, we will see that NetsBlox uses a single
self-documenting block, named “call,” to provide access to
a large number of online services and hardware devices.)

CloudDB, Internet-of-Things, and machine learning ca-
pabilities are supported as App Inventor extensions enabling
apps to store data in the cloud, to communicate with various
devices like Arduino, and to incorporate various ML-based
pattern recognition capabilities. After adding a component
from one of these extensions to an app, the user has the
ability to configure the component accordingly. This may
include providing a secret access token or URL for a web-
based service. After the component has been added to the
app, the corresponding blocks will be available in the palette
of the “Blocks” editor. App Inventor also has some support
for real-time collaboration and merging projects.

A recent addition to the App Inventor toolbox is support
for the creation of Alexa skills, although currently this is
available only through a forked version of the environment.
This version changes the editor to add new programmable
entities (i.e., Alexa skills) and provides a chat dialog for
testing it. Creating Alexa skills in App Inventor is exciting,
but achieving it by modifying the editor itself is not scalable.
As we will see, NetsBlox has been able to add similar
capabilities without needing to change the user interface or
introduce any new blocks.

Today, web services are becoming a required topic to
teach in some high school computer science curricula [5].
And Lim et al. believe that web services should begin to
be taught in introductory computer science classes [28].
However, there have been difficulties in teaching web ser-
vices without proper tools [2]. For instance, instructors
Assun¢do and Osoério found that when teaching web ser-
vices to computer science undergraduates, students focused
more on issues involving the configurations of tools for the
course instead of the actual material [2]. With its simple
implementation of the Remote Procedure Call (RPC) “call”
block, NetsBlox allows web services to be taught as an
easy-to-comprehend concept. The “call” block eliminates
distracting issues of tooling and allows novice programmer
students to focus more on the subject matter at hand without
being overwhelmed—a key notion in introductory computer
science programming classrooms.

While tool support for collaboration is generally lacking
in educational programming environments, educators still
try to encourage their students to work together. Collabo-
ration in most block-based programming curricula (such as
Snap! for the popular Beauty and Joy of Computing course),
is encouraged through side-by-side, driver-navigator pair
programming [16]. This paradigm requires the driver to
make edits to a program, while the navigator monitors the
progress (e.g., by reading instructions or requirements).
While this activity structure is sometimes very effective,
greater flexibility in collaboration enables a wider variety
of pair programming formats. In particular, built-in tool
support in NetsBlox enables pair programming in which
partners do not have to be co-located, and it also opens the
door for other models of collaboration.

In summary, most existing environments lack 1) a uni-
form and intuitive way to access resources on the internet,
2) general support for distributed applications, and 3) flex-
ible, synchronous and asynchronous collaboration support.
Importantly, these shortcomings correspond to key ideas in
distributed computing. Addressing them in a unified and
conceptually coherent manner not only delivers the benefits
of each of the features; it communicates a vision of dis-
tributed computing through the block syntax, the program-
ming interface, and the presentation of distributed services
and functions as ‘first class’ members of the toolkit (as
opposed to special-purpose extensions that are peripheral to
a core set of functionality centered upon local resources). In
the next section, we will introduce NetsBlox’s approach to
these challenges.

3. Online Data and Web Services

NetsBlox, built on the open source codebase of Snap!/,
introduces a simple abstraction to provide conceptually sim-
ple access to online data sources and web services. Remote
Procedure Calls (RPC) allow users to invoke functions
running remotely on the NetsBlox server and provide results.
The code on the NetsBlox server invokes public web APIs,
but it also does additional work such caching and parsing
the data received before returning it to the NetsBlox client
as return values that correspond to data types native to the
environment (e.g., numbers, strings, images, and lists).

Related RPCs are grouped into Services. Examples are
Google Maps, Weather, Earthquakes, the Movie Database,
and many others. Not all of the Services wrap web APIs
to third-party providers. Additional Services that run exclu-
sively on the NetsBlox server and do not require external
support include a Gnuplot-based chart service, server-side
support for various games, access to WiFi-enabled hardware
devices and a hierarchical key-value store called Cloud
Variables.

How much end-user complexity does it involve to access
this much functionality? Won’t users get overwhelmed and
confused by this? RPCs use a single block named “call.”
Furthermore, the block is self-documenting. It has two pull-
down menus, one for the Service and one for the RPC. See
a subset of the Services available in Figure 1.

When a Service is selected, the second menu reconfig-
ures itself to show the RPCs available within the selected
Service. See Figure 2 for the RPCs of the Google Maps
service. When an RPC is selected, slots for the required
input arguments appear along with their names. See a few
examples in Figure 3, which return values of type text,
number, image, list, and multi-dimensional array. In addi-
tion, Service- and RPC-specific documentation is available
by context-clicking on the call block and selecting help.
While most of the remote procedures that can be invoked
are provided to the users as is, there is one where the user
can supply their own code for execution on the server, the
call RPC of the Execute Service (see the top example in
Figure 3).
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titude longitude
Alexa
Artificialintelligence »
Autograders
Chart
Climate >
CloudVariables
Community -
Database -
Execute
Games >
Geolocation
GoogleMaps
GoogleStreetView
History >
KeyValueStore AirQuality
Language » | COVID-19
MetMuseum EarthOrbit
MovieDB Earthquakes
Music » | Eclipse2017
NewYorkTimes HistoricalTemperature
NexradRadar HumanMortalityDatabase
PhoneloT HurricaneData
Pixabay IceCoreData
PublicRoles MaunalLoaCO2Data
RoboScape NASA
Science » | OceanData
ServiceCreation PaleoceanOxygenlsotopes
Thingspeak StarMap
Traffic WaterWatch
Twitter Weather

Figure 1: Services at the root menu and science sub-menu

call GoogleMaps |/ getMan | METHITER .

getDistance
getEarthCoordinates
getimageCoordinates
getLatitudeFromY
getLongitudeFromX
getMap
getSatelliteMap
getTerrainMap
getXFromLongitude
getYFromLatitude
maxLatitude
maxLongitude
minLatitude
minLongitude

itude ' width l height l zoom '

Figure 2: RPCs of the Google Maps service

Presenting Services and RPCs in this way foregrounds
the idea that the role of the student’s program is analogous
in accessing any of these remote resources. Communicating
this similarity of role through a single call interface sets the
stage for seeing the similarity between RPCs that provide
interfaces to cultural heritage databases, live sensor streams,
or physical or virtual robots. It integrates the full range of
remote resources coherently into the conceptual ecosystem
of NetsBlox, an important step for thinking in terms of big
ideas of distributed computing.

At the same time, it should be noted that the dynamically-
reconfiguring nature of the call block confronts a potential
tension with the block metaphor. Specifically, the number
and nature of arguments to different RPC calls, as well as
their return values, are highly variable, in contrast with the
structural fixity of blocks under the standard metaphor of tra-
ditional visual programming environments. Here, NetsBlox
stretches the block metaphor as a syntactic object, in order to
emphasize semantic analogies. On one hand, two different
call blocks cannot necessarily be swapped into the same
“rounded-rectangle” hole in a given program for processing

call Execute | / call
call WordGuess | / guess

call Chart |/ draw | [[EY [T
call MovieDB | / movieRuntime m

call Translation | / translate
call Twitter | / recentTweets

call CloudVariables | / getVariable | [Ty [ErTTeG]
call NewYorkTimes | / getMostViewedArticles | period

call COVID-19 |/ getConfirmedCounts
call IceCoreData | / getCarbonDioxideData

Figure 3: Example RPC calls

return values. But on the other hand, the similarity of all
of the examples of Figure 3 communicates the parallelism
in making remote requests and receiving responses. And
the "lively" nature of the environment enables learners to
click on a completed call block and see the response (See
Figure 4). This enables the communicative aspects of a
program to be constructed and iteratively explored before
RPC responses are processed and integrated into program
ow.

jomr]

839 A B

03/22/2020 167
03/23/2020 164
03/24/2020 253
03/25/2020 257
03/26/2020 293
03/27/2020 312
03/28/2020 376
03/29/2020 394
03/30/2020 443
03/31/2020 541
04/01/2020 673
04/02/2020 785
04/03/2020 685
04/04/2020 741
15 04/05/2020 801

call COVID-19 | / getConfirmedCounts Davidson ‘/h/

© ® N ® o AW N =

2 ® N = o

Figure 4: Exploring an RPC'’s return values by clicking.

To illustrate the simplicity and intuitive nature of the re-
sulting semantic abstraction from the perspective of reading
and understanding code, consider a 14-block program that
shows a map of the local area of the user and displays the
Air Quality Index (AQI) anywhere the user clicks (Figure 5
and 6).

It is not necessary to know anything about NetsBlox
or read comments to understand what the code does and
how it works. (To make the background into a pan-able and
zoom-able fully interactive map of the world requires only
20 additional blocks.)

While the primary purpose of RPCs is to provide access
to resources on the internet for student programs, one can
also view them as a way to extend the built-in capabilities of
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switch to costume

[call GoogleMaps | / getMap | ( my latitude (my longitude (stage width
e L2007 elviap

(stage height P

go to mouse-pointer
set lat |to ' call GoogleMaps | / getLatitudeFromY |(y position
set long | to ! call GoogleMaps |/ getlongitudeFromX |(x position

say [ join IITYYeatd | call AirQuality | / qualityindex | (lat) (long

Figure 5: Current air quality project. Top two scripts: stage.
Bottom script: sprite.
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ISSIPF ©°
Google ALABAMA Map data ©2022 Google

Figure 6: Running the current air quality project.

NetsBlox. In that, they are similar to extensions in Scratch
and libraries in Snap/. The “call” block is also a truly
powerful abstraction for writing code. Using a single generic
block that configures itself according to context removes
the cognitive load of learning a new set of blocks for every
Service (extension or library). It also eliminates palettes full
of new and unfamiliar blocks that would require searching
for just the right one. The menu based interface employs
hierarchical decomposition to arrange RPCs making them
quickly discoverable and enabling experimentation. Ser-
vices are grouped by categories, such as Science or Games,
so users can quickly explore what’s available.

Contrast that with Snap! libraries: users need to use the
file menu, libraries option to import a given library. The
action loads a potentially large number of blocks into one
or more palettes (e.g., motion, control, etc.). The user would
have to inspect the various palettes to see what new blocks
became available. Some of these blocks are commands, oth-
ers are variables or reporters. Input slots do not have names
but they may show default values. While some libraries
and their blocks are obvious how to use, others are more
complicated. If the user decides not to use the library or only
needs a block or two, they have to use the "Unused blocks"

menu command and corresponding pop-up dialog to remove
the clutter from their command palettes.

Finally, the call block and its menu based abstraction
is “backward” compatible with the library approach. One
can create libraries of custom blocks that wrap RPC calls
and extend their functionality if desired. For example, the
MovieDB service, providing access to information on tens
of thousands of movies, has over 60 RPCs. We created a
library that has 21 custom blocks for the most important
functionality.

Another factor that makes the RPC concept familiar to
students is that it closely resembles custom blocks. Both
of them have multiple inputs and a single output, and are
blocking calls that cause the program to wait for the result.
The only difference is that RPCs run on the server.

As mentioned above, RPCs return data in the form
of numbers (e.g., temperature), text (e.g., city name), lists
(e.g., movie IDs), multi-dimensional arrays (e.g., geoloca-
tion search results), or images (charts, maps, movie posters,
etc.). These are built-in data types and students are already
familiar with them. Users do not need to de-serialize the
data, parse text, or process a JSON data structure to extract
useful information from results, unlike with HTTP calls
available in some other tools.

Services allow students to create projects that utilize a
wide array of information freely available on the internet.
Many of these are sources that students already use in their
daily lives (e.g., maps, weather, movie ratings, etc.). Others
are related to topics they may care about, such as climate
change or sports. Helping students create projects tied to
their interests and related to real world issues will increase
their motivation to learn to program and make programming
and computer science more relevant to them [14].

4. Communication

Teenagers spend a lot of time on social media and with
online multi-player games. What kind of support would
a programming environment need to let them create such
applications as opposed to just consuming them? Message
passing is probably the most important abstraction in dis-
tributed computing. We incorporated it into the fundamental
design of NetsBlox to enable projects running anywhere on
the internet to be able to communicate with each other.

Messages in NetsBlox are very similar to events in
Scratch and Snap/. However, messages are more powerful,
as they can carry data, and they do not have to stay within
the project; they can travel to any other NetsBlox project that
is running anywhere on the internet at the time of sending.
Messages have types, defined by a name and the data the
message is to carry (i.e., a set of input slot names). Message
type definition is done similarly to how one defines a custom
block header in Snap!. See Figure 7 for an example.

Only two blocks are needed for message passing: one for
sending and one for receiving. Selecting a message type in
the “send” block pull down menu reconfigures it to show
the corresponding input slots with their names provided.
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name: fields: Ny

OK Cancel | /

Figure 7: Message type definition

Similarly, selecting a message type in the “when I receive”
receiver hat block shows the same fields as variables, just
like a custom block definition does (Figure 8).

send msg chat to K4

when I receive chat ":sender (=T

Figure 8: Message passing blocks

Message data can be built out of any of the data types
supported by the environment—even scripts that the receiver
can later run! The data is not strongly typed, so the sender
and receiver must agree on what the message means. In
particular, if the two projects need a prescribed interaction
pattern, then their authors need to agree on a sequence
of different messages of typically different types. In other
words, they have to design a protocol. However, for sim-
ple applications, a single message type suffices, and this
provides a powerful entry point. As their applications and
communications gain in complexity, the message construct
scales with the students’ needs. Consider Figure 9, showing
a six-block chat application (using the ‘chat’ message type
defined in Figure 7). Two or more students can run instances
of the project shown to chat with each other.

In embodying key concepts of distributed computing,
defining and using messages plays a complementary role to
using the call block to invoke RPCs. With messages, learners
are put in the position of designing APIs and protocols, and
as they develop experience with NetsBlox projects that both
send and receive messages, they gain a more symmetric
perspective on request-response relations among distributed
networked processes.

-
ask and wait

r;nd msg chat | username (answer to

when I receive chat ’:sander ’\'text

say (join (sender (msg

Figure 9: Simple chat app

Another important concept in message passing is ad-
dressing. The sender must specify where to send the mes-
sage. NetsBlox supports local addressing. A NetsBlox project
can consist of multiple subprojects, each of which plays a
Role in the project, while the project itself is referred to as

the Room. (This naming convention comes from the fact that
we anticipate many students will use message passing for
creating multi-player games.) Subprojects can be assigned
to different users to run on different machines, e.g., play a
game against each other. In turn, messages can be sent to any
role or group of roles within the same project. For example,
in the chat application in Figure 9, the chat messages are sent
by any one role to all the other roles, i.e., to others in room.

Messages can also be sent to any running application.
A globally-unique address is constructed by the tuple (user-
name, project name, role name), since each of these is
guaranteed to be unique within its context. (The role name is
optional. If a role is not specified, messages to the project are
delivered to all its Roles.) We call this global address a public
role ID, since local addressing is done using role names.
There is a Service and an RPC that returns the public role ID
of the currently running project, so that students do not have
to manually type it in. This approach also allows sharing and
running the same project by different users without having
to update the address manually. Global addressing is useful
when one wants to support a dynamic number of participants
in a distributed application. For example, the simple chat
application of Figure 9 can be extended to be an actual
chatroom that users can dynamically join and leave.

In this case, there are two separate NetsBlox projects:
a chatroom server and a client. The protocol requires two
message types: one, called ‘connect,” for the client to register
with the server by sending its own address; and another,
called ‘chat,” for sending actual chat messages. The server
maintains a list of client addresses by handling the connect
messages and simply rebroadcasts any chat messages to the
list of addresses it has (Figure 10).

when h clicked

to / list

set clients

when I receive chat | (sender ’(ﬁ

send msg chat |(sender (txt to (clients

Figure 10: Chatroom server

The client sends its own address to the server and then,
in a forever loop, it asks its user to type in a message,
which it then sends over to the server. When it receives a
chat message (routed from the server), it simply displays
the original sender and the message text. See Figure 11. For
simplicity, we omitted a more involved refinement, to display
the last several messages as opposed to just the last one.

In the classroom, we typically explain the task, describe
the client-server approach and introduce global addressing.
Then we show the chatroom server program and run it on
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when h clicked
R w G HNiceChat@ledeczi

set me | to username

——
set myaddress | to ! call PublicRoles | / requestPublicRoleld

send msg connect my address  to (server

"ask N and wait

rs:nd msg chat |(me (answer to (server

%

s

when I receive chat | (sender) (txt

[say join (sender B (txt

Figure 11: Chatroom client

the teacher’s computer showing on the projector screen. The
students are then asked to implement the client. This has
proven to be an engaging activity for young learners.

Other examples of illustrative distributed computing ap-
plications using message passing would be peer-to-peer net-
working or volunteer computing—a citizen science project
where a server (also a NetsBlox project) divides up a par-
allel complex problem into small tasks and distributes them
to volunteer workers (running the same NetsBlox “client”
project). The famous NASA SETI@home project [15, 25] is
a real-world example of this kind of distributed computing.

These examples illustrate that the message passing ab-
straction in NetsBlox has a low threshold, enabling students
to write non-trivial applications with just a few blocks. But it
also has a high ceiling, allowing students to create complex
distributed applications in a block-based environment. The
abstraction hides a lot of the accidental complexity associ-
ated with message passing and networking, but it exposes the
most important concepts of distributed computing, including
message types, protocols, latency, and addressing.

Note that Services are not restricted to provide syn-
chronous replies and can include message passing as well.
For example, a call to the Earthquake Service may need
to provide data on thousands of earthquakes in the re-
quested geographic area. Instead of returning a huge multi-
dimensional array in a single reply, the Service sends one
message per earthquake, with each message containing the
date, magnitude, and location of the earthquake in separate
fields. The N-Player game Service that provides generic
support for turn-based games also utilizes messages. For
example, upon receiving an “end of turn” RPC call from one
player, the Service sends a message to the player whose turn
is next.

5. Robotics Reimagined

The traditional approach to educational robot program-
ming requires a local connection to the device via USB or
Bluetooth to download programs that can later be executed
on the robot. NetsBlox takes a different approach, with the

goal of allowing experiences of programming and interact-
ing with robots to enhance and benefit from learners’ emerg-
ing understanding of distributed computing. Under our ap-
proach, WiFi-enabled robots can connect to and register
with the NetsBlox server directly via the internet. In turn, a
Service called RoboScape allows NetsBlox programs to send
commands to registered robots. The NetsBlox server handles
routing commands to the robots’ wireless connections. Each
robot runs a command interpreter that executes these com-
mands and can respond by sending messages back to through
the NetsBlox server to the user’s program. Such messages
might contain, for example, requested sensor values.

This approach has several advantages. First, from the
perspective of supporting distributed computing educa-
tion, it connects robotics to the RPC and message-passing
paradigm used elsewhere in the NetsBlox platform. Second,
from the perspective of lowering barriers to educational
robotics, the student’s code is written and run from the Nets-
Blox project inside the browser, making it much easier to test
and debug. Third, from the perspective of expanding robots’
functionality, since student programs (and consequently all
programs controlling robots), can communicate with each
other, collaborative robotics becomes feasible.

Figure 12 shows a very simple remote control program
that uses the keyboard to make a robot spin by making the
two wheels rotate in opposite directions (s key); stop (space
key) or beep at 400 Hz for 1 second (b key). The initialization
code sets the robot ID to the last 4 digits of the MAC address
and makes the robot beep, so that the user can check that
the robot is now registered and ‘connected’ at this address.
Note that the RoboScape service uses a generic ‘send’ RPC
to issue text-based commands to the robot. The two input
arguments are the robot ID and the desired command. Why
not have separate ‘set speed,” ‘beep’ and similar, more spe-
cific, RPCs? RoboScape intentionally makes it possible to
“eavesdrop” on other students’ communication with their
robots and inject new commands. Specifically, when a robot
receives a command, it sends an acknowledgement in the
form of a NetsBlox message. Any NetsBlox project can sub-
scribe to receive a robot’s acknowledgement messages, not
just the sender of the initial message. Moreover, the robots
do not check who sent a command to them; they execute
all valid commands received. These were intentional design
decisions, intended to motivate the need for cybersecurity
and to make the subject much more tangible and fun to
learn. For example, students can encrypt the actual textual
commands, to try to prevent adversaries from observing the
commands they are sending to their robots or sending their
own. The robots support a number of encryption schemes,
but the NetsBlox program and the robot need to agree on
the key first. Simply sharing the key sent in clear text makes
it possible for others to intercept it when it is initially sent
(an adversary will see a, for example, “set key 1 2 3 4”
message acknowledgement from the robot) and break the
encryption easily. That motivates the need for secure key
exchange, which we provide through a hardware feature on
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the robots. The cybersecurity functionality is largely imple-
mented through the Service on the NetsBlox server, which
allows robots to receive cybersecurity ‘updates’ without
requiring actual firmware changes, reducing maintenance
requirements for use with new curricula as they are created.
There are a number of other cybersecurity concepts that
the RoboScape Service helps to motivate and teach. We
have carried out multiple successful and popular high school
cybercamps built around wireless robotics and cybersecu-
rity [26].

when h clicked

set robot | to [J=2Z]
run RoboScape |/ send |(robot « [SEEK:Io{)

when E key pressed

run RoboScape |/ send |(robot I saecmeiaay

run RoboScape |/ send |(robot HRISJISeRAY

when m key pressed

run RoboScape |/ send |(robot  [SIIUF]

Figure 12: Simple robot control program using keyboard events

Since the student’s running program and the robot do
not have to be co-located, remote robotics also becomes
possible. All one needs is a webcam streaming a video of
the robot “arena” and multiple students can use the robots
from their own homes.

NetsBlox’s networking features can be combined with
more traditional Bluetooth-connected robots to create ad-
ditional remote robot programming configurations. For ex-
ample, in the Spring of 2020, after the pandemic started,
Birdbrain Technologies set up multiple Hummingbird robots
and connected them to a laptop, where they run a NetsBlox
program that controls the local robots using messages they
receive from remote NetsBlox projects. Students are pro-
vided with various remote template projects that have the
required message types already predefined and encapsulated
in custom blocks. They can then use these blocks in their
programs to control the robots remotely. The first command
sends the “reserve” message that assigns the robot to the
given user for a fixed amount of time, if it is available. The
robot action is live-streamed in another window [4].

Finally, other configurations and collaborations between
students and robots are possible; for example, using com-
munications among NetsBlox projects running on students’
computers to enable them to coordinate the actions of their
Bluetooth-connected robots as they move about in a shared
physical space.

Virtual Robotics

Real physical robots are fun, and students love hands-
on activities. However, there is a paradox: robots are either
inexpensive but simple, or powerful but expensive. More-
over, a collection of robots of any kind can be hard to main-
tain, especially in a school setting. Furthermore, connecting
wireless devices to a school network can be problematic,
as IT departments are often hesitant to provide access or
support. Our work-in-progress RoboScape Online project
responds to these challenges by providing a flexible, modu-
lar, and immersive virtual robotics environment. A group of
students can share an instance of a virtual world with each
student having their own virtual robots to program [44]. The
virtual robots are programmed and controlled through the
RoboScape Service, and students use the same blocks and
commands to control virtual or physical robots. However,
because the virtual robots’ capabilities are simulated, there
is no physical limit to what they can do. Yet, virtual robots
are still tangible for today’s youth, accustomed as they are to
virtual experiences.

The simulated nature of the environment and the robots’
functionality can make virtual robotics an ideal setting for
introducing advanced computing concepts. This is because
many of the constraints of physical devices can be controlled
to serve pedagogical goals. In some learning settings it can
be useful to remove physical limitations (such as noise in
sensor signals or variability in actuators); while in other
settings it can be useful to amplify them (e.g., when students
are designing algorithms to be robust to these issues) [53].
Furthermore, the physical robots and their low-cost sen-
sors are inherently unreliable for many autonomous tasks,
creating extra difficulty for students. The simulated sensors
and actuators are more reliable and have reduced latency
for commands and responses sent over the network, further
enabling lessons on autonomous tasks.

Virtual robots can offer a wide range of capabilities in
terms of locomotion, sensors, and actuators. For example,
they can ‘contain’ the most advanced hardware, from GPS
to Lidar, without requiring any additional costs or configu-
ration to make them available to programmers at any level.
These sensors or actuators are exposed to students in the
NetsBlox environment as additional Services, providing a
simple interface familiar to students already working with
the robots. For example, when students access an environ-
ment where their robots have a Lidar sensor enabled, they
simply use a ‘getRange’ method on a ‘LidarSensor’ Service
(see Figure 13). These devices are specified through code,
so their functionalities can vary for different challenges,
and new Services can be easily created. Virtual worlds can
range from urban environments to deserts; from the open
ocean to space. Without the physical limitations on what
conditions can be represented, students can program robots
in environments which would otherwise be impossible for
them to access at all (e.g., a reactor with a radiation leak,
or a space station orbiting a distant star). Visual content
in environments can also be used to provide additional
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call LIDARSensor | / getRange |(robot
call PositionSensor | / getPosition |{robot

Figure 13: Simulated sensors available as services.

context to an activity, such as to integrate cultural artifacts
or historical information.

The virtual robotics capability was originally created
as a standalone program made in the Unity game engine.
While this provided a simple editor for allowing students to
create their own environments and higher graphical quality,
it was found that this approach lead to many of the same
issues previously experienced with school IT departments
and physical robots. Not only did the software require ap-
proval and support for installation, but it continued to re-
quire special assistance to allow it through school firewalls,
and some schools provided hardware such as Chromebooks
which were not necessarily compatible. Switching between
the browser window with their NetsBlox code and a full
screen graphical representation of the virtual world posed
some frustration to students, who struggled to manage their
windows to gain a clear view of both during activities. In ad-
dition, the server software, in order to take full advantage of
the Unity editor, was required to run a graphics-less instance
of the client software, which created significant costs to host
the students’ simulations. To alleviate these issues, the client
software was rewritten to not only run in a web browser, but
to be inserted into the NetsBlox interface itself, so students
would be able to interact with the virtual world without
having to move away from their code. Additionally, while
Unity provided support to build the software for Windows,
macOS, Linux, and mobile platforms, a browser-based sys-
tem is compatible with all these platforms and more, while
not requiring students to find the right version and install
it. Most platforms capable of running NetsBlox should be
able to add the virtual robots on top of it. WebSocket-based
networking was found to generally be allowed by school
IT departments, providing a method for real time updating
of the simulation environment on students’ browsers. The
server software was rewritten to be significantly lighter-
weight than the Unity version, allowing entire classrooms
worth of students to share a small cloud server. The updated
software has been tested in high school classrooms, with
students appearing to enjoy the improved ease-of-use.

Through the RoboScape Online software, students can
view the entire virtual world on the classroom projector
or on their own computers/devices (Figure 14). They can
also put on a VR headset to get a first-person view and
a truly immersive experience (Figure 15). The RoboScape
Online environment is designed to be accessible remotely,
so students can share worlds regardless of their geographic
location. All information of the robots’ state is stored on
the server, so a consistent virtual world is provided to all
students. The environment looks just like a video game,
except that students create and program it, rather than just

L —————————————————————

close 4

Figure 14: Bird's eye view of an environment where the
students have to implement autonomous driving to navigate
from the red to the green area using a simplified Lidar sensor.

RoomeCsE@ledeca!

Time: 139.75

Close. 4

Figure 15: First person view of a maze environment from one
robot.

playing within it. We have begun implementing RoboScape
Online activities with high school students and in summer
camps, where students work on robotics and cybersecurity
challenges.

6. Mobile Device Integration

Many schools now offer makerspaces and other oppor-
tunities for students to get their hands on simple embedded
computers, sensors, and educational robots. However, most
schools still do not have access to these luxuries, and even
those that do are typically limited by cost as to the number
of and complexity of sensors and devices. Even when this
hardware is available to students, schools typically cannot
allow it to leave the classroom due to its expense; thus, these
kinds of activities are necessarily in-person, and restricted to
the school where the lab is located. However, almost every
student in developed and even developing countries has a
smartphone (or other mobile device) that contains a rich
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collection of sensors connected to the internet out of the
box. This presents an opportunity to teach concepts related
to the Internet of Things (IoT), networking, and distributed
computing in a manner that is not only accessible to novices
but also highly engaging and motivating.

To make this approach a reality, we have created a mobile
app called PhoneloT, which allows the built-in sensors of
the device to be accessed remotely from NetsBlox projects.
Sensor data is made accessible through two popular net-
worked sensor paradigms: polling, via RPC return values
and streaming, via message passing. The list of RPCs pro-
viding sensor values is shown in Figure 16.

Display >

Sensors > |getAccelerometer

Utility > | getAltitude

authenticate getBearing

listenToGUI getCompassCardinalDirection

listenToSensors |getCompassDirection
setCredentials |getCompassHeading
getFacingDirection
getGravity
getGyroscope
getLightLevel
getlLinearAcceleration
getlLocation
getMagneticField
getMicrophoneLevel
getOrientation
getProximity
getStepCount

Figure 16: Sensors available through PhoneloT

If a sensor is not present on the given device, is disabled,
or is otherwise blocked by app permissions, it is simply
logically disabled as a target for interactions, and calls to
it from NetsBlox will return an error message explaining
the problem. Streaming can be turned on by the ‘listen-
ToSensors’ RPC, and the data arrives via various messages
depending on the sensor requested. Figure 17 shows how to
request acceleration data at 10 samples per second (i.e., with
a 100 ms update interval), and the corresponding message
handler hat block.

run PhoneloT .| / listenToSensors .| fdevice | list (15 N g AR

when I receive accelerometer

Figure 17: Streaming data from the 3-axis accelerometer

Note that in Figure 17 the ‘listenToSensors’ RPC is
invoked through a puzzle-shaped run block (a command
block), as opposed to the rounded-rectangle call block (a
reporter block). NetsBlox’s run block offers access to the
same Services and RPCs as the call block, but it discards
the return value. All RPCs give a return value (even remote
commands reply with an “Ok” or error message), but as
students write more complex programs, it is sometimes
convenient for them to use the run block because it can be
inserted directly into the program flow.

PhoneloT also allows access to the touchscreen through a
collection of customizable widgets that can send messages to
auser’s NetsBlox project when they interact with them. This
makes it possible to configure a Graphical User Interface
(GUI) on the phone from the very same NetsBlox program
that processes the sensor data and handles asynchronous
events from the mobile device by implementing message
handlers. Hence, students can build truly distributed applica-
tions that run on two or more computers/devices connected
via the internet and that interact with the physical world via
sensors. To keep the interface to these features as simple as
possible, controls are created and modified through individ-
ual RPCs such as “addButton" or “clearControls." The RPCs
for creating and configuring the GUI elements are shown in
Figure 18.

call PhoneloT |/ clearControls

addButton
Sensors » |addimageDisplay
Utility » | addJoystick
authenticate addLabel
listenToGUI addRadioButton
listenToSensors |addSlider
setCredentials |addTextField
addToggle
addTouchpad
clearControls
getimage
getLevel
getPosition
getText
getToggleState
isPressed
removeControl
setimage
setLevel
setText
setToggleState

Figure 18: GUI widget creation and configurations RPCs

There are a few different approaches to creating native
graphical applications that run on different operating sys-
tems. One is to logically replace the widgets with native
equivalents and build a communication bridge for apply-
ing changes and receiving interaction events. Although this
would make PhoneloT apps look like native iOS and An-
droid apps, it would also mean that PhoneloT is restricted
to only the intersection of widget and style options available
to all platforms. Instead, PhoneloT includes a simple, custom
rendering engine that draws logical widgets on a canvas. This
allows for total control over the layout and appearance of
the controls, making it possible to support a broad range
of style options, as well as interactive animated controls
(e.g., joysticks and touchpads). This also allows PhoneloT
to look exactly the same on all devices, which could help
reduce student confusion when working in team projects
where group members have different types of phones.

When adding controls to the PhoneloT display, the sys-
tem must know the location and size of the new control;
this is typically passed as four separate RPC input values for
“x," “y," “width," and “height." These concepts already exist
under the same names in NetsBlox, however the coordinate
system is different. In NetsBlox, the center of the screen is
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(0, 0), with increasing values going up and to the right, and a
sprite’s location is the position of its center point. However,
PhoneloT uses the more common graphical unit system
where (0, 0) is the top left corner of the display, increasing
values go down and to the right, and the location of a
control is its top left corner, rather than its center. Although
this coordinate system is new to students, it introduces a
more real-world graphical coordinate system which could
be applied to many other graphical environments outside of
NetsBlox.

Once an app allows access to the device from the in-
ternet, security and privacy become important considera-
tions. Each mobile device is identified by a unique 12-
digit hexadecimal ID: their MAC address (or a random,
persistent value if the MAC address is inaccessible). The
PhoneloT app generates an 8-digit hexadecimal password
which expires every 24 hours. Both of these need to be
provided by the NetsBlox project in order for PhoneloT to
accept connections.

1M:439 w T e

& PhoneloT

7
%
PhoneloT

Server Address:

editor.netsblox.org

Reset Connection

Run In background O

Figure 19: PhoneloT configuration screen

Additionally, some sensors are intentionally limited by
the app. For instance, only the current volume level from the
microphone is provided (rather than the actual waveform).
In addition, the app does not allow a network request to take
a new picture from the camera without user confirmation
on the phone itself. An image display widget when clicked,
asks the user whether they want to take a picture. If they do,
this and only this picture will become available to NetsBlox
through the ‘getImage’ RPC.

Moreover, it would not be acceptable for a user to be
unknowingly tracked or spied upon through the NetsBlox
interface due to forgetting to close the app. Because of this,
unless explicitly requested with the “run in background"
setting in the menu, the app ceases all communication with
the server and rejects all incoming requests upon being put

into the background or turning off the screen. We believe
these safeguards are sufficient to allow K-12 audiences to
use the app while still affording them reasonable internet
privacy.

It is worth emphasizing that integrating mobile devices
into the NetsBlox framework with PhoneloT required no
changes on the NetsBlox client whatsoever. PhoneloT intro-
duces no new programming abstractions, no new interaction
primitives, and no new blocks that might present barriers to
students. Any user who is already accustomed to NetsBlox
RPCs and message passing should quickly feel comfortable
using PhoneloT through its familiar interfaces. It is also
important to note that PhoneloT with NetsBlox is not a
mobile app development environment. It simply treats mo-
bile devices as intelligent, remotely controllable IoT devices,
making it possible to create engaging distributed applica-
tions. Users can create a simple compass that displays the
current heading on both the computer and phone screens.
Or they can turn the phone into a remote controller for
games. They can use the accelerometer to control a sprite by
tilting the mobile device, or they can use buttons, joysticks
and sliders to make a complex game controller as shown in
Figure 20. Multiple devices, across multiple Services, can be
linked to the same NetsBlox program, so it is also perfectly
feasible to create a robot remote controller using PhoneloT.

°
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Figure 20: An XBox-like game controller made of buttons and
joystick controls (rotated to landscape).

Exercise Tracker

To illustrate how PhoneloT can be used to create pow-
erful and engaging projects, we present a simple exercise
tracker which plots the user’s route on top of a Google Map
displayed in the NetsBlox client, streams the updated display
back to the mobile device, and prints the total distance
covered as well. To illustrate the use of PhoneloT’s custom
GUI controls, we also include start/stop buttons.

Figure 21 shows a portion of the initialization code. As
mentioned above, for security the device ID and password
displayed in the PhoneldT menu must manually entered in
the NetsBlox client code to establish the connection with
the phone. If the correct credentials are provided, PhoneloT
will accept configuration RPC calls such as the ones in the
figure, which clear the screen and add controls at certain
coordinates and dimensions. The last two blocks in the figure
enable GUI event messaging from the phone and request
location data updates every 2 seconds (2000 milliseconds),
respectively.
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set device ' to [ CRIETEZ
run PhoneloT |/ setCredentials

(V= H6e0753b4

run PhoneloT |/ clearControls | (device

set display |to
{call PhoneloT |/ addimageDisplay |(device’ & & €D €D

spt text | to
{call PhoneloT |/ addTextField

(evice © € € &
=

run PhoneloT |/ addButton device' & €& (15
HE A list [event [start ¢)

run Phone / addButton device {80 )

run PhoneloT |/ listerToGUI | (device

run PhoneloT |/ listenToSensors device | list (|l

Figure 21: NetsBlox code to initialize communication with the
PhoneloT app and add GUI widgets on a mobile device

After initialization, the NetsBlox program receives lo-
cation updates via the “location” message type and begins
plotting the course. Each message provides the latitude and
longitude (along with heading and altitude), which can be
converted into screen coordinates with the GoogleMaps co-
ordinate translation RPCs. See Figure 22. The “getDistance”
RPC of the GoogleMaps Service provides the distance be-
tween two map locations, though one needs to perform some
averaging to reduce errors due to the variation in reported
location caused by GPS inaccuracy [3]. This is done inside
the “add point” custom block (i.e., function) in Figure 22.
The only other logic required is handling the stop and start
events from the custom buttons on the phone. See Figure 23
for the final app screens in NetsBlox and PhoneloT.

when | receive location | (latitude "longitude (heading altitude
N

go to x: { call GoogleMaps \ | getXFromLongitude \ (longitude y:
call GoogleMaps | I getYFromLatitude \ (latitude

point in direction ( heading

add point ' list ( latitude ( longitude

Fr:m PhoneloT | I setText | (device (text (join PRIENI RerNar H  distance

run PhoneloT | I setimage | (device (display (image of Stage |

when | receive start when | receive stop

pen down pen up

Figure 22: Exercise tracker code. The “add point” custom block
maintains the distance covered.

7. Voice Assistant Integration

Enabling students to integrate voice assistants, like the
Amazon Echo, into their distributed programs, is yet another
way to make programming more compelling and meaningful
for young learners. Especially when combined with the
other NetsBlox capabilities, this creates many exciting op-
portunities for students. Students could make games where

120

E PhoneloT
@ ©
: S (4
a
Ethos Church Offices
Storu A W - , 9
N
Park at Melrose AR
] = : Jrasior @ )
N ) Q w8 son @ g
= et 9
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) sounbognasiays @ Octave Apartments
E Distance Covered: 419m
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Boulton Rental Property  Xfinity Store b
Google 9

Figure 23: NetsBlox client stage (left) and phone display
(right) of the exercise tracker app at slightly different moments

players control their characters with voice commands or
even control network-enabled robots using the RoboScape
Service RPCs described in Section 5. Even if they simply
want to create a standalone skill, they are able to utilize many
of the standard Services such as Weather, MovieDB, and
Translation. Furthermore, this integration is possible using
only the RPC abstraction (and first class functions) following
the NetsBlox design commitment to loosely-coupled, easily
discoverable methods of integration.

Before discussing integration with NetsBlox, it is impor-
tant to provide a high-level overview of how spoken requests
are handled by Alexa. Like many other voice assistants, it
works by recognizing specific intents of the user. An intent
is a verbal structure defined by a number of example ut-
terances. These utterances can contain empty “slots” which
are placeholders for values like names, locations, etc. The
spoken words used for each slot are then passed as arguments
to the handler for the specific intent.

NetsBlox provides an Alexa Service, a collection of
RPCs for creating a skill from a configuration (defined as
a 2D list), along with additional helper RPCs. Using this
Service, users can define intents, give example utterances,
and provide intent handlers as anonymous functions. When
the ‘createSkill” RPC is called, the NetsBlox server creates
the skill for the given user and stores the handlers in its
database. When a command is spoken to the Alexa skill,
the request is handled entirely by the NetsBlox server using
the appropriate user-defined block-based intent handler. That
is, when an intent is received by NetsBlox, the user-defined
intent handler is retrieved from the database, compiled to
JavaScript, and executed with the received values for each
slot. As the intent handlers can utilize the message passing
blocks, they can be used to forward messages to student
projects, such as games where the players are controlled via
Alexa.

Not only does this allow young learners to develop
Alexa skills but it also facilitates first-hand experience with
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serverless computing, a contemporary distributed comput-
ing paradigm made popular through services like Ama-
zon Lambda. The user-defined intent handlers are stateless
functions compiled and executed by the server on demand.
If the function requires shared state, cloud storage can be
used explicitly via NetsBlox cloud variables. The ability
to provide young learners with hands-on experience using
contemporary computing paradigms in a manner that also
simplifies the programming of devices like the Amazon
Echo is an exciting opportunity for introductory computer
science education.

As an example, consider Figure 24, showing the defini-
tion of a simple skill that provides information about atmo-
spheric carbon dioxide concentrations measured on Hawaii
by the NOAA. In addition to the Alexa service and its RPCs,
a few custom blocks are provided to ease the cumbersome
parts of defining a skill. The ‘Alexa skill” block creates a data
structure, a multi-dimensional array that contains required
parts of an Alexa skill, such as its name, the various phrases
that it accepts to perform its various actions, or intents. The
‘when I hear one of” custom block specifies a similar data
structure for one intent. These custom blocks shield users
from having to assemble the necessary data structures and
instead put the focus on the interesting part: the code that
runs when the user invokes the intent via an Echo device.

when clicked
set config | to
(| I My-Climate-Skill X @ my-climate-skill N1 =1 <H
when I hear one of {:/\{=-1- do

e

‘set ppm | to ' call MaunaloaCO2Data | / getCO2Trend

|— —

item @9 of ([iZ1) length of (ppm

item @9 of (i &K ¥ ppm

f i fonsi round (T

o round

e ‘ join Alhml ic'carbon-di concentrati reased by m
*ppmrinthe-last-60-years

set ppm to

set ID | to' call Alexa | / createSkil | (config

Figure 24: Climate skill

In this example, we use one of the climate change related
Services, specifically calling the ‘getCO2Trend” RPC to
return a two-dimensional array containing the atmospheric
carbon dioxide concentrations read at the Mauna Loa obser-
vatory between 1961 and 2022. We compute the difference
of the first and the last elements of the second column and
instruct Alexa to say the result in a sentence. The only Alexa
RPC we need to call is ‘createSkill.” This RPC configures
the skill both on the Alexa and the NetsBlox servers. If we
want to tweak the skill later, we can use the ‘updateSkill’
RPC, and we can even test it from within NetsBlox by using
the ‘invokeSkill” RPC.

Once ready, the user still needs to enable the skill via
the Alexa app. To invoke this intent, the user needs to say:
“Alexa, ask my climate skill how bad is it.” In turn, Alexa

will reply “Atmospheric carbon dioxide concentrations in-
creased by 101 ppm in the last 60 years.” It is important to
note that the NetsBlox project that creates a skill does not
need to continue running once a skill is deployed. After the
initial creation, everything that the Alexa app needs is on the
NetsBlox server.

In addition to RPCs, NetsBlox Alexa skills can use
message passing as well. The example in Figure 25 shows
a skill that can control a robot remotely, replicating the
keyboard-based controls of Figure 12 with voice commands
to trigger three message types: spin, stop, and beep. In this
implementation, messages come to the NetsBlox project,
and so this project must remain running, to receive messages
from the Alexa skill and send the required commands on to
the robot. We could have removed the NetsBlox intermedi-
ary and called the ‘send” RPC of RoboScape directly, to turn,
stop the wheels, or beep, but the implementation shown here
has the purpose of illustrating message passing.

The skill definition in Figure 25 has three correspond-
ing intents; one for spinning, one for stopping, and one
for beeping. To respond to the intents, it accesses a cloud
variable that stores the global address (public role ID) of
the NetsBlox project actually driving the robot, and it sends
the appropriate messages to this project. The code for the
‘beep’ intent illustrates how to include parameters in intent
invocations. Another custom block allows the user to specify
the data type and a name for the parameter, which the user
can then place in the correct position within the phrase: "to
beep at pitch hertz."

when clicked
2
set config | to
Alexa skill ( ) intents:
when I hear one of {'];{ZF"Hlto'spin|
s¥ / e |Alexa'Robot
1 Joponing) )
)

when I hear one of §.],|-FHltofreeze

( send msg spin | to (=

send msg stop | to FJJJ Clol /Alexa*Robot!
[report

when I hear one of

| phrase:

send msg beep | (pitch to (]

[Feport

\input names: { pitch

set ID | to' call Alexa | / createskill |(config

Figure 25: Robot driver skill

8. Collaboration

Once we remove the walls around our programming
environments, it becomes possible to support collaborative
programming on projects in flexible ways. In particular,
NetsBlox allows users to issue and accept invitations to
collaborate on a project. Collaborators at any location can
then work on the same project simultaneously. Concur-
rent editing operations show up on everyone’s screen. The
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server resolves conflicting changes by approving the first
one received, and rejecting subsequent ones. However, since
the typical latency is under 100 milliseconds, this rarely
happens.

Since NetsBlox stores only a single shared copy of
the project, students can also work asynchronously. This is
similar to how popular collaborative editing tools such as
Google Docs or Overleaf work. However, there is a con-
ceptual difference between static documents and dynamic,
continuously-executing block-based code. The latter has a
state, which includes the values of variables and the appear-
ance and position of sprites and the stage. Since each user’s
computer executes the code independently, it would be hard,
if not impossible, to synchronize program state. So NetsBlox
only keeps the source code itself in sync across collaborators.
That is, the scripts will be the same, but the appearance of the
stage and the values of variables will typically be different
across collaborators at any given moment.

NetsBlox’s robust support for collaboration enables pair
programming, team projects, remote tutoring, and remote
collaboration. The latter two have been especially important
for online learning during the COVID-19 pandemic. Re-
cent research has shown collaboration in pair programming
environments is conducive to the development of problem
solving and programming skills in young women [41]. Us-
ing NetsBlox, we plan to investigate equitable methods of
collaboration that promote student engagement and improve
student learning objectives. Furthermore, NetsBlox’s col-
laboration infrastructure also makes it possible to try out
novel ways of teaching with collaborative activities. For
example, designing for collaboration can involve assigning
subtasks to collaborating students, an activity structure sup-
ported by NetsBlox. This can also help highlight problem
decomposition—a key aspect of learning programming and
computational thinking [19].

Activity Galleries

Another novel way to collaborate and share one’s work
with classmates and the teacher in NetsBlox is through Ac-
tivity Galleries. Galleries enable members of a class or group
to publish in-process or final-form NetsBlox projects to a
shared space. A teacher can optionally initialize a Gallery
with a starter project (in Figure 26 below, the starter project
drew a square and invited students to generalize that code).
This allows the class activity to focus on creating refinements
or extensions to a basic program. When students are ready to
publish their work, they simply click a green ‘camera’ icon,
shown at bottom-left of Figure 26. After entering optional
information about their submission, their work is stored
on the server and a thumbnail immediately appears in the
class Gallery (shown at left in figure 26). A published entry
preserves the project’s state at the time of publication, and
anyone in the class can click on the corresponding thumbnail
to view, comment on, load, and/or remix and republish the
entry. Finally, Galleries are scoped to a particular group
(e.g., a class section), so the group can build upon its own

Gallery

Figure 26: One class’'s Turtle Geometry activity gallery

members’ insights, with students seeing, giving feedback on,
and refining each other’s ideas.

Activity Galleries enable group-based design [6, 7, 45],
in which the diversity of thinking present in the group is
seen as a critical resource for the functioning of the activity.
Figure 26 shows a class using a Gallery to support the
challenge, “Make a Polygon” starting from code that created
a square. Different students took up the challenge in different
ways, and the collective thinking grew increasingly more
sophisticated. Here, for example, one line of inquiry pursued
the question of ‘star’ polygons, like the one shown in the
main workspace of Figure 26. In another line of inquiry,
students began to introduce arguments or global variables
to their initial solutions to make polygons with any number
of sides. Later in the session they worked to make polygons
with a fixed perimeter, and finally they considered ways to
unite the two separate lines of inquiry, involving standard
and star polygons.

A range of classroom activity types can be supported
with Galleries; we describe three here. First, Generative
Activities [46] encourage students to produce artifacts that
reflect their own distinctive and creative ways of looking at
a given problem or situation. After seeing the “space” of
solutions the group generates, the class may reflect on how
to generalize across solutions.

Second, in Design Challenges [27], students may share
solutions to a more open problem. When the design problem
is shared among students, the classroom group becomes an
authentic audience for partial or complete solutions. Activity
Galleries become more than a showcase of final projects;
they offer a visual trace of individual and collective ways
of thinking about the problem as they mature and interact.

Finally, combining aspects of the two activity types
above, Galleries can be a good setting for testing and re-
sponsive refinement of code. For instance, when learning
sorting algorithms, a Gallery might begin with the challenge
to create and publish implementations of one or more algo-
rithms. Next, students might be given the task to design input
lists that would give the algorithm trouble. Working together
as a class, they can develop characterizations of worst-case
inputs for each algorithm, constructing rather than simply
reading about these features of sorting approaches. Such
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activities, in which students play roles of both algorithm-
creating and algorithm-challenging, can also be used to
introduce “adversarial” techniques that are themselves im-
portant topics.

9. Extensibility

The NetsBlox environment has two major components:
the client and the server. The client has unlimited undo and
redo support and the capability to replay the entire history
of the project. This also serves as simple version control,
since one can go back to any past point in the history and
continue from there. The NetsBlox client also adds a new
block category to Snap! called Network, containing the RPC
block and blocks related to message passing.

Unlike most other environments, most NetsBlox func-
tionalities are provided by the server, which runs the vari-
ous Services, routes messages, and manages collaboration.
The architecture of the server is modular (see Figure 27),
facilitating extensibility. To add a new Service, only a single
JavaScript file (based on a template) needs to be added.
Some Services are as simple as a few lines of code, while
others that provide more complex functionality can get large.
However, all Services are well separated, with a simple API
connecting them to the core.

client
server
Collaboration Mess.age
Passing
Distributed L
Debugger ogger

NetsBlox Server

Gnuplot
NetsBlox
ariables

: Core

Service
Creation

oooon -0

O ¢ BB -3

Mobile Voice  Educational  Google Microsoft Movie USGS
Devices Assistants  Robots Maps Translate Database NOAA

Figure 27: NetsBlox architecture

The power of this approach is illustrated by the fact
that adding support for hardware devices in the form of the
RoboScape Service that manages WiFi connected robots or
the PhoneloT app that connects to mobile devices required
no change on the client side or the server core at all. Most
importantly, students do not have to learn any new blocks
when a new Service is added. All they see is a new, self-
documenting option in the pull down menu of the “call” and
“run” blocks.

It is important to note that the clients access the server
via a well-documented, open RESTful API. Therefore, all
the Services and message passing support are available to

potential alternative clients that do not need to be block-
based. For example, we are already working on a Python
front-end (See Section 10, below).

Client-side Extensions

The client can be customized using NetsBlox extensions.
A NetsBlox extension is similar to a browser extension in
that it can contain arbitrary JavaScript that can access and
modify the client itself. Extensions can be loaded automati-
cally via URL parameters so they can be easily used to create
more structured or customized experiences without any ini-
tial steps for users. To prevent malicious use, any extension
hosted by an untrusted origin must be manually approved by
the user (even when loaded via URL parameters).

NetsBlox extensions utilize an extension API which fa-
cilitates common patterns for customizing the client. These
include creating custom primitive blocks and block cate-
gories. The API also supports the creation of a menu for
each loaded extension. One example usage of NetsBlox
extensions can be found in the creation and use of custom
autograders. Autograders are activity-specific suites of au-
tomated tests. Using client-side extensions, the NetsBlox
client was modified to allow users to select assignments for
their course from a custom menu, grade them within the
browser, and even submit them to platforms like Coursera
using a Learning Management System (LMS) APL

Figure 28a shows an assignment being selected from the
autograder’s extension menu. Upon selection, a starter tem-
plate is loaded for the assignment along with the associated
tests. Once the assignment is loaded, the extension menu is
updated to include an option to grade the current assignment.
This menu item will open the dialog shown in Figure 28b
which displays the output of a set of automated tests for the
assignment.

NetsBlox extensions make the creation of custom auto-
graders possible but not necessarily accessible for instructors
who may not be JavaScript developers (or have access to
webserver to host the files). To lower the barriers to use, we
have created a NetsBlox Service called “Autograders” and a
custom block library for creating and sharing custom auto-
graders within NetsBlox. The Autograders Service enables
users to store configurations for their own autograders. The
configuration is well documented, including an interactive
video walkthrough on autograder creation. Autograders can
be simply composed from the official, curated examples—
complete with automated tests—hosted on GitHub. These
are particularly easy to include as there is a pre-built library
with each assignment configuration, available as a custom
block.

Custom assignments can be defined using the custom
block library. An assignment consists of a name, starter
template URL, and list of tests. Tests can currently only
evaluate custom blocks defined in the project, but the con-
figuration is extensible so that more aspects of a project can
be evaluated in the future. The custom block library enables
users to define fixed input/output test cases for the given
assignment or even provide custom code for more involved
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The automated tests for the assignment are shown below.
Click on a test to view the specific test case.

"shift "abc” by 2" should report "cde”™

"shift "DEF" by 100" should report "()*" (reported ""cde™)

"shift "DEF" by -80" should report "Ww0012W00131u0014" (reported ™"cde™)

"shift "with spaces" by 10" should report "\u0001s~r*}zkmo}" {reported ""cde"")
"shift "no shift!” by 0" should report "no shift!" (reported ""cde"”)

"shift "negative wrapping!" by -200" should report "&Ww001d\u001fu0019, . \u001dX/*\
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Figure 28: Using a custom autograder to load an assignment
(a) and grade a work-in-progress solution (b).

test cases. An example of each can be found in Figure 29.
The autograder created here is called “Example Grader”
and consists of a single assignment, which asks students
to make a custom block that will perform the function,
“Multiply by 2.” The starter template for this assignment is
provided by the “public project URL” block (a placeholder
in the example). There are 2 tests for the assignment, which
demonstrate two different ways to evaluate the same test
case. The first block specifies a fixed input and output for the
block; the second specifies a test which, given the student’s
implementation of the custom block, checks that when called
with “27, it yields the expected result. After the autograder is
created, the next block opens a new tab with the autograder
loaded. This enables the user to test the autograder and, when
satisfactory, share the URL that will automatically load the
autograder with their students.

run Autograders |/ createAutograder
/autograder Example*Grader JEEET [ 1 ENIEH

assignment |Multiply'by-2 template URL:

-

=)l Llreportr4-given-"2" REE &

open tab wl autograder [STElMENEEl g

Figure 29: Creating a custom autograder in NetsBlox.

Make your own Service

There are multiple ways to add Services to NetsBlox.
Since NetsBlox is an open-source project, contributors can
implement their own Services in JavaScript and issue pull
requests on GitHub. There is also a mechanism to create
an extension server. The new server can be enabled for
specific users or classes in NetsBlox, and the Services it
provides will show up in the call block automatically. In fact,
these additional servers do not even have to be implemented
in JavaScript and can be in any language as long as they
implement the RESTful API expected of NetsBlox Services.

However, most teachers are not software engineers, so
there is a need to be able to add Services from the client
side. To address this need, there is a NetsBlox Service called
“Service Creation.” This makes it possible to add one’s own
Service, which will then appear in the “call” block pull down
menu under the Community and then username submenus,
as shown in Figure 30.

call ClimateForcings
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Figure 30: User-contributed services

To create a Service, one needs a CSV file with the data
that the Service will supply. The user can drag and drop this
file into the NetsBlox window to convert it into a variable
(a two-dimensional array) automatically. The first row of
this CSV file should contain column headers (e.g., “year,’
“Black,” “White,” etc.) as shown in the example in Figure 31.

The user can then pass the variable with the data as
an input argument to the “createServiceFromTable” RPC
shown in Figure 32. If no options are supplied, the RPC
will create a new Service with a number of default RPCs:
1) ‘getTable’ that returns the entire table, 2) ‘getValue’ that
returns a single element by two indices: the value in the first
column and the column name, 3) one for each column of the
table (e.g., ‘getHispanicColumn’ and 4) one for each column
as a function of the first column (e.g., "getAsianByYear’).
This latter option is particularly useful when the data is
some kind of time series and the first column contains the
date/time values.
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A B C D E

1 Year Black White Asian Hispanic

2 1980 0 143 9 0
3 1981 2 164 16 0
4 1982 1 136 13 1
5 1983 3 175 22 1
6 1984 3 164 21 3
7 1985 3 177 17 6
8 1986 1 194 37 7
9 1987 2 230 27 4
10 1988 2 265 44 3
1" 1989 1 320 53 4

Figure 31: Example CSV file containing the number of new
CS PhDs in the United States over 1980-2020 broken down
by ethnicity.

call ServiceCreation | / createServiceFromTable data

Figure 32: User-specified Service creation

The ‘options’ argument to ServiceCreation’s ‘create-
ServiceFromTable’ RPC enables the user to change these
default behaviors; for example, to specify additional RPCs.
It is even possible to provide a NetsBlox script for any of
the desired RPCs, in which case NetsBlox translates these
into JavaScript and they become the code associated with
the RPC. Figure 33 shows the default RPCs generated from
the CSV file in Figure 31. Figure 34 then shows a simple use
of this new Service that plots the number of new CS PhDs
by ethnicity.

call CS-PhDs:By-Ethnicity | / getValue getZ¥¥

getAsianByYear
getAsianColumn
getBlackByYear
getBlackColumn
getHispanicByYear
getHispanicColumn
getTable

getValue
getWhiteByYear
getWhiteColumn
getYearColumn

Figure 33: The newly-created Service

The ServiceCreation service is yet another feature that
helps teachers and students to create pedagogically relevant
and personally meaningful projects. Instead of emailing the
students a data file, a teacher can create a new Service in a
few minutes that becomes available to all students instantly.
If some revision needs to be made, the Service can be
updated just as easily, and all students, and existing projects,
will have the latest data automatically.

10. Continued Learning with Python

As we have seen, block-based environments can be very
powerful, with NetsBlox focused on offering an introduction
to advanced CS topics such as distributed computing, cyber-
security, robotics, and the Internet of Things. However, one

switch to costume
e

( ’fcall CS-PhDsBy-Ethnicity | / getBlackByYear
(call CS-PhDs By-Ethnicity |/ getWhiteByYear
call Chart |/ draw list W7 — —  ——
(call CS-PhDs‘By-Ethnicity |/ getAsianByYear
(call CSPhDs By-Ethnicity |/ getHispanicByYear
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Figure 34: Code to plot the new CS PhDs data by ethnicity
(a) and the resulting chart (b).

recurring criticism from advanced students is that, despite all
of the powerful features, block-based environments can still
feel more like a toy than a “real” programming language,
simply due to its block-based interface [13]. Because of
this, students might abandon tools like NetsBlox in favor of
textual languages like Python. However, this is a massive
change, and students might feel discouraged if they cannot
easily reproduce the same advanced behaviors they used
to be able to program in NetsBlox. To ease this transi-
tion while preserving most of students’ existing NetsBlox
project-based knowledge, we are developing a tool called
PyBlox.

When moving from a block-based to a text-based en-
vironment, it is not just the programming language that
changes, but also the underlying computational model and
the IDE. The overarching design goal with PyBlox is to
preserve as much of the NetsBlox experience as possible
and replace only the programming language from blocks to
Python. Hence, PyBlox is a Python-based turtle graphics
environment with a stage, multiple sprites, multiple scripts
per sprite, events, (almost) the same concurrency model as
NetsBlox and RPCs and message passing all supported.

PyBlox has its own built-in IDE that supports code
highlighting, context-aware completion suggestions, always-
visible documentation for the selected item (including func-
tions/RPCs), a palette of project-specific custom blocks that
can be dragged and dropped to paste code snippets, built-
in example projects, an experimental NetsBlox to PyBlox
project converter, and more. A screen capture of the work-
in-progress PyBlox IDE is given in Figure 35.

Brady et al.: Preprint submitted to Elsevier

Page 17 of 24



Block-based Distributed Computing Abstractions

e p ists-pybl ? rep———

Documentation

quality_index(latitude:
float, Tongitude: float) —>
float

M global  stage | sprite

28 [@onstart()
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e 37 lat = nb.google_maps.get_latitude_from_y(x)
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aqi = nb.air_quality.quality_index(Tat, long)

self.say(f'The AQI here is {agi}')

Program Output

&

Figure 35: The PyBlox IDE showing an air quality index project
functionally equivalent to the one shown in Figure 5 (all code
in the sprite)

PyBlox mimics the concurrency model of NetsBlox
scripts through various preprocessing steps applied to stu-
dents’ code. PyBlox also uses the same project breakdown
of tabs for different sprites and the stage, using func-
tions/methods as analogues for scripts and custom blocks,
approximating NetsBlox-style event-based computing with
function decorators, and providing access to all NetsBlox
RPCs and message passing. Additionally, these Python
constructs all have similar interfaces to their block-based
counterparts; examples can be seen in Figure 36.

@nb.on_message('location')
def onloc(self, latitude, longitude, heading, altitude):
self.pos = (
nb.google_maps.get_x_from_longitude(longitude),
nb.google_maps.get_y_from_latitude(latitude),

)
self.heading = heading
if self.drawing:
self.add_point([latitude, longitude])
nb.phone_iot.set_text(device, text,
f'Distance Covered: {distance}m')
nb.phone_iot.set_image(device, display, stage.get_image())

@nb.on_message('start')
def on_start(self):
self.drawing = True

@nb.on_message('stop')
def on_stop(self):
self.drawing = False

Figure 36: Example PyBlox code. For reference, this is equiv-
alent to the block-based code from Figure 22

Supporting the transition to text programming
However, regardless of the similarity between NetsBlox
and PyBlox, the change of language imposes some overhead
on students. The goal of PyBlox is to minimize this learning
curve by providing not only similar features, but also tools
that help students find the features that they need. For
instance, the default palette of blocks in PyBlox contains
examples for all of the existing function decorators, which
are shown in the block-based form that students are already
familiar with. Additionally, the contents of the blocks palette
is customizable and saved in the project file. This allows
instructors to hand-pick the set of blocks they think students
would need for a given project and distribute them to stu-
dents as a starter project. Further, PyBlox supports a mech-
anism to have blocks be automatically pulled from an online

repository, meaning instructors could edit the custom blocks
palette for all student projects without actually modifying the
project files; this could be used to correct errors in custom
blocks, or to add new “hint" blocks to help students who get
stuck on some sub-task. Another helpful tool is a curated
list of ubiquitous Python packages that can be toggled on/off
to automatically import them into the project without the
students’ needing to write any code. These curated packages
include customized descriptions and simple usage examples
that are shown in the documentation panel when hovered
over.

PyBlox’s context-aware completion suggestions are in-
valuable in helping students find the right methods to call on
objects, including both PyBlox-specific sprite/stage meth-
ods, as well as Python builtin functions such as list.append.
The always-visible documentation panel ensures that stu-
dents have effortless access to information about any func-
tion they are trying to use, including PyBlox-specific util-
ities like decorators and RPCs, or even their own custom
methods/functions, as the documentation is extracted in real
time from normal Python docstrings. The documentation
panel is similar to the “help” menu for blocks in NetsBlox,
but it does not need to be explicitly opened and updates
automatically with the text cursor. This makes its existence
and usage more obvious, meaning students are more likely
to use it. Ultimately, we hope that listing the methods/fields
on objects and presenting documentation for each entry
(common features in modern IDEs) will encourage students
to be more comfortable reading API documentation early on,
which is an important practice in real-world programming.

Addressing differences in error-handling

However there are still some notable differences between
NetsBlox and PyBlox. One big difference is with error
handling; for instance, in NetsBlox, any error from an RPC
causes the result to simply be the error message as a string.
This string is also stored in a special “error" variable (suc-
cessful RPC invocations clear the error back to the empty
string). This has the unfortunate effect of allowing errors
to propagate through a student’s program. For instance, if
the return value is not used or if the successful return type
is a string (like the error return type), then there is no
chance of discovering the error without explicitly checking
the error block after every RPC invocation; this is tedious,
and students rarely include error-checking logic in their pro-
grams. However, this lack of hard errors is consistent with
NetsBlox’s parent language, Snap/, which largely attempts
to avoid hard errors when possible, even in some cases where
it arguably should not. (For instance, indexing out of bounds
or using invalid values for indices, such as 2.3 or hello
simply returns the empty string, “”). In contrast, Python
and virtually all textual languages are comparatively much
more strict, and give hard errors (i.e., exceptions) for many
of these cases. Because of these issues with propagating
errors in NetsBlox and the motivation of giving students a
realistic introduction to textual languages, it was decided
that PyBlox should instead throw exceptions for RPC errors;
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thus, students can rest assured that RPC return values are
not error message strings, and are indeed proper RPC return
values. Python-style exception handling code can be used
to catch these errors, but there is an opt-in feature to have
individual RPC invocations act just like the NetsBlox version
and instead return an error message string and set a special
error state accessible via get_error(). This feature is used
by the experimental NetsBlox to PyBlox project converter
to ensure identical error handling. A consequence of this
decision to throw exceptions by default is that some code that
students would write in blocks (which sometimes fails) will
halt that script (but notably not the entire project) if error-
handling code is not written; however, the exception (which
is shown in the “Program Output" panel of the IDE) includes
the exact line number of the error, which, coupled with
the built-in documentation panel in the PyBlox IDE should
make it easier to identify the problem with the provided RPC
inputs and correct the issue (or add error handling code to
allow failures).

Addressing differences in the execution model
Another difference between NetsBlox and PyBlox is in
the execution model. NetsBlox projects, like Snap! projects,
are lively, meaning the project is always running and modifi-
cations to the code take effect immediately, even in a running
script. This is a very unorthodox feature to have in text-based
programming environments, and the results of modifying a
script during its execution are dubious at best for any non-
trivial logic. For example, variables from the old code could
be used with logic from the new code or vice versa, resulting
in neither functioning correctly until a fresh execution of
only the new code is performed. In light of these issues,
PyBlox projects are run like ordinary Python code, with
modifications of the program during execution not affecting
the running program. Another runtime difference is in the
concurrency model. NetsBlox and Snap! are interpreted lan-
guages, with very rigid, well-defined points at which context
switching can occur. This provides very strong guarantees
about the sequencing of instructions among various scripts.
However, this is yet another feature that is unorthodox in
textual languages, in which concurrent instructions are ar-
bitrarily sequenced, even in languages like Python where
concurrent scripts cannot truly execute simultaneously due
to the global interpreter lock. PyBlox takes a best-effort
approach, adding thread yield points at locations where
NetsBlox/Snap! would have performed a context switch.
The result roughly imitates the NetsBlox concurrency model
without imposing too much execution overhead. It would
be possible to perfectly imitate the block-based concur-
rency model if pausing/resuming threads were supported,
but this is not possible in native Python. A related project
called Pytch uses the Skulpt library to emulate Python from
javascript running in the browser. This emulation allows for
higher-level features like pausing/resuming threads, mean-
ing that Pytch could emulate the NetsBlox/Snap/ concur-
rency model more accurately [34]. (On the other hand, the
authors also mention that violations of some of their timing

assumptions can lead to time desynchronization between
real time and simulator time, as seen by, e.g, the “wait
secs" block). Our response to this particular concurrency
model issue reflects one of PyBlox’s larger hypotheses: that
students want to switch from blocks to Python not because of
Python itself, but because they see it as “real" programming.
Because of this, in general, the design of PyBlox will make
a best-effort approach to provide the same environment and
utilities as NetsBlox, but it will not sacrifice vital, real-world
Python features such as access to native libraries. Further it
will use only abstractions that can be built up from native
features such as OS threads, which inherently lack some
sequencing controls. The result is that the vast majority
of student programs will run virtually identically to the
block-based equivalent, all while having realistic, native-like
behaviors that will remain applicable in real-world Python
development.

With all of these affordances, PyBlox serves as a tool to
allow students to “graduate” from NetsBlox’s block-based
environment to Python, while still retaining much of their ex-
isting perspectives on project structure, concurrency models,
and advanced CS topics that were introduced in NetsBlox.
Further, because PyBlox features are largely isomorphic
to NetsBlox, instructors can even (to some extent) recycle
existing NetsBlox activities and reintroduce them in PyBlox
with incrementally-added complexity (e.g., reimplementing
and then extending old projects with new features).

PyBlox is still in active development, but it is available
in its current, experimental state as a Python package called
netsblox. We are in the process of designing studies to
investigate PyBlox’s effectiveness in supporting knowledge
transfer from NetsBlox to PyBlox and Python.

11. Use Case: Natural Language Processing
and Literary Analysis

We have shown how the NetsBlox platform can be used
to eliminate superficial or “accidental” barriers to advanced
CS topics, enabling novice programmers to engage con-
ceptually with powerful ideas in computing. But not all
programming novices are youths. Another important ongo-
ing example of using NetsBlox in interdisciplinary work
involves a project in the Digital Humanities [1]. Here, we
describe how NetsBlox has leveraged to introduce powerful
ideas and to mediate between exploration in a visual environ-
ment and scaled-up implementation in a Python notebook.

Working with faculty collaborators in the Vanderbilt
Libraries and the English Department, we are using Nets-
Blox to support a two-way exchange of disciplinary prac-
tices, integrating (a) Computer Science understandings of
the models used in Al and Natural Language Processing
(NLP) and the computational techniques used in integrating
them into analytic pipelines, with (b) Literary and Cultural
Studies understandings of phenomena around shifts in lan-
guage and social constructs as reflected in late 18th and early
19th century British periodical literature. In this article, we
focus on the first aspect—the way that NetsBlox has enabled
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challenging CS concepts in Al and NLP to be grasped
and used creatively by undergraduates and professors in the
Humanities.

For the past three years, we have been working with
undergraduates from both computer science and the hu-
manities to explore topics relevant to our English depart-
ment colleague’s research on analysing 19"-century British
periodicals.. To work effectively with a corpus of over 4
million articles, we have been running exploratory analyses
in a collaborative cluster computing environment, using
PySpark notebooks on Amazon EMR and, more recently,
Databricks’s Lakehouse platform. These are powerful com-
puting environments, but in order for all of our participants
to be able to bring their insights bear and contribute actively
to the collaborative work, it is important that they all have
a fundamental understanding of the kinds of computational
operations they can execute.

NetsBlox has enabled us to apply many of our NLP
tools and concepts in a visual and interactive setting before
bringing them to the PySpark notebook environment. While
we have in fact connected NetsBlox to the full British Peri-
odicals repository, we have found that after using the visual
environment to engage playfully and iteratively with texts,
tools, and techniques on a smaller corpus, students have been
able to make the leap to notebooks, which have their own
advantages, especially when operating at the scale of the
entire repository.

Here, we provide an example of how NetsBlox Services
have enabled us to provide a rich introduction to the strengths
and limitations of Al tools: in this case, Sentiment Analysis
models. Under its Language category, NetsBlox offers sev-
eral Services, one of which provides an interface to Parallel-
Dots, a commercial tool for NLP including sentiment analy-
sis. Figure 37 shows the RPCs available in this Service, each
of which takes a text argument (with “getSimilarity” taking
two). While such tools will eventually be incorporated into
pipelines that may involve a longer sequence of operations
that select articles from the corpus and segment them into
chunks (e.g., sentences or groups of sentences) to analyze,
our initial explorations aimed to promote understanding of
these tools’ independent operation, so that they do not appear
to students as ‘black boxes.’

call ParallelDots / :

getAbuse

getEmotion

getintent

getKeywords
getNamedEntities
getSarcasmProbability
getSentiment
getSimilarity
getTaxonomy

Figure 37: The RPCs available in the ParallelDots Service

Beyond the technical aspect of understanding return
values and how to process them in a chain of actions, our

work with NLP tools in NetsBlox involves more playful
and collaborative forms of exploration to understand the
judgments made by the model in question. For instance,
with Sentiment Analysis, we have asked students to extend
the Chat application described in Figure 9 to run sentiment
analysis on the chat entries and color the text of the on-screen
printout accordingly. This integrates the technical skill of
operating on the model’s judgments (and the format of the
return) with an environment that allows the classroom group
to experiment collaboratively and iteratively to make sense
of how the model “thinks,” how it can be fooled, and more
generally, what its limitations are.

In our latest implementation of this activity, students
made discoveries about the length of text that seemed to
work best with the model; about how small changes (even in
punctuation) could have significant impact on the model’s
judgment; and about how the model worked on informal
chat-like entries as compared with passages they copy-
pasted from articles in the British Periodicals corpus. These
findings led students to study the documentation of the
services, to learn about the training-sets that were used for
them, and to reason about how any effort to do sentiment
analysis on the British Periodicals corpus might need to
involve domain-adaptation and/or other fine-tuning steps.

Turning from the tools of Al and NLP to the computa-
tional techniques involved in using them in practice, it was
also important for students to understand and be able to
mentally trace operations involving higher-order functions
such as map. Here, it has been very powerful to have a visual
environment where the relevant blocks can be assembled,
hooked up to smaller corpus of sample articles, clicked to
run, tested, and re-assembled. Once students created, tested,
discussed, and refined block stacks that ran simple pipelines
in NetsBlox, we found that they were in a much stronger
position to interpret and construct text-based operations
within PySpark notebooks.

12. Evaluation

NetsBlox was created to explore the core premise that
a block-based construction environment could be developed
that would make advanced distributed computing concepts
accessible to younger learners. As such, the design and de-
velopment work described in this article provides the foun-
dation for future research on effectiveness. Nevertheless, we
have already begun to conduct evaluation studies to assess
whether NetsBlox is successful in realizing its design goals,
and we have begun to use NetsBlox in empirical studies that
explore different conditions and aspects of student learning.

In particular, we have conducted several small-scale
evaluation studies of NetsBlox through summer camps and
in after-school settings. Since we cannot assume prior pro-
gramming knowledge, the first two days of a week-long
camp usually focus on introductory programming before
tackling the more advanced topics NetsBlox was designed
to teach. These studies have shown both statistically sig-
nificant learning gains and increased student interest and
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engagement. Broll et al. report results from two summer
camps that demonstrated between 15 and 20 percentage
point gains in both CT and networking knowledge, using a
pre- and post-test [10]. Four summer camps with 62 students
total were conducted in 2018 and 2019 focusing on robotics
and cybersecurity using physical robots [26, 54]. Significant
learning gains were achieved in both CT and cybersecurity.
A quote from a participating high school teacher illustrates
the level of student engagement: “I did not see them on cell
phones, they were engaged with programming their robot.”

Feedback after a professional development workshop on
‘Distributed Computing using NetsBlox’ revealed teachers’
ease with using RPCs and message passing blocks; their
excitement about how these features could expand students’
projects to include various data sources from the internet;
and their interest in using NetsBlox in various ways in their
schools—as part of teaching CS topics such as networks in
AP CS Principles or in after-school camps [17].

In a majority-female, virtual high school camp on ‘Cli-
mate Change & Computing,” students examined issues of
climate change through working with real climate datasets,
using multi-dimensional data structures, coding data vi-
sualizations, and engaging in data analyses. End-of-camp
surveys probing students’ perceptions of computing sug-
gested the positive shift fostered by this experience. Some
students expressed a-ha’s that computer science “is more
than making a character move and follow directions” and
that it instead can be a “useful tool” to pull in a variety of
real data to analyze and visualize and “learn and discover”
real phenomena [18].

For several years now, NetsBlox has also been used to
introduce first-year college students to programming during
the first two weeks of an introductory programming course
at Vanderbilt. The course teaches programming with MAT-
LAB to non-CS engineering students. Anonymous surveys
indicate that students with previous programming experi-
ence would rather not spend time with block-based program-
ming, but most students appreciate the gentle introduction
before switching to the main text-based language of the
course. Finally, as described in section 11, NetsBlox has
enabled a heterogeneous group of undergraduates of all
levels and majors to engage in cutting-edge analyses of large
historical literary corpora.

These studies suggest that NetsBlox is highly usable and
that novices can engage with key concepts in distributed
computing through its block-based implementation of RPCs
and message passing. The design-based research of these
studies has also produced some principles that guide ongo-
ing implementations with NetsBlox. The curricula used in
these studies are all project-based. Many times we present a
starter project, e.g., a current weather app or a chat program,
and then let students work on enhancing it any way they
like. For example, one student team in one of the camps
added their own encryption algorithm to the chat project, so
that they could keep their conversation private. Most camps
conclude with an individual or team project of the students’

own choosing. Innovative examples include various multi-
player games such as a “Tron” clone, an interactive map
interface for learning about country demographics, and a
running route planner on top of Google Maps.

NetsBlox’s support for collaboration has also enabled
multiple empirical studies comparing approaches to collabo-
rative programming. Zacharia et al. compared students work-
ing in driver-navigator or driver-driver pairs, showing that
the driver-driver configuration did not have the perceived
imbalance in student agency that driver-navigator did [55].
These results align with a 2020 study by Tsan, et al. on pair
programming in 4th and 5th grade, comparing programming
on one computer versus students both acting as drivers
on their own devices [47]. Student interviews suggested
that the one-computer condition helped them communicate
more with their partner, and the two-computer condition
was preferred, but that students struggled to coordinate the
programming with their partner.

Lytle et al. compared three types of driver-driver Nets-
Blox collaboration in a middle school summer camp [29]. In
this study, pairs of students worked on a series of four game-
themed programming projects using different collaboration
styles in NetsBlox: separate, together, and puzzle. “Sepa-
rate” involved students programming two separate NetsBlox
Roles to complete a pong game, with one student program-
ming the Left Paddle role and the other taking the Right—
with no collaborative editing across Roles. “Together” in-
volved two students in the same Role, with synchronous
editing to create a single paddle for Brick Breaker. “Puzzle”
involved collaborative programming of a Basket sprite to
collect falling fruit—but with the blocks partitioned so that
each partner could only access half of them, requiring part-
ners to talk to coordinate efforts. In a fourth game project, 16
of 24 pairs chose Puzzle while 8 chose Together-style collab-
oration, with many citing that working with complementary
blocks was more fun and interesting. An overwhelming
majority expressed interest in collaborative programming
in the future, with 27 preferring Puzzle-style, 17 preferring
Together-style, and only 4 preferring to work Separately on
future projects. These statistics demonstrate that students
in middle grades 6-8 (aged 11-14) appreciate collaboration
while learning to program!

Empirical studies with NetsBlox in the future can ex-
plore a ever-widening range of topics that are of interest to
Computing and Computer Science Education. An important
part of the strength of the platform is its ability to present
a range of distributed computing ideas and applications in
a coherent and unified way. We look forward to longer-term
studies that will enable us to document how students draw
conceptual connections between the principles of designing
distributed systems that enable users to interact with other
humans, robots, IoT sensors, web-based data sources and
services, and more. Through this line of work, we will be
able to test and refine our conjectures about how distributed
computing can serve as an entry point to big ideas in com-
puter science, attracting a broader population of learners to
engage with these concepts in personally meaningful ways.
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13. Conclusions

There is a widespread perception among high school-
aged students that block-based environments are toys and not
real programming languages [13, 51]. Our counter-argument
in this article has been that the most limiting factor in intro-
ductory programming environments (whether text- or block-
based) is being closed—“walled off” and disconnected from
data, web services, and other applications. There is only
so much one can do in a closed environment, and only so
much relevance that a closed environment can achieve, when
contrasted with the typical teenager’s phone or laptop where
the power of the entire internet is one click away.

NetsBlox demonstrates that introductory programming
experiences do not have to be limited in this way. Lever-
aging modern web technologies and the affordances of
block-based programming environments can enable novice
programmers to create personally-meaningful projects that
solve real problems or otherwise matter to them—making
programming more relevant, more motivating, and more
interesting. Projects such as distributed multi-player games,
a shared whiteboard, and interactive global maps with super-
imposed climate data place powerful, creative possibilities
in young learners’ hands. Being able to utilize gadgets—
phones, voice assistants, or robots—makes the experience
all the more compelling. Both teachers and students from
middle grades up can successfully create such programs
using NetsBlox. Furthermore, such projects can democratize
access to learning important modern computing concepts,
such as distributed computing, cybersecurity, and computer
networking. Until now, these topics have only been taught
to computing undergraduates, despite their importance to
computer literacy for everyone.
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Let us summarize what is possible, once we remove the
walls around a block-based programming environment:

e Student programs can access the wealth of infor-
mation and services available on the internet. This
makes it possible to create all kinds of STEAM-related
projects, sparking the interest of students who may not
be attracted to traditional approaches to computing.
For example, Figure 38 shows a project visualizing up-
to-date pandemic information anywhere in the world.

e Being able to create programs that can communicate
with each other opens up a world of online multi-
player games and social apps for students to create.

e A novel approach to robot and device programming
becomes possible. This enables collaborative robotics,
remote control of games and robots with mobile
devices, voice assistant integration, and engaging,
hands-on approaches to teaching cybersecurity.

e Novel forms of collaboration, including truly remote
teamwork and sharing of in-process work can be sup-
ported seamlessly. In the age of COVID-19, this has
become a crucial requirement, but the advantages of
flexible collaboration will endure beyond the pan-
demic.

e Connections to other powerful environments for ex-
pressing computational logic, such as Python and
PySpark notebooks, can ease the transfer of the core
ideas learned in NetsBlox to settings they encounter
in the future.

As we have shown, a lot of added functionality becomes
available once programs have access to the internet, in an en-
vironment where connectivity and distributed computing are
treated as ‘first-class’ design elements. The most important
consideration is to keep the abstractions that provide this ac-
cess simple and intuitive. When a new extension is provided
to the typical block-based environment, it comes with many
new blocks. This makes it difficult both to learn the related
concepts and even to find the blocks, especially if multiple
extensions are used. Instead, a more general mechanism
should be provided. NetsBlox added just two new abstrac-
tions and introduced just three new blocks (call, send, when
1 receive) to those typical of block-based environments, in
order to provide the wide array of new capabilities described
in this article. Furthermore, these two new abstractions are
similar to ones that many students are already familiar with:
RPCs are like custom blocks, and messages are similar to
events. This makes them intuitive and easy to learn and
use. Furthermore, the analogies between these concepts are
powerful tools for reasoning about key ideas in distributed
computing. This makes NetsBlox a conceptual tool that
extends the promise of block-based environments to offer a
restructuration [52] of introductory computer science.

Another important consideration for any learning envi-
ronment is to keep the environment extensible, even by the
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users themselves. Adding Services, including support for
new devices, should not require new custom blocks or any
changes to the client code or the interface. Moreover, in
NetsBlox, users themselves can add their own online data
Services for everyone to use without leaving the environ-
ment.

Once we show students the wide variety of advanced
projects and technologies such an environment enables with
just a few blocks of code, they quickly reconsider the mis-
conception that block-based programming is just for little
kids. As two students said last summer: “It’s really cool
to see real world experience and real world data and real
world things,” and these projects help “a lot more peo-
ple think [block-based programming] was really cool.” A
teacher added: “With the virtual delivery of my course,
allowing students to collaborate in real time on a project, and
understand HOW the collaboration works is a great learning
experience....”
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