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Abstract

A multilayer spectral inversion (MLSI) model has recently been proposed for inferring the physical parameters of
plasmas in the solar chromosphere from strong absorption lines taken by the Fast Imaging Solar
Spectrograph (FISS). We apply a deep neural network (DNN) technique in order to produce the MLSI outputs
with reduced computational costs. We train the model using two absorption lines, Hα and Ca II 8542Å, taken by
FISS, and 13 physical parameters obtained from the application of MLSI to 49 raster scans (∼2,000,000 spectra).
We use a fully connected network with skip connections and multi-branch architecture to avoid the problem of
vanishing gradients and to improve the model’s performance. Our test shows that the DNN successfully reproduces
the physical parameters for each line with high accuracy and a computing time of about 0.3–0.4 ms per line, which
is about 250 times faster than the direct application of MLSI. We also confirm that the DNN reliably reproduces the
temporal variations of the physical parameters generated by the MLSI inversion. By taking advantage of the high
performance of the DNN, we plan to provide physical parameter maps for all the FISS observations, in order to
understand the chromospheric plasma conditions in various solar features.

Unified Astronomy Thesaurus concepts: Solar chromosphere (1479); Neural networks (1933); Spectroscopy (1558)

1. Introduction

The solar chromosphere is the interface atmospheric layer
between the photosphere and the corona, which is highly
dynamic, finely structured, and complex. In order to understand
the phenomena that occur in the chromosphere and their varied
physical drivers, it is necessary to quantitatively diagnose the
physical properties of chromospheric plasmas. We can infer the
physical conditions in the chromosphere through the analysis
of strong lines, such as those of H, Ca II, and Mg II, in the
visible, near-IR, and UV spectral regimes (Carlsson et al.
2019). These chromospheric lines are optically thick and
formed under conditions of non–local thermodynamic equili-
brium (NLTE), which requires NLTE radiative transfer
modeling. The forward modeling makes use of simulations, a
realistic 3D radiative magnetohydrodynamic model (Bifrost;
Gudiksen et al. 2011), and NLTE radiative transfer (RH—
Uitenbroek 2001; RADYN—Allred et al. 2005). These forward
models provide powerful tools for inferring the physical
conditions of the chromosphere, but are computationally
expensive and complex, in terms of their calculations of
atomic level populations from NLTE radiative transfer.

A practical way of inferring physical parameters from obs-
erved chromospheric lines involves an inversion process, which
minimizes the deviation between the synthetic line profile—
derived from the physically based radiative transfer calculations—
and the observed line profile. There are two kinds of inversion
process. One is inversion that is based on forward modeling, as
described above (Hazel—Asensio Ramos et al. 2008; NICOLE—

Socas-Navarro et al. 2015; SNAPI—Milić & van Noort 2018;
STiC—de la Cruz Rodríguez et al. 2016, 2019). For example, the
Non-LTE Inversion Code based on the Lorien Engine (NICOLE)
derives stratified physical properties from chromospheric spectral
line profiles, by synthesizing the profiles based on the NLTE
calculation. Recently, de la Cruz Rodríguez et al. (2016, 2019)
have developed the STockholm Inversion Code (STiC), which
gives the inversion results of NLTE spectral lines, based on the
RH forward synthesis code, allowing inversion with multiple
atoms in NLTE and partial redistribution effects in terms of angle
and frequency. These inversion codes that use forward models
make it possible to infer the stratified physical properties in the
solar chromosphere, by considering the complex underlying
physical conditions. However, NLTE spectral synthesis is time-
consuming and it needs to be generated multiple times for each
spectrum, as part of the inversion process.
The second kind of inversion process uses parameterized

models, in which the line profiles are calculated analytically,
based on the model parameters (such as line-shape parameters
or source functions determined from the radiative transfer
calculation), to fit the observed spectral lines. The parametric
models tune the model parameters until a good fit to the
observed spectral line is obtained, making it relatively simple to
extract the relevant information. For example, cloud model
inversions (Beckers 1964; Tziotziou 2007; Chae 2014) treat the
source function as a free model parameter over optical depth to
infer the physical parameters of cloud-like features lying above
the solar surface.
Recently, Chae et al. (2020, 2021a) have proposed a

multilayer spectral inversion (MLSI) and applied it to the
strong absorption spectral lines Hα and Ca II 8542Å, as taken
by the Fast Imaging Solar Spectrograph (FISS; Chae et al.
2013). MLSI successfully provides height-varying physical
quantities in a simplified three-layer atmosphere, including the
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source function, Doppler velocity, and Doppler width. MLSI is
much faster than forward modeling that requires NLTE
calculations. Nevertheless, its speed is not yet quick enough,
especially when larger numbers of line profiles have to be
analyzed. With the higher spatial, temporal, and spectral
resolutions of current observations, the amounts of data
become larger and larger. To study spatiotemporal variations
of physical parameters in the chromosphere, a huge number of
line profiles should be analyzed based on spectral inversion.
Even though MLSI represents a relatively fast inversion, it still
requires unbearably long computing times for these kinds of
data (big data). For example, the fast scan capability of FISS
means that it can produce raster scan spectral data every 20 s,
with a 30″ × 40″ field of view (∼46,000 pixels). It then takes
about an hour to obtain the inverted physical parameters for a
single instance of raster scan data using MLSI, meaning that it
would take 180 hr to obtain the inversion results for an hour of
observations (180 raster scans). Therefore, a much faster
implementation of the inversion process is strongly required.
This is the motivation of the present work, which aims to apply
a deep learning technique to MLSI.

Various “deep learning” algorithms—such as deep neural
networks (DNNs; LeCun et al. 2015), convolutional neural
networks (CNNs; Lecun & Bengio 1995), or generative
adversarial networks (Goodfellow et al. 2014)—have become
popular means of dealing with big data in solar research. For
instance, the Atmospheric Imaging Assembly (Lemen et al.
2012) on board the Solar Dynamics Observatory (Pesnell et al.
2012) continuously provides a 4096 × 4096 full-Sun image
every 12 s, with multiple wavelength channels. This vast data
set has been utilized by several deep learning applications to
generate new observables, using EUV images at different
wavelengths, as well as magnetograms (Kim et al. 2019; Park
et al. 2019; Lee et al. 2021; Lim et al. 2021), or the calculations
of differential emission measures (DeepEM; Cheung et al.
2018). Our approach is similar to DeepEM, which is a DNN
implementation of differential emission measure (DEM)
inversion, achieved by training the DNN on a set of imaging
observations and their inverted DEM solutions, in order to
reduce the calculation time.

Deep learning has also been applied to spectral inversions in
solar physics (Carroll & Staude 2001; Asensio Ramos & Díaz
Baso 2019; Osborne et al. 2019; Sainz Dalda et al. 2019). Sainz
Dalda et al. (2019) applied a DNN to the STiC inversion on a
large collection of observed IRIS Mg II h & k spectra, in order
to construct a database of profiles and their underlying
atmospheres. The trained model then estimated the thermo-
dynamic parameters (temperature, line-of-sight velocity, elec-
tron density, etc.) in the chromosphere and upper photosphere,
by using a lookup approach to the database, in a fast way.
Asensio Ramos & Díaz Baso (2019) used the SIR inversion
code to train a model on the Stokes parameters from 3D MHD
simulations, in order to infer physical properties from
observations of Stokes profiles. In another approach, Osborne
et al. (2019) used an invertible neural network (INN; Ardizzone
et al. 2018), trained with the radiation hydrodynamic model
(RADYN) and synthesized spectra of Hα and Ca II line
profiles, to produce inverted atmospheres with physical
information from the observed spectra of flaring chromosphere.

In this study, we present a DNN implementation of the MLSI
model developed by Chae et al. (2020, 2021a). We apply a
fully connected network to model and determine the physical

parameters as a regression problem. The DNN is able to infer
the possible underlying physical parameters from an observed
spectral line much more quickly, with comparable precision to
MLSI, thereby allowing us to investigate the physical processes
in various phenomena in the solar photosphere and chromo-
sphere. This study is organized as follows. The basic concept
and the applied DNN are described in Section 2, while the
training and test data sets are described in Section 3. In
Section 4, we present the results from our DNN and discuss its
performance compared to the original inversion model. Finally,
a summary is given in Section 5.

2. Idea and Model

2.1. Basic Idea

Our deep learning model involves a kind of supervised
learning. Supervised learning means that the data used for
training have a defined structure. Each example comprises a
pair consisting of an input object and the desired (labeled)
output value. We want the algorithm to learn a functional
approximation, by understanding the predefined structure
between the input and output. Once the algorithm has learned
the proper relation between the predefined examples of inputs
and outputs by means of its training, it should then correctly
predict the values or class labels for new inputs.
A DNN is a deep learning algorithm that consists of multiple

hidden layers between the input and output layers. Each hidden
layer has nodes (artificial neurons) that transform the input data
by means of an inner product with a different weight vector and
a linear transformation. A nonlinear function is then applied to
the node, which will determine whether the output signal of the
node is activated and passed to another node. Training the
network with many data sets reduces the difference between the
output of the network and the desired output value, by
determining the proper weights of each node and establishing a
complex nonlinear function between the input and output data.
This means that the network is able to learn functionally
important relationships.
For the supervised learning, we used pairs—an observed

spectrum from FISS and the physical parameters for that
spectrum as inferred from the updated MLSI (Chae et al.
2021a)—comprising the input and target data, respectively
(Figure 1). We expect the DNN to learn the relationship
between the input and output pairs in the training of the
network. The details of the input and output data are described
in Section 2.2, and our model architecture and hyperparameters
are presented in Section 2.3.

2.2. Input and Output

We use spectral line profiles taken with FISS on the Goode
Solar Telescope (GST) at the Big Bear Solar Observatory as the
model inputs. FISS simultaneously records two main spectral
bands, Hα and Ca II 8542Å, using a 32 μm slit and two
cameras. The spectral coverages of the Hα and Ca II 8542
bands are 9.7Å and 12.9Å, respectively. The spectral
samplings for Hα and Ca II 8542Å are 0.019Å and 0.025Å,
respectively. The spectral data were calibrated—corrected for
flat fields, dark currents, and stray light—and compressed by
the Principal Component Analysis method (Chae et al. 2013).
We also conducted a data reduction for the wavelength

calibration and intensity normalization, as described in Chae
et al. (2020). The absolute wavelength calibration was done by

2

The Astrophysical Journal, 940:147 (16pp), 2022 December 1 Lee et al.



using the flat/calibration data of the quiet region (QR), which
are taken more than once every observing day. We decide the
wavelengths using telluric lines from the Earth’s atmosphere or
metal lines from the solar photosphere. We can then calculate
the positions of the line centers at Hα and Ca II, the wavelength
per pixel, and the wavelength coverage of the data. We
normalize the spectral profiles to a mean continuum intensity.
First, the average spectral profile for each data set (i.e., the
raster scan) is taken as a reference profile for diverse data sets.
Then, we normalize all the spectral profiles using the maximum
intensity of this reference profile, which is a proxy of the mean
continuum intensity. In addition, we subtract the terrestrial
absorption lines from the spectra, as described by Chae et al.
(2021a).

To arrive at the homogeneous input parameters for the
training, the data were preprocessed. First, we note that the
wavelength ranges and scales of the spectral lines vary slightly
from day to day, so we restrict the input wavelength ranges for
all the data sets—6558.82Å–6566.82Å for Hα and
8535.99Å–8547.29Å for Ca II—to ensure that all the data
have the same wavelength ranges. We then interpolate all the
spectra using the same absolute wavelength scale, with
samplings of 0.02Å and 0.025Å for Hα and Ca II, respec-
tively. Second, we perform input data scaling, to avoid unstable
or slow learning processes. Since the ranges of the input data
values vary widely, if the data are not scaled, the learning
algorithm may become confused and place more importance on
the pixels, only because they have higher intensity values,
which would make the learning process unstable. In addition,
for the optimization of our model, we use gradient descent–
based algorithms. The input data will affect the step size of the
gradient descent, and the differences in the ranges of the input
values will result in different step sizes for each of the input

values. Therefore, we need to scale the data, before training the
model to update the steps for the gradient descent at the same
rate for all the input spectra, resulting in the gradient descent
smoothly converging to the minima much faster. We apply the
data scaling method, normalization, and standardization to our
input data, then compare the model’s performance. Standardi-
zation, which makes the mean of the training input data values
zero, with the standard deviation set to 1, shows better
performance. The standardization is conducted using all the
training input data sets, but separately, along each wavelength.
Examples of the input spectra for Hα and Ca II are displayed in
the left panels of Figure 1. Each intensity along the wavelength
is compared to the intensity of the entire input data set at the
same wavelength. The solid black and red lines indicate the
observed line profiles and the standardized profiles of the
whole training input data set, respectively. If the wing value is
close to the mean value of all the input data, then the profile
value is near zero. But for the standardized (red) profile of Hα
at the center, the intensity value of the example is larger than
the mean value of the intensity of the whole input data set, so it
is larger than zero.
We use the physical parameters inferred from the updated

MLSI (Chae et al. 2021a) as the target data. The model solves
the radiative transfer equation with two strong absorption
profiles, the Hα and Ca II lines, assuming a three-layer
atmosphere, consisting of the photosphere, the lower chromo-
sphere, and the upper chromosphere (see Figure 3 in Chae et al.
2021a). The modeled line profile of MLSI is fully specified by
15 parameters. The two parameters of optical thickness, in the
low chromosphere (τp,2) and upper chromosphere (τp,1), are
fixed values. The 10 physical quantities as free parameters are
determined from the model fitting, the source functions at the
boundaries between each layer (Sp, S2, S1, and S0), the Doppler
velocities, the Doppler widths at the boundaries of each layer in
the chromosphere (v1, v0, w1, and w0), and the parameters for
the absorption profiles of the photosphere (the dimensionless
damping parameter (ap) and the ratio of peak line absorption to
continuum absorption (η)). The Doppler velocity and Doppler
width in the photosphere (vp and wp) are determined from
analysis of the photospheric lines in the wings of the
chromospheric profiles, while the parameter for collisional
damping in the low chromosphere (γ2) is determined from the
shapes of the broad wings of the strong lines. Among the
inferred physical quantities from MLSI, we use 13 parameters,
except for the two fixed parameters (τp,2, τp,1). Examples of the
output values for the physical quantities are listed in the right
panels of Figure 1.

2.3. DNN Model

After defining the pair of input and output layers, we create a
DNN of hidden layers. Figure 2 presents the architecture of our
model. We use a fully connected network, adopting two
concepts: skip (shortcut) connection and branching architecture.
The skip connection, or shortcut layer, is a widely used

technique for improving the performance and the convergence
of deep learning models, which is used in residual networks
(He et al. 2015) or U-Net networks (Ronneberger et al. 2015).
Generally, if we add more layers and deepen the neural
network models, the accuracy of the results or the success rate
of the prediction increases. However, if the depth further
increases, the gradients used during the training become

Figure 1. Example pairs—the input object and the desired output value—for
supervised learning. The left panels display the inputs for the observed line
profiles of Hα and Ca II 8542 Å (in black) and their shapes after the
standardization processes described in Section 2.2 (in red). Details of the
preprocessing are provided in the text. The right panels show the physical
parameters calculated from the MLSI model using the input spectra.
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exponentially small, and the information cannot pass through
the deeper layers, which is called the vanishing gradient
problem. We utilize skip connections (the gray arrows in our
model architecture) to allow gradient information to pass
through the layers, with the previous layer’s output being added
to the output of a deeper layer. This connection, therefore,
enables the signal to propagate in deeper networks, while
accelerating the training by avoiding the effect of vanishing
gradients.

After the shortcut layers, we create multiple parallel branches
for processing the data independently, using different para-
meters with different weights. The branching architecture has
been used in CNNs, such as inception networks (Szegedy et al.
2016) and Xception (Chollet 2017). The multiple branches
increase the success of the model by reducing the duality gap of
empirical risk, thereby making it easier to optimize the network
(Zhang et al. 2018). Here, we introduce three parallel branches,
consisting of a different number of layers with a different
number of nodes. Following these multiple branches, the
outputs are concatenated, before they pass through the fully
connected dense layers. The final output layer is a dense layer,
without an activation function to give the regression values.
The outputs are 13 physical parameters for specifying the
modeled line profiles.

In this network, we use a Swish activation function
(Ramachandran et al. 2017), which is defined as

( ) ( ) ( )= ´ =
+ -

f x x x
x

e
sigmoid

1
1

x

at each layer, and which determines how the weighted sum of
the input is transformed into an output from a node or nodes,
making the network nonlinear. Since the Swish function helps
to alleviate the vanishing gradient problem during back-
propagation, it is known to have better performance on deeper
models than the Rectified Linear Unit, ReLU, which is the most
widely used activation function. In addition, we use Xavier
initialization (glorot_normal: Glorot & Bengio 2010) at each
layer, in order to determine the proper initial weight suitable for
deeper networks, by avoiding the saturation of the weight.

We train the network using the Adam (Kingma & Ba 2014)
optimizer, over 2000 epochs, with a batch size of 10,000. For
the other hyperparameters, the initial learning rate is

0.2825× 10−3, which is then reduced exponentially by a
factor of 0.45 every 50 epochs, until the running rate becomes
10−5. To avoid overfitting, we introduce L2 regularization,
with the lambda value of 5× 10−5, after the multiple branch
layers. In addition, we set early stopping by monitoring the
validation loss, with the value of patience being 30. Our model
then stops early, at around 450 and 650 epochs for the Hα and
Ca II parameters, respectively. To train our DNN, we use the
mean squared error (MSE) as a scalar loss function and the
mean absolute error (MAE) as the metric that is used to
estimate the accuracy of the thirteen predicted physical
parameters. We finally obtain the model that has the best
minimum loss function, 0.003 and 0.009 of the MSE values for
the Hα and Ca II parameters, respectively. Our DNN is
implemented and trained in Tensorflow, using Graphical
Processing Units (GPUs) to accelerate the calculations. We
used an NVIDIA GeForce RTX 3090 for training, during the
exploration of the hyperparameters.

3. Data Sets: Training and Test

For the supervised learning, the essential element is a well-
prepared data set, covering as much of the parameter space as
possible, with reliable mappings between the observed spectra
and the physical parameters derived from MLSI. We prepare
the training and validation data sets by choosing a scan raster
from each of the different observing targets or pointings from
the FISS/GST observations, covering both the Hα and Ca II
8542 lines in the period from 2013 to 2015. Table 1 presents a
list of the data sets. We used 49 raster scans, consisting of
about 2,500,000 spatial pixels, with observed spectral profiles
and inverted physical parameters. Here, we note that the
selected observing targets of FISS are mostly active regions
(ARs), emerging flux regions, or pores, as well as regions
around the disk center (μ> 0.5), rather than QRs, due to the
limitations of the seeing conditions. GST uses an adaptive
optics (AO) system to improve its seeing. The AO system
needs to choose a stable (slowly evolving) structure with high
contrast, to continuously track the structure, and to correct the
seeing by moving the tip-tilt mirror. It is easy to select the
structures inside a sunspot (AR), pore, or emerging flux region
that have highly contrasting features. However, if the atmo-
spheric conditions are not good, with high turbulence, we
cannot follow the QRs or coronal holes, which do not have

Figure 2. Flowchart of our DNN with skip connection and branching architecture. The red numbers for each of the layers indicate the numbers of nodes. The black
number above the ellipsis denotes the number of layers that have the same number of nodes as the previous layer.
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high-contrast structures. Limb observations are also tricky, for
the same reason. Since most training data sets are biased to
ARs or near the disk center, the application of this model to
QRs or observations near limbs may be less reliable.

We note that the updated MLSI introduced several physical
constraints for inferring physically reasonable parameters, the
details of which can be found in Chae et al. (2021a). The least
squares fit minimizes the difference between the model and the
data, considering the physical constraints. Then, the two

dimensionless parameters, òD and òP, as defined in Chae et al.
(2021a), provide estimates of the goodness of fit for the spectral
profile and for the physical constraints, respectively. We
examine the values of òD and òP for all the training data sets.
The majority of the spectra that are acceptably fitted by MLSI
have values of òD and òP that are less than 3. Therefore, we only
use input and target data that meet the criteria òD< 3 and
òP< 3. Among the training data sets in Table 1, the number of
line profiles and inverted output parameters that meet the

Table 1
The Data Sets for the DNN: Training and Validation

Number Date Time (UT) Observing Target NOAA Number Location (x, y)
(1) (2) (3) (4) (5) (6)

1 2013-Jul-16 19:17:25 Sunspot 11791 (62″, −30″)
2 2013-Jul-16 21:44:43 QR L (447″, 87″)
3 2013-Jul-17 17:02:38 Trailing pore 11791 (247″, −278″)
4 2013-Jul-17 18:41:07 QR L (−15″, −126″)
5 2013-Jul-17 20:48:15 Emerging flux region, pore L (556″, −291″)
6 2013-Jul-18 17:47:50 Sunspot 11793 (−332″, 272″)
7 2013-Jul-18 21:04:43 Pore 11793 (−365″, 259″)
8 2013-Jul-19 17:06:29 Pore 11793 (−17″, 302″)
9 2013-Jul-28 18:19:30 AR, pore 11801 (43″, 391″)
10 2013-Jul-29 17:20:57 Pore 11801 (194″, 381″)
11 2013-Jul-29 17:45:21 AR near east limb 11808 (−741″, 196″)
12 2013-Jul-30 17:53:46 AR 11808 (−640″, 134″)
13 2013-Jul-30 19:35:57 Pore 11806 (−357″, −373″)
14 2013-Jul-31 18:27:29 Sunspot 11801 (520″, 228″)
15 2013-Aug-16 17:04:16 Sunspot 11818 (222″, −202″)
16 2013-Aug-16 18:26:39 AR 11817 (593″, −433″)
17 2013-Aug-16 19:45:16 Sunspot 11818 (216″, −220″)
18 2013-Aug-16 21:11:10 Sunspot 11820 (−392″, −318″)
19 2013-Aug-17 18:08:29 Flaring AR (before flare) 11818 (472″, −220″)
20 2013-Aug-17 18:21:41 Flaring AR (flare peak) 11818 (472″, −220″)
21 2013-Aug-17 18:43:10 Flaring AR (after flare) 11818 (472″, −220″)
22 2013-Aug-18 16:26:35 Emerging flux region, pore 11825a (131″, 140″)
23 2013-Aug-18 17:39:08 Emerging flux region, pore 11826a (142″, 137″)
24 2013-Aug-23 16:30:40 Trailing spot 11827 (−152″, −402″)
25 2013-Aug-23 19:18:45 Trailing spot 11827 (−152″, −402″)
26 2013-Aug-24 16:40:53 Sunspot 11828 (−59″, 162″)
27 2013-Aug-24 19:05:35 Pore 11828 (−177″, 189″)
28 2013-Aug-25 16:27:49 Trailing pore 11828 (116″, 168″)
29 2013-Aug-25 17:53:37 Leading pore 11828 (167″, 150″)
30 2013-Aug-25 20:04:57 Sunspot near west limb 11823 (818″, −157″)
31 2014-Jun-3 16:52:01 Pore 12078 (134″, −318″)
32 2014-Jun-3 18:17:35 Trailing pore 12077 (−329″, −106″)
33 2014-Jun-3 19:57:57 Sunspot 12077 (−344″, −77″)
34 2014-Jun-3 21:44:07 Emerging flux region, pore 12079 (−696″, 51″)
35 2014-Jun-5 16:47:05 Sunspot 12080 (−527″, −204″)
36 2014-Jun-5 18:34:01 Filament L (−420″, −104″)
37 2014-Jun-5 18:58:32 AR 12082a (−605″, 236″)
38 2014-Jun-6 17:02:45 Sunspot 12079 (−74″, 188″)
39 2014-Jun-6 18:42:17 AR 12085a (−394″, −343″)
40 2014-Jun-6 20:08:19 Light bridge 12082 (−436″, 222″)
41 2015-Jun-15 16:55:49 Leading sunspot 12367 (−310″, −330″)
42 2015-Jun-15 17:49:38 QR L (−215″, −378″)
43 2015-Jun-15 17:54:34 QR L (−215″, −378″)
44 2015-Jun-15 18:46:58 Pore near AR 12367 (−341″, −321″)
45 2015-Jun-15 20:16:12 Leading pore 12370 (−190″, 271″)
46 2015-Jul-24 20:15:52 AR 12387 (595″, 219″)
47 2015-Jul-24 22:15:21 Sunspot near east limb 12389a (−768″, −256″)
48 2015-Jul-28 20:30:52 Filament L (−561″, −25″)
49 2015-Jul-28 22:06:56 Filament L (−554″, −18″)

Note.
a Newly emerging ARs. At the observing time, the NOAA number had not yet been assigned.
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criteria is about 2,000,000, or 80% of the data sets. For the
other 20% of the data sets, òD and òP are larger than 3, with
some of them even reaching over 10, showing profiles with
emission for flares or profiles with strong secondary shifted
components. We note that the features with a high goodness of
fit parameter (outliers) are not evenly spread across all the
target data sets, but rather a large number are to be found in the
flare data sets. We exclude any poorly fitting pairs of spectral
profiles and their inverted physical parameters from our DNN
model training. We shuffle the selected data sets and randomly
use 80% of the data for training and 20% for validation.

To verify the DNN’s performance, we need to test the DNN
on separate data sets that are not included in the training or
validation data sets. The test data sets are listed in Table 2. One
set is a time series observation of a QR on 2020 July 30. The
other set is a time series observation of an AR on 2013 July 17,
which is described in detail in Chae et al. (2014, 2021b). A set
of monochromatic maps, constructed at some of the wave-
lengths from the raster scans for the QR and the AR, are
presented in Figure 3.

4. Results and Discussion

Our model provides physical parameter values, given the
input of the observed spectra. First, we compare each parameter
value from the DNN to the parameters that are derived directly
from MLSI, which are the target parameters (the ground truth),
to evaluate the accuracy of the DNN parameter predictions.
Second, if the model is able to learn the relationship between
the pairs reasonably well, we plan to use the stand-alone DNN
to infer the parameters, without performing the full MLSI
calculation. To directly confirm that the obtained physical
parameters are explainable in the observed spectra, we
reproduce the line profiles using the parameters from our
DNN and compare them to the observed spectra. Third, we also
check the temporal variations of the parameters, to confirm that
the temporal variations of the parameters recovered by the
DNN are physically reasonable.

4.1. Comparison of Physical Parameters

To test our model, we use spectral line profiles in a QR
(2020 July 30) and an AR (2013 July 17), taken from FISS
(Table 2). Figure 3 shows the sample images of the observed
scan rasters of the QR and the AR. The raster images of the QR
have 150× 250 pixels—that is, 37,500 line profiles. The raster
image of the AR consists of 64,000 line profiles. We determine
the physical parameters for each line profile of the data points
using MLSI and the trained DNN, and reproduce the physical
parameter maps.

Figures 4 and 5 show the sample images of the parameter
maps, the source functions at each layer (Sp, S2, S1, and S0), the
Doppler velocities (vp, v1, and v0), and the Doppler widths (wp,
w1, and w0), from Ca II in the QR and the Hα in the AR. The
upper three rows display the inverted physical parameters from

MLSI that are used as ground truth. The lower three rows
present the target parameters produced by our trained model.
Compared to the parameter maps from MLSI, the parameter
maps from our DNN are successfully reproductions. In
addition, we present the values of òD and radiative loss at the
lower chromosphere, calculated by both the inverted and the
predicted parameters, in Figures 4 and 5. òD gives the goodness
of fit, by comparing the observed and synthesized spectra. The
radiative losses for each layer of each line have been calculated
from the values of the model parameters, and the values of the
radiative losses from the inverted and from the predicted
parameters are consistent.
We measure the means and standard deviations of the

parameter maps from the DNN, along with four other types of
metric, to compare the physical parameters from MLSI with the
predicted ones from our DNN: (1) the MAE; (2) the normalized
rms error (NRMSE); (3) the correlation coefficient (CC); and
(4) the coefficient of determination (R2 score). The values for
each of these parameters are listed in Table 3.
First, the mean and standard deviation values of the physical

parameters from our DNN display similar trends to the values
of the parameters from MLSI, as discussed in Chae et al.
(2021a). For example, the source function of Hα monotonically
decreases with height, while that of Ca II has a local maximum
in the chromosphere, which is physically expected.
Second, MAE and NRMSE are measured to evaluate the

accuracy of the predicted parameters from the DNN compared
to the values derived from MLSI. NRMSE is RMSE normal-
ized by the standard deviation of the MLSI parameters. The
smaller the values of MAE and NRMSE, the higher the
accuracy of the predictions. Both values are pretty small for
most parameters, implying that the model performance is quite
good. The MAE values range from 0.001 to 0.01 for the source
functions and Doppler widths, while those for the Doppler
velocity are less than 250 m s−1. The values of NRMSE are less
than 30% for most of the parameters, except for the Doppler
widths in the photosphere (wp).
Third, we calculate the CC and R2 score for each parameter,

to examine the linearity of the relationship of each model
parameter and the percentage of correct predictions returned by
our DNN compared to the parameters from MLSI. If these
values are 1, the regression model predictions perfectly fit the
data. In relation to the CC, we display 2D density plots for the
physical parameters from both spectral lines for the QR and AR
in Figures 6–9. The 2D density plots display a tight correlation
between the physical parameters derived from MLSI (ground
truth) and the DNN (predicted). Here, even though we assume
that the parameters derived from MLSI are the ground truth,
MLSI itself is an inversion model, which results in some of the
observed spectral lines not being well fitted; the cases of òD and
òP are larger than 1. These data points are denoted by the red
dots, which amount to less than 1.5% of the total data. The CCs
are mostly close to 1 (larger than 0.8) for each of the physical
parameters. Also, the R2 scores are larger than 0.6, except for
the Doppler width in the photosphere (wp) of the Ca II line in
the QR.
Overall, the DNN predicts the target parameters well,

except for wp. Regarding the parameter wp, the NRMSEs are
larger than the those of the other parameters. This is primarily
due to the small standard deviation of wp. The smaller
standard deviation makes the NRMSE larger, even though the
RMSE itself is not significant. Although the NRMSE has

Table 2
The Data Sets for the DNN: Testing

Date Time (UT) Target NOAA
(1) (2) (3) (4)

2020-July-30 16:48:21-17:57:43 QR L
2013-July-17 18:32:24-19:56:18 AR 11791
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large values, the high values of the CC (>0.8) and the R2

score (>0.6) imply that the distributions of the wp are well
matched between the inverted and predicted ones. The wp

maps in Figures 4 and 5 also confirm that their distributions
are consistent.

We note that the value of the NRMSE of the wp of the Ca II
line in the QR is extremely large (593%). Figure 7 shows that
the values predicted from the DNN are systematically larger
than those from MLSI, resulting in the NRMSE (593%) and
R2 score (=1) being poor. However, the CC is 0.826, which
shows that their distributions are well correlated. Also, the wp

parameter map in Figure 4 shows that their distributions are
consistent. By applying the DNN to the different quiet Sun
observations, we also found systematic differences for the
predicted wp parameter of the Ca II line, which are not shown
here. It seems that our trained DNN has a limit on low values
of wp since it is not able to reproduce the significantly low
values of wp from the Ca II line in the QRs derived by MLSI.
Even so, the DNN seems to predict the spatial distributions.
This discrepancy may result from our training data sets being
biased to the ARs, emerging flux regions, or pores, rather than

to QRs due to the limitations of the seeing conditions. As we
have mentioned, the wp are small values, and their deviations
are very small. The predicted value converges to the mean
value of all the training data sets, which are biased to ARs or
pores with larger values of wp. This resulted in the DNN
predicting the larger values of wp for the QR than those
measured by MLSI.
Actually, the Doppler width in the photosphere (wp) is a

pretty tiny value, considering the thermal width from the
radiative intensity. In the MLSI calculations of Chae et al.
(2020), therefore, the wp was fixed to a small value for all the
regions, which made the MLSI model fit well. To know the
spatial variation, even though the wp is tiny, the updated MLSI
model of Chae et al. (2021a) indirectly inferred the wp, by
combining the thermal width converted from the far-wing
intensity of each spatial location with the assumed nonthermal
speed (1 km s−1). Practically, the systematic differences in the
tiny value of wp do not significantly affect either the inversion
or the prediction of the physical parameters in the
chromosphere.

Figure 3. Monochromatic images constructed at the wavelengths of the Hα and the Ca II 8542 Å lines, obtained from FISS. The upper (first and second rows) and
lower (third and fourth rows) panels show sample images of a QR and an AR, respectively. The cross symbols in the QR and AR images mark the positions of a
network feature and a superpenumbral fibril that we selected to compare the observed line profiles with the modeled spectra, using the physical parameters inferred
from the DNN in Figures 10 and 11. The white vertical slits in the scanned raster images of the AR indicate that data are missing.
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4.2. Comparison of Line Profiles

We reproduce the spectral line profiles based on the three-
layer atmosphere model using the predicted physical para-
meters derived from our DNN as the input. We then compare

the observed spectral lines of Hα and Ca II 8542Å with the
synthesized line profiles using the physical parameters from the
DNN. Figure 10 presents the intensity profiles of the network
feature observed in the QR compared with the modeled
intensity profiles from the DNN parameters for Hα (left panel)

Figure 4. Physical parameter maps of the Ca II 8542 Å line using MLSI (upper three rows) and the DNN (lower three rows) for the QR. The cross and square symbols
mark the locations of a network feature and a region with a large standard error, respectively.
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and Ca II 8542Å (right panel). The synthesized intensity profile
at the top of the upper chromosphere (I0(p)) using the
parameters (p= Sp, ap, η, S2, S1, v1, w1, S0, v0, w0) from the
DNN is well matched with the observed spectral line profiles.
Figure 11 displays the intensity profiles of the superpenumbral
fibril observed in the AR, again showing the good agreement of
the observed spectral line profile and the modeled intensity
profile using the parameters predicted by the DNN.

Comparing the observed and the synthesized intensity
profiles directly, we measure the parameter of the goodness
of fit for the synthesized spectra reproduced by the physical

parameters from the DNN, òD, which is defined in Equations
(18–20) in Chae et al. (2021a):

( ) ( ) åº
=N
f p

1
. 2D

k

N

k
1

2

1
2

⎡
⎣⎢

⎤
⎦⎥

The fk is the difference at each wavelength point (λk)
between the observed intensity data and the synthesized
intensity data using the DNN predicted parameters against
the control parameters of the tightness of the constraint at each

Figure 5. Physical parameter maps of Hα using MLSI (upper three rows) and the DNN (lower three rows) for the AR. The cross and square symbols mark the
locations of a superpenumbral fibril and a region with a large standard error, respectively.
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Figure 6. 2D density plots for each model parameter calculated from MLSI and our DNN for the Hα line profiles observed in the QR. The red dots denote the
parameters with large errors of MLSI model fitting (òP > 1 and òD > 1). The dashed line indicates the equality of both model parameters, while the solid cyan line
shows a linear fit to all the data points.

Table 3
Means and Standard Deviations of the Physical Parameters Derived from the DNN, with the MAE, NRMSE, CC, and Coefficient of Determination (R2 Score)Metrics,

for Evaluating the Accuracy of the DNN Parameter Predictions as Compared to Direct MLSI Calculations

Region Physical Mean ± Standard Deviation MAE NRMSE CC R2 Score

Parameter [%]

Hα Ca II Hα Ca II Hα Ca II Hα Ca II Hα Ca II

[ ]S Ilog p 0 0.003 ± 0.014 0.017 ± 0.020 0.003 0.008 26.8 47.2 0.970 0.979 0.928 0.777

[ ]S Ilog 2 0 −0.251 ± 0.020 −0.487 ± 0.061 0.004 0.004 28.0 8.8 0.981 0.996 0.921 0.992
[ ]S Ilog 1 0 −0.448 ± 0.033 −0.405 ± 0.037 0.003 0.003 12.9 12.0 0.995 0.994 0.983 0.985
[ ]S Ilog 0 0 −0.881 ± 0.064 −1.038 ± 0.165 0.005 0.012 9.7 10.5 0.996 0.997 0.991 0.989

QR vp [km s−1] 0.083 ± 0.469 −0.425 ± 0.501 0.032 0.055 8.1 14.6 0.998 0.993 0.993 0.979
v1 [km s−1] −0.217 ± 1.574 −0.504 ± 1.830 0.226 0.173 15.4 11.6 0.998 0.997 0.976 0.987
v0 [km s−1] 0.119 ± 2.139 0.425 ± 1.465 0.136 0.046 7.0 4.2 1.000 0.999 0.995 0.998

[Å]wlog p −0.656 ± 0.002 −1.268 ± 0.002 0.001 0.010 62.2 593.2 0.843 0.826 0.613 −34.189

[Å]wlog 1 −0.496 ± 0.040 −0.741 ± 0.053 0.003 0.004 11.5 10.1 0.996 0.996 0.987 0.990
[Å]wlog 0 −0.441 ± 0.046 −0.784 ± 0.059 0.005 0.005 7.3 10.3 0.997 0.996 0.995 0.989
[ ]S Ilog p 0 −0.011 ± 0.027 0.003 ± 0.029 0.001 0.002 4.7 10.8 0.999 0.994 0.998 0.988

[ ]S Ilog 2 0 −0.220 ± 0.027 −0.443 ± 0.050 0.002 0.002 9.7 6.4 0.996 0.998 0.991 0.996
[ ]S Ilog 1 0 −0.426 ± 0.042 −0.335 ± 0.057 0.001 0.002 4.5 4.8 0.999 0.999 0.998 0.998
[ ]S Ilog 0 0 −0.788 ± 0.098 −0.749 ± 0.182 0.002 0.003 2.5 2.7 1.000 1.000 0.999 0.999

AR vp [km s−1] 0.007 ± 0.423 0.001 ± 0.498 0.020 0.039 5.5 12.0 0.998 0.993 0.997 0.986
v1 [km s−1] −0.663 ± 1.241 −0.483 ± 1.663 0.087 0.047 9.6 4.6 0.995 0.999 0.991 0.998
v0 [km s−1] −0.071 ± 1.412 0.352 ± 1.029 0.041 0.030 3.9 4.7 0.999 0.999 0.998 0.998

[Å]wlog p −0.656 ± 0.003 −1.268 ± 0.003 0.001 0.001 26.7 40.5 0.966 0.934 0.928 0.836

[Å]wlog 1 −0.414 ± 0.039 −0.705 ± 0.046 0.001 0.003 5.2 8.0 0.999 0.997 0.997 0.994
[Å]wlog 0 −0.448 ± 0.035 −0.739 ± 0.055 0.001 0.002 5.1 6.2 0.999 0.998 0.997 0.996

10

The Astrophysical Journal, 940:147 (16pp), 2022 December 1 Lee et al.



Figure 7. The same as Figure 6, but for the Ca II line profiles observed in the QR.

Figure 8. The same as Figure 6, but for the Hα line profiles observed in the AR.
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Figure 9. The same as Figure 6, but for the Ca II line profiles observed in the AR.

Figure 10. Three-layer model fitting of the Hα (left) and Ca II 8542 Å (right) line profiles taken from a network feature in the QR, marked by the cross symbol in
Figure 4, using the physical parameters derived from the DNN. The parameter values are listed at the bottom of the figure. The thick solid black line indicates the
observed line profile, while the solid green, blue, and red lines represent the modeled emergent intensity profiles at different layers—the top of the photosphere (layer
2), the lower chromosphere (layer 1), and the upper chromosphere (layer 0), respectively. The dashed cyan line indicates each reference profile obtained by taking the
spatial average of the line spectra over the observed scan raster. The lower panels present the plots of the residuals between the observed and modeled intensity
profiles. For comparison, the òD calculated from MLSI fitting for the observed spectra is also given.
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data point, σk:
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Here, the control parameters for Hα and Ca II are set as
s s= lIk c ,obsk , which is adopted from the photon noise form.
Then, σk is equal to σc in the continuum =lI 1,obsk , and to
0.5σc in the core, with =lI 0.25,obsk . The noise level value of
σc is set to 0.01, the same as the σc value in the MLSI model
fitting (Chae et al. 2021a).

When we look at the scatter plots of òD in Figures 6–9, the òD
values from the DNN for the well-fitting data sets with MLSI
(òD< 1 and òP< 1) have slightly larger values than the òD
measured by MLSI fitting. Even so, the values of òD are mostly
less than 2, which indicates that the predicted parameters from
the DNN are satisfactory for those data sets. On the other hand,
the acceptably fitted profiles (1< òD< 3 and 1< òP< 3 for
MLSI; the red dots in the scatter plots) present large deviations
between the observed and synthesized spectra. This implies
that the regions where òD has large values in MLSI also have
large òD values in the DNN. It is natural for our DNN not to be
able to reproduce the specific features that are not well fitted by
MLSI since the DNN is trained on the MLSI results. We take a
look at the line profiles in the regions with large òD in
Figures 12 and 13. The spectral profiles have significantly
shifted components, which may be attributed to the presence of
fast-moving plasma or cloud-like plasma, such as chromo-
spheric jets.

4.3. Temporal Variations

We examine whether the physical parameters from the DNN
are consistent with those MLSI over time. Figures 14 and 15
present the temporal variations of the Doppler velocity (v0), the
hydrogen temperature (TH), and the nonthermal velocity (ξ)

that were taken from the network feature in the QR and the
superpenumbral fibril in the AR. The estimates of TH and ξ are
determined by the combination of the inferred Doppler widths
at the upper chromosphere (w0) from two absorption lines, the
method for which is explained in Chae et al. (2020, 2021a).
The temporal variations show that the Doppler velocity,
temperature, and nonthermal velocity fluctuate over time. We
find that the values inferred from the DNN are comparable to
the values from MLSI. These values are physically reasonable
for the features, as the TH (ξ) for the network and the
superpenumbral fibril are 11,400 K (9.6 km s−1) and 10,200 K
(8.4 km s−1), on average, indicating that the DNN reliably
predicts even the temporal variations of the physical parameters
derived by MLSI.

4.4. Computing Time

Our investigation aims to reduce the cost of the MSLI
calculations for inferring the chromospheric plasma properties
from the enormous number of line profiles over position and
time. The MLSI proposed in Chae et al. (2021a) is slower in
fitting the observed absorption profiles. It takes 95 ms for each
Hα line profile, and 81 ms for each Ca II line profile, with
Python 3.8 software on a computer server with a 3.8 GHz
AMD Ryzen Threadripper 3960X CPU. Our server is equipped
with GPUs, but the MLSI calculation is only conducted using
the CPU. It therefore takes about 2.5 hr for Hα and 2 hr for
Ca II when reproducing the same field of view (40″× 40″) of
the sample image of the AR.
By comparison, using the same system, the DNN reproduces

the physical parameter maps for the field of view of the AR
within 20 s, using the CPU. It takes 0.3–0.4 ms on average to
reproduce the physical parameters for each absorption line
profile. To synthesize the spectral profiles using the physical
parameters recovered from the DNN takes 3.4 ms for each Hα

Figure 11. The same as Figure 10, but for a superpenumbral fibril in the AR, marked by the cross symbol in Figure 5.
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and Ca II line profile, on average. The computing time of the
DNN for the parameters (line profiles) is 250 (25) times faster
than MLSI. Moreover, if we use the GPUs that this system is
equipped with, for acceleration, it takes 0.03 ms to predict the
physical parameters and 2.84 ms to synthesize the spectra. This
advantage of the fast inversion model allows us to investigate
spatial distributions and temporal evolutions of chromospheric
plasma over a reasonably short period of time.

5. Summary

We have produced a DNN application for estimating the
physical parameter outputs from MLSI, which was developed
by Chae et al. (2020, 2021a), in order to make applications to
large data sets feasible. Our DNN is extremely fast, producing
physical parameters in the photosphere and chromosphere, as
well as synthesized intensity profiles of both absorption lines,
in about 2.84 ms for each line profile, using GPUs. The test

Figure 12. Three-layer model fitting of the Ca II 8542 Å line profiles taken from the region with a large value of òD, marked by the square symbol in Figure 4 (QR),
using the different models (left: our DNN; right: MLSI).

Figure 13. Three-layer model fitting of the Hα line profiles taken from the region with a large value of òD, marked by the square symbol in Figure 5 (AR), using the
different models (left: our DNN; right: MLSI).
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results of the DNN described in Section 4 prove that this model
is able to accurately generate the physical parameters of
chromosphere plasma in both QRs and ARs. Moreover, the

variations of hydrogen temperature and nonthermal velocity in
the upper chromosphere can also be investigated, by virtue of
the high precision of the Doppler width measurements, as
with MLSI.
Despite the fact that the high performance of the DNN has

been demonstrated, there are still caveats to consider. Our
approach, using a deep learning tool, is a kind of supervised
learning, which is significantly affected by the training data, the
observed spectra, and the derived parameters, based on MLSI.
If the MLSI model is not able to make a good fit to an observed
spectrum, the trained DNN will not well reproduce the physical
parameters or the modeled intensity profile. Therefore, first, the
model is applicable to QRs and ARs, but not to flares that have
abnormal profiles, such as emission profiles due to strongly
heated plasma or sudden density enhancement. Those flare
spectra could possibly be analyzed by a sophisticated model,
adding more atmospheric layers or combining a specific model
for flare spectra, such as an INN using RADYN with Hα and
Ca II, as proposed by Osborne et al. (2019). Second, most of
the training data sets for the DNN from FISS observations
consist of sunspots, pores, or emerging flux regions near the
disk center. Therefore, applying our DNN to QRs or coronal
holes may be less reliable, and it may not be appropriate for
observations closer to the limb. Third, atypical profiles—e.g.,
spectra with largely shifted components or very broad profiles,
which imply fast-moving or cloud-like features in the chromo-
sphere—are fairly fitted (1< òD< 3) compared to the flaring
spectra. Still, when the predicted physical parameters result in
the synthesized spectra being significantly different from the
observations, and hence having large values of òD, the DNN
results should be interpreted with caution. In the same way,
however, it may be possible to utilize the value of òD as an
identifier of anomalous profiles, sometimes the result of fast-
moving or strongly heated plasma, which would need a more
detailed analysis.
We are planning to adapt our DNN to the FISS observation

database. FISS provides good-quality imaging data and spectra
with a high temporal resolution, which is appropriate for
investigating oscillations, waves, or small flaring events (Yang
et al. 2014; Cho et al. 2016; Kang et al. 2019; Kwak et al.
2020; Chae et al. 2021b). The DNN will allow us to analyze the
huge amount of FISS data much faster than by using MLSI. For
example, in 2013, FISS observed about 7400 scan rasters for
both Hα and Ca II (∼8.8× 108 spectra). It could take 2.5 yr to
obtain the inverted parameters and synthesized spectra using
MLSI, but our DNN reproduced the parameters and synthe-
sized spectra in about a month. We can be much faster in
applying the DNN to FISS observations. Moreover, the
measured model parameters—such as source functions over
position and time, with their high precision—make it possible
to investigate the height and temporal variations of temperature
or radiative losses in the photosphere and chromosphere, which
is important for understanding the heating in the solar
chromosphere. We also note that our DNN could possibly be
applied to other observations or simulations of Hα and Ca II,
for instruments or models covering a similar wavelength range
as FISS, by preprocessing the data set. For instance, by
optimizing their wavelength scales to FISS spectra, we have
been able to apply our DNN to other data sets. The trained
model and code will be added to the FISSPy6 python package

Figure 14. Temporal variations of the Doppler velocity (v0), the temperature of
hydrogen, and the nonthermal velocity at the upper chromosphere of the
network feature in the QR, determined from the DNN and MLSI.

Figure 15. Temporal variation of the Doppler velocity (v0), the temperature of
hydrogen, and the nonthermal velocity at the upper chromosphere of the
superpenumbral fibril in the AR, determined from the DNN and MLSI.

6 http://fiss.snu.ac.kr/fisspy/
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soon. We also plan to provide physical parameter maps from
the DNN, based on MLSI, via the FISS web page.7
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