SoutheastCon 2022 | 978-1-6654-0652-9/22/$31.00 ©2022 IEEE | DOI: 10.1109/SoutheastCon48659.2022.9763937

SoutheastCon 2022

User-Extensible Block-Based Interfaces for Internet
of Things Devices as New Educational Tools

Yizhou Tan
Department of Architecture
Rhode Island School of Design
Providence, RI 02903-2717
Email: ytan02@risd.edu

Marina Rizk

Mississippi College

Abstract—Internet of Things (IoT) devices are common in
students’ everyday lives, but connecting these devices to a
programming environment for educational use is not always
straightforward. This paper presents a framework, IoTScape,
for connecting IoT devices to an online block-based program-
ming environment. This system automatically provides both a
novice-friendly interface and more advanced tools integrating
cybersecurity concepts. By allowing new device types to easily be
added to the system, a more diverse set of curricula is possible,
ideally attracting more students who may not find the existing
curricula engaging. Examples are provided of IoT devices used
with this system, both physical and virtual, connected to NetsBlox
through this platform, along with potential pedagogical uses of
these devices.

I. INTRODUCTION

Students interact with a wide range of Internet of Things
(IoT) devices in their daily lives, and their interactions with
these devices will continue to increase as these technologies
become even more ubiquitous. This demonstrates a clear
necessity for students to gain an understanding of distributed
computing concepts early in their education, especially as cy-
bersecurity within the IoT and distributed computing domains
remains a concern [1]. IoT devices can also be used as an
educational tool to facilitate learning in other subjects, both in
STEM fields and beyond [2], [3].

Computer science education at an introductory level is con-
ventionally perceived to be boring and irrelevant [4]. Studies
have shown that increasing the perception of relevance and
usefulness of computers is crucial to the computer science
education facing novices and non-majors [5]. Therefore, the
education needs to be contextualized. The use of robots,
for example, is helpful during this contextualization process
to create unconventional motivations for students to learn
computer science [6]. The premise of our work is that the
introduction of Internet of Things, with a necessary level of
abstraction, would be another promising way to contextualize
the education and to motivate students.

However, the use of IoT devices in education are met
with some barriers to entry. [7] Many devices designed for
education require a significant upfront investment, in addi-
tion to maintenance and storage costs, while often requiring
significant technical knowledge for both setup and use. One

Department of Engineering

Clinton, MS 39058-4026
Email: mnrizk@mc.edu

Gordon Stein, Akos Lédeczi
Institute for Software Integrated Studies
Vanderbilt University
Nashville, Tennessee 37212-2328
Email: {gordon.stein,akos.ledeczi} @vanderbilt.edu

way to reduce these costs and enable a wider range of
domains would be to use simulated devices, but connecting
both them and the wide range of available physical devices to
a common, novice-friendly programming environment is not
always straightforward.

This work demonstrates a new platform for integrating
IoT devices into an existing block-based programming envi-
ronment. The platform is designed so that any device with
sufficient flexibility in its communications and/or firmware
can be added to the platform. The use of a block-based
programming language creates a low barrier to entry for novice
programmers, but additional features are available to provide
a cybersecurity curriculum without the devices needing to be
modified to support it. The low-level networking concepts
can be abstracted away from the student’s view, providing
them with concepts at a more introductory level. At the same
time, the platform is designed to also reduce the technical
knowledge required for new devices to be added.

By providing the potential for a wide range of devices
accessed through a shared, simple interface, this platform is
intended to enable a wider range of curricula using devices
relevant to the interests of students. Students interested in
nursing or medicine could have access to healthcare related
sensors. Students interested in Earth science could have access
to environmental sensors, along with scientific datasets to
combine their data with. Adopting a distributed computing
mindset allows these lessons to be shared by students working
remotely. These devices can be added to the platform by
the educators themselves, empowering them to create novel
content relevant to their class.

A. Related Work

There is a lack of highly relevant work in the field, regarding
our project’s specific use of IoT programming ability as
a motivation for education in other domains. Therefore, in
this section we review projects that use a certain branch of
computer science as a motivation for CS education, as well as
web-based IoT programming platforms facing beginners.

1) Motivational Tools: Kurkovsky [8] describes a curricu-
lum using Sphero, a small robotic ball, as a medium to teach
robotics and mobile computing concepts. It is however a

978-1-6654-0652-9/22/$31.00 ©2022 IEEE

BiBolzE6B4n 05 RIS B 1VARIGRO2AVELER Libraries. Downlohdel on April 22,2023 at 20:03:44 UTC from IEEE Xplore. Restrictions apply.

SoutheastCon 2022

course that requires students to work with complex hardware
and software systems at a lower level, while our project pro-
poses to abstract away such lower level computing for better
engagement of the students. Burd et al. [9] also suggest that the
incorporation of mobile computing concepts, potentially across
multiple different platforms, is important to CS education for
engaging students and increasing the education’s relevance. Xu
et al. [10] explore how a gaming context can be incorporated
into introductory computing courses. McGill [11] examines
how the incorporation of personal robots in an introductory CS
course motivates non-computer science students by grabbing
their attention. This study also addresses that the technical
frustrations with robotics is likely to counteract the motiva-
tional effects of relevance, which is exactly what our work
tackles.

2) Beginner’s IoT Platforms: SoEasy [12] is a software
framework that integrates the programming and configuration
of different IoT peripherals. This is similar to our project
in how the low-level compiling and source-coding processes
are abstracted away in order for beginners to be engaged in
peripheral device control programming. There are also several
projects that use a block-based programming approach, same
as our project, to better engage beginners. For example, Block-
yTalky [13] is a platform designed specifically for introducing
youth to programmable networked systems. It is similar to
NetsBlox in its collaboration and networking features, but
different in that the code is created on each device directly,
as opposed to the central server of NetsBlox and pre-made
firmwares of IoTScape. Xi et al. [14] propose a block-based
programming approach using the MIT App Inventor to enable
novices to build mobile apps integrated with IoT technology.
Similarly, Ruiz-Rube et al [15] create extensions for the App
Inventor to make IoT and mobile app development more
accessible for novices. In addition to similar functionalities,
our project also allows the user to extend the interface to more
custom IoT devices. BIPES [16] is another web-based, block-
based, integrated platform for embedded systems. It relies
on frameworks such as MicroPython and Google Blockly, to
allow programming blocks to be translated into Python code
and then deployed to the target board.

II. BACKGROUND
A. NetsBlox

To provide a novice-friendly interface for software develop-
ment, a block-based programming environment is used. Nets-
Blox [17] is a visual block-based programming environment
built upon the open-source Snap! project [18] extending it to
enable programmers to create networked programs through
message passing and Remote Procedure Calls (RPCs). [19]
NetsBlox’s message passing capability enables programs to
send data between connected NetsBlox clients while the
Remote Procedure Calls allow access to third party APIs such
as Google Maps, TMDB and scientific data sources through
simple “call” blocks. Generally, RPCs introduce simple and
diverse abstractions for NetsBlox users by providing access
to external resources and functions to get data from, which

in return aid the user to create multiple programs that vary in
complexity. Figure 1 shows an example block which displays a
specific location using Google Maps using an RPC call which
allows inputting latitude and longitude of the location, width
and height of display screen, and the desired zoom in value
of the displayed map. The resulting map is displayed below
the block, but in a NetsBlox program could be stored in a
variable, displayed on the screen, or sent across the network
to another program. NetsBlox also assists students in writing
code by providing real-time collaboration tools and cloud-
based storage for their programs.

NetsBlox allows the creation of custom services by users
through uploading of datasets through its “ServiceCreation”
service [20]. While these datasets consist only of static data
with no interactivity beyond query functions, they demonstrate
the potential for students or teachers contributing new services
as part of a curriculum.

call GoogleMaps | / getMap € (50 Xo)

L5] Lees)

Indianapolis b
®

Gongle Map dats ©2021 Google
Fig. 1. Calling Google Maps in Netsblox

A recent addition to NetsBlox is the PhoneloT service
[21]. This service presents students’ phones as additional
components in the distributed system their program exists
within, accessible through the RPC blocks. Students connect
their phone and programs using an app, however, they do not
write code that runs directly on the phone. Instead, students
are able to send commands to the app to request sensor data,
establish a user interface, and subscribe to events from the
phone. Students have been able to use this interface to both
create games and to control robots remotely.

call RoboScape |/ setSpeed | (robet id
IR (G161 Msetspeed-100-100

Fig. 2. Example blocks for commanding a robot through RoboScape. The
text-based interface (bottom) is required for the cybersecurity curriculum.

call RoboScape

B. RoboScape

NetsBlox features support for robotics through its Ro-
boScape service and a compatible firmware for Parallax Activ-
ityBot 360 robots. While typical educational robotics platforms
require developing software to run directly on the robot, Ro-
boScape introduces robots while embracing NetsBlox’s focus
on novice-friendly distributed computing by implementing
robots as if they were another web service [22]. Students
interact with robots through RPCs and message passing, using
abstractions shared with other networked programs in Nets-
Blox. The robots used feature two drive wheels with optical

Authorized licensed use limited to: Vanderbilt University Libraries. Downlohdsd on April 22,2023 at 20:03:44 UTC from IEEE Xplore. Restrictions apply.

SoutheastCon 2022

encoders, an ultrasonic range sensor, a pair of touch sensors
(“whiskers”), a buzzer, a button, two LEDs, and an XBee
WiFi module. Figure 2 demonstrates sending a “set speed”
command to a robot using the “call” blocks. Developing and
debugging the robot’s code is simplified as the code runs in
the user’s browser and students can make use of NetsBlox’s
collaboration tools.

An additional benefit of RoboScape’s distributed nature
was the easy implementation of a cybersecurity curriculum
using it. [22] The robots’ communications are intentionally
simulated as taking place over an insecure channel. Robots do
not perform any authentication of message sources, so students
are able to prevent spoofed messages by sending a “set key”
message to their robot, activating a Vigenere cipher, which is
simple enough that they can write the encryption/decryption
logic without prior experience with cryptography. Students
can use a “listen” RPC to eavesdrop on the commands sent
to a robot, including the “set key” message, requiring the
introduction of a hardware key/secure key exchange concept
to prevent eavesdropping users from obtaining the original key
sent as plaintext. The robots’ communication is also designed
to be vulnerable to DoS and replay attacks, with defenses
also available to students. In previous years, this curriculum,
concluding in a final competition where students demonstrate
their cybersecurity offenses and defenses, was found to be an
engaging and practical way to teach computational thinking
and cybersecurity concepts. [23], [24]

Recently, students were prevented from meeting in physical
classrooms, so a simulation platform for RoboScape robots,
RoboScape Online, was created. This Unity-based simulation
environment provides a networked virtual environment for
students to collaborate and compete within, regardless of their
locations in real life. Besides enabling distance education, this
platform also greatly reduces the cost of classroom robotics
over the physical robots. Over summer 2021, two groups of
high school students attended an educational program using
this modality and demonstrated similar outcomes to prior years
using physical robots. [25] Currently, RoboScape Online has
primarily sought to recreate the existing physical robots and
their curriculum extended with the affordances presented by
moving to virtual environments, but the addition of IoTScape
will allow for the creation of sensors and actuators beyond
those present on the original robots.

III. IOTSCAPE

With RoboScape demonstrating the applicability of robots
and block-based programming as tools to provide a com-
putational thinking and cybersecurity curriculum suitable for
learners at any level, and PhoneloT demonstrating that the
same concepts can be extended to other devices, the need
to generalize these interfaces beyond robots or phones has
been made apparent. IoTScape is a new service for NetsBlox
designed to meet this need and open service creation for
new devices to the community of students and educators
using NetsBlox. By providing an interface for almost any
device, IoTScape enhances NetsBlox with the potential to

both add new devices easily but also to facilitate interactions
between devices otherwise not intended to be connected. For
example, Figure 3 shows a simplified NetsBlox program to
control an RGB LED to activate when a PIR motion sensor
is triggered. The “listen” RPC subscribes the program to
messages from a device, and the motion sensor (connected
as the “MotionSensor” service) sends a “motion” message
when its status changes. These two devices do not need to
be physically connected or on the same network as each other
or the client in any way. The only requirement is for them
to both be able to connect to the NetsBlox server. Figure 4
shows the connections between components in this distributed
system.

when h clicked

run MotionSensor | I listen (ﬁ

when | receive motion (ﬁ (detected

run RGBLED |/ setColor | (id) (il detected then [0} eise () €D €D

Fig. 3. Example program for setting the color of an RGB LED based on a
motion sensor through IoTScape

Compatibility with IoTScape only requires a device to
be able to send UDP packets to the NetsBlox server. An
initial “announcement” is sent to the server with the service
definition. This definition is provided as a JSON object, for
easier compatibility with the JavaScript-based NetsBlox server
software. To protect students from abusive language, a pro-
fanity filter is applied to inputted text, and additional content
moderation tools are available to the server’s administrators.

NetsBlox Server

Internet

i C3&

Student Computers loTScape Devices

Fig. 4. IoTScape Architecture

By making the system very flexible about what devices
can participate, it opens the doors to students and educators
providing support for new hardware. IoTScape also includes
a reimplmentation of the cybersecurity features included in

Authorized licensed use limited to: Vanderbilt University Libraries. Downlohded on April 22,2023 at 20:03:44 UTC from IEEE Xplore. Restrictions apply.

SoutheastCon 2022

RoboScape. The commands and events for each device support
both a “basic”, unencrypted mode providing additional ab-
stractions, and a “secure” mode where commands must be sent
as text and encryption may be required for communication.
Through this capability, IoTScape enables partial reuse of the
existing curricula used with robots, but for new domains and
new devices.

As with RoboScape, requests are made from NetsBlox
through the RPC blocks. When a block is activated in a
student’s code, the request is validated, transmitted through
the server, formatted as a JSON message and sent over UDP
to the target device, which can send another JSON message in
response. If the method’s definition indicated that it will return
a result, the student’s code will wait for a response from the
server with the result.

This system requires the devices to have certain capabilities,
such as an Internet connection and reprogrammable firmware.
However, the system is flexible enough such that a “proxy”
device can be created to act as an adapter. For example, a
smartwatch with only BLE capabilities could interact with
IoTScape using a phone app as an intermediary.

A. Service Definition Tool

To simplify the creation of new IoTScape devices, a tool
is provided to generate service definitions. While the JSON
formatted service definitions are not expected to be a major
barrier to use, a graphical interface for their creation increases
the ability of students and educators with limited experience
outside of NetsBlox itself to be able to contribute their own
services.

This tool is also able to generate a template for use in
programming an ESP8266 or ESP32-based IoT device. A
general framework for IoTScape devices is provided as a
library, requiring only for code to be provided for each of
the methods of the device’s service.

B. Unity Implementation

The protocol defined for IoTScape does not restrict it to
typical, physical IoT devices. A simulation of a device, or
an entirely virtual device is capable of being interacted with
through a NetsBlox service as long as it can communicate with
the server. To facilitate the creation of virtual devices, both
for the simulated environment RoboScape Online’s purposes,
and for students or educators familiar with the engine already,
a plugin for the Unity game engine [26] has been created.
This plugin also provides a graphical interface for creating
service definitions. Users working in the Unity editor create
a service definition file, attach it to a Unity object with the
IoTScapeObject component, and link the methods defined for
the service to methods in the Unity scene. No experience with
writing networking code in C# is required, and the service
definition files are reusable between projects.

IV. APPLICATIONS
A. Physical Devices

As a demonstration of a physical IoT device, an ESP8266-
based environmental sensor was created, shown in Figure

Fig. 5. Physical IoT sensor created to demonstrate IoTScape

5. This device was equipped with a PIR motion sensor,
an WS2812 “NeoPixel” RGB LED, and an AM2302 digital
humidity and temperature sensor. The NetsBlox code shown in
Figure 3 was designed to work with the services provided by
this device. The components used to construct this device are
all low-cost modules commonly available as parts in hobbyist
electronics kits, and breakout boards are available so that no
soldering is required, making construction of a similar device
suitable as a project for students as an in-class activity. With
small modifications to the device’s firmware, the configuration
of the board could be adjusted in many ways, for example to
support additional RGB LEDs in a chain.

B. Virtual Devices

Simulated devices were also created as a demonstration
of this platform’s flexibility. The Unity plugin for IoTScape
was used to extend the existing robot simulation with new
components and create new scenarios for students to use them
in. These devices were implemented as an extension of the
existing RoboScape Online software.

1) Virtual Robot Parts: Multiple virtual robot components
were created using the plugin. The virtual platform abstracted
the mechanical details to only the idea of the sensor, creating
a great opportunity for us to increase the accessibility of
the education towards novices. For example, the simulated
LIDAR sensor is programmed to detect the distance to objects
at various angles as shown in Figure 6 giving the measured
distances as a list usable in NetsBlox as shown in Figure 7.

In addition to simulation of real sensors and actuators,
the virtual platform also allows further customization and
even fantasy functionalities to increase student interest. For
example, the hardware can be modified through RPCs in
NetsBlox, such as parts with colors customizable through
code, or an LED strip with adjustable length. While these
virtual components were added onto the robot in Unity, all of
the customization is controlled through NetsBlox, as shown in
Figure 8.

2) Example Usage Scenarios: A sample nuclear spill de-
tection challenge is shown in Figure 9 where the robot was
provided with a radiation sensor and tasked with detecting a
nuclear spill. Figure 10 shows a sample code in NetsBlox that

Authorized licensed use limited to: Vanderbilt University Libraries. Downlohd<d on April 22,2023 at 20:03:44 UTC from IEEE Xplore. Restrictions apply.

SoutheastCon 2022

Fig. 6. LIDAR simulation in Unity

/—1 100 |8

¥4 100 |8
k) 2.209885 |3
2y 100 |8
51 100 |8
] 100 |8
¥l 2.406087 |3
Gl 100 |8
il 100 |8
ulo) 100 B
ihll 2.281992 (8
il 100 (B
length: 12 7

W Engurlz oy

call LIDAR |/ measure | ({sensor ID

Fig. 7. LIDAR function and measurements in NetsBlox

controls the assembled robot and provides the reading for the
nuclear spill intensity.

As more general robotics challenge, an obstacle course was
created where the robot must be programmed to autonomously
drive itself outside the maze. The robot’s whisker sensors can
be used to detect the obstacles and walls in its path. For
example, a student may choose to have the robot navigate
by moving backward and turning away from the direction
a whisker sensor was triggered from, and moving forwards
otherwise. The obstacles maze is shown in Figure 11.

call textiodue | / changeText | [EEERESH (8
call generstSensor | / changeColer | [EEEEEED €D €D @

=)

ol sppenaED |/ soaen | (T @),

Fig. 8. Customizable virtual modules

Fig. 9. Virtual robot with radiation sensor in radiation leak scenario

when clicked
forever
=

say | join [CHSIGY ' call EnvironmentalSensor |/ getintensity | { sensor ID

when up arrow | key pressed

I send |{robot ID

set'speed-50°50

pressed?

setspeed 00

run Ro e

wait until * not © key up-al

run RoboScape |/ send | {robot ID

Fig. 10. Sample NetsBlox code for controlling robot and getting measured
intensity

Another example challenge created was a firefighting robot
task in which a student utilizes a temperature sensor and a
fire extinguisher mounted to their robot to detect the fire’s
location and put it out. Some example code for interacting
with the services created for these parts is shown in Figure
12. Figure 13 shows the robot putting out a fire inside a room
where a fire was detected.

V. CONCLUSION

The use of IoT devices as an educational tool will benefit
from increased accessibility and reduced barriers to entry in
both writing programs to interact with these devices but also

Fig. 11. Simulated robot with whiskers in the obstacle course

Authorized licensed use limited to: Vanderbilt University Libraries. Downlchdea on April 22,2023 at 20:03:44 UTC from IEEE Xplore. Restrictions apply.

SoutheastCon 2022

forever

/

call EnvironmentalSensor

/ getintensity

Fig. 12. Example blocks to call the temperature sensor and water nozzle in
NetsBlox

Fig. 13. Simulated robot putting out fire after detecting the fire location

in providing support for new types of device. By providing
block-based abstractions, IoTScape puts interaction with IoT
devices on a novice-friendly level, while not limiting its use
to exclusively novices. A simple protocol for connecting new
devices and defining their capabilities allows for educators to
add their own devices to the platform and take advantage
of both the block-based interface and the existing suite of
cybersecurity education features. In addition, by keeping all
student code in the browser and communicating with devices
as if they were web services, this approach prevents students
from needing to write low-level firmware and reduces the
ability for student code to damage the devices they work with.

The previous work with robotics demonstrated that internet-
connected devices can be a useful educational tool, both for
the directly applicable domains of computational thinking and
distributed computing, but also for other domains such as
cybersecurity. By giving educators the freedom to integrate
new devices, physical or virtual, into our system, loTScape
will be able to provide for a diverse array of topics and create
more engaging education.

A. Future Work

While potential classroom uses have been demonstrated,
to fully evaluate the use of this platform as an educational
tool, it will be necessary to have students interact with it in a
controlled setting where data is being collected. The existing
concepts will be extended into curricula targeting middle and

high school students, initially building upon the prior work
with the RoboScape platform and cybersecurity. These are
currently planned for use in the summer of 2022.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 1835874, the National
Security Agency (H98230-18-D-0010) and the Computational
Thinking and Learning Initiative of Vanderbilt University.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the funding agencies.

REFERENCES

—

[1] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey
on internet of things: Architecture, enabling technologies, security and
privacy, and applications,” IEEE Internet of Things Journal, vol. 4, no. 5,
pp. 1125-1142, Oct 2017.

[2] S. Y. Shapsough and I. A. Zualkernan, “A generic iot architecture
for ubiquitous context-aware learning,” IEEE Transactions on Learning
Technologies, vol. 13, no. 3, pp. 449—464, 2020.

[3] K. Gunasekera, A. N. Borrero, F. Vasuian, and K. P. Bryceson,
“Experiences in building an iot infrastructure for agriculture education,”
Procedia Computer Science, vol. 135, pp. 155-162, 2018, the 3rd
International Conference on Computer Science and Computational
Intelligence (ICCSCI 2018) : Empowering Smart Technology in Digital
Era for a Better Life. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1877050918314492

[4] J. S. Kay, “Contextualized approaches to introductory computer science:
The key to making computer science relevant or simply bait and
switch?” in Proceedings of the 42nd ACM Technical Symposium on
Computer Science Education, ser. SIGCSE ’11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 177-182. [Online].
Available: https://doi.org/10.1145/1953163.1953219

[5] D. Joyce, “The computer as a problem solving tool: A unifying view
for a non-majors course,” in Proceedings of the Twenty-Ninth SIGCSE
Technical Symposium on Computer Science Education, ser. SIGCSE *98.
New York, NY, USA: Association for Computing Machinery, 1998, p.
63—67. [Online]. Available: https://doi.org/10.1145/273133.273163

[6] D. Blank, “Robots make computer science personal,” Commun.
ACM, vol. 49, no. 12, p. 25-27, Dec. 2006. [Online]. Available:
https://doi.org/10.1145/1183236.1183254

[71 A. Fidai, H. Kwon, G. Buettner, R. M. Capraro, M. M. Capraro,
C. Jarvis, M. Benzor, and S. Verma, “Internet of things (iot) instructional
devices in stem classrooms: Past, present and future directions,” in 2079
IEEE Frontiers in Education Conference (FIE), 2019, pp. 1-9.

[8] S. Kurkovsky, “Mobile computing and robotics in one course: Why
not?” in Proceedings of the 18th ACM Conference on Innovation and
Technology in Computer Science Education, ser. ITICSE *13. New
York, NY, USA: Association for Computing Machinery, 2013, p.
64-69. [Online]. Available: https://doi.org/10.1145/2462476.2465584

[91 B. Burd, J. a. P. Barros, C. Johnson, S. Kurkovsky, A. Rosenbloom,
and N. Tillman, “Educating for mobile computing: Addressing the
new challenges,” in Proceedings of the Final Reports on Innovation
and Technology in Computer Science Education 2012 Working
Groups, ser. ITICSE-WGR °12. New York, NY, USA: Association
for Computing Machinery, 2012, p. 51-63. [Online]. Available:
https://doi.org/10.1145/2426636.2426641

[10] M. M. McGill, “Learning to program with personal robots: Influences

on student motivation,” ACM Trans. Comput. Educ., vol. 12, no. 1, Mar.
2012. [Online]. Available: https://doi.org/10.1145/2133797.2133801

[11] D. Xu, D. Blank, and D. Kumar, “Games, robots, and robot games:

Complementary contexts for introductory computing education,” in

Proceedings of the 3rd International Conference on Game Development

in Computer Science Education, ser. GDCSE ’08. New York, NY,

USA: Association for Computing Machinery, 2008, p. 66—70. [Online].

Available: https://doi.org/10.1145/1463673.1463687

Authorized licensed use limited to: Vanderbilt University Libraries. Downlohdda on April 22,2023 at 20:03:44 UTC from IEEE Xplore. Restrictions apply.

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]

SoutheastCon 2022

J. Lee, G.-i. Park, J.-h. Shin, J.-h. Lee, C. J. Sreenan, and S.-e. Yoo,
“Soeasy: A software framework for easy hardware control programming
for diverse iot platforms,” Sensors, vol. 18, no. 7, 2018. [Online].
Available: https://www.mdpi.com/1424-8220/18/7/2162

A. Kelly, L. Finch, M. Bolles, and R. B. Shapiro, “Blockytalky:
New programmable tools to enable students’ learning networks,”
International Journal of Child-Computer Interaction, vol. 18, pp.
8-18, 2018. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2212868918300394

W. Xi and E. W. Patton, “Block-based approaches to internet of things
in mit app inventor,” ser. BLOCKS+, 2018.

I. Ruiz-Rube, J. M. Mota, T. Person, J. M. R. Corral, and J. M.
Dodero, “Block-based development of mobile learning experiences
for the internet of things,” Sensors, vol. 19, no. 24, 2019. [Online].
Available: https://www.mdpi.com/1424-8220/19/24/5467

A. G. D. S. Junior, L. M. G. Gongalves, G. A. De Paula Caurin, G. T. B.
Tamanaka, A. C. Hernandes, and R. V. Aroca, “BIPES: Block based
integrated platform for embedded systems,” IEEE Access, vol. 8, pp.
197 955-197 968, 2020.

“Netsblox website,” https://netsblox.org, 2021, cited 2021 March 8.
“Snap! website,” https://snap.berkeley.edu/, 2021, cited 2021 March 8.
B. Broll, A. Lédeczi et al., “A visual programming environment for
learning distributed programming,” in Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education. ACM,
Mar 2017, p. 81-86. [Online]. Available: 10.1145/3017680.3017741

[20]

[21]

[22]

(23]

[24]

[25]

[26]

B. Broll, A. Lédeczi, G. Stein, D. Jean, C. Brady, S. Grover, V. Catete,
and T. Barnes, “Removing the walls around visual educational program-
ming environments.”

D. Jean, G. Stein, and A. Lédeczi, Hands-On IoT Education with
Mobile Devices: Demo Abstract. New York, NY, USA: Association
for Computing Machinery, 2021, p. 390-391. [Online]. Available:
https://doi.org/10.1145/3412382.3458778

A. Lédeczi, M. Maroti et al., “Teaching cybersecurity with networked
robots,” in Proceedings of the 50th ACM Technical Symposium on
Computer Science Education. ACM, Feb 2019, p. 885-891. [Online].
Available: 10.1145/3287324.3287450

A. Lédeczi, H. Zare, and G. Stein, “Netsblox and wireless robots
make cybersecurity fun,” in Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, ser. SIGCSE "19. New
York, NY, USA: Association for Computing Machinery, 2019, p. 1290.
[Online]. Available: https://doi.org/10.1145/3287324.3293749

B. Yett, N. Hutchins, G. Stein, H. Zare, C. Snyder, G. Biswas,
M. Metelko, and A. Lédeczi, “A hands-on cybersecurity curriculum
using a robotics platform,” in Proceedings of the 51st ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’20.
New York, NY, USA: Association for Computing Machinery, 2020,
p. 1040-1046. [Online]. Available: https://doi.org/10.1145/3328778.
3366878

G. Stein, D. Jean, and A. Lédeczi, Distributed Virtual CPS Environment
for KI2: Demo Abstract. New York, NY, USA: Association
for Computing Machinery, 2021, p. 394-395. [Online]. Available:
https://doi.org/10.1145/3412382.3458780

A. Juliani, V.-P. Berges, E. Teng, A. Cohen, J. Harper, C. Elion, C. Goy,
Y. Gao, H. Henry, M. Mattar, and D. Lange, “Unity: A General Platform
for Intelligent Agents,” arXiv, 2018.

Authorized licensed use limited to: Vanderbilt University Libraries. Downlohded on April 22,2023 at 20:03:44 UTC from IEEE Xplore. Restrictions apply.

