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ABSTRACT

Background Adaptive CD19-targeted chimeric antigen
receptor (CAR) T-cell transfer has become a promising
treatment for leukemia. Although patient responses

vary across different clinical trials, reliable methods to
dissect and predict patient responses to novel therapies
are currently lacking. Recently, the depiction of patient
responses has been achieved using in silico computational
models, with prediction application being limited.
Methods We established a computational model of CAR
T-cell therapy to recapitulate key cellular mechanisms and
dynamics during treatment with responses of continuous
remission (CR), non-response (NR), and CD19-positive
(CD19%) and CD19-negative (CD19") relapse. Real-time
CAR T-cell and tumor burden data of 209 patients were
collected from clinical studies and standardized with
unified units in bone marrow. Parameter estimation was
conducted using the stochastic approximation expectation
maximization algorithm for nonlinear mixed-effect
modeling.

Results We revealed critical determinants related to
patient responses at remission, resistance, and relapse.
For CR, NR, and CD19" relapse, the overall functionality of
CAR T-cell led to various outcomes, whereas loss of the
CD19* antigen and the bystander killing effect of CAR T-
cells may partly explain the progression of CD19™ relapse.
Furthermore, we predicted patient responses by combining
the peak and accumulated values of CAR T-cells or by
inputting early-stage CAR T-cell dynamics. A clinical trial
simulation using virtual patient cohorts generated based
on real clinical patient datasets was conducted to further
validate the prediction.

Conclusions Our model dissected the mechanism behind
distinct responses of leukemia to CAR T-cell therapy. This
patient-based computational immuno-oncology model can
predict late responses and may be informative in clinical
treatment and management.

INTRODUCTION

By modifying autologous T-cells to express a
chimeric antigen receptor (CAR)-targeting
CD19 antigen on B-cells, anti-CD19 CAR
T-cell therapy has become a promising immu-
notherapy for B-cell acute lymphoblastic
leukemia (B-ALL)."® However, clinical B-ALL
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WHAT IS ALREADY KNOWN ON THIS TOPIC

= Anti-CD19 chimeric antigen receptor (CAR) T-cell
therapy has become a promising treatment for leu-
kemia, but patient responses vary across different
clinical trials, illustrating the need for reliable meth-
ods to dissect and predict patient responses.

WHAT THIS STUDY ADDS

= This study provides a new computational immuno-
oncology model of CAR T-cell therapy to predict
late responses from early-stage clinical data, and
reveals key determinants leading to remission, re-
sistance, and relapse responses.

HOW THIS STUDY MIGHT AFFECT RESEARCH,
PRACTICE OR POLICY

= We provide a precision medicine tool to dissect and
predict leukemia patient responses to CAR T-cell
therapy that may be informative in personalized
clinical treatment and management.

cases have demonstrated stochastic responses
and non-response (NR) to CAR T-cell
therapy.! Continuous/complete remission
(CR) is achieved in 70%-90% of pediatric and
adult patients, whereas long-term studies have
shown that 30%-60% of patients encounter
either CDI19-positive (CD19") or CDI9-
negative (CD197) relapse.” Although various
CAR T-cell products and combinational ther-
apies have been tested in clinical trials to
improve patient response,” ° numerous ques-
tions remain and the need persists to system-
atically understand the causes of the varied
therapeutic responses. Thus, new clinical
models that can predict patient responses to
CAR T-=cell treatment is critical for screening
the most effective treatment protocol for
individual patients.

Recently, computational models, based
on empirical rationales and mathematic
simulations with input of clinical data, have
provided valuable tools for in silico and
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systematical analysis of key biological mechanisms and
patient responses in cancer immunotherapy.7 ® Up-to-
date computational modeling of CAR T-cell therapy
are in the early stages of development, with applica-
tions of model-informed response prediction still being
limited. For example, a multiscale physiological-based,
pharmacokinetic-pharmacodynamic model has been
developed for a quantitative study of the relationship
between CAR-affinity, antigen abundance, tumor cell
depletion, and CAR T-cell expansion using data collected
from xenograft mouse models.” Other approaches have
focused on modeling factors underlying CAR T-cell
dynamics, such as how ecological dynamics that regu-
late CAR T-cells explain expansionlo and exhaustion,!!
signaling-induced cell state variability,'* and CAR T-cell
expansion owing to lymphodepletion and competi-
tive growth between CAR T-cells and normal T-cells."”
Recently, Liu et al developed a model to characterize
clinical CAR T-cell kinetics across response statuses,
patient populations, and tumor types, but only in a
retrospective manner.'* However, these computational
models typically fail to provide a collective analysis
and effective interpretation of clinical trial data from
different clinical studies to reveal the key cellular mech-
anisms underlying the heterogeneous patient outcomes
observed in different clinical trials. Critically, a clinical
data-based prognostic model that can predict patient
responses to CAR T-cell treatment at an early stage is
largely absent.

In this study, we developed a mathematical frame-
work of CAR T-cell therapy structured with a matrix of
ordinary differential equations for a quantitative study
and in silico modeling of key biological mechanisms in
CAR T-cell therapy, such as leukemia cell growth and
apoptosis, CAR T-cell activation, expansion, cytotoxic
efficiency, and CD19 antigen-mediated relapse mecha-
nisms. After calibration and validation with clinical data
from 209 leukemia patients, our computational model
revealed key determinants that depicted the heteroge-
neous clinical responses between the responders, non-
responders, and patients with CD19°/CD19™ relapse.
Clinical trial simulation is used to study the effects of
a therapy in virtual patient cohorts using mathematical
models of physiological systems, which, to some extent,
enlarges sampling for clinical trials and applies a full
range of mechanistic testing."” '° Incorporating this
concept, we performed a clinical trial simulation of CAR
T-cell therapy using virtual patient cohorts generated
based on real clinical patient datasets. It was demon-
strated with the input of early-stage clinical data that
our model successfully predicted the late therapeutic
outcomes of most patients under CAR T-cell treatment,
which may be informative in clinical therapy and lead
to a more customized and targeted treatment with supe-
rior outcomes.

METHODS

Model construction

CD19" B-ALL Cell

It is assumed that the proliferation of CD19" B-ALL cell
subjects to logistic growth,17 and they are eliminated by
activated CAR T-cells as follows:

dnp _ np np
Grom (1= 22)m - ey ()

where n, (P represents positive) is the number of CD19"
B-ALL cells, n is the carrying capacity of B-ALL cells in
the tumor microenvironment, n, is the number of acti-
vated CAR T-cells, and eis their killing rate. The efficacy
of the elimination of B-ALL cells is based on Michaelis-
Menten kinetics with a Michaelis constant, K,, denoting
the saturation effect from B-ALL cells to killing efficacy.
Among the CAR T-cell therapy outcomes, CR is defined
as a decrease in bone marrow tumor burden that remains
below 5%, whereas for NR cases, the tumor burden
increases without control.

CAR T-cell activation

CAR T-cells kill B-ALL cells after being activated by CD19"
B-ALL cells from an initial non-activated status. The
generation of activated CAR T-cell can be expressed as
follows:

dnra _ np np
ar = "TAp K WA + kAR TN — ltanta (2)

where 1, is the growth rate of activated CAR T-cells,
k, is the activation rate from initial non-activated CAR
T-cells, n  is the number of non-activated CAR T-cells,
and [, is the apoptosis rate of activated CAR T-cells. The
growth and activation rates of CAR T-cells are affected by
CD19" B-ALL cells with saturation constants K and K,,
respectively.

Thus, the variation of non-activated CAR T-cell can be
expressed as follows:

d
it = —ha e nTN — iNnTN (3)

where the first term represents the conversion to acti-
vated status, and lTN is the apoptosis rate of non-activated
CAR T-cells.

CD19" and CD19™ relapse
Relapse is defined as the bone marrow tumor burden
increasing above 25% within 2 years after initially
decreasing below 5%.'"® In CD19" relapse, CD19 anti-
gens are still present on the surface of B-ALL cells and
can be detected using flow cytometry; thus, the model of
CD19" relapse can still be described by equations (1)—(3).
However, the response of CD19" relapse is different from
that of CR, and the key mechanism lies in the poor func-
tion (expansion, cytotoxicity, and persistence) of CAR
Tecells." For CD19" relapse patients, CAR T-cell parame-
ters in the model, such as the growth, killing, activation,
and apoptosis rates, should be inferior to those of CR
patients.”

In CD19 relapse, CD19 antigen absent B-ALL cells exist,
causing tumor cells to evade CAR-mediated recognition

Liu L, et al. J Immunother Cancer 2022;10:€005360. doi:10.1136/jitc-2022-005360

1y61IAdoo Ag pajosjold "s|elas saolAIeg [edluyos | Alelqi
1sqog s|ensag ‘AjSIBAIUN YIOA MON Je ZZ0Z ‘8 Jaquieos uo /wod fwq-oyl/:diy woly papeojumoq "gz0z Jequadeq 9 uo 09£G00-2Z0Z-oul/9g L L°0L Se paysiignd jsJy :ieoue) Jayjounwuw)


http://jitc.bmj.com/

and clearance irrespective of CAR T-cell persistence.” The
mechanism of CD19 loss is attributed to immune pres-
sure selection (CD19-negative tumor cells have existed
before CAR T-cell therapy) and CD19 gene mutation (eg,
alternative slicing with loss of exon 2).*' In CD19™ relapse,
although CAR T-cells cannot eliminate CD19™ tumor cells
through antigen recognition, activated CAR T-cells can
mediate tumor lysis against the antigen-negative fraction
in an antigen-independent, cell-cell contact-mediated
manner in the vicinity of the target cells, known as the
bystander killing effect.”* Thus, the variation of CD19”
tumor cells can be expressed as follows:

ddi;\]= ( —%) "N+km"P_é7$7N@”TA (4)

where n, (N represents ‘negative’) is the number of
CDI9 tumor cells, k& _ is the mutation factor causing CD19
loss from CD19" B-ALL cells, k_is the bystander killing
scaling factor to the CD19" killing efficacy, and K is the
saturation constant depicting the effect of bystander
killing on CD19™ B-ALL cells.

Collecting and processing clinical data

Real-time data of CAR T-cells and tumor burden,
including the information of 209 patients, were collected
from clinical studies.?’ 2! For some studies, clinical
data are available on individual patients; however, for
other studies, individual data had been preprocessed
and only statistical values such as medians were provided.
Thus, we referred to one piece of available clinical data
(containing one or several individuals) as a group. The
reliability of the calibration process and the rationality of
the computational model are maintained since statistical
values were regarded as representative individuals. After
summarizing the data in references, we had 32 groups
(14 for CR, 7 for NR, 7 for CD19" relapse, and 4 for CD19"
relapse) including the clinical information of 209 individ-
uals (148 for CR groups, 24 for NR groups, 20 for CD19"
relapse groups, and 17 for CD19™ relapse groups) (online
supplemental tables S1-4). After merging individual data
into groups, we converted data from peripheral blood to
bone marrow and unified the units of B-ALL cells and
CAR T-cells. Details can be found in online supplemental
methods.

Parameter estimation

Parameter estimation at population (based on fixed
effects) and individual (based on random effects) levels
were conducted using the stochastic approximation expec-
tation maximization (SAEM) algorithm for nonlinear
mixed-effect modeling (NLME) using the MonolixSuite
(version 2020R1, Lixoft, France) software. The Monolix-
Suite algorithm ensures repeatability and consistency in
multiple fits. The estimated population level-parameters,
initial values, and individual level-parameters related
to CAR T-cells and tumor cells of different responses
are listed in online supplemental table S5 and S6. We
conducted identifiability analysis to evaluate the reli-
ability of parameter estimation. Structural identifiability

was accessed using the Structural Identifiability Toolbox
(https://maple.cloud/app/6509768948056064)  based
on the SIAN (Structural Identifiability ANalyser) algo-
rithm.*® The outputs indicated that all the parameters are
globally identifiable. Practical identifiability analysis was
based on correlation matrices™ ** obtained from Fisher
information using Monolix. The maximal correlation
coefficients of different parameters are summarized in
online supplemental figure S1. The highest correlation
coefficient was approximately 0.8 (not close to 1), exhib-
iting good identifiability.*®

Generating virtual patient cohorts

We first confirmed that the clinical parameters could be
largely fitted into Gaussian distribution (online supple-
mental figure S2). The parameters of virtual patient
cohorts were thus generated in adherence to Gaussian
distribution with mean value p equaling the population
level-parameters (online supplemental table S5) of CR,
CD19™ relapse, CD19" relapse, and NR patients. The
rationality was confirmed as the mean of the Gaussian
distribution of virtual patients was close to the mean
of the Gaussian distribution of clinical patients (online
supplemental figure S2). The SD was 1/3 y, ensuring the
parameters are larger than 0.

For each population level-parameter of each response,
we generated 400 sets of parameters for CR (online
supplemental table S7), CD19™ relapse (online supple-
mental table S8), CD19" relapse (online supplemental
table S9), and NR (online supplemental table S10),
respectively.

Statistics

Data were first analyzed for normality and then compared
with unpaired Student’s t-test or Welch’s t-test by using
Prism V.8.4.3 (GraphPad). *p<0.05, **p<0.01, and
*##%p<0.001 were considered significant. The results,
including the error bars in the graphs, were provided as
the mean+SE of mean (SEM) or boxplots with whiskers
of min-max values. Details are reported in each figure
caption.

RESULTS

A computational model of CAR T-cell immunotherapy

To construct a computational model of CAR T-cell
therapy that reproduces the pathophysiological processes
and immunological interactions, we framed a matrix of
ordinary differential equations and calibrated the model
as defined in the Methods section. To fit and calibrate
our model, we searched and collected clinical data of
209 B-ALL patients from ten clinical trials of anti-CD19
CAR T-cell therapies and sampled them into 32 groups
(online supplemental tables S1-4). The clinical data were
assigned into different patient cohorts, that is, CR, NR,
CD19" relapse, and CD19 relapse (figure 1), based on
flow cytometry and quantitative PCR (qPCR) monitoring
of CAR T-cells in the blood, as well as morphological
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Figure 1 A schematic showing the key cellular components and their dynamic interactions in the computational CAR T-cell
therapy model. Based on the computational model, four types of responses (bottom panel): CR, NR, CD19" relapse, and CD19~
relapse can be recapitulated with the outputs of dynamics of CAR T-cells and B-ALL cells. CAR, chimeric antigen receptor; B-
ALL, B-cell acute lymphoblastic leukemia; CR, continuous remission; NR, non-response.

testing of leukemia burden in the bone marrow. To mini-
mize the variation across different batches and clinical
trials, we unified and transformed all the clinical data at
a scale equivalent to the bone marrow level. Model fitting
and parameterization processes were provided accord-
ingly. For a dataset including different individuals, SAEM
first fits the data as a group and estimates parameters on
population level (population-level parameters). Random
effect is then adopted to estimate the parameters of
each individual (individual-level parameters) based on
population-level parameters.

We first calibrated the proposed computational model
with clinical data of CAR T-cell and tumor burden of 148
CR patients (online supplemental table S1 and figure S3),
and simulated the dynamic behaviors of CAR T-cells and
tumor cells during the treatment. After being activated
by the CD19" B-ALL cells, CAR T-cells rapidly expanded
and peaked within the first 1-2 weeks, then gradually
decreased after tumor cells were rapidly depleted. The
results showed a strong correlation between clinical statis-
tics and simulation data (figure 2A,B). We found that the
peak value of CAR T-cells during treatment increased as
initial tumor burden increased, which was consistent with
clinical observation (figure 2C). This is largely because of
the rapid in vivo CAR T-cell expansion stimulated by CD19"
tumor cells as verified through the real-time simulation
results with increasing initial tumor burden (figure 2D).
Similar correlation was observed between the peak value
and activation rate of CAR T-cells (figure 2E). Moreover,
the day when the CAR T-cells peaked correlated with the
day when the patients achieved minimal residual disease
(tumor burden <0.01%) (figure 2F).

In parallel, we calibrated the model with clinical data
of 24 NR patients to model the scenario of NR, which
again confirmed its validity (figure 3A,B, online supple-
mental figure S4 and table S2). For instance, significant

differences were reproduced as observed in CR and NR
patients in terms of CAR T-cell and tumor cell dynamics
(figure 3C). In particular, the peak value and AUC28
(area under the curve from days 0 to 28, a common clin-
ical marker to evaluate CAR T-cell expansion and func-
tion) of CAR T-cells in NR patients were less than those
of CAR T-=cells in CR patients at population level. Similar
trends were further confirmed at individual level through
experimental and simulation data (figure 3D,E). Notably,
although the inherent heterogeneity in clinical patient
groups led to several extreme values and caused the
overlap between confidence intervals, the difference of
the absolute magnitudes between the CR and NR groups
was statistically significant. To further understand such
differences, we conducted a sensitivity analysis of popula-
tion level parameters and found that those related to CAR
T-cell functionality, such as growth rate r,,, killing rate e,
activation rate k,, and apoptosis rate [, critically influ-
ence CAR T-cell therapy outcomes (online supplemental
figure S5). Our model indicated that the median values
of these factors significantly differed between CR and NR
patients (figure 3F-I). CAR T-cell in CR patients, but not
those in NR patients, generally have higher growth rate
7., killing rate eand activation rate k, but lower apoptosis
rate [, suggesting an impaired CAR T-cell functionality
in NR patients. These results together demonstrate the
capability of our computational model to recapitulate the
clinical dynamics during CAR T-cell therapy.

In silico modeling reveals distinct CAR T-cell patterns in
CD19* and CD19™ relapse scenarios

In addition to those achieving CR and showing NR, some
patients showed either CD19" or CD19™ relapse after CAR
treatment (6). To understand the heterogeneity between
these two main relapse scenarios, we recalibrated the
model with respective clinical data (figure 4A,B, online
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supplemental figures S6&S7A-C and tables S3&S4). As
illustrated by the individual level-calibration results, our
computational model successfully mimicked the relapse
progress at different days of relapse (figure 4C,D).
Furthermore, we found that correlation exists between
the day of CD19" relapse and AUC28 of CAR Twell
(online supplemental figure S7D), whereas this is not the
case for CD19™ relapse scenario (online supplemental
S7E). To better explain this distinct pattern, we defined
CAR T-cell function factor F, as follows:
Fy = e (5)
to quantitatively describe the overall CAR T-cell func-
tionality consisting of growth, cytotoxicity, and persis-
tence where 7, is the growth rate, eis the killing rate, k,
is the activated rate, and [, is the apoptosis rate of CAR
T-cell. These four parameters included in our differen-
tial equations model depict the four fundamental phys-
iological processes of CAR T-cells. All showed abilities
in differentiating response and NR groups (figure 3F-I)

with high sensitivity to the model (online supplemental
figure SH) and no single parameter could differentiate all
fourscenarios (online supplemental figure S8) , making it
reasonable to combine them and synergistically describe
the functions of CAR T-cells among different responses.
For clarity, all defined factors and prediction methods in
the paper are summarized in online supplemental table
S11. Simulation results demonstrated that the increase
of I extended the day of CD19" relapse (figure 4E), but
not that of CD19™ relapse (online supplemental figure
S7F). Such difference can be partially explained by
the presence of CD19™ B-ALL cells before infusion of
CAR T-cells and the following selective pressure by CAR
T-cells.” In addition, the genetic mutation causing loss
of surface expression of CD19 and the bystander killing
of CAR T-cells may further determined the progression
of CD19™ B-ALL cells.”!  To dissect the CD19™ relapse
scenario, we integrated these two key effects in our
model and defined the negative relapse factor I, as
follows:
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Figure 3 Comparative analysis of CR and NR patients in silico. (A, B) Calibration results of CAR T-cell (A) and tumor burdens
(B) of NR patients with median (solid line) and 95% prediction interval (color bands). The dots represent the experimental data.
(C) Variations of CAR T-cell and tumor burden of CR and NR patients. (D, E) Comparisons of the peak value (D) and AUC28

of CAR T-cell (E) between CR and NR patients. Bars represent simulated results and dots are experimental results. Error bars
represent means with 95% confidence interval. (F-I) The median growth rate of CAR T-cells of CR patients is 1.38 per day,
comparing with 1.02 per day of NR (F); the killing rate is 24.25 per day vs 8.03 per day (G); the activation rate is 0.70day per day
vs 0.32 per day (H); and the apoptosis rate is 0.12 per day vs 0.26 per day (). Whiskers of boxplots represent min-max values.

P values were calculated using Student’s t-test or Welch’s t-tests. *p<0.05, **p<0.01. CAR, chimeric antigen receptor; CR,
continuous remission; NR, non-response; AUC28, area under the curve from day 0 to 28.

FNegR = kmhp (6)

where k_is the mutation factor considering the rate of
gene mutation like alternative slicing with loss of exon
2 and the probability of lineage switch, and k_ is the
bystander killing scaling factor depicting the killing effi-
cacy of CAR T to CD19™ tumor cells comparing with to
CD19" tumor cells. Both parameters are positively related
to the progression of CD19™ relapse according to their
definitions in equation 4. As a result, FNegR demonstrated a
high correlation with the day of CD19" relapse, confirming
its validity in depicting the mechanism of CD19™ relapse
(figure 4F). Collectively, our results reveal a distinct
pattern of relapse across the CD19" and CD19™ scenarios.
Key determinants underlie heterogeneous responses to CAR
T-cell therapy
To understand the key factors determining the heteroge-
neous responses to CAR T-cell therapy, we systematically

and comparatively analyzed the clinical data, including
the initial tumor burden and peak value of CAR T-cell in
CR, NR, CD19" relapse, and CD19™ relapse patients after
CAR T-cell therapy. No significant difference (p=>0.398)
was observed in initial tumor burden among patients with
different responses (online supplemental figure S9A),
suggesting that using initial tumor burden alone cannot
determine CAR T-cell response. Next, we calculated the
peak value and AUC28 of CAR T-cells for the four types
of responses at the population level and found that CR
and CDI19 relapse patients demonstrated higher values
than did CD19" relapse patients, whereas NR patients
exhibited minimum values (figure bA). We then tuned
the values of the individual parameters (r,,, ¢ k,, and [,)
of CAR T-cell function factor F, in silico and found that,
as expected, the F, parameter regulated the therapeutic
effect of CAR T-wcell treatment (online supplemental
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Figure 4 Comparative analysis of CD19* and CD19 relapse to CAR T-cell therapy in silico. (A, B) Calibration results of CAR
T-cells of CD19" (A) and CD19™ (B) relapse with median (solid line) and 95% prediction interval (color bands). (C, D) Individual
fitting results of tumor burden of CD19* (C) and CD19™ (D) relapse. In (A-D), the dots represent the experimental data and the
lines represent the fitted curves. (E) Variation of the day of CD19" relapse as CAR T-cell function factor F, changes. (F) Variation
of the day of CD19™ relapse as negative relapse factor FNegR changes. The band in (E, F) represents the 95% confidence interval.

CAR, chimeric antigen receptor.

figure S9B,C). These results collectively indicated the
potential of F_ in differentiating these outcomes, such
as CR, CD19" relapse and NR after CAR T-cell therapy,
although this was not the case for CDI9 relapse
(figure 5B). Furthermore, we scaled the population-level
calibrated parameters in I, of different responses (+25%
for CR, +10% for CD19" relapse, and 5% for NR), which
again confirmed the usefulness of £ (figure 5C). Based
on the clinical response and the distribution of F, of
patients (figure 5B), the probability distribution of F, of
different responses were fitted with the MATLAB Distri-
bution Fitter Toolbox (online supplemental figure S9D).
According to the probability distribution, the occurrence
probabilities of CR, CD19* relapse, and NR at certain £,
that is, P, (F,) can be determined as follows:

Pi (FT) = z[:)l(br) ﬁ](FT) P

~CR, CD19%, NR

(i=CR,CDI9",NR) 7,

where p is the probability distribution of different
responses (online supplemental figure S9C). We found
that as F, increased, the most likely response to CAR
T-cell therapy changed from NR to CD19" relapse, and

further to CR (figure 5D). In addition, the distribution of
scaled F, (figure 5C) fell into the range of corresponding
response (figure 5D). Similarly, as F cannot determine
the characteristics of CD19™ relapse, we found instead
that Far determined the efficacy of CAR T-cell therapy
in the scenario of CD19" relapse (figure 5E) and in silico
experiments of changing £ . (by scaling k and k)
confirmed such observation (figure 5F). Collectively, our
model helped to identify critical determinants underlie
heterogeneous responses to CAR T-cell therapy.

In silico prediction of late response at early stage of CAR
T-cell treatment

Prediction of the late response of patients to CAR T-cell
therapy during early treatment stage will greatly improve
patient outcomes by guiding the treatment regimen that
follows, especially for patients with acute disease progres-
sion.”® Having demonstrated that our computational
model accurately recapitulated the cellular dynamics of
CAR T-cell therapy, we found that the response can be
differentiated by the actual function level and dynamics of
CAR T-cells in individual patients. Thus, we hypothesized

Liu L, et al. J Immunother Cancer 2022;10:005360. doi:10.1136/jitc-2022-005360
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Figure 5 Key determinants in regulating CAR T-cell therapy response. (A) Comparisons of the peak value and AUC28 of CAR
T-cells, and (B) CAR T-cell function factors F. across patients of different responses. Error bars in B represent mean+SE of mean
(SEM). (C) Variations of tumor burden as F. changes. (D) Variation of the response probability as F, changes (left y-axis) and
tumor burden under £ in (C) (right y-axis). For a specific F., the response probabilities of different responses are represented

by different colors (blue for NR, red for CD19* relapse, and orange for CR) on the direction of y-axis; the sum of the response
probabilities is 100%. As £ changes, areas with different colors are generated. (E) Variations of CD19™ tumor burden as the
bystander scaling factor k, and mutation factor k  change. (F) Variations of CD19™ tumor burden as the negative relapse

factor F_ .

changes. P values were calculated using Welch’s t-test. *p<0.05, ***p<0.001. CAR, chimeric antigen receptor; CR,

continuous remission; NR, non-response; AUC28: area under the curve from days 0 to 28.

that such responses can be predicted using our compu-
tational immuno-oncology model with input of clinically
measurable and available patient information related to
CAR T-=cell dynamics, such as the peak value and AUC7
(area under the curve from days 0 to 7) of CAR T-cells, at
the early stage of CAR T-cell treatment.

We first mapped the real-time results of the four typical
patient groups with different responses (figure 6A).
Unexpectedly, neither the peak value nor the AUC7
index alone demonstrated statistical differences among
different groups, implicating that a single parameter is
not proficient for clinical prediction (online supple-
mental figure S10). Thus, we considered combining these
two indices and defined the prediction factor £, as follows:

Fo = logs (mpeak X mavcy ) (8)

where n .. is the peak value of CAR T-cell and N
is its AUCY value. For different responses, we calculated

F, based on calibrated results of individual patients and

found that F, showed statistical significance across the CR,
NR, and CD19" relapse groups (figure 6B). The results
showed that early-stage CAR T-cell dynamics of CR and
CD19" relapse within the first month were similar in terms
of the peak value, AUC7 of CAR T-cells, and F, comparing
with NR and CD19" relapse. Considering the similarity of
CAR T-cell dynamics at the early stage between CR and
CD19 relapse, these two response groups were combined
at this stage of the prediction and referred to as the
CR&CDI19 relapse response.

To further validate the prediction ability of F,, for
CR&CDI19 relapse, we selected seven patients to calibrate
the relationship between F, and the response, and four
(two CR and two CD19" relapse) for prediction; for NR
and CD19" relapse, we selected five patients for calibra-
tion and two for prediction. The probability distributions
of F, of different responses were fitted using the MATLAB
Distribution Fitter Toolbox (figure 6C). Based on the
probability distribution, the occurrence probabilities of
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Figure 6 Prediction of CAR T-cell therapy response based on the peak value and AUC7 of CAR T-cells. (A) Variations of
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CD19" relapse, and group 1 of NR). (B) Comparisons of the response prediction factor F. Error bars represent mean+SEM.
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orange for CR&CD19™ relapse) on the direction of y-axis; the sum of the response probabilities is 100%. As F. changes, areas
with different colors are generated. The blue, red, brown, and orange dots represent experimental results of NR, CD19" relapse,
CD19™ relapse and CR patients, respectively, to validate prediction ability. P values were calculated using Student’s t-est or
Welch’s t-test. *p<0.05, **p<0.01. CAR, chimeric antigen receptor; CR, continuous remission; NR, non-response; AUC7: area

under the curve from days 0 to 7.

each response at certain F,, that is, P, (k,) was be deter-
mined as follows:

P; (FP) = gl (7)

i) |

~CR& CD19-, CD19+, NR

)

where p is the probability distribution of different
responses. We found that as F;, increased, the most likely
response to CAR T-cell therapy changed from NR to CD19"
relapse, and then to CR&CD19" relapse (figure 6D). The
F, of each patient was calculated for prediction and the
corresponding probabilities of different responses can be
determined (figure 6D). The F, of the two NR patients
was 15.4 and 7.7 and the predicted probabilities of NR
were 26.7% and 76.7%; the F, of the two CD19" relapse
patients was 14.6 and 15.5 and the predicted probabili-
ties of CD19" relapse were 53.3% and 55.3%; the F, of
the two CD19™ relapse patients was 18.1 and 19.3 and the
predicted probabilities of CR&CD19™ relapse were 46.3%
and 68.9%; and the F, of the two CR patients was 21.9
and 23.2 and the predicted probabilities of CR&CDI19"
relapse were 97.2% and 99.5%.

Because F, prediction depended on the peak value of
CAR T-cells, which requires clinical monitoring of patients
up to 2 weeks, we aimed to predict patient outcomes with
only input of the first 7-day clinical data of CAR T-cell

i= CR& CD19", CD19*, NR)

dynamics and the initial tumor burden of a patient. We
then calibrated the computational model based on the
early-stage CAR T-cell dynamics (equations 1-3) and
obtained the subsequent time-series results of CAR T-cell
and tumor cells (figure 7A-C). To validate the feasibility
of the proposed method, we first tested one representa-
tive patient for different response group and found that
the responses of clinical patient cohort can be correctly
predicted (figure 7A-C).

To test the accuracy of our prediction method on a
larger scale with higher reliability, we generated clinical-
derived virtual patient cohorts for a clinical trial simula-
tion to complement the present clinical data which is of
small quantity and density. In general, 400 sets of virtual
patient data points for CR, CD19™ relapse, CD19" relapse,
and NR cohorts were generated separately (online supple-
mental tables S7-10), based on Gaussian distribution of
the population level parameters calibrated from present
clinical patient cohort data (online supplemental table
S5). To validate the applicability of those virtual patient
cohorts, we first compared the peak values (figure 7D)
and AUC28 (figure 7E) of CAR T-cells between virtual
and clinical patient cohorts of different responses
(figure 5A). The results showed good consistency in both
absolute and relative values, indicating the quantity and
quality of virtual patient cohorts matched those of the

Liu L, et al. J Immunother Cancer 2022;10:005360. doi:10.1136/jitc-2022-005360
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Figure 7 Prediction of patient responses to CAR T-cell therapy based on the CAR T-cell dynamics within first 7 days of
treatment. (A—C) Prediction results based on clinical of CR (A), CD19* relapse (B), and NR (C) of clinical patients. The minor
graph in B shows CAR T-cell dynamics observed and predicted in the first 7 days in a smaller y-axis scale for better display.

(D) Median peak value and (E) AUC28 of CAR T-cells of virtual cohort patients and comparisons with clinical cohort patient data.
(F) CAR T-cell function factors of virtual patients and comparisons with clinical data. No significant differences between virtual
and clinical patients of the same response, and between CR and CD19 relapse patients were observed. Whiskers of boxplots
represent min-max value. (G-l) Real-time prediction results based on virtual patient cohorts. The prediction method was used
for the CR (G), CD19" relapse (H), and NR (I) of CAR T-cell therapy, as observed. (J) Overall prediction accuracy (74.38%).

(K) Prediction accuracy of different responses: 65.63% for CR and CD19" relapse, 75.50% for CD19" relapse, and 90.75% for
NR. (L) Threshold values of initial CD19™ tumor burden to induce CD19™ relapse. Dotted lines indicate the values of initial CD19~
tumor burden with the occurrence probability (25, 50, and 75%) of CD19™ relapse obtained from population level statistics.
P-values were calculated using Student’s t-test or Welch'’s t-test. ***p<0.001. CAR, chimeric antigen receptor; CR, continuous
remission; NR, non-response; AUC28: area under the curve from days 0 to 28.

clinical patients. We further calculated F, of virtual patient
cohorts and found no significant differences between
clinical patient cohorts and virtual patient cohorts
(figure 7F), again confirming the usability of virtual
patient cohorts. As a result, our clinical trial simulation

with virtual patient cohorts successfully reproduced real-
time results of corresponding clinical patient cohorts and
predicted patient responses (figure 7G-I, online supple-
mental figure S11-14). Overall, our prediction method
reached a prediction accuracy of 74.38% for a total of
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1600 virtual patients with respective prediction accuracy
of 65.63% (525/800) for CR&CDI19™ relapse, 75.50%
(302/400) for CD19" relapse, and 90.75% (363,/400) for
NR (figure 7],K). For CR and CD19" relapse, CAR T-cell
dynamics at early stage are similar; thus, their responses
were combined as CR&CD19™ relapse (figure 7A, online
supplemental figure S15). The high prediction accuracy
of NR can be partially explained by the lower differences
between the predicted and observed values of F, and AF,
(online supplemental figure S16).

To better understand the effect of clinical observation
endpoint on the accuracy of our prediction method, we
further generated the receiver operator characteristics
(ROCQ) of different responses at various clinical timepoints
(online supplemental methods and tables S12-14). The
analysis suggested that as clinical observation extended,
the sensitivity of prediction for CR&CDI19 relapse
decreased slightly and specificity increased, whereas the
opposite occurred for CD19" relapse. For NR, the predic-
tion results were stable as the clinical endpoint increased.
Unlike CD19" relapse, CR&CD19™ relapse, and CR that
had a similar early response, the unique dynamics of NR
led to steady sensitivity and specificity in ROC.

To further differentiating CR and CDI19  relapse
patients in the group of CR&CDI19™ relapse response, we
selected the initial CD19™ tumor burden n as an index
to predict the occurrence of CD19™ relapse (equation 4).
Parameters designated to the model were based on the
calibration of CR and CD19™ relapse response combining
with parameters related to CD19™ relapse (online supple-
mental table S5). Based on the model including equation
of CD19 relapse, the response varies from CR to CD19"
relapse by increasing the initial CD19™ tumor burden;
therefore, its threshold value n . of each individual and
population-level results with certain occurrence prob-
abilities to induce CD19" relapse could be determined
(figure 7L, online supplemental figure S17). These results
together confirm the prediction power of our computa-
tional CAR T-cell immuno-oncology model, which can
provide guidance for clinical treatment and regimen.

DISCUSSION

Computational models of immunotherapy provide a valu-
able tool for in silico clinical modeling and patient strat-
ification.” ® In this study, we constructed a mathematical
model of the critical leukemia-immune interactions with
clinical dataset, determined key factors effecting treat-
ment efficacy, and predicted patient response to CAR
T-cell therapy with early-stage CAR T-cell dynamics data.
We systematically explored dynamic interactions between
B-ALL and CAR T-cells and found that CAR T-cell func-
tion index F, inferred patient outcomes ranging from
CR, NR, to CDI19" relapse. Contrastingly, a negative
relapse index I{ ., including the mutation rate and the
bystander killing rate to CD19™ B-ALL cells, determined
the probability and day of relapse for CD19™ relapse cases.
Through the application of our computational model, we

were able to define the prediction factor F, using early-
stage CAR T-cell expansion data including the peak and
AUCT7 values of adoptively transferred CAR T-cells. By
introducing £, and £ ., our model realized to systemat-
ically characterize heterogeneous responses and dissect
underlying mechanisms, positioning it as a clinically rele-
vant, translationally innovative tool that impacts decision
making. With our modeling approach, we were able to
effectively predict CAR T-cell treatment outcomes for
individual patients.

Most other data evaluation models rely on end-point
data, often coinciding with, or even after, clinical
outcomes. Importantly, our model predicted prognosis
at early time points following infusion. Most current
methods rely on the detection of certain prognostic
biomarkers, for example, inducible COStimulator,
CD27'PD-1-CD8'T cell population, lactate dehydroge-
nase, and C reactive p]rotein.37 39-41 However, current
biomarkers fail to accurately predict the prognosis of
patients who underwent CAR T-cell therapy before clin-
ical endpoints are reached. With input of quantitative
data available at early stage of treatment like the initial
tumor burden, the peak value and first 7-day data of
CAR T-cell, our prediction method provides insight into
the actual bioactivity and functional competence of CAR
T-cells soon after infusion. All these quantities used in
our prediction method can be obtained from clinical
practice by reliably measure sampling the bone marrow
tissue and blood of patients, positioning it as a clinically
relevant, translationally innovative tool that impacts
decision making. Identifying contexts where CAR
T-cells are performing suboptimally may permit person-
alized treatment and management, that is, inclusion
of targeted biologics or checkpoint inhibitors to limit
disease progression and amplify the overall immune
response accordingly. In addition, because the model
profiles the whole dynamics of disease progression like
the date of reaching peak tumor burden, the estimated
timetable will assist clinicians to design and adjust their
treatment regimens accordingly. Based on the predicted
long-term CAR T-cell dynamics, tumor burden progres-
sion and treatment outcome, for patients with inferior
responses (NR or relapse), further treatment such as
allogeneic hematopoietic stem cell transplantation
therapy,* or a second-dose CAR T-cell infusion*® can
be considered and prepared in advance for the relapse
or refractory patients after the first CAR T-cell therapy.

As our computational immune-oncology model
involves multiple parameters in several ordinary differ-
ential equations to synthetically depicts the fundamental
physiological processes during CAR T-cell therapy, a
proper parameter estimation based on measured clin-
ical data is an important step toward building up an
accurate and reliable prediction model. In study, we
conducted parameter estimation using standard NLME
which is a particularly useful approach in settings where
there are multiple parameter measurements involved.
This parameter estimation took consideration of both
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systematic and random effects, ensuring repeatability
and consistency of the fitting results and thus reliability
and reproductivity of the model. A larger dataset and
more reasonable range of parameter supported by clin-
ical literatures will further improve the credibility of
parameter estimation.

The accuracy and reliability of the prognostic model
highly depend on the quantity and quality of clin-
ical data to establish and calibrate it. Computational
models usually adopt clinical data from different liter-
atures acquired by different measuring methods (eg
flow cytometry, qPCR, and morphological testing) of
different biopsies took from different tissue samples
(for example, saliva, peripheral blood, and bone
marrow). These datasets are associated with large vari-
ance, making it difficult for model fitting using a single
set of parameters that would work for all patients under
different treatment conditions. Thus, unifying the data
from different sources and formats before fitting in
silico models is particularly important. Accordingly, we
built up a unifying code to interpret the relationship
between clinical data with different units coming from
different body parts with assumptions'® and data.*” This
unifying process of clinical data highlights a novel way
to accurately recapitulate the patient/clinical process,
which previous strategies are limited to offer. More-
over, the current model tried to fully use clinical data
obtained from different trials with a uniform and
reasonable standard, but it can be improved with more
considerations of interpatient variability. For example,
lymphodepletion pretreatment seems to affect CAR
T-cell expansion** and second-generation CAR T-cell
products with CD28 or 4-1BB costimulatory domains
exhibit differences in magnitude and persistence,®
although both showed well treatment efficacy to B-ALL.
Future extension of the computational model including
these factors will develop its potential in exploring new
insights.

Critically, limited availability of clinical data prevents
large-scale validation of computational models including
ours. We, therefore, conducted clinical trial simulation
studies expanding the patient cohorts from 209 to 1600
individuals. The generation of virtual patient cohorts was
based on calibration results of clinical patient cohorts,
and the similarity of these two cohorts was carefully
confirmed, both ensuring the credibility of clinical trial
simulations. The proposed methods to unify and expand
clinical data have been proven to be practical and feasible,
but it has to be admitted that original clinical data with
large amount and uniformed standard are optimal,*®
necessitating collaboration with clinicians on designing
the scheme of data collection before the start of clinical
trials for a better validation and translation of the model.

Relapse scenarios, which were less discussed in current
computational models, were included in our model.
Our simulation results demonstrated a prediction of the
prognosis of CD19" relapse based on early-stage CAR
T-cell dynamics data, but not that of CDI9 relapse.

The clinical responses of CD19™ relapse patients were
found very similar to CR patients at the early stage of
CAR T-cell treatment. In our model, the index of initial
CD19" tumor burden demonstrated a good potential in
predicting CD19™ relapse. However, such index of CD19"
tumor burden is not currently measured clinically, which
if available could provide more sufficient information to
calibrate our model for real-world clinical prediction. In
addition, CD19" relapse-related clinical data of larger
quantity and more types for different responses will
enable a global model unifying all four responses together
and contribute to a deeper insight into distinct responses
and a better accuracy of prediction. Although it is clear
that presence of CD19™ tumor cell population caused the
CD19" relapse’” and our model identified the potential
threshold of the CD19™ cell population for CD19™ relapse,
the mechanisms causing the loss of surface expression of
CD19 remain poorly understood. Thus, more insightful
studies about the mechanism of CD19™ relapse will also
enable us to include more factors in the model with
improved knowledge to achieve a better description and
prediction of CD19™ relapse. At the present stage, the
prediction of relapse of the model is mainly qualitative,
providing the clinicians with a dichotomous answer. In
the future, by introducing more kinds of clinical data
and improving the structure of the model, an enhanced
model capable of quantitively predicting the date of
relapse is promising.

In addition to the direct interactions between CAR
T-cell and B-ALL cell, microenvironmental cues, for
example, immune cells like myeloid-derived suppressor
cells, regulatory T-cells and tumor-associated macro-
phages, and their secreted immunosuppressive cyto-
kines in the bone marrow, may explain the distinct
functionalities of CAR T-cell for patients with different
response rates.”® As demonstrated by our recent
studies,” an in silico model of the heterogeneous
tumor microenvironments would be particularly valu-
able for dissecting and screening of immunotherapies.
Incorporation of these immune cell components into
our computational immuno-oncology model may help
dissecting out these immunological mechanics involved
in the tumor microenvironment affecting treatment
outcomes, although it is currently impractical owing
to highly limited clinical data. Computational models
were also applied to study cytokine release syndrome
(CRS), an adverse side effect elicited by CAR T-cell
therapy.” > However, most of existing CRS models lack
clinical data and failed to dissect actual cellular factors
affecting the severity of CRS and corresponding treat-
ments. We believe that modeling of cytokines with our
computational CAR T-cell therapy model would help to
determine the biological mechanisms and the risk to
develop severer CRS and their potential relationships
with the varied therapeutic outcomes.

In conclusion, we have established a computational
immuno-oncology model of CAR T-cell therapy by reca-
pitulating key cellular dynamics observed in clinical
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trials, revealed key determinants of treatment efficacy,
and predicted patient outcomes with early-stage clin-
ical data. We believe that this patient-based computa-
tional platform can serve as precision medicine tool to
aid clinicians with quantitative and reliable prognosis
in early-stage of CAR T-cell therapy, thus contributing
to personized treatment of leukemia patients with opti-
mized clinical outcomes.
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SUPPLEMENTARY METHODS

Clinical data digitzation

For clinical trials that did not disclose raw data, the clinical data were digitized by
WebPlotDigitizer (https://automeris.io/WebPlotDigitizer) from published figures of these clinical
studies.

Converting data from peripheral blood to bone marrow

The computational model dissects the cellular behaviors in the B-ALL bone marrow during CAR
T-cell therapy. However, samples are often collected in peripheral blood clinically (e.g., CAR T-
cell). So, such data need to be converted into their equivalent values in bone marrow. For data
acquired in peripheral blood, it is assumed that the average volume of blood sample is 5 mL and
there are 5000 mL bloods in human body'. So the number of cells in the whole peripheral blood
can be calculated. After that, it is assumed that comparing with bone marrow, about 1% cells are
in peripheral blood?. Thus, the number of cells in bone marrow can be obtained.

Unifying the units of B-ALL cells
In most clinical studies, the unit of B-ALL cells is tumor burden (%). However, the proposed CAR
T-cell therapy model is cellular-based, so for computational processes like calibration and
simulation, the unit of B-ALL cells need to be converted into number of B-ALL cells. We got the
clinical pre-treatment tumor burdens (Table 1 of ref. 3) and absolute numbers of B-ALL cells
(Figure 1G of ref. *) of MRD" patients, and their relationship was determined after fitting
(Supplement Figure S18). The expression of the fitted results is

Tumor burden (%)

97.19—Tumor burden (%)

It is noted that although the unit of B-ALL cells were converted into absolute numbers for
computation, the unit was converted back into tumor burden (%) for presentation in our paper to
make it more understandable and compliant with clinical custom.

B-ALL cell number (x 10° cells) =1909 x (1)

Unifying the units and scaling of CAR T-cells

Like B-ALL cells, the units of CAR T-cell were all converted into number of CAR T-cells (x10%)
for computation. Clinically the amount of CAR T-cell are often measured by quantitative PCR
(qPCR) (normally in the unit of copies CAR/ug DNA) in peripheral blood. From Figure 1F of ref.
3, we obtained the qPCR values and corresponding absolute numbers of CAR T-cell of MRD"
patients. Considering the samples of these two measurement methods were of different numbers
(n=14 for gPCR values and n=11 for absolute numbers) in ref. *, we got the median of these two
values and determined their relationship as

CAR-T cell number (x 10° cells) =0.10205x qPCR values (copies/ug DNA) )

Comparing to CR patients and NR patients, clinical data of CAR T-cell of CD19" and CD19
relapse is relatively lack in clinical studies, thus requiring more process.

According to current clinical researches, CD19" relapse is associated with loss of CAR T-cell
function. In contrast, CD19" relapse occurs despite CAR T-cell functional persistence and they are
likely to be independent of CAR T-cell parameters per se*. For CD19" relapse patients, the function
of CAR T-cell is between CR and NR patients; and for CD19" relapse patients, the function of
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CAR T-cell is similar to CR patients®. So it is reasonably assumed that the values of CAR T-cell
of CD19" relapse patients is between CR and NR patients, of CD19 relapse patients is close to CR
patients. In this paper, based on the above assumption, we scaled the limited amount of data of
CAR T-cell for CD19" and CD19 relapse. With the support of biological and clinical studies, the
reliability of the computational model is maintained although with scaling, especially for
comparisons and analysis inside CD19" or CD19" relapse patient groups.

Generation of receiver operator characteristics (ROC)

Predictions with clinical endpoints of 50, 100, 150, 200, 250 and 300 days for different responses
were analyzed. Correct and incorrect predictions for each response were summarized in Table
S12-14. For a specific response A, sensitivity of A was defined as the ratio between the correctly
predicted cases and all real cases of response A (true positive rate); specificity of A was defined
as the ratio between all real cases of other responses not incorrectly predicted to be A and all real
cases of other responses (true negative rate).
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Table S1. Merged clinical data of CR patient groups from individuals
Group Reference Number of individuals Statistical value
1 3 45 LOESS (local polynomial regression) curve fitting
2 3 14 First quartile
3 3 14 Second quartile
4 3 14 Third quartile
5 6 59 Median & geometric mean
6 7 1 Original (Patient 1)
7 8 8 Mean
8 0 1 Original (No. MSK-ALLO5)
9 10 4 BM M1 status (<5%)
10 10 4 BM M2 status (5-25%)
11 10 9 BM M3 status (>25%)
12 1 1 Original (No. MSK-ALL13)
13 1 1 Original (No. MSK-ALL14)
14 1 1 Original (No. MSK-ALL13)
Total 148

Table S2. Merged clinical data of NR patient groups from individuals

Group

Reference

Number of individuals

Statistical value

1

AN N W

~

Total

— = == O\ O\ OO

24

LOESS (local polynomial regression) curve fitting
Mean

Median & geometric mean

Original (Patient 4)

Original (Patient 5)

Original (Patient 8)

Original (Patient 9)

Table S3. Merged clinical data of CD19" relapse patient groups from individuals

Group

Reference

Number of individuals

Statistical value

1

NN B W

3

Total

14

g —y

20

LOESS (local polynomial regression) curve fitting
Original (No. MSK-ALL04)

Original (Patient 1)

Original (Patient 2)

Original (Patient 3)

Original (Patient 6)

Original (Patient 7)
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Table S4. Merged clinical data of CD19" relapse patient groups from individuals

Group Reference Number of individuals Statistical value
1 5 14 LOESS (local polynomial regression) curve fitting
2 7 1 Original (Patient 2)
3 13 1 Original (Case 1)
4 13 1 Original (Case 2)
Total 17

Table S5. Estimated parameters and initial values of CAR T-cell and B-ALL cell.

T "
Parameter Description Unit CR* NR* CD19 CDI19 References*
relapse relapse
rp Growth rate of CD19* Day! 0.069 0.080 0.21 0.071 14,15
B-ALL cell
FTA Growth rate of activated  Day! 1.62 0.99 0.99 1.5 16,17
CAR T-cell
I7a Apoptosis rate of Day! 0.12 0.55 0.12 0.11 18,19
activated CAR T-cell
I Apoptosis rate of non- Day! 3e-5 9.2e-4 6e-7 2e-7
activated CAR T-cell
ne B-ALL cell carrying 2939.1  6101.58 198774  2585.74
capacity
e Killing rate of activated ~ Day’! 22.72 6.58 20.31 19.34 20
CAR T-cell
Kp Saturation constant to 5891.5 7067.07 1050.19  11040.05
CAR -T cell killing rate
K, Saturation constant to 637.64  3431.65 1983.64 1360.54
CAR T-cell growth rate
Ka Saturation constant to 1808.0 0.0052 54.68 11883.73
CAR T-cell activation
rate
ka Activation rate of CAR  Day! 0.65 0.31 0.44 0.58
T-cell
™ Growth rate of CD19 Day! / / / 0.1 1415
B-ALL cell
kim Mutation factor Day! / / / 1.5e-7 2
ko Bystander killing / / / 7.9
scaling factor
Kn Saturation rate of CD19" / / / 16956.03
B-ALL cell to killing
efficacy
npo Initial value of CD19* x10%cells  2200.24 589.676 1764.25  1467.01
B-ALL cell
nNo Initial value of CD19" x10% cells  / / / 19.89 Assumed
B-ALL cell (1%)
1TNO Initial value of non- x10% cells  16.5 71.45 12.26 8.97

activated CAR T-cell

*CR represents continuous remission and NR represents non-response. References determined the
rational ranges of estimated parameters.
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Table S6. Statistics on conditional mode results of individual parameters estimation*.

Parameter CR NR CD19" relapse CD19 relapse

rp [0.069,0.069,0.069] [0.07,0.078,0.21] [0.15,0.22,0.27] [0.069,0.07,0.092]

rTA [1.21,1,38,2.21] [0.44,1.02,1.17] [0.91,0.96.1.1] [1.08,1.3,2.09]

Ita [0.071,0.12,0.21] [0.15,0.26,0.69] [0.049,0.081.0.36] [0.076,0.13,0.19]

N [2.5,4,7.8]e-4 [5.8,6.6,10]e-4 [3.9,5.8,9.4]e-7 [1.7,2,2.2]e-7

ne [1403.05,2833.12,4 [2690.5,3843.07,14  [19706.88,21664.53,2 [1681.06,2367.29,3820.
072.08] 006.6] 2637.22] 27]

e [21.71,24.24,24.76] [4.72,8.03,12.1] [18.77,21.1,22.82] [19.11,19.51,20.43]

Kp [1850.32,4367.9,20  [4157.06,6685.71,1 [937.02,1134.81,1171 [7128.09,12251.18,1716
914.82] 2661.59] ] 0.35]

K, [616.46,1149.68,25 [5017.34,10615.72, [1937.37,2083.69,215 [1047.84,1568.77,1831.
44.72] 13671.44] 5.62] 17]

Ka [317.39,5867.41,49 [2.1,5.9,9.3]e-3 [27.1,83.22,121.31] [5639.54,16636.98,2471
884.25] 6.1]

ka [0.54,0.68,0.74] [0.27,0.32,0.36] [0.32,0.5,0.52] [0.44,0.64,0.88]

N / / / [0.097,0.11,0.12]

km / / / [1.5,1.6,1.8]e-7

ko / / / [2.89,5.25,11.58]

Kn / / / [16393.81,17188.49,205

87.67]
TITNO [6.04,18.69,22.92] [6.64,96.66,98.83] [3.82,9.04,17.16] [6.2,9.54,23.98]

*Numbers in brackets indicate quartile 1 (Q1), median, and quartile 3 (Q3) of individual
parameters estimation. npo and nno in Table S5 are initial values therefore not shown here.

Table S7. Parameters of virtual patients of CR.
(See Sheet 1 of Supplementary Table S7—10.xIsx)

Table S8. Parameters of virtual patients of CD19" relapse.
(See Sheet 2 of Supplementary Table S7-10.x1sx)

Table S9. Parameters of virtual patients of CD19* relapse.
(See Sheet 3 of Supplementary Table S7-10.x1sx)

Table S10. Parameters of virtual patients of NR.
(See Sheet 4 of Supplementary Table S7-10.x1sx)

Table S11. Summary of defined factors and prediction methods.

Factors/methods Definition Applied to
Fr CAR T cell function Evaluate the overall functionality of CAR T-cell to dissect
factor the underline mechanisms of CR, NR and CDI19" relapse
scenarios
Fegr Negative relapse factor ~ Characterize CD19" relapse scenario by combining two key
factors: genetic mutation and bystander killing effect
Fp Prediction factor Predict responses by combining peak value and AUC7 value

of CAR T-cell
Prediction based on Calibrating the model Predict responses based on the early-stage CAR T-cell
dynamics with first 7-day clinical dynamics
data of CAR T-cell and
initial tumor burden
1IN0, INOT Initial CD19" tumor Further differentiate CR and CD19" relapse patients during
burden and threshold prediction
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Table S12. Receiver operator characteristics (ROC) of CR&CD19" relapse prediction at

different clinical observation endpoints.
Clinical endpoint (day) 50 100 150 200 250 300
Correctly predicted to be 797 792 726 682 577 525
CR&CD19 relapse (people)
Incorrectly predicted to be 0 5 71 115 220 272
CD19" relapse (people)
In correctly predicted to be 3 3 3 3 3 3
NR (people)
Prediction sensitivity 0.996 0.990 0.908 0.853 0.721 0.656
Prediction specificity 0.475 0.476 0.579 0.681 0.811 0.880
Table S13. ROC of CD19" relapse prediction at different clinical observation endpoints.
Clinical endpoint (day) 50 100 150 200 250 300
Correctly predicted to be CD19" | 0 18 92 161 251 302
relapse (people)
Incorrectly predicted to be 393 375 301 232 142 91
CR&CD19 relapse (people)
Incorrectly predicted to be NR 7 7 7 7 7 7
(people)
Prediction sensitivity 0.000 0.045 0.230 0.403 0.628 0.755
Prediction specificity 1.000 0.993 0.932 0.890 0.797 0.747

Table S14. ROC of NR prediction at different clinical observation endpoints.

Clinical endpoint (day) 50 100 150 200 250 300
Correctly predicted to be NR 373 353 353 360 367 363
(people)

Incorrectly predicted to be 27 44 36 23 9 5
CR&CD19 relapse (people)

Incorrectly predicted to be 0 3 11 17 24 32
CD19" relapse (people)

Prediction sensitivity 0.933 0.883 0.883 0.900 0.918 0.908
Prediction specificity 0.992 0.992 0.992 0.992 0.992 0.992
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SUPPLEMENTARY FIGURES
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Figure S1. Maximal correlation coefficients of different parameters.
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Figure S2. Distribution of key clinical parameters. The growth rate (A), killing rate (B),
activation rate (C), and apoptosis rate (D) of CAR T-cells among CR, CD19" relapse, CD19"
relapse and NR patient groups are largely fitted into a Gaussian distribution. The mean of the
Gaussian distribution of clinical parameters is close to the mean of Gaussian distribution of virtual
patients.
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Figure S3. Individual fitting results of CR patients. (A&B) Fitting results of CAR T-cell (A)
and B-ALL cell (B) dynamics. The dots represent the experimental data and the lines represent the
fitted curves based on individual parameters of estimation. (C&D) Simulated versus experimental
results of CAR T-cell (C) and B-ALL cell (D). Each dot represents the comparison between
experimental CAR T-cell number and corresponding simulated result on the same day, and the
dash lines represent the standard curves where simulated results are equal to experimental results.
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Figure S4. Individual fitting results of NR patients. (A&B) Fitting results of CAR T-cell
dynamics. The dots represent the experimental data and the lines represent the fitted curves.
(C&D) Simulated versus experimental results of CAR T-cell (C) and B-ALL cell (D). Each dot
represents the comparison between experimental CAR T-cell number and corresponding simulated
result on the same day, and the dash lines represent the standard curves where simulated results
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Figure S5. Sensitivity analysis of different parameters in the computational model.
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Figure S6. Individual fitting results of CD19" relapse patients. (A&B) Fitting results of CAR
T-cell dynamics. The dots represent the experimental data and the lines represent the fitted curves.
(C&D) Simulation versus experimental results of CAR T-cells (C) and B-ALL cells (D). Each dot
represents the comparison between experimental CAR T-cell number and corresponding simulated
result on the same day, and the dash lines represent the standard curves where simulated results
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Figure S7. Fitting results of CD19" relapse patients and relapse time related factors. (A)
Individual fitting results of CAR T-cell dynamics. The dots represent the experimental data and
the lines represent the fitted curves. (B&C) Simulation vs. experimental results of CAR T-cell (B)
and (C) B-ALL cell. Each dot represents the comparison between experimental CAR T-cell
number and corresponding simulated result on the same day, and the dash lines represent the
standard curves where simulated results are equal to experimental results. (D&E) Relationships
between AUC28 of CAR T-cell and day of CD19" (D) and CD19 (E) relapse. (F) The relationship
between CAR T-cell function factor Fr of clinical patient and CD19" relapse day. The band in D
represents the 95% confidence interval.
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Figure S8. Comparison of estimated parameters of CAR T-cells among the CR, CD19"
relapse, CD19 relapse and NR patient groups. Non-significant results are present in the growth
rate (A), killing rate (B), activation rate (C), and apoptosis rate (D) of CAR T-cells among CR,
CD19 relapse, CD19" relapse and NR patient groups, indicating that a single parameter cannot

differentiate the four scenarios. Data were analyzed and compared with Welch’s t test. *p <0.05,
ks
p<0.01.
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Figure S11. Part of real-time prediction results of CR&CD19" relapse based on virtual
patient cohorts. Repetitive virtual patients were chosen at an interval of 40 from the 400 tested
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Figure S12. Part of real-time prediction results of CD19 relapse based on virtual patient
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SUPPLEMENTARY METHODS

Clinical data digitzation

For clinical trials that did not disclose raw data, the clinical data were digitized by
WebPlotDigitizer (https://automeris.io/WebPlotDigitizer) from published figures of these clinical
studies.

Converting data from peripheral blood to bone marrow

The computational model dissects the cellular behaviors in the B-ALL bone marrow during CAR
T-cell therapy. However, samples are often collected in peripheral blood clinically (e.g., CAR T-
cell). So, such data need to be converted into their equivalent values in bone marrow. For data
acquired in peripheral blood, it is assumed that the average volume of blood sample is 5 mL and
there are 5000 mL bloods in human body'. So the number of cells in the whole peripheral blood
can be calculated. After that, it is assumed that comparing with bone marrow, about 1% cells are
in peripheral blood?. Thus, the number of cells in bone marrow can be obtained.

Unifying the units of B-ALL cells
In most clinical studies, the unit of B-ALL cells is tumor burden (%). However, the proposed CAR
T-cell therapy model is cellular-based, so for computational processes like calibration and
simulation, the unit of B-ALL cells need to be converted into number of B-ALL cells. We got the
clinical pre-treatment tumor burdens (Table 1 of ref. *) and absolute numbers of B-ALL cells
(Figure 1G of ref. *) of MRD" patients, and their relationship was determined after fitting
(Supplement Figure S18). The expression of the fitted results is

Tumor burden (%)

97.19 — Tumor burden (%)

It is noted that although the unit of B-ALL cells were converted into absolute numbers for
computation, the unit was converted back into tumor burden (%) for presentation in our paper to
make it more understandable and compliant with clinical custom.

B-ALL cell number (x10” cells) =1909 (1)

Unifying the units and scaling of CAR T-cells

Like B-ALL cells, the units of CAR T-cell were all converted into number of CAR T-cells (x10°%)
for computation. Clinically the amount of CAR T-cell are often measured by quantitative PCR
(qPCR) (normally in the unit of copies CAR/ug DNA) in peripheral blood. From Figure 1F of ref.
3, we obtained the qPCR values and corresponding absolute numbers of CAR T-cell of MRD"
patients. Considering the samples of these two measurement methods were of different numbers
(n=14 for qPCR values and n=11 for absolute numbers) in ref. 3, we got the median of these two
values and determined their relationship as

CAR-T cell number (>< 10° cells) =0.10205xqPCR values (copies/ug DNA) (2)

Comparing to CR patients and NR patients, clinical data of CAR T-cell of CD19" and CD19
relapse is relatively lack in clinical studies, thus requiring more process.

According to current clinical researches, CD19" relapse is associated with loss of CAR T-cell
function. In contrast, CD19" relapse occurs despite CAR T-cell functional persistence and they are
likely to be independent of CAR T-cell parameters per se*. For CD19" relapse patients, the function
of CAR T-cell is between CR and NR patients; and for CD19" relapse patients, the function of


https://automeris.io/WebPlotDigitizer

CAR T-cell is similar to CR patients®. So it is reasonably assumed that the values of CAR T-cell
of CD19" relapse patients is between CR and NR patients, of CD19 relapse patients is close to CR
patients. In this paper, based on the above assumption, we scaled the limited amount of data of
CAR T-cell for CD19" and CD19" relapse. With the support of biological and clinical studies, the
reliability of the computational model is maintained although with scaling, especially for
comparisons and analysis inside CD19" or CD19" relapse patient groups.

Generation of receiver operator characteristics (ROC)

Predictions with clinical endpoints of 50, 100, 150, 200, 250 and 300 days for different responses
were analyzed. Correct and incorrect predictions for each response were summarized in Table
S12-14. For a specific response A, sensitivity of A was defined as the ratio between the correctly
predicted cases and all real cases of response A (true positive rate); specificity of A was defined
as the ratio between all real cases of other responses not incorrectly predicted to be A and all real
cases of other responses (true negative rate).
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Table S1. Merged clinical data of CR patient groups from individuals

Group Reference Number of individuals Statistical value
1 5 45 LOESS (local polynomial regression) curve fitting
2 3 14 First quartile
3 3 14 Second quartile
4 3 14 Third quartile
5 6 59 Median & geometric mean
6 7 1 Original (Patient 1)
7 8 8 Mean
8 9 1 Original (No. MSK-ALLOS5)
9 10 4 BM M1 status (<5%)
10 1o 4 BM M2 status (5-25%)
11 10 9 BM M3 status (>25%)
12 1 1 Original (No. MSK-ALL13)
13 1 1 Original (No. MSK-ALL14)
14 n 1 Original (No. MSK-ALL13)
Total 148

Table S2. Merged clinical data of NR patient groups from individuals

Group Reference Number of individuals Statistical value
1 5 8 LOESS (local polynomial regression) curve fitting
2 3 6 Mean
3 6 6 Median & geometric mean
4 12 1 Original (Patient 4)
5 12 1 Original (Patient 5)
6 12 1 Original (Patient 8)
7 12 1 Original (Patient 9)

Total 24

Table S3. Merged clinical data of CD19" relapse patient groups from individuals

Group Reference Number of individuals Statistical value
1 5 14 LOESS (local polynomial regression) curve fitting
2 9 1 Original (No. MSK-ALL04)
3 12 1 Original (Patient 1)
4 12 1 Original (Patient 2)
5 12 1 Original (Patient 3)
6 12 1 Original (Patient 6)
7 12 1 Original (Patient 7)
Total 20




Table S4. Merged clinical data of CD19" relapse patient groups from individuals

Group Reference Number of individuals Statistical value
1 5 14 LOESS (local polynomial regression) curve fitting
2 7 1 Original (Patient 2)
3 13 1 Original (Case 1)
4 13 1 Original (Case 2)
Total 17

Table S5. Estimated parameters and initial values of CAR T-cell and B-ALL cell.

CD19* CD19

Parameter Description Unit CR* NR* References*
relapse relapse

rp Growth rate of CD19" Day! 0.069 0.080 0.21 0.071 14,15
B-ALL cell

FTA Growth rate of activated  Day"! 1.62 0.99 0.99 1.5 1617
CAR T-cell

Ita Apoptosis rate of Day’! 0.12 0.55 0.12 0.11 18,19
activated CAR T-cell

I Apoptosis rate of non- Day"! 3e-5 9.2e-4 6e-7 2e-7
activated CAR T-cell

ne B-ALL cell carrying 2939.1  6101.58 19877.4  2585.74
capacity

e Killing rate of activated ~ Day™! 22.72 6.58 20.31 19.34 2
CAR T-cell

Kp Saturation constant to 5891.5  7067.07 1050.19  11040.05
CAR -T cell killing rate

K, Saturation constant to 637.64  3431.65 1983.64 1360.54
CAR T-cell growth rate

Ka Saturation constant to 1808.0  0.0052  54.68 11883.73
CAR T-cell activation
rate

ka Activation rate of CAR ~ Day"! 0.65 0.31 0.44 0.58
T-cell

N Growth rate of CD19- Day! / / / 0.1 1415
B-ALL cell

kim Mutation factor Day! / / / 1.5e-7 2

ko Bystander killing / / / 7.9
scaling factor

Kn Saturation rate of CD19 / / / 16956.03
B-ALL cell to killing
efficacy

npo Initial value of CD19* x10%cells  2200.24 589.676 176425  1467.01
B-ALL cell

nNo Initial value of CD19 x10% cells  / / / 19.89 Assumed
B-ALL cell (1%)

ATNO Initial value of non- x10%cells  16.5 71.45 12.26 8.97

activated CAR T-cell

*CR represents continuous remission and NR represents non-response. References determined the
rational ranges of estimated parameters.



Table S6. Statistics on conditional mode results of individual parameters estimation*.

Parameter CR NR CD19" relapse CD19 relapse

p [0.069,0.069,0.069] [0.07,0.078,0.21] [0.15,0.22,0.27] [0.069,0.07,0.092]

rTA [1.21,1,38,2.21] [0.44,1.02,1.17] [0.91,0.96.1.1] [1.08,1.3,2.09]

Ita [0.071,0.12,0.21] [0.15,0.26,0.69] [0.049,0.081.0.36] [0.076,0.13,0.19]

N [2.5,4,7.8]e-4 [5.8,6.6,10]e-4 [3.9,5.8,9.4]e-7 [1.7,2,2.2]e-7

ne [1403.05,2833.12,4 [2690.5,3843.07,14 [19706.88,21664.53,2 [1681.06,2367.29,3820.
072.08] 006.6] 2637.22] 27]

e [21.71,24.24,24.76] [4.72,8.03,12.1] [18.77,21.1,22.82] [19.11,19.51,20.43]

Kp [1850.32,4367.9,20  [4157.06,6685.71,1  [937.02,1134.81,1171  [7128.09,12251.18,1716
914.82] 2661.59] ] 0.35]

K, [616.46,1149.68,25 [5017.34,10615.72, [1937.37,2083.69,215 [1047.84,1568.77,1831.
44.72] 13671.44] 5.62] 17]

Ka [317.39,5867.41,49 [2.1,5.9,9.3]e-3 [27.1,83.22,121.31] [5639.54,16636.98,2471
884.25] 6.1]

ka [0.54,0.68,0.74] [0.27,0.32,0.36] [0.32,0.5,0.52] [0.44,0.64,0.88]

N / / / [0.097,0.11,0.12]

kem / / / [1.5,1.6,1.8]e-7

ky / / / [2.89,5.25,11.58]

Kx / / / [16393.81,17188.49,205

87.67]
MTNO [6.04,18.69,22.92] [6.64,96.66,98.83] [3.82,9.04,17.16] [6.2,9.54,23.98]

*Numbers in brackets indicate quartile 1 (QI), median, and quartile 3 (Q3) of individual

parameters estimation. npro and nno in Table SS are initial values therefore not shown here.

Table S7. Parameters of virtual patients of CR.
(See Sheet 1 of Supplementary Table S7—10.xIsx)

Table S8. Parameters of virtual patients of CD19- relapse.
(See Sheet 2 of Supplementary Table S7—10.x1sx)

Table S9. Parameters of virtual patients of CD19" relapse.
(See Sheet 3 of Supplementary Table S7—-10.xIsx)

Table S10. Parameters of virtual patients of NR.
(See Sheet 4 of Supplementary Table S7—10.x1sx)

Table S11. Summary of defined factors and prediction methods.

Factors/methods Definition

Applied to

F

E\IegR

Fp

CART cell function Evaluate the overall functionality of CAR T-cell to dissect

factor

the underline mechanisms of CR, NR and CD19* relapse
scenarios

Negative relapse factor =~ Characterize CD19- relapse scenario by combining two

key factors: genetic mutation and bystander killing effect

Prediction factor Predict responses by combining peak value and AUC7

value of CAR T-cell



Prediction based on Calibrating the model

Predict responses base
dynamics

Further differentiate

dynamics with first 7-day clinical
data of CAR T-cell and
initial tumor burden

1IN0, TINOT Initial CD19- tumor

burden and threshold

during prediction

d on the early-stage CAR T-cell

CR and CDI19 relapse patients

Table S12. Receiver operator characteristics (ROC) of CR&CD19 relapse prediction at
different clinical observation end

oints.

Clinical endpoint (day) 50 100 150 200 250 300
Correctly predicted to be 797 792 726 682 577 525
CR&CD19- relapse (people)

Incorrectly predicted to be 0 5 71 115 220 272
CD19 relapse (people)

In correctly predicted to be 3 3 3 3 3 3

NR (people)

Prediction sensitivity 0.996 0.990 0.908 0.853 0.721 0.656
Prediction specificity 0.475 0.476 0.579 0.681 0.811 0.880

Table S13. ROC of CD19" relapse

rediction at different cli

nical observation endpoints.

Clinical endpoint (day) 50 100 150 200 250 300
Correctly predicted to be 0 18 92 161 251 302
CD19* relapse (people)

Incorrectly predicted to be 393 375 301 232 142 91
CR&CD19- relapse (people)

Incorrectly predicted to be NR | 7 7 7 7 7 7
(people)

Prediction sensitivity 0.000 0.045 0.230 0.403 0.628 0.755
Prediction specificity 1.000 0.993 0.932 0.890 0.797 0.747

Table S14. ROC of NR prediction at different clinical observation endpoints.

Clinical endpoint (day) 50 100 150 200 250 300
Correctly predicted to be NR 373 353 353 360 367 363
(people)

Incorrectly predicted to be 27 44 36 23 9 5
CR&CD19- relapse (people)

Incorrectly predicted to be 0 3 11 17 24 32
CD19 relapse (people)

Prediction sensitivity 0.933 0.883 0.883 0.900 0.918 0.908
Prediction specificity 0.992 0.992 0.992 0.992 0.992 0.992
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Figure S2. Distribution of key clinical parameters. The growth rate (A), killing rate (B),
activation rate (C), and apoptosis rate (D) of CAR T-cells among CR, CDI19" relapse, CD19"
relapse and NR patient groups are largely fitted into a Gaussian distribution. The mean of the
Gaussian distribution of clinical parameters is close to the mean of Gaussian distribution of virtual

patients.



Figure S3. Individual fitting results of CR patients. (A&B) Fitting results of CAR T-cell (A)
and B-ALL cell (B) dynamics. The dots represent the experimental data and the lines represent the
fitted curves based on individual parameters of estimation. (C&D) Simulated versus experimental
results of CAR T-cell (C) and B-ALL cell (D). Each dot represents the comparison between
experimental CAR T-cell number and corresponding simulated result on the same day, and the
dash lines represent the standard curves where simulated results are equal to experimental results.



Figure S4. Individual fitting results of NR patients. (A&B) Fitting results of CAR T-cell
dynamics. The dots represent the experimental data and the lines represent the fitted curves.
(C&D) Simulated versus experimental results of CAR T-cell (C) and B-ALL cell (D). Each dot
represents the comparison between experimental CAR T-cell number and corresponding simulated
result on the same day, and the dash lines represent the standard curves where simulated results
are equal to experimental results.

Figure SS. Sensitivity analysis of different parameters in the computational model.
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Figure S6. Individual fitting results of CD19* relapse patients. (A&B) Fitting results of CAR

Simulated CAR T-cell number (x109)

Simulated B-ALL cell number (x109)

104

T-cell dynamics. The dots represent the experimental data and the lines represent the fitted curves.

(C&D) Simulation versus experimental results of CAR T-cells (C) and B-ALL cells (D). Each dot

represents the comparison between experimental CAR T-cell number and corresponding simulated
result on the same day, and the dash lines represent the standard curves where simulated results
are equal to experimental results.
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Figure S7. Fitting results of CD19" relapse patients and relapse time related factors. (A)
Individual fitting results of CAR T-cell dynamics. The dots represent the experimental data and
the lines represent the fitted curves. (B&C) Simulation vs. experimental results of CAR T-cell (B)
and (C) B-ALL cell. Each dot represents the comparison between experimental CAR T-cell
number and corresponding simulated result on the same day, and the dash lines represent the
standard curves where simulated results are equal to experimental results. (D&E) Relationships
between AUC28 of CAR T-cell and day of CD19" (D) and CD19" (E) relapse. (F) The relationship
between CAR T-cell function factor Fr of clinical patient and CD19 relapse day. The band in D
represents the 95% confidence interval.
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Figure S8. Comparison of estimated parameters of CAR T-cells among the CR, CD19*
relapse, CD19 relapse and NR patient groups. Non-significant results are present in the growth
rate (A), killing rate (B), activation rate (C), and apoptosis rate (D) of CAR T-cells among CR,
CD19 relapse, CD19" relapse and NR patient groups, indicating that a single parameter cannot
differentiate the four scenarios. Data were analyzed and compared with Welch’s t test. *p <0.05,
**p<0.01.

12



o
o

Initial tumoer buden (%)
5 8
] |
@
1
Tumor burden (Day 8) (%)
[
o

-
o

14 13

¢ — 1 - =
& @ Growth rate of activated "€ 28 Killing rate of activated
= f @fa CAR T-cell ,, (day™ ) CAR T-cell @ {day™)
3

18

c D 102

°\E § CR

— CD19" relapse
Sr 0

© 40 5 10 —HNR

3 s . ,

T 20 S 102

3 z

3 =1

g 0 £ 10%—

E0,2 7 2

[l 10-0

082 26 I T T T

[¢] 200 400 600 B0G 1000

.76 :
Activation rate of 09 04 aApoptosis rate of activated CAR T-cel funciton factor Fy

CAR T-celi kA (day" } CAR T-cell lm (day" }

Figure S9. The relationship between CAR T-cell function factor Fr and CAR T-cell therapy
outcome. (A) Initial tumor burden in patients of different responses, showing no significant
difference (p>0.398). The dots represent the experimental data and the error bars represent the
fitted results. Error bars are mean = SEM. (B&C) Effects of Fr related parameters to therapeutic
efficacy: variations of tumor burden at day 6 (day of CAR T-cell at peak) as CAR T-cell growth
rate rta and killing rate e (B), and activation rate ka and apoptosis rate /ta (C) change. The
parameters are based on population-level CR patients. (D) Probability density of different
responses as Fr changes.

Figure S10. (A) Peak value and (B) AUC7 of CAR T-cell of different responses to CAR T-cell
therapy. Dots and error bars are based on simulated results. Non-significant difference exists
between groups for each parameter. Error bars are mean + SEM. P-values were calculated using
Welch’s t-test.
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Figure S11. Part of real-time prediction results of CR&CD19" relapse based on virtual
patient cohorts. Repetitive virtual patients were chosen at an interval of 40 from the 400 tested

patients.
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Figure S12. Part of real-time prediction results of CD19" relapse based on virtual patient
cohorts. Repetitive virtual patients were chosen at an interval of 40 from the 400 tested patients.
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Figure S13. Part of real-time prediction results of CD19" relapse based on virtual patient
cohorts. Repetitive virtual patients were chosen at an interval of 40 from the 400 tested patients.
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Figure S14. Part of real-time prediction results of NR based on virtual patient cohorts.
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Figure S15. Prediction results based on clinical patient of CD19" relapse.
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Figure S16. Differences of Fr between prediction and observation AFt of CR&CD19" relapse
(A), CD19" relapse (B) and NR (C) of the 1600 tested virtual patients.
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Figure S17. Probability density of the occurrence of CD19" relapse of the 400 tested virtual
patients as the value of initial CD19" tumor burden changes.

Figure S18. Relationship between the number of B-ALL cell and tumor burden (%). The
fitting curve is based on the clinical pre-treatment tumor burdens (Table 1 of ref. *) and absolute
numbers of B-ALL cells (Figure 1G of ref.’) of MRD" patients.
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