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ABSTRACT

Context. With the development of large-aperture ground-based solar telescopes and the adaptive optics system, the resolution of the
obtained solar images has become increasingly higher. In the high-resolution photospheric images, the fine structures (umbra, penum-
bra, and light bridge) of sunspots can be observed clearly. The research of the fine structures of sunspots can help us to understand the
evolution of solar magnetic fields and to predict eruption phenomena that have significant impacts on the Earth, such as solar flares.
Therefore, algorithms for automatically segmenting the fine structures of sunspots in high-resolution solar image will greatly facilitate
the study of solar physics.
Aims. This study is aimed at proposing an automatic fine-structure segmentation method for sunspots that is accurate and requires
little time.
Methods. We used the superpixel segmentation to preprocess a solar image. Next, the intensity information, texture information, and
spatial location information were used as features. Based on these features, the Gaussian mixture model was used to cluster different
superpixels. According to different intensity levels of the umbra, penumbra, and quiet photosphere, the clusters were classified into
umbra, penumbra, and quiet-photosphere areas. Finally, the morphological method was used to extract the light-bridge area.
Results. The experimental results show that the method we propose can segment the fine structures of sunspots quickly and accu-
rately. In addition, the method can process high-resolution solar images from different solar telescopes and generates a satisfactory
segmentation performance.

Key words. instrumentation: adaptive optics – instrumentation: high angular resolution – techniques: image processing – sunspots

1. Introduction

The research of sunspots is of great significance because
sunspots are related to many solar eruption events, for instance,
to flares (Atac 1987). With the development of ground-based
solar telescopes (Cao et al. 2010; Rao et al. 2020; Rimmele et al.
2020) and adaptive optics systems (Rao et al. 2016, 2018;
Zhong et al. 2020; Guo et al. 2022), the resolution of solar
images is becoming higher, and more details can be observed.
In high-resolution solar photosphere images, fine structures
such as the umbra, penumbra, and the light bridge of sunspots
can be clearly observed. The umbra is the coldest part of the
sunspot and therefore has the lowest intensity on the image,
mainly because the strong magnetic field prevents convection
and energy exchange with the underlying material. The penum-
bra resembles a fibrous structure that surrounds the umbra, and
its intensity is between that of the umbra and the quiet photo-
sphere (Wiehr et al. 1984). The light bridge consists of bright
structures that are inserted into the umbra and play an important
role in the evolution of sunspots (Vazquez 1973). In the early
days, observers used the naked eye to observe and manually
record sunspots (Vaquero 2007). However, with the increase in
the number of and the development of a technology for solar tele-
scopes, the amount of observed data increases significantly and

the resolution of solar image becomes higher. This means that
manual sunspot recognition can no longer satisfy the demand.
Therefore, it is necessary to research methods that can automat-
ically recognize sunspots and segment the fine structure.

In a sunspot, the intensity is lower than that of other struc-
tures in the photosphere. It is therefore easy to develop an idea of
using an intensity threshold to distinguish a sunspot from other
structures (Colak & Qahwaji 2008). Colak & Qahwaji (2008)
used the mean, standard deviation and the empirical coeffi-
cient of the solar image intensity to obtain the threshold, and
determined the structure with the intensity that was lower than
the threshold as a sunspot. Based on the intensity threshold,
morphological methods have been widely applied in the field
of sunspot recognition as well (Watson et al. 2009; Zhao et al.
2016). Watson et al. (2009) proposed a sunspot recognition
method that is insensitive to slow variations in intensity (e.g.,
limb darkening). The method first performs a top-hat transform
on the full-disk solar image, and then selects the sunspot area
according to the set intensity threshold. The method proposed by
Zhao et al. (2016) first uses a large structure element to remove
sunspots and noise from the solar disk to obtain a clean disk, and
then subtracts the original image from the clean disk to obtain the
candidate sunspot area. Finally, the finally recognized sunspots
are obtained according to the set threshold. In addition, some
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methods add edge detection (Zharkov et al. 2005), region grow-
ing (Curto et al. 2008), wavelet transform (Djafer et al. 2012),
or the level-set method (Goel & Mathew 2014) to the algorithm
to improve their performance. Zharkov et al. (2005) proposed
a method that can extract sunspots from the white-light full-
disk solar image. The method first detects edges on the full-disk
solar image as a candidate area for sunspots, and then removes
the incorrect area by morphological methods to obtain the final
recognition result. The method proposed by Curto et al. (2008)
is based on the use of the morphological method closing and
top-hat transform, combined with the region-growing method
to obtain the sunspot regions. Djafer et al. (2012) proposed a
sunspot recognition method based on the wavelet transform and
applied it to the image in line of CA II K1. Goel & Mathew
(2014) used a level-set method called the selective binary and
Gaussian function regularized level set (SBGFRLS; Zhang et al.
2010) to recognize sunspots in a full-disk solar image. Unlike
these sunspot-recognition algorithms for full-disk solar images,
Yang et al. (2018) proposed a sunspot segmentation method for
a high-resolution solar image that is able to segment the fine
structures of the sunspot. The method uses the level-set method
to segment sunspots in high-resolution images. Moreover, the
method combines the image binarization method with the adap-
tive threshold (Otsu 1979) and the morphological method to
extract the fine structures of sunspots (umbra, penumbra, and
light bridge).

Most of these methods are designed for recognizing sunspots
from full-disk solar images. For the full-disk solar image, the
sunspot is just a black spot whose intensity is significantly lower
than that of the quiet photosphere because the image resolution
is low. Therefore, it is feasible to use the intensity of each pixel to
recognize the sunspot. However, these methods are based on the
intensity of a single pixel and are not feasible for high-resolution
images for the following three reasons: (1) The intensity of the
dark pixels between the granular structures is similar to that of
the sunspot penumbra. (2) The intensities of the pixels in the
penumbra may be similar to the intensities of the pixels in the
umbra or in the quiet photosphere. (3) Umbral dots can reach an
extremely high intensity in the umbra. For the high-resolution
method (Yang et al. 2018), the level set is used to recognize
sunspots in high-resolution images, but the level-set algorithm
is sensitive to the position and shape of the initial contour and
parameter setting, which is not conducive to the automatic pro-
cessing of a large number of solar images.

In order to solve these problems, a superpixel-based sunspot
recognition and fine-structure segmentation method is proposed
in this paper. The method we propose has three main contribu-
tions: (1) To solve the intensity distribution that is not coinci-
dent in high-resolution images (for the three reasons analyzed in
the previous paragraph), we propose a fine-structures segmenta-
tion method for sunspots based on superpixel segmentation. The
method oversegments the image into many superpixels and then
classifies different superpixels into different fine structures. In
this way, the fine-structure segmentation problem is converted
from the classification of pixels into superpixels, reducing the
influence of pixels with inconsistent features in the local area.
In addition, the search space of the algorithm is reduced from
the number of pixels to the number of superpixels, which sig-
nificantly reduces the required time. (2) Satisfactory results can-
not be obtained by using only intensity information as a feature
of superpixels. Therefore, we add texture and spatial location
information to improve the performance of the proposed method.
(3) In order to solve the problem that light bridges cannot be
segmented from superpixels, we use the morphological method,

area threshold, and location information to obtain the light
bridges based on the results given by the classification of super-
pixels.

The following sections are organized as follows: In Sect. 2,
we introduce the data we used and discuss the proposed method
in detail. Experimental results of the method are presented in
Sect. 3. Finally, we summarize the method in Sect. 4.

2. Method

In this section, the proposed method is discussed in detail. As
shown in Fig. 1, the method consists of the following five steps:
(1) preprocessing, (2) preliminary segmentation of the photo-
sphere, (3) fine-tuning the preliminary segmentation, (4) light-
bridge extraction, and (5) postprocessing. In step (1), the image
is resized and Gaussian filtered. Then, simple linear iterative
clustering (SLIC; Achanta et al. 2012) is used to preprocess the
image. After we use SLIC, the image is segmented into multi-
ple oversegmented superpixels, where the pixels in each super-
pixel have similar intensity. In step (2), the intensity of each
superpixel1 is calculated and then adjusted by the texture feature
of each superpixel. Subsequently, the Gaussian mixture model
(GMM) is used to model the intensity of each superpixel. From
the results of clustering by the GMM and the average inten-
sities of clusters, the preliminary segmentation results of the
photosphere can be obtained. In step (3), preliminary segmen-
tation results are used to construct spatial location features in
order to remove the incorrect segmented parts generated by step
(2). The spatial location features are used to further adjust the
intensity of each superpixel, and then GMM is used to obtain
the segmentation results. In step (4), we use the morphologi-
cal method to extract light bridges. Finally, some incorrect seg-
mented areas are removed in step (5), such as penumbras that are
not connected to umbras, or small quiet photospheres distributed
in penumbras. We present each step of the proposed method in
detail in Sects. 2.2–2.6. The parameter setting is discussed in
Sect. 2.7.

2.1. Data source

The Tio band (7057 Å) is widely used to study sunspots. There-
fore, we used the Tio band high-resolution solar images observed
by the Goode Solar Telescope (GST) at Big Bear Solar Obser-
vatory (BBSO; Cao et al. 2010) as the main data source in this
paper. The observation data in fits format and observation logs
of GST can be requested and downloaded2. The pixel size of
the data obtained from BBSO is about 0.034′′, and the field of
view is about 62.56′′ × 62.56′′. As shown in Fig. 2, the original
image size is 2043× 2043 pixels, but there are many invalid pix-
els at the edge, which will affect the final segmentation results.
Therefore, we only reserved the valid pixels and cropped the
image to the size of 1840× 1840 pixels. In addition, the Tio band
images obtained by the New Vacuum Solar Telescope (NVST;
Liu et al. 2014) and the Educational Adaptive-optics Solar Tele-
scope (EAST; Rao & Zhong 2022) were used in the robustness
experiment (see Sect. 3.3). To facilitate the processing of the
algorithm we propose, these images were cropped to reserve
the valid pixels. The cropped images and detailed information
of NVST and EAST are shown in Sect. 3.3.

1 The intensity of a superpixel is the average intensity of all pixels in a
superpixel.
2 http://www.bbso.njit.edu/~vayur/NST_catalog/
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Fig. 1. Main steps of the proposed method.
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Fig. 2. Sample of GST Tio band data observed at 2016 January 28
19:32:06 UT. (a) The original image downloaded from BBSO. (b) The
image with invalid pixels removed.

2.2. Preprocessing

As analyzed above, since high-resolution solar images in the Tio
band can clearly present many details of the photosphere, it is
difficult to accurately segment the fine structures of sunspots
based on the features of a single pixel. Therefore, the SLIC
is used to segment the image into multiple superpixels in this
section. The SLIC has a linear time complexity and can generate
superpixels that adhere to the boundary of objects.

First, we normalized the range of intensity to [0, 255] and
reduced the size of the image to improve the speed of the algo-
rithm. Then, the Tio band image I of size N × M was blurred
by Gaussian filtering in order to smooth the image and remove
noise. Next, the color space of the pixels was converted to the
CIELAB color space. The CIELAB color space is a color space
with three channels: L is the channel for lightness, a is the chan-
nel for red and green, and b is the channel for blue and yellow.
The CIELAB color space is widely considered as perceptually
uniform for small color distances, so that it can facilitate the
creation of more accurate regions of superpixels (Achanta et al.
2010). Since the Tio band solar image is an intensity image, only
the value of the L channel was used. According to the set num-
ber of superpixels K, the initial cluster centers C = {(li, xi, yi)}

K
i=1

(where li represents the value of the L channel in the CIELAB
color space of the ith cluster center, and xi and yi represent the
coordinates of the ith cluster center) are taken at intervals of
S =

√
(M × N)/K pixels on the image I. To cluster the pixels

with the most similar features into the same superpixel, SLIC
uses the k-means algorithm (Hartigan & Wong 1979). Differ-
ent from the traditional k-means algorithm, the k-means used in
SLIC only searches in a rectangular area of 2S ×2S of each clus-
ter center to reduce the computational complexity. The cluster-
ing process is to first calculate the distance D from each cluster
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Fig. 3. Example of the results of solar image superpixel segmentation by
SLIC using the image in Fig. 2b. The yellow lines represent the bound-
ary of different superpixels.

center to the pixels in the range of 2S × 2S . The equation for
distance calculation is as follows:

D =

√
d2

1 + (
d2

S
)2m2, (1)

where d1 is the Euclidean distance of the value of channel L
between the pixel and the cluster center, d2 is the Euclidean dis-
tance of the coordinates between the current pixel and the center,
and m is the compactness factor. When m is small, the value of D
is dominated by the value of the L channel (i.e., intensity), and
the generated superpixels are closer to the edge of the object.
When m is large, the value of D is dominated by coordinates,
and the generated superpixels are more compact. According to
the report in the SLIC paper, satisfactory results of superpixel
segmentation can be obtained by iterating the above steps up to
ten times. Finally, the isolated and small clusters were assigned
to the nearest clusters to obtain K′ superpixels (K′ ≤ K), and
the segmented result P = {pi}

K′
i=1 (pi denotes a superpixel) was

generated. After these steps, the average intensity of pixels in
each pi was calculated to obtain the intensity set of superpixels
Z = {zi}

K′
i=1.

An example of the results of solar image superpixel segmen-
tation by SLIC is shown in Fig. 3. The original input image is
segmented into small patches with similar features as the inter-
nal pixels.

2.3. Preliminary segmentation of the photosphere

In this step, we use the intensity value zi of each superpixel
to perform the preliminary segmentation of the photosphere.
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Figure 4 shows that the umbra area and the quiet- photo-
sphere area have lower and higher intensity values, respec-
tively, and can easily be distinguished from other areas. The
intensity of most penumbra areas is between that of the umbra
area and of the quiet-photosphere area, but some penumbra
areas have higher intensity values (i.e., the intensity is sim-
ilar to that of the quiet photosphere), but the standard devi-
ations of the inner pixel intensity are larger (i.e., different
texture features). According to this characteristic, we designed
Eq. (2) to adjust the average intensity of each superpixel. The
main purpose of Eq. (2) is to reduce the intensity value of
the brighter penumbra area, decrease the intensity value of
the umbra area, and increases the intensity value of the quiet
photosphere. After the intensities were updated by Eq. (2),
subsequent steps can more easily distinguish superpixels belong-
ing to different fine-structure areas. Equation (2) is defined as
follows:

f (zi) =

{
zi + γi × si × c1 γi ≤ 0
zi − ηi × si × c1 γi > 0 , (2)

where si denotes the standard deviation of the intensity value of
each superpixel, the parameter c1 is discussed in Sect. 2.7, and
γi and ηi are defined in Eq. (3) as follows:

γi =
zi

1
K′
∑K′

j=1 z j
− 1

ηi =
si

1
K′
∑K′

j=1 s j
− 1 (3)

Each zi in Z is updated by Eq. (2) to obtain the new superpixel
intensity set Z′ = {z′i}

K′
i=1. We formulate the intensity of each

superpixel in Z′ using a GMM as follows:

G(z′i |u j, σ j) =

3∑
j=1

α jN(z′i |u j, σ j),

N(z′i |u j, σ j) =
1√

2πσ2
j

exp−
(z′i − u j)2

2σ2
j

, (4)

where z′i represents the intensity of the ith superpixel, and
u j, σ j, and α j represent the mean, standard deviation, and
weight of the jth Gaussian component, respectively. Since
we modeled the umbra, penumbra, and quiet photosphere,
we used three Gaussian components. The parameters α j, µ j,
and σ j in Eq. (4) can be obtained by iteratively execut-
ing Eq. (5). Finally, all superpixels were clustered into three
clusters according to the probability of each superpixel in
different Gaussian components. Equation (5) is defined as
follows:

βi j =
αold

j N(z′i |u j, σ j)∑3
k=1 α

old
k N(z′i |uk, σk)

αnew
j =

1
K′

K′∑
i=1

βi j

µnew
j =

∑K′
i=1 z′iβi j∑K′
i=1 βi j

(5)

σnew
j =

∑K′
i=1(z′i − u j)2βi j∑K′

i=1 βi j
.
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mean:147.47 

std:10.89 

quiet photosphere

mean:109.61 

std:10.43

darker penumbra

mean:38.28 

std:15.45

umbra

mean:141.42 

std:19.06

brighter penumbra

Fig. 4. Example of the mean and standard deviation(std) of intensities of
superpixels in different fine structures. The different red arrows point to
the mean and standard deviation of the intensities of different superpix-
els belonging to different fine structures (e.g., the top red arrow points to
the mean and standard deviation of the intensity of a superpixel belong-
ing to the quiet photosphere).

The photosphere intensities are ranked as follows: the intensity
of the quiet photosphere is highest, that of the penumbra is sec-
ond, and that of the umbra is lowest. Therefore, we can easily
distinguish based on their intensity which superpixels belong to
umbra area Pumbra, which superpixels belong to penumbra area
Ppenumbra, and which superpixels belong to the quiet-photosphere
area Pquiet from the three clusters obtained by GMM, where
Pumbra ∪ Ppenumbra ∪ Pquiet = P. The result of this step is shown
in Fig. 5a, where the quiet-photosphere, penumbra, and umbra
areas are composed of superpixels in Pquiet, Ppenumbra, and Pumbra,
respectively.

2.4. Fine-tuning the preliminary segmentation

Figure 5a still shows some independently existing penumbras
that fail the requirement that the penumbra must exist near
the umbra. In addition, some marginal penumbras are not
recalled or are incorrectly recalled. Inspired by Gould et al.
(2008), we computed the spatial location features of superpix-
els based on the results in Sect. 2.3. First, we computed the
Euclidean distance between each superpixel centroid and the
centroid of the nearest superpixel belonging to the umbra to
obtain the spatial location feature. The spatial location feature
is shown in Fig. 5b, and the brighter area represents areas far-
ther from the umbra. After obtaining the spatial location fea-
ture, according to the Eq. (6), we adjusted the intensity of
each superpixel by using this feature. Equation (6) is defined
as:

h(z′i) = z′i + (edisti − 1) × c2, (6)

where disti denotes the spatial location feature of the ith super-
pixel, and parameter c2 is introduced in Sect. 2.7. After adjusting
the value of each z′i in Z′ according to the Eq. (6), we obtained
a new superpixel intensity set Z′′ = {z′′i }

K′
i=1. Using the GMM

introduced in Sect. 2.3 to formulate each z′′i in Z′′, we can obtain
the new superpixel sets P′umbra, P′penumbra, P′quiet belonging to the
umbra, penumbra, and quiet photosphere, respectively, where
P′umbra ∪P′penumbra ∪P′quiet = P. The result of this step is shown in
Fig. 5c.
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Fig. 5. Intermediate results of the method we propose. (a) Result of the preliminary segmentation of the photosphere. (b) Spatial location feature.
(c) Result of fine-tuning the preliminary segmentation.

2.5. Extraction of the light bridge

Based on the concept that the light bridge is a structure inserted
in the umbra, the method we propose uses the morphological
method and the recognized umbra area in the previous step
to obtain a result for the light-bridge segmentation. First, the
superpixels in P′umbra, P′penumbra, P′quiet are merged to obtain the
umbra area maskumbra, the penumbra area maskpenumbra, and the
quiet-photosphere area maskquiet, respectively. maskx is a two-
dimensional matrix of the same size as the image, containing
just 0 and 1, where elements with a value of 1 represent the
same position in the image belonging to the area of x. In par-
ticular, x is abbreviated to light and quiet for the light bridge and
quiet photosphere, respectively. Then the umbra area maskumbra
(as shown in Fig. 6a) is closed according to Eq. (7) to obtain the
new umbra mask mask′umbra with small gaps filled (as shown in
Fig. 6b). Equation (7) is defined as:

mask′umbra = (maskumbra ⊕ E) 	 E, (7)

where E denotes the morphological structure element, and ⊕ and
	 denote the dilate and erosion transform, respectively. The can-
didate light bridge can be obtained from the difference between
mask′umbra and maskumbra (as shown in Fig. 6c). Figure 6c shows
that many small areas are incorrectly recognized as light bridges.
Therefore, we removed the incorrectly recognized light bridges
by setting the area threshold. The results are shown in Fig. 6d.
Finally, the final results for the light-bridge segmentation were
obtained from the location relation between light bridges and
umbras. When the intersection of a candidate light bridge and
the umbra area is large enough (i.e., lenr/(lenr + leng) < Tlen,
where lenr and leng denote the pixel lengths of the red lines
and the green lines belonging to a light bridge, and Tlen is the
threshold), this light bridge is reserved. In addition, when a can-
didate light bridge penetrates the umbra (as indicated by the red
arrows in Fig. 6e), this light bridge is reserved. The parame-
ter settings for the E, area threshold, and Tlen are detailed in
Sect. 2.7. Through these steps, the final segmentation result of
the light bridge masklight is obtained, as shown in Fig. 6f.

Since the segmented light-bridge area overlaps with other
areas, the segmentation results of the umbra, penumbra, and
quiet photosphere can be updated according to the following
equation:

g(mask) = mask − (mask ∩masklight). (8)

The updated segmentation results of the umbra maskg
umbra,

penumbra maskg
penumbra, and quiet photosphere maskg

quiet are
obtained by g(maskumbra), g(maskpenumbra), and g(maskquiet),
respectively. The segmentation result of this step is shown in
Fig. 7a.

2.6. Postprocessing

In this step, the results generated by the above steps are postpro-
cessed to obtain the final segmentation results of the algorithm
we propose. For images in which just the quiet photosphere lies
in the field of view, this leads to the detection of many incorrect
fine structures because the algorithm sets the number of clus-
ters as 3. Intuitively, determining the image with just the quiet
photosphere before processing by the proposed method would
solve this problem. However, it is difficult to determine whether
sunspots exist in the image until we start the method we propose
because it is difficult to set the threshold before performing fine-
structure segmentation when we use the average intensity of the
image to judge whether the image contains just the quiet photo-
sphere (based on sunspots with lower intensity). Therefore, we
used the intensity ratio to remove the incorrectly detected parts
in images that only contain the quiet photosphere after the fine-
structure segmentation method we propose. The average inten-
sity values avgquiet and avgumbra of the quiet-photosphere area
(i.e., the area in maskg

quiet with a value of 1) and umbra area (i.e.,
the area in maskg

umbra with a value of 1) were calculated. When
(avgquiet − avgumbra)/avgquiet < T1 (i.e., the difference between
avgquiet and avgumbra is too small), the image was judged to have
just the quiet-photosphere area in the field of view. The param-
eter T1 is detailed in Sect. 2.7. For the image with just the quiet
photosphere area, the segmentation result only has the quiet-
photosphere area (i.e., maskg

quiet becomes an all-ones matrix, and
other masks become zero matrices), and conversely, the segmen-
tation result of Sect. 2.5 is unchanged.

Some images only contain sunspots in the early stages of
evolution, and these sunspots only have umbra structures (i.e.,
pores). However, because the algorithm we propose assumes
three clusters, it may result in incorrectly segmenting a part
of the quiet photosphere as the penumbra in this situation. To
solve this problem, we used the same strategy as we did to
determie the image with just the quiet photosphere. The aver-
age intensity value avgpenumbra of the penumbra area (i.e., the
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Fig. 6. Process of extracting the light bridge. (a) Umbra area segmented as described in Sect. 2.4. (b) Umbra area processed by the morphological
closing operation. (c) Candidate light bridges before threshold screening of the area. (d) Candidate light bridges screened by the area threshold.
(e) Location relation between light bridges and umbras. The white and gray areas represent the light bridge and the umbra, respectively. The green
lines represent the areas in which light bridges intersect umbras, and the red lines represent the areas in which the light bridges do not intersect
umbras. (f) Final segmentation results of the light-bridge area.

area in maskg
penumbra with a value of 1) was calculated. When

(avgquiet − avgpenumbra)/avgpenumbra < T2 (i.e., the difference
between avgquiet and avgpenumbra is too small), we adjusted the
segmented penumbra area to the quiet-photosphere area (i.e.,
updated the quiet-photosphere area as maskg

penumbra ∪ maskg
quiet,

and then maskg
penumbra becomes a zero matrix), and conversely,

kept the segmentation result of Sect. 2.5 unchanged. The param-
eter T2 is detailed in Sect. 2.7.

Finally, we verified whether the penumbra areas that we seg-
mented in the above steps were connected to the umbra areas.
When a penumbra area was not connected to any umbra area,
the penumbra area was adjusted to be a quiet-photosphere area.
In addition, when an isolated quiet-photosphere area was smaller
than 2S × 2S , it was adjusted as a penumbra area. The final seg-
mentation result after postprocessing is shown in Fig. 7b.

2.7. Parameter setting

In this section, we discuss the key parameters we used in
the method we propose. All the experiment results shown in
Sect. 2.1 used the uniform parameter values introduced in this
part.

In the preprocessing step, we resized images to 0.35 times
the original size. To fairly compare experiments (especially the
running-time experiment in Sect. 3.2.2), the size of the input
images of Yang et al. (2018) was the same as ours. The standard
deviation and kernel size of the Gaussian filter were set to 1 and
5 to properly remove noise, respectively. To adapt the images

(a) (b)
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Fig. 7. Results of Sects. 2.5 and 2.6. (a) Result of the fine-structure
segmentation result of Sect. 2.5. (b) Final result of the fine-structure
segmentation after postprocessing.

of different sizes and spatial resolutions, the initial number of
superpixels K was set by the following equation:

K =
0.5 × M × 0.35 × N × 0.35 × areapixel

0.5
, (9)

where 0.5 in the denominator is the smallest area of pores
reported by Tlatov et al. (2019), and the unit is the millionth
solar hemisphere (msh), areapixel is the area of a single pixel with
the same unit, 0.35 is the resize ratio of the image, and 0.5 in the
numerator is an empirical parameter.
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Fig. 8. Results of step 2 with and without the texture feature. (a) Pro-
cessing results of data observed on 2016 January 28 at 19:32:06 UT with
and without the texture feature. (b) Processing results of data observed
on 2019 May 8 at 16:46:06 UT with and without the texture feature. In
panels a and b, the first and second rows show the mask and contour of
the results, and the first to third columns show the input image, results
without the texture feature, and results with the texture feature, respec-
tively. The green arrows indicate the additional umbra areas found by
the algorithm with the texture feature.

In Eq. (2), c1 = 1.5 exp(−b), where b is the standard devi-
ation of the superpixel intensities in Z. In Eq. (6), c2 = 20 ×
(avg′penumbra/avg′quiet), where avg′penumbra and avg′quiet are the aver-
age intensities of the penumbra and quiet-photosphere areas seg-
mented by step 2, respectively.

In the step when the light bridge is extracted, the morpholog-
ical structure element E and area threshold should be set smaller
for data with lower spatial resolution and larger for data with
higher spatial resolution to obtain satisfactory results. To address
this situation, we used an adaptive morphological structure ele-
ment size and area threshold to replace the fixed values. The
shape of the structure element E was circular, and the radius of
E was widthlight/(2 × ∆), where ∆ is the angular resolution of
the image, widthlight is the widest light bridge that can be seg-
mented in this paper and was set to 2.5′′. The area threshold was
set to (0.4 × S × widthlight)/∆, where 0.4 is an empirical param-
eter. Since Tlen is the ratio of lenr and leng, it is not affected by
different spatial resolutions and was set to a fixed value of 0.15
to select the light bridges with the required shape. In the post-
processing step, the thresholds T1 and T2 were set to 0.4 and 0.1,
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Fig. 9. Results of step 3 with and without the spatial location feature. (a)
Processing results of data observed on 2016 January 28 at 19:32:06 UT
with and without the spatial location feature. (b) Processing results of
data observed on 2019 May 8 at 16:46:06 UT with and without the spa-
tial location feature. In panels a and b, the first and second rows show
the mask and contour of results, and the first to third columns show
the input image, results without the spatial location feature, and results
with the spatial location feature, respectively. The green arrow in panel
b indicates an example of an incorrectly detected penumbra area that is
removed by applying the spatial location feature.

respectively, to remove the incorrectly detected parts in images
with just quiet photospheres and pores.

3. Experimental results

In this section, we present the experimental results of the pro-
posed algorithm. We conducted the ablation experiment, com-
parison experiment, and robustness experiment to demonstrate
the performance of our algorithm. The three experiments are pre-
sented in Sects. 3.1–3.3. In this section, all experiments were
conducted on the same laptop with an Intel(R) Core(TM) i5-
8300H CPU and 16G of RAM.

3.1. Ablation experiment

The effectiveness of adding texture feature (introduced in
Sect. 2.3) and spatial location feature (introduced in Sect. 2.4) to
the algorithm we propose are verified in Sects. 3.1.1 and 3.1.2,
respectively. Two Tio band images observed on 2016 January 28
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Fig. 10. Results of the fine-structure segmentation of our method and of that of Yang et al. (2018). In panels a–f, the first column is the input image.
Columns 2–3 show the segmentation results generated by our algorithm. Columns 4–5 are the results generated by the algorithm of Yang et al.
(2018). The purple arrows in the fourth column of panels a and d indicate the representative examples of the penumbra areas that are not recalled
by Yang et al. (2018). The green arrows in the fourth column of panels a, b, and f indicate the representative examples of the incorrectly segmented
umbra areas by Yang et al. (2018). The orange arrows in the fourth column of panel f indicate the representative examples of pores that Yang et al.
(2018) could recall, but our method could not.
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at 19:32:06 UT and on 2019 May 8 at 16:46:06 UT downloaded
from BBSO were used in the ablation experiment.

3.1.1. Texture feature

In Fig. 8, we use two images to demonstrate the results of
Sect. 2.3 with and without the texture feature (i.e., with or with-
out Eq. (2)), respectively. The second column of Figs. 8a and b
shows that many penumbra areas and some umbra areas are not
recalled without the texture feature. After applying the texture
feature, we can observe that the incorrectly detected photosphere
areas are adjusted to the correct penumbra areas, and incorrectly
detected penumbra areas are adjusted to the correct umbra areas
(e.g., as indicated by the green arrows). These better results ben-
efit from Eq. (2), which increases the difference in the intensity
of the superpixels belonging to different fine structures, allowing
the GMM to better distinguish between different structures.

3.1.2. Spatial location feature

In this section, the same data as we used in Sect. 3.1.1 are used to
demonstrate the results of Sect. 2.4 (i.e., step 3) with and with-
out the spatial location feature, respectively. In Figs. 9a and b,
the second column shows the results of step 3 without any oper-
ation introduced in Sect. 2.4 (i.e., the same results as in Sect. 2.3
with the texture feature), and the third column shows the results
of step 3 processed by all the operations introduced in Sect. 2.4.
Fig. 9 shows that many incorrectly detected penumbra areas are
correctly segmented into the quiet-photosphere areas after apply-
ing the spatial location feature. This is because the spatial loca-
tion feature increases the intensity of the superpixels far from the
umbra area, reducing the probability that superpixels belonging
to the quiet photosphere are incorrectly classified as the penum-
bra area. It should additionally be noted that while incorrectly
detected penumbra areas that are not connected to the umbra
areas can be removed by the postprocessing step, removing the
incorrectly detected penumbra area connected to the umbra area
(e.g., as indicated by the green arrow in Fig. 9b) still requires the
method introduced in Sect. 2.4.

3.2. Comparison experiment

In this section, the method we propose is compared with the seg-
mentation method for high-resolution sunspot fine structure of
Yang et al. (2018). We compare the results of the fine-structure
segmentation of the two methods in Sect. 3.2.1, and the results
of the running-time comparison are shown in Sect. 3.2.2.

3.2.1. Segmentation performance

We experimented the two algorithms on six BBSO-acquired
images in the Tio band. The sunspots in these six images have
different shapes, posing different challenges for fine-structure
segmentation. The results of the segmentation are shown in
Fig. 10. For easy observation, we draw contour lines of the seg-
mentation results on the original images.

Figure 10 shows that our algorithm performs better in seg-
menting fine structures than the algorithm of Yang et al. (2018).
Specifically, we can observe that the method proposed by us can
segment the light-bridge areas more accurately than Yang et al.
(2018). As shown in Figs. 10a–f, we can observe many incor-
rectly segmented light-bridge areas at the edges of the umbra
areas from the results generated by Yang et al. (2018), but the

Table 1. Running time of our method and that of Yang et al. (2018).

No Date of the Data Ours (s) Yang et al. (2018) (s)

1 2015-06-22 16:33:22 UT 1.84 42.25
2 2016-01-28 19:32:06 UT 1.71 7.44
3 2018-06-20 16:20:52 UT 1.73 1.9
4 2019-04-13 19:01:14 UT 1.73 18.48
5 2019-05-08 16:46:06 UT 1.67 1.18
6 2021-05-11 16:13:20 UT 1.80 8.62
. . . mean 1.75 ± 0.06 7.52 ± 6.95

Notes. The first column shows the number of the data. The second col-
umn shows the date of the data used in this experiment. The third and
fourth columns show the running time of the method proposed by us
and that of Yang et al. (2018), respectively. The mean running times of
our method and Yang et al. (2018) are shown in the last row. The unit is
second (s) in this table. The shorter running times are indicated in bold.

method proposed by us can generate correct segmentation results
of the light-bridge areas. The reason is that we use the ratio
of lenr and leng to select the suitable light bridge areas, and
this strategy can effectively remove the incorrectly detected light
bridges at the edges of the umbra areas. For the detected results
of the penumbra areas and umbra areas, the method proposed
by us also performs better than Yang et al. (2018). As indicated
by the purple arrows in Figs. 10a and d, many penumbra areas
are not recalled by Yang et al. (2018). Through our analysis, we
found that for the data used in Figs. 10a and d, the sunspots
occupy the majority of the field of view, which prevents the
level-set algorithm used by Yang et al. (2018) from converg-
ing easily, which means that a large number of penumbra areas
is not recalled. However, this issue does not affect the perfor-
mance of the method proposed by us, which is based on super-
pixels. As indicated by the green arrows in Figs. 10a, b, and f,
there are some representative examples of incorrectly segmented
umbra areas by Yang et al. (2018). Especially in Fig. 10b, the
green arrows indicate incorrectly detected umbra areas, which
are inserted into the detected penumbra areas like fibers. This
is due to the binarization method used by Yang et al. (2018) to
distinguish whether a pixel belongs to the umbra areas. When a
pixel with a lower intensity belongs to penumbra areas, it would
be incorrectly classified into the umbra areas. The method we
propose uses the intensity of superpixels and fuses other features
instead of using the intensity of a single pixel, so that the method
performs better than Yang et al. (2018) in this case.

As mentioned above, our method outperforms that of
Yang et al. (2018) in most situations, but for the situation in
which pores are distributed around the main sunspots in the field
of view, the segmentation result of Yang et al. (2018) is better.
As indicated by the orange arrows in Fig. 10f, the pores are
recalled by the method of Yang et al. (2018), but not by our
method. This is because the intensity of superpixels belonging to
these pores is similar to the intensity of the penumbra area (the
intensity of the penumbra area of the image shown in Fig. 10f is
low), therefore these superpixels belonging to the pores are clas-
sified as the penumbra area. Since the method we propose does
not allow the existence of isolated penumbra, these superpixels
are classified as part of the quiet photosphere.

3.2.2. Running time

In this section, we compare the running time with the algorithm
proposed by Yang et al. (2018) The data we used are the same as
in Sect. 3.2.1, and the results are shown in Table 1.

A132, page 9 of 12



A&A 670, A132 (2023)

(a)

� �� �� �� �� ��
�	�
��

�

��

��

��

��

�	
�

��

(b)

� �� �� �� �� �� 	� 
� �� �� ��� ��� ���
�
����

�

��

��

��

��

��

	�


�

��

��

���

���

�

��
��

(d)

� �� �� �� ��
���	��

�

��

��

��

��


�

��
�	
��

(c)

� �� �� �� �� �� 	�
�
����

�

��

��

��

��

��

	�

��

�

��
��

� �� �� �� �� �� 	�
�
����

�

��

��

��

��

��

	�

��

�

��
��

umbra
penumbra

light bridge

� �� �� �� �� �� 	�
�
����

�

��

��

��

��

��

	�

��

�

��
��

quiet photosphere
umbra

penumbra
light bridge

� �� �� �� �� ��
�	�
��

�

��

��

��

��

�	
�

��

umbra
penumbra

light bridge

� �� �� �� �� ��
�	�
��

�

��

��

��

��

�	
�

��

quiet photosphere
umbra

penumbra
light bridge

� �� �� �� ��
���	��

�

��

��

��

��


�

��
�	
��

umbra light bridge

� �� �� �� ��
���	��

�

��

��

��

��


�

��
�	
��

quiet photosphere
umbra

light bridge

� �� �� �� �� �� 	� 
� �� �� ��� ��� ���
�
����

�

��

��

��

��

��

	�


�

��

��

���

���

�

��
��

quiet photosphere
umbra

penumbra
light bridge

� �� �� �� �� �� 	� 
� �� �� ��� ��� ���
�
����

�

��

��

��

��

��

	�


�

��

��

���

���

�

��
��

umbra
penumbra

light bridge

Fig. 11. Segmentation results for data from different solar telescopes. Panels a, b, and c show data observed by NVST and the fine-structure
segmentation results of these data. Panel d shows the data observed by EAST and the fine-structure segmentation result.
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Table 1 shows that the average running time of the method
we propose (1.75 s) is shorter than that of Yang et al. (2018;
7.52 s). In addition, the stability of our method is significantly
better than that of Yang et al. (2018; i.e., smaller standard devia-
tion). The running times of our method on the entire dataset are
around the mean value of 1.75 s and do not vary significantly.
Yang et al. (2018) shows low running times on some images
(e.g., images 3 and 5), even lower than the method we propose in
image 5. However, the stability of Yang et al. (2018) is not sat-
isfactory, and it shows long running times in some images (e.g.,
images 1 and 4), and even reaches 42.25 s in image 1. In sum-
mary, the method proposed by us outperforms that of Yang et al.
(2018) regarding average running time and stability. The reason
is that the method of Yang et al. (2018) is based on the level-
set method, which has difficulties to converge when the sunspot
occupies most of the region of the image or the shape of the
sunspot is complex, resulting in the long running times (e.g.,
images 1, 4, and 6).

3.3. Robustness experiment

In this section, the robustness of our algorithm is verified. We
tested the algorithm on data acquired by the NVST and EAST.
The segmentation results of the fine structures are shown in
Fig. 11. The contours of the segmentation results are drawn
on the original images for easy viewing. The first columns of
Figs. 11a–c show the original data acquired by NVST with angu-
lar resolutions of 0.0345′′, 0.0369′′, and 0.0296′′, respectively.
The first column of Fig. 11d shows the data acquired by EAST
with an angular resolution of 0.12′′. Our algorithm still shows
satisfactory segmentation performance on data acquired by other
telescopes. In Fig. 11c, many umbra areas without penumbra
areas (i.e., pores) are still correctly segmented. It benefits from
the postprocessing step that removes the incorrectly segmented
penumbra areas. The spatial resolution of the image used in
Fig. 11d is significantly lower than in the other data used in
this paper. However, the fine-structure segmentation result is still
satisfactory. The reason is that the values of some parameters
that are strongly affected by spatial resolution are set adaptively.
Especially when the size of E is the same as that in the other
data with higher spatial resolutions, many incorrect thick light
bridges are segmented.

In addition, we tested our method on data whose observed
field of view contains just quiet Sun. This experiment used
two images obtained by GST at different observation times. As
shown in Fig. 12, nothing is found, except for the quiet photo-
sphere. It benefits from the postprocessing step that removes the
other incorrectly detected structures that do not satisfy the inten-
sity ratio requirement.

4. Conclusions

With the development of solar observation technology, progres-
sively more solar images with increasingly higher resolution will
be obtained. In this paper, we proposed an algorithm to seg-
ment fine structures for sunspots based on superpixel segmen-
tation. The method we proposed extracts the intensity infor-
mation, texture information, and spatial location information
of superpixels as features, and then uses GMM and a mor-
phological method to segment the umbra, penumbra, and light
bridge in high-resolution sunspot images. This paper has vari-
ous parameters, and some are sensitive to different solar tele-
scopes or facilities. Therefore, we designed some strategies for
these parameters to adaptively adjust their values to keep the
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Fig. 12. Segmentation results for the quiet Sun. The top and bottom
panels show the segmentation results of two images observed at differ-
ent times.

satisfactory results of our method in different situations. Exper-
iments show that our method can accurately and quickly seg-
ment the fine structures of sunspots in the data observed by
GST. Moreover, the method is robust and shows satisfactory
results for the fine-structure segmentation for data obtained from
different solar telescopes. Therefore, our method can automat-
ically process a huge amount of observational data and gen-
erate reproducible segmentation results of fine structures in
sunspots, which can help the research of solar physics and space
weather.

Our method does not specifically process the umbral dots
and the limb darkening. The umbral dots will not significantly
affect the performance of our method because the Gaussian fil-
ter will remove the influence of small structures to a certain
extent. In addition, our method is based on the superpixel seg-
mentation. Therefore, the intensity of superpixels will not be
significantly influenced by the umbral dots. The method does
not remove limb darkening because we used a high-resolution
image that has no obvious limb darkening. If obvious limb
darkening is observed in the images, it will influence the per-
formance of the proposed method due to the change in the
distribution of the intensity feature. In this situation, a limb-
darkening removal method should be added in the preprocessing
step.

Our method has only a limited ability to segment pores and
has difficulty in reaching the pixel-level segmentation. In a sub-
sequent study, we will extract more features and modify the
superpixel segmentation algorithm to improve the performance
of fine-structure segmentation. In addition, our method does not
consider the isolated penumbras and removes them all in the
postprocessing step. We will reserve the isolated penumbras in a
future study.
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