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ABSTRACT

The availability of large-scale, realistic vulnerability datasets is
essential both for benchmarking existing techniques and for devel-
oping effective new data-driven approaches for software security.
Yet such datasets are critically lacking. A promising solution is to
generate such datasets by injecting vulnerabilities into real-world
programs, which are richly available. Thus, in this paper, we ex-
plore the feasibility of vulnerability injection through neural code
editing. With a synthetic dataset and a real-world one, we inves-
tigate the potential and gaps of three state-of-the-art neural code
editors for vulnerability injection. We find that the studied editors
have critical limitations on the real-world dataset, where the best ac-
curacy is only 10.03%, versus 79.40% on the synthetic dataset. While
the graph-based editors are more effective (successfully injecting
vulnerabilities in up to 34.93% of real-world testing samples) than
the sequence-based one (0 success), they still suffer from complex
code structures and fall short for long edits due to their insufficient
designs of the preprocessing and deep learning (DL) models. We
reveal the promise of neural code editing for generating realistic
vulnerable samples, as they help boost the effectiveness of DL-based
vulnerability detectors by up to 49.51% in terms of F1 score. We also
provide insights into the gaps in current editors (e.g., they are good
at deleting but not at replacing code) and actionable suggestions
for addressing them (e.g., designing effective editing primitives).
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1 INTRODUCTION

Software vulnerabilities constitute a major source of cybersecurity
threats that can be exploited by security attacks leading to informa-
tion leakage, software crashing, and data tampering, among other
consequences [13]. In response, a variety of technical approaches
defending against software vulnerabilities (e.g., [19, 31, 41]) have
been proposed, of which the most momentous are those based on
deep learning (DL) [20, 25]. Indeed, DL-based software analysis in
general [48], and software vulnerability detection [9, 35, 36, 66] and
repair [22] in particular, have achieved great successes, reporting
accuracies that often surpasses traditional approaches.

However, these promising-looking accuracy results are often
obtained on synthetic, rather than real-world, programs, due to a
critical lack of large-scale and realistic datasets. In particular, there
are not enough vulnerable code samples for which we know the
vulnerability ground truth. This leads to two immediate barriers
against advancing software assurance against vulnerabilities:

e Benchmarking: fair and real-world evaluation of existing
techniques. The lack of a realistic, sizable dataset leads to the
inability to benchmark existing techniques fairly in a realistic set-
ting (i.e., working effectively on real-world software—the ultimate
goal of the techniques). Current techniques are either evaluated
on synthetic benchmarks only, or their accuracy becomes much
lower [9, 66]. Meanwhile, existing comparative studies of the
techniques are generally limited to technical discussion and qual-
itative assessment [2, 28, 53] and/or incomplete comparisons (e.g.,
just comparing the numbers of vulnerabilities found rather than
precision and recall) [3-5, 47].

e Model training: development of new and more effective DL-
based techniques. DL-based techniques for vulnerability analy-
sis have shown great promise. Yet their accuracy is commonly
not up to the mark in real-world application settings. The main
reason is that they are not trained in such settings due to the lack
of large-scale, realistic datasets. Prior work has clearly shown
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that the lack of sufficient training data is a major barrier to high
accuracy of DL-based software vulnerability detection [15, 38]
and localization [34].

Some software vulnerability datasets are available. SARD [7] and
SATE IV [44] provides a large number of (60,000+) vulnerable code
samples and their fixed versions. However, these samples are syn-
thetic and not representative of real-world vulnerability analysis
situations. CVE/NVD [8] is a high-quality database of vulnerabili-
ties in real-world projects, but the corresponding buggy and fixed
code is not easily collectable. Several studies [6, 17] tried to address
this, but the numbers of collected code samples are too small (<5,000)
for training effective DL models. Therefore, others [18, 29, 65] at-
tempted to garner vulnerability data in the wild. Yet the effort is to
retrieve historical vulnerable versions of given projects, hence the
outcome is limited to existing data, which is what we lack. Zhang
et al. [64] aimed to generate null-pointer-dereference vulnerability
code samples, but it is unclear whether the data is realistic, and the
samples only represent one vulnerability type.

To address this critical gap, an intuitive solution is to automati-
cally build a large-scale, realistic vulnerability dataset. In particular,
a promising direction is to generate vulnerable programs by in-
Jjecting vulnerabilities into real-world (presumably non-vulnerable)
programs, which are widely available. Given the success of neural
code editors [11, 16, 60], i.e., neural models trained to transform
code, on other tasks, applying them to vulnerability injection seems
promising. However, it remains unclear whether neural code editors
can effectively inject vulnerabilities and whether doing so would
provide useful training data to DL-based vulnerability analyses.

This paper presents an empirical study aimed at addressing these
questions. Specifically, we study the ability of state-of-the-art neural
code editing models to produce realistic vulnerabilities, and whether
adding such DL-generated vulnerabilities to a training dataset im-
proves the effectiveness of learning-based vulnerability detectors.
With a commonly used synthetic dataset and a real-world dataset,
we investigate the potential and gaps of three state-of-the-art neural
code editors of different kinds (sequence-based and graph-based)
for vulnerability injection. We use both synthetic and real-world
datasets because we want to compare the difficulties of generating
synthetic versus realistic vulnerabilities. We start by investigating
the technical strengths and weaknesses of these editors using the
synthetic dataset with various modifications, from data charac-
teristics and model architecture/algorithm perspectives. Then, we
evaluate the effectiveness of these editors in generating realistic
vulnerable samples, while assessing the realism of the samples via a
user study. Finally, to validate the practical potential of the injection
approach, we use the DL-generated realistic samples to augment
two existing real-world datasets used for training two state-of-the-
art vulnerability detectors and evaluate the gains in their accuracy
at detecting vulnerabilities in other real-world programs.

Among other findings, our study reveals that:

e While much more useful, realistic vulnerable samples are also
much harder to generate than synthetic ones (best accuracy of
10.03% versus 79.40% with any of the editors), due to challenges
like larger vocabulary size (#unique code tokens), greater pro-
gram length, and more complex structures of realistic programs.
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e The graph-based editing techniques (which predict edits incre-
mentally) are more effective (achieving up to 34.93% success rate)
than the sequence-based one (which predicts target code itself,
and with no success) in generating realistic vulnerabilities.

e The graph-based techniques are much better at deleting code
than adding/replacing code. In over 55% of the success cases, they
only delete code line(s), while only 41.19% of the ground-truth
injections delete line(s) only. In less than 45% of the success cases,
they replace/add code, which is needed for successfully injecting
the ground-truth vulnerabilities in most (58.81%) cases.

By adding our DL-generated samples to their training sets, the

improvements of two state-of-the-art DL-based vulnerability

detectors over their baseline are significant (by up to 49.51%

in F1), much higher than the ones (up to 10.40%) by using the

same number of synthetic samples (as a lower bound of such
improvements), but still lower than the improvements (up to

68.76%) by using real-world samples (as an upper bound).

Based on these findings, we provide actionable suggestions for

improving neural code editing techniques in general and for gener-

ating realistic vulnerabilities in particular. Among other recommen-
dations, we suggest to: (1) reduce the edit search space by predicting
incremental edits rather than the target code itself; (2) use graphs
rather than sequences to represent programs; (3) design code edit-
ing primitives based on task characteristics (e.g., the granularity
of edit prediction should match that of a task like code editing);

and (4) improve and develop techniques to ensure the quality (e.g.,

realism, diversity, and low noise) of the generated data.

2 METHODOLOGY

This section elaborates the design of our study, including the re-
search questions, neural code editors chosen, and datasets used.

2.1 Research Questions

We seek to answer three questions, as outlined and justified below.
RQ1. What are the strengths and weaknesses of the editors?
We start with a detailed technical review of the editors and empirical
experiments of their effectiveness on synthetic code to understand
their strengths and weaknesses. The rationale is that this under-
standing will help assess the potential and gaps in them for realistic
vulnerability injection. The reasons to use the synthetic dataset
are two-fold. First, given the great complexity and diversity of real-
world code, results on synthetic code can inform about an upper
bound of the effectiveness of these editors. Second, the synthetic
nature enables us to experiment with various modifications (e.g.,
automated code refactoring, variable renaming) of the dataset to as-
sess the generalizability of editors, and hence, gain deeper insights
into their potential and limitations. Doing such modifications on
real-world programs could make them unrealistic—which is also
why we only use the synthetic dataset for RQ1.

RQ2. Can the editors generate realistic vulnerable code? With
the understanding obtained from RQ1, we then assess how well
the editors generate realistic vulnerable code and what conditions
make them (not) work. This RQ is readily justified by the main goal
of our entire study—the results and insights from answering it will
immediately reveal how far we are in the direction of using neural
code editing for generating realistic vulnerabilities.
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RQ3. Does the generated vulnerable code help improve the
DL models for downstream vulnerability analysis tasks? One
of the key premises of pursuing the direction of DL-based vulnerabil-
ity generation is that such generated datasets are practically useful
in downstream application tasks for software assurance against
real-world vulnerabilities. We target DL-based vulnerability detec-
tion as the task in this paper given its critical role in defenses and
vital importance of quality training data in building such detectors.

2.2 Neural Code Editors

We perform a literature review on neural code editing, and then
select editors for our study per the criterion below.
(1) Availability: the editor’s source code must be publicly available.
(2) Standalone: the editor requires no inputs beyond the code under
vulnerability injection (e.g., no commit logs or error messages
from other tools), so that the injection can be more applicable.
(3) Coverage: per our literature review, mainstream editors are
either graph- [1, 16, 60, 61] or sequence-based [6, 10, 11, 22, 24];
we thus intend to cover the state-of-the-art in both categories.
As a result, we chose Graph2Edit [60] and Hoppity [16], two lat-
est graph-based editors, and SequenceR [11], a state-of-the-art
sequence-based editor, that meet all the above criteria. Next, for
each editor, we briefly summarize the design choices relevant to
our study and how we set it up. For more details, we refer readers
to the respective original papers.

SequenceR [11] is an NMT-based [27] sequence-to-sequence code
editor for program repair. It works by tokenizing the given buggy
program into a sequence to tokens, and then translating the se-
quence to a fixed code sequence. Users can specify the buggy code
fragment by adding special tokens "<START_BUG>" and "<END_-
BUG>" before and after it, respectively. For better accuracy, it uses
the copy mechanism to address the unlimited vocabulary prob-
lem [51]. In our study, since the samples do not have specified code
fragments to inject vulnerabilities, we simply surround the entire
program with the two special tokens.

Graph2Edit [60] is a code editor taking the abstract syntax tree
(AST) of a given program and producing its transformed version
by predicting and applying a sequence of AST edits. Each editing
operation (edit action) consists of one or more of three elements:
the operator type, node to be edited, or the type/value of the node.
Three types of operators are considered: adding a node, deleting a
node, and copying a subtree. The editor first converts the AST to a
graph by adding bidirectional edges between adjacent sibling nodes
as well as parent and child nodes. Then, it learns the graph and
node embeddings using a gated graph neural network (GGNN) [32],
and predicts a sequence of edit actions based on the embeddings
using a long short-term memory (LSTM) network [60]. It also uses
an edit encoder to encode the edits between the input and target
code to assist with the edit prediction. To improve accuracy and effi-
ciency, for each pair used to train the model, Graph2Edit computes
the shortest AST edit sequence as ground-truth using a dynamic
programming (DP) algorithm. The model is trained to maximize
the probability of predicting the shortest edit sequence.

For vulnerability injection, the target code as part of the inputs
to the edit encoder is not supposed to be known/given beforehand.
Thus, for our study we disabled the edit encoder, following guidance
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by the Graph2Edit authors, by feeding nothing to the encoder and
making it constantly output a zero vector. To adapt this editor
originally designed for C# to our study, we use Joern [59], a robust
AST parser for C language, to obtain the ASTs of our input samples.
Hoppity [16] is code editor aiming to fix bugs in JavaScript pro-
grams. Compared to Graph2Edit, its input is also the AST of a given
program and it transforms the program also via a sequence of edits.
Each edit action includes three elements: node location, node value,
or the node type, and four types of edit actions are considered:
adding a node, deleting a node, replacing node type, and replacing
node value. Hoppity also augments the input AST to a graph, but
in a different way: the leaf nodes are connected by edges called
succ links, and the so-called value links are used to connect the AST
nodes to associated values stored in a local value table. It uses the
graph isomorphism network (GIN) [58] to learn the graph and node
embeddings, and LSTM to predict edit actions like Graph2Edit does.
Yet Hoppity does not use the DP algorithm, but a Node]S plugin
ShiftParser [52], to obtain the ground-truth edit sequences. For our
study, we also use Joern to generate the ASTs.

To adapt these editors for vulnerability injection, we train them
on pairs of vulnerable samples and corresponding fixed (normal)
versions. At testing time, we feed the trained model with normal
samples as inputs and expect to obtain the associated vulnerable
versions as the outputs. For an input sample X, we consider the
output Y accurate if Y’s AST exactly matches that of the vulnerable
sample paired with X; thus, accuracy = #accurate outputs/#inputs.

2.3 Datasets

We use two datasets, one synthetic and the other real-world, to
assess the three neural code editors extensively.

Synthetic dataset. We use SARD [7], which includes a large and
commonly used set of vulnerable samples and the respective fixed
(normal) versions, to build our synthetic dataset. For our study,
we only select the samples written in C. As the editors used only
support code editing for functions, we remove the pairs of samples
where the code changes are outside functions (e.g., macros, global
variables). Finally, we obtain 15,943 pairs of code samples covering
90 types of vulnerabilities, where the average number of lines of
code is 31.59 and the average number of changed lines is 4.91.

Real-world dataset. We curate a real-world dataset based on
BigVul [17] and PatchDB [57]', which includes 3,754 and 12,073
patches, respectively, all from real-world projects. Each patch has a
pair of vulnerable and the respective fixed (normal) samples. We
only select C samples and remove those where the code changes
are outside functions. Since many real-world patches are very com-
plex and make the code editors cost too much time and memory
to process them, we remove the patches where the vulnerability
injection requires more than 100 AST edits based on Graph2Edit’s
DP algorithm [60]. We finally obtain 7,789 patches covering more
than 340 open-source projects, where the average number of lines
of code is 72.84, and the average number of changed lines is 4.92.
To avoid taking too much time for training the editors, only the
functions related to the vulnerability are retained in each patch.

! The BigVul used as a basis of our real-world dataset is the collection of C/C++ samples
from the CVE/NVD database [40]. As BigVul alone is relatively small, we additionally
considered another source (PatchDB) to form our real-world dataset.
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Table 1: RQ1: Accuracy on the original synthetic dataset, and
with different treatments for testing samples.

Setting Original  Large Vocab  Complex Code Structure

Hoppity 59.22%  48.65% (17.85%)) 49.45%(16.50%])
Graph2Edit  79.40%  13.13%(83.46%)) 40.71%(48.73%])
SequenceR  72.28%  31.59%(56.28%) 2.42%(96.65%])

To illustrate “synthetic” versus “real-world” code, Figures 3 and 6
show some examples for these two kinds, respectively. As seen, the
real-world sample is much more complex than the synthetic.

Our experiments were performed on a server which had an AMD
Ryzen Threadripper 3970X (3.7GHz) CPU with 32 Cores, an Nvidia
GeForce RTX 3090 GPU, and 256GB memory.

3 RQ1: STRENGTHS AND WEAKNESSES

We examine first the effectiveness of the editors on the original
synthetic dataset, then their generalizability against modifications
of the dataset, and finally the performance impact of key dataset
factors. For all the experiments for RQ1, we split the 15,943 pairs of
samples into 80%:10%:10% for training, validation, and testing.

3.1 Results on the Original Synthetic Dataset

Table 1 (first two columns) shows the accuracy of the three editors.
Graph2Edit achieves the highest accuracy (79.40%), followed by
SequenceR (72.28%) and then Hoppity (59.22%).

Hoppity is much less accurate than Graph2Edit despite their simi-
lar designs. One of the reasons is its suboptimal preprocessing (with
ShiftParser) that generates redundant and inefficient ground-truth
edit sequences. As Figure 1 (Edit Sequences 1) shows, Graph2Edit
generates the optimized one-action edit sequence with its DP al-
gorithm, while Hoppity generates a redundant one (15 actions).
Another factor that contributes to the differences here is the design
of the edit operators — Graph2Edit has a special operator copying
a subtree while Hoppity does not, as illustrated in Figure 1 (Edit
Sequences 2). With this operator, Graph2Edit finishes the editing in
two actions, while Hoppity needs 44. Since Graph2Edit and Hoppity
predict the edit sequence in an iterative manner, which is sensitive
to the number of editing steps, the redundant ground-truth edit
sequences makes it harder for Hoppity to predict the overall edits
correctly, significantly limiting its effectiveness.

The higher accuracy of Graph2Edit over SequenceR indicates
that graph-based approaches are more effective than the sequence-
based ones for vulnerability injection. Different from natural-
language texts, computer programs are highly structured. The syn-
tactic and semantic information of programs is hard to model via
sequences, but can be more precisely represented by graphs, which
helps with vulnerability injection.

The representation of code edit scripts matters. They
should be concise, precise, and describe copied code explic-
itly. Graph-based editors are more effective than sequence-
based ones, as graphs model program syntax and semantics
better, which benefits vulnerability injection.

3.2 Generalizability of the Editing Techniques

To examine the generalizability of these editors to the diverse and
complex realistic samples, we perform two extended experiments.
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The first experiment, called Large Vocab, evaluates the impact of
vocabulary size (#unique tokens) on the effectiveness of the editors.
As in [63], for each pair of samples in the testing set, we randomly
replace the identifiers (function/variable names) with unrelated
names (e.g., int bufsize=0ischangedtoint h3d2k=0), but
also consistently so that the program semantics do not change. This
increases the vocabulary size from 1,401 to 5,422. Then, we test the
trained models in Section 3.1 on the modified testing samples.

Table 1 (3rd column) shows the results. All the techniques suffer
from an accuracy decrease in this experiment, because a larger vo-
cabulary size means a larger search space for the tokens. Graph2Edit
has the largest accuracy decrease (83.46%), because it does not con-
sider identifier independence’, which separates the identifier names
from the prediction explicitly. In contrast, Hoppity is much more
generalizable, with only a 17.85% decrease, thanks to its enhanced
AST representation, where the local value table and the value nodes
in the table enable identifier independence. Relative to Graph2Edit,
SequenceR is more generalizable due to its copy mechanism [21],
which helps achieve identifier independence and enables the model
to copy unseen tokens when predicting edits.

All the code editing techniques suffer from accuracy drops
with larger vocabulary sizes, which could be mitigated by
ensuring identifier independence.

The second experiment, called Complex Code Structure, evaluates
how more complex code structures impact the effectiveness of the
editors. For each pair of samples in the testing set, we refactor
the code samples and add unrelated code. For refactoring, we (1)
reverse the condition in the if-statements and then exchange the
bodies of the if-statement and the else-statement, as illustrated in
Figure 2 (Strategy 1 and 2) and (2) convert the for-loops into while-
loops, as Figure 2 (Strategy 3) shows. For adding unrelated code,
we randomly add variable declarations and assignments to them,
as Figure 3 shows. These changes are also ensured to be semantics-
preserving. Then, we test the trained models on the modified testing
samples.

Table 1 (4th column) shows the results. All the techniques suffer
from accuracy losses in this experiment, too, as more complicated
code structures mean a more diverse data distribution to learn.
Hoppity performs the best with a 49.45% accuracy, because of its use
of ASTs and the Graph Isomorphism Network (GIN) [58]. In an AST,
each subtree represents a code block/statement. Thus, changing
the structure of code only makes sparse changes to the AST. For
example, exchanging the if and else bodies only changes the order
of the two child subtrees of the if-statement. Inserting unrelated
statements only adds a subtree without affecting other parts of the
AST. The GIN also helps here as it outputs the same embeddings
(which determine the edit predictions) for two isomorphic graphs
while a refactored AST may be isomorphic to its original AST.

With a 40.71% accuracy, Graph2Edit is less generalizable. The
reason is that, while also using ASTs, the GGNN used by Graph2Edit
cannot handle code refactoring changes as the GIN does.

SequenceR almost fails with a 2.42% accuracy as the sequence-
based model has no mechanism to deal with code structure changes.

2The ability of a learning-based code model to learn the code semantics without being
impacted by variations of identifier names.
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Normal Code Vulnerable Code Normal Code Vulnerable Code
1 void name_0(){ 1 void name_0(){ 1 void name_0(){ 1 void name_0(){
2 if (globalTrue){{ 2 if (globalTrue){{ 2 int data=INPUT; 2 int data=INPUT;
3 char data[150], dest[100]; 3 char data[150], dest[100]; 3 if (data>INT_MIN){ 3 {
4 memset(data,'A’,149); 4  memset(data,'A’,149); 4  data--; 4 data--;
5 data[149]="\@’; 5 data[149]="\0’; 5 int result=data; 5 int result=data;
6  memcpy(dest,data,99*sizeof(char)); 6 memcpy(dest,data,99*sizeof(char)); 6 printLine(result); 6 printLine(result);
7 dest[99]="\0’; 7 7 } 7}
8 printLine(dest); 8 printLine(dest); 8 } 8}
9 13} 9 11}
Graph2Edit (2 edit action)

Graph2Edit (1 edit action)
/I Remove the target statement directly
Remove .../Statements/4

Hoppity (15 edit actions)
/I Remove the last statement
Remove .../Statements/5

Replace
Remove ...IStatements/4/Expression/RightExpression”

/I Modify the statement to be deleted into the last statement (14 edit actions)
.../Statements/4/Expression/RightParenthesis” -> ")"

/I Remove if statement

Remove  .../Statements/1/

/I Copy the body of the if statement to the AST

CopySubtree .../Statements/1/ <- ...Statements/1/Statement

Hoppity (44 edit actions)

/I Remove the if statement

Remove .../Statements/1/

/I Add every node in the body of the if statement to the AST
(43 edit actions)

...IStatements/1/OpenBrace -> “{"
.../Statements/1/Statements -> StatementList

Edit Sequences 1

Edit Sequences 2

Figure 1: A comparison of the ground-truth edit sequences generated by Graph2Edit and Hoppity.

if(cond){ if(!(cond)){
if (cond) if(!(cond)){} [Stmts1] [Sstmts2]
else{ }
[Stmts] — [Stmts] else{ — else{
} [Stmts2] [Stmts1]
Strategy 1 Strategy 2

o . R initStmt;
for(initStmt;testStmt;updateStmt) while(teststmt){
[stmts] — [Stmts]

updateStmt;
! )
Strategy 3

Figure 2: The methods we used to refactor the (synthetic) code.

void name_0()

char *data;

char entity 2[90];

int entity_9;

char dataBuffer[100] = "";
entity 9 = rand();

data = dataBuffer;

char entity_5[6];

entity _2[10] = 'o';

void name_0()

char *data;
char dataBuffer[100] = "";
data = dataBuffer;

—

¥

Figure 3: An example of adding unrelated code.

All the techniques have lower accuracy with more com-
plicated code structures. Sequence-based models are most
sensitive to this problem, whereas AST and graph-based
models help ensuring generalizability.

3.3 Impact of Key Dataset Factors on Accuracy

We consider three dataset factors key to our study: (1) the edit length
of a testing pair, measured as #edit actions, (2) the program length of
a testing pair, measured as #tokens in the ground-truth vulnerable
sample, and (3) the pattern frequency of a testing pair, measured
as #sample pairs in the training set that have the same pattern,
where the pattern of a pair is the edit sequence abstracted by only
preserving the operator and target node type in each edit action,
as illustrated in Figure 4. For edit length and pattern frequency, we
refer to the ground-truth edit sequences computed by Graph2Edit
as they are optimized and similar to human edits.

Table 2 shows the impact of edit length on the prediction accu-
racy. The accuracy decreases when the edit lengths increase, for
all of the techniques. For Hoppity and Graph2Edit, this is because
they predict edit actions iteratively; thus, the larger the edit length,
the larger the probability that the overall prediction is incorrect.
For SequenceR, while the edit lengths may not directly impact the
accuracy, the positive correlation between edit length and program
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Table 2: How does edit length impact accuracy?

Edit Length <4 4-10 10-40 40-100 >100

Hoppity  77.72% 4835% 28.08% 0.00%  0.00%
Graph2Edit 94.41% 76.89% 52.71% 3.51% 0.00%
SequenceR  86.43% 69.58% 45.32% 14.04% 0.00%

Table 3: How does pattern frequency impact accuracy?

Pattern Frequency 0 1-10  10-20 20-100 100-500  >500
Hoppity 000% 7.92% 9.32% 24.63% G6487%  86.05%
Graph2Edit 0.00% 2931% 6842% 67.74% 71.97%  96.60%
SequenceR 0.00% 25.00% 31.36% 64.93%  70.26% 91.99%

length, and the negative correlation between edit length and pattern
frequency, still (indirectly) lead to accuracy decreases.

Table 3 shows the impact of pattern frequency on the prediction
accuracy. For all the techniques, the accuracy increases when the
pattern frequency increases. This can be explained by the nature of
the gradient descent (GD) algorithm [50] used for model training:
The more often one pattern is observed in the training set, the more
likely the models predict correctly on it. The 2nd column shows
an extreme case: The techniques cannot predict correctly on those
testing pairs with unseen patterns.

Table 4 shows the impact of program length on the prediction
accuracy. Generally, the accuracy on longer programs is lower with
these techniques. For Hoppity and Graph2Edit, the AST size grows
as the number of tokens increases, making the message passing
in the GNNs harder. For SequenceR, longer programs mean more
tokens to predict, making it harder to predict all tokens correctly.

The accuracy of all the techniques generally decreases
significantly when the edit length or program length in-
creases, or when the pattern frequency decreases. This
property of the models limits their effectiveness at inject-
ing complex vulnerabilities.
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Edit Sequence:

Operator Node Location Node Type Node Value Operator Node Type

Remove /Function/Statements/5/Statements/1/ -> IfStatement . Remove IfStatement

Add /Function/Statements/5/Statements/1/OpenBraceToken -> Token “ |:> Add Token

Add /Function/Statements/5/Statements/1/Statements -> StatementList N.A Add StatementList

Add /Function/Statements/5/Statements/1/Statements/0 -> ExpressionStatement N.A Add ExpressionStatement

Edit Pattern:

Figure 4: An example of getting the edit pattern from an edit sequence.

Table 4: How does program length impact accuracy?

# of tokens in programs <100  100-125 125-150 150-175 175-200 >200
Hoppity 55.96%  56.82% 70.18% 68.45% 58.06%  34.38%
Graph2Edit 84.44%  79.55% 46.84% 78.64% 73.12%  64.46%
SequenceR 76.49%  76.62% 72.28% 71.84% 60.22%  46.88%

Table 5: RQ2: Accuracy on the real-world dataset.

Editor Accuracy (Exactly-Matched) Success Rate
Hoppity 1.41% 9.09%
Graph2Edit 10.03% 34.93%
SequenceR 0.00% 0.00%

Program Length Edit Length Pattern Frequency

Vocabulary Size
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Figure 5: The synthetic versus real-world datasets.

4 RQ2: REALISTIC DATA GENERATION

To answer the question whether the editors can generate realistic
vulnerable code, we split the 7,789 pairs of samples in the real-world
dataset into 60%:10%:30% (4,678:778:2,333) for training, validation,
and testing. The reason for keeping 30% of the data for testing is
that we want to use more samples in RQ3.

4.1 Results on the Real-World Dataset

Table 5 (2nd column) shows the exact match accuracy on our real-
world dataset. The results are much worse than those on the syn-
thetic dataset. To help understand the contrast, Figure 5 shows
the much greater complexity of the real-world dataset than the
synthetic one in terms of larger vocabulary size, greater program
length, and lower pattern frequency. The edit length of the real-
world dataset is smaller because we filter the dataset (Section 2.3)
by removing samples with long edit lengths (>100 edit steps), which
each would need unaffordable time (>1hr) and/or all the GPU mem-
ory (24GB) for the editors to process. For RQ1, we have discussed
the impact of these factors with the synthetic dataset. With the
real-world dataset, these impact are even larger, further indicat-
ing the gaps with existing editors from realistic vulnerability data
generation.

Graph2Edit achieves the best accuracy, largely due to its DP algo-
rithm and copy a subtree operator, which reduce the edit lengths. In
contrast, Hoppity has lower accuracy because of its suboptimal pre-
processing that generates redundant ground-truth edit sequences.
Yet, its use of ASTs, identifier independence, and the GIN still help
it achieve a 1.41% accuracy. SequenceR fails entirely on all the
real-world samples. Our manual inspection reveals that it cannot
generate any (syntactically) valid programs. The main plausible
reasons are that (1) the sequence-based model is very sensitive to
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program lengths, whereas the real-world programs are usually very
long, as Figure 5 shows; (2) the model has no explicit mechanism
to reason about code syntax and semantics; and (3) the model is
sensitive to complex code structures, which the real-world samples
usually have [9].

The failure of SequenceR indicates the significant limitation
of sequence-based editors for vulnerability injection. While such
editors are successful at bug fixing, they highly depend on mature
techniques for bug localization, which allows them to reduce the
sequence to be generated and take advantage of the sequence-based
models on natural languages [6, 11]. However, there is no technique
to analyze the normal samples and localize the code fragments to
inject vulnerabilities yet. Thus, current sequence-based editors
leave room for improvement for generating vulnerabilities.

All the techniques have underwhelming accuracy on the
real-world dataset because it is much more complex in
terms of larger vocabulary size, greater program length,
and lower pattern frequency, which significantly impact
the accuracy, indicating their gaps for realistic vulnerability
generation.

So far, we have measured accuracy with respect to the existing
ground truth. However, there may be multiple ways to inject a
vulnerabilities into a given code sample. To account for this situa-
tion, we manually check each DL-generated code sample that does
not match its ground truth. If we find that such a code sample has
vulnerabilities, we still mark it as a success sample. Table 5 (3rd
column) shows the success rates on the real-world dataset, where
a success rate is the percentage of exactly-matched samples and
other success samples in the testing set. For both Graph2Edit and
Hoppity, the success rate is notably higher than the exactly-matched
accuracy. In particular, Graph2Edit achieves a much greater success
rate (34.93%), suggesting its better potential for vulnerability data
generation.

Graph-based techniques successfully generate many vul-
nerable samples, many of which do not exactly match the
ground truth, indicating their potential for generating re-
alistic vulnerabilities.

4.2 Case Studies

Based on our manual inspection of the DL-generated samples, we
notice some patterns in the generation process. Thus, we quantita-
tively investigate two questions about the behavor of the editors.
Since SequenceR could not generate (syntactically) valid samples
in our testing (Section 4.1), we perform these case studies only on
Graph2Edit and Hoppity.

Q1: How do the edits (add/remove/replace lines) done by the
models and those expected in the ground truths differ?
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Table 6: How do the kinds of edits (add/remove/replace lines)
done by the models and those in the ground truth differ?

. % Add % Delete % Replace
Tool Edits line(s) only line(s) only lins(s)
Ground truth All 1.07% 41.19% 57.74%
All 0.13% 99.66% 0.21%
Graph2Edit Success, exactly-match 0.00% 100% 0.00%
Success, not exactly-match 0.00% 100% 0.00%
All 1.41% 14.88% 83.71%
Hoppity Success, exactly-match 3.03% 57.58% 39.39%
Success, not exactly-match 4.47% 59.78% 35.75%

Since the editors inject vulnerabilities via code editing, we want
to know what kinds of edits they typically perform and which
of these edits successfully inject vulnerabilities. To be consistent
across Graph2Edit and Hoppity, we use the diff tool [39] to get
the lines added/deleted between the vulnerable samples and the
normal ones. We then examine how often the models add line(s)
only, delete line(s) only, or do both (i.e., replace line(s)), and compare
these numbers to the ground truth edits.

Table 6 shows the results. Of the ground-truth edits, more than
half (57.74%) are replacing line(s) and 41.19% are just deleting line(s).
Merely 1.07% of the edits are adding line(s) only.

In comparison, Graph2Edit only deletes line(s) for almost all the
samples (99.66%), which also covers the entire set of success cases.
This indicates that it tends to inject vulnerabilities by deleting code
and is good at it. Since more than 40% of the ground-truth edits
are also deleting line(s) only, Graph2Edit takes this advantage and
performs the best in both the exactly-match accuracy and success
rate. However, this also indicates that Graph2Edit may not be very
good at replacing code. The reason is that Graph2Edit does not
have the node replacing operators as Hoppity does, making the edit
sequence for code replacing longer hence reducing the effectiveness.

In contrast, Hoppity replaces lines in most of the edits (83.71%).
Even in the success cases, more than 30% of the edits are replacing
line(s) (39.39% for exactly-match cases and 35.75% for success but
not exactly-match cases). Compared with Graph2Edit, Hoppity
takes advantage of its replacing node value and replacing node type
operators, which reduce the edit sequence length. By manually
inspecting the success cases of Hoppity, we notice that most of
them are replacing one or several node values (e.g., replacing ">" to
"oat).

While Hoppity is better at replacing line(s) than Graph2Edit, the
proportions of deleting line(s) only edits in the success cases (>55%)
are still much higher than the ones in the ground-truth edits (41.19%)
and all of Hoppity’s edits (14.88%). This indicates that it is still
easier to successfully inject vulnerabilities by deleting code, even for
Hoppity. In fact, the deleting a node operators in both Graph2Edit
and Hoppity are simpler than other operators. Compared with
adding a node and replacing a node value/type operators, deleting a
node can delete a subtree by simply deleting the root node while
adding/replacing a subtree needs to add/replace the nodes one by
one. Also, deleting a node operator only needs to know the node
location, but not the value and node type as other operators do.

While adding line(s) edits are rare in the ground truth and all
the Hoppity’s edits, we notice that there are still success cases for
such edits on Hoppity. This indicates that Hoppity potentially has
a broader set of capabilities for vulnerability injection.
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// bigvul_linux_CVE-2017-16534_CWE-119_linux_CVE-2017-16534_CWE-119_good.c
int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,

struct usb_interface *intf, u8 *buffer, int buflen){

unsigned int elength;

int cnt = 0;

while (buflen > 0){

elength = buffer[0];

Generic vulnerability:

removing the checking of buffer may cause memory safety issue (CWE-119),

which is a vulnerability for software in all the domains.

intf->d LF] 3
—erPs £l

id—d int
P

buflen -= elength;
buffer += elength;

// bigvul_libuv_CVE-2015-0278_CWE-264_libuv_CVE-2015-0278_CWE-264_good.c
static void uv__process_child_init(const uv_process_options_t *options,
int stdio_count, int (*pipes)[2], int error_fd){
Domain specific vulnerability:
not dropping the user/group priviliage may cause permission issues (CWE-264),
which is a vulnerability depending on the software domain and usage.

= 5 5
execvp(options->file, options->args);
uv__write_int(error_fd, -errno);
perror("execvp()");

_exit(127);

¥

Figure 6: Generic versus domain-specific vulnerabilities.

All the techniques are better at deleting lines than adding
or replacing code. A better design should improve at other
types of operations while keeping that strength.

Q2: Do the neural code editors tend to generate generic vul-
nerabilities or domain-specific ones?

For high data quality, it is desirable that the DL-generated sam-
ples are diverse but also have similar distributions to real-world
samples. One way to examine these properties is to differentiate the
vulnerabilities between generic and domain-specific. We refer to as
a generic vulnerability a bug that may cause security issues in any
domain of software (e.g., buffer overflow, dangling pointer, integer
overflow), and a domain-specific vulnerability a security bug only
in some specific software domains (e.g., improper authentication,
improper input validation, insufficiently protected credentials). To
illustrate, Figure 6 shows an example of each kind.

We randomly sample 200 ground-truth vulnerable samples from
the entire real-world dataset and 200 DL-generated samples from
the exactly-match cases. Then, we manually identify whether the
vulnerabilities are generic or domain-specific. We do not check the
success but not exact match cases because these cases are manually
identified and may have bias (e.g., we may miss more domain-
specific vulnerabilities since they are harder to identify).

Table 7 shows the proportion of domain-specific vulnerabilities
in the ground-truth samples and those in the exactly-match sam-
ples produced by Graph2Edit and Hoppity. We notice that both
editors tend to generate fewer domain-specific samples with re-
spect to the ground truth. The reason is that the code relevant to
generic vulnerabilities is easier to identify by the models. We notice
that the code relevant to generic vulnerabilities has many similari-
ties. For example, many of them use common identifiers like buf,
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Figure 7: The average realism confidence levels of the 20
ground-truth samples versus the 20 DL-generated samples.
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Truth
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buflen, len, length or involve relational expressions, as
Figure 6 shows. However, the domain-specific vulnerabilities are
much more diverse. The identifiers used are rarely the same and
the code of the vulnerabilities is diverse (e.g., code for improper au-
thentication, improper input validation, and insufficient protected
credentials may be very different). This indicates that the editors
may be weaker at generating domain-specific vulnerabilities, com-
promising the overall quality of the DL-generated data.

In comparison, Hoppity generates a much smaller proportion
of domain-specific vulnerabilities than Graph2Edit. The reason is
that Hoppity tends to replace line(s) in most of the cases, usually
by replacing tokens. Since generic vulnerabilities often involve
common tokens and node types, it is much easier to inject such
vulnerabilities by just replacing tokens and node types. In contrast,
the code diversity of domain-specific vulnerabilities makes it much
harder to inject them by simply replacing tokens and node types.

Both techniques generate smaller proportions of domain-
specific vulnerabilities than generic ones. This contrast,
compared to that in the ground truth, suggests a relative
weakness of these two neural code editing techniques in
generating domain-specific vulnerabilities.

4.3 User Study

To evaluate the realism of the success samples that do not exactly
match ground truth, we conduct a user study for which we ran-
domly select 20 of them and 20 vulnerable samples in the real-world
dataset. As for our case studies, we used random sampling without
replacement (assuming that each sample has the same probability of
being selected) to obtain these samples. Given the high cost of such
manual studies, we only sampled once. We then shuffle these 40
samples for each participant, who is asked to rate their confidence
(out of four levels, where four is the highest) that the vulnerability
in each sample is realistic (i.e., made by a developer rather than an
editor) in each sample. The participants are told what and where
each vulnerability is in the code.

Six participants completed the study, who have at least 3 (mostly
10-15) years of experience with software engineering and secu-
rity. Figure 7 shows the average of their confidence levels for each
sample. We use Wilcoxon signed-rank tests [56] to compute the
statistical significance (p values), and Cliff’s Delta [14] as effect size,
of realism differences between the real-world and DL-generated
samples. Our results (p=0.624, effect size=0.042) indicate that the
DL-generated samples have no statistically significant or large dif-
ference from real-world samples in terms of realism.

By doing a user study followed by statistical analyses, we
find that our DL-generated success samples are realistic.
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Table 7: Are the editors better for generic vulnerabilities?

Case % domain specific
Ground-truth samples 47.50%
Exactly-match samples by Graph2Edit 43.50%
Exactly-match samples by Hoppity 15.00%

Table 8: Vulnerability detection datasets

Dataset #Vulnerable Samples #Normal Samples %Vulnerable

Devign 10,051 11,012 47.71%

ReVeal 1,658 16,511 9.12%
Xen 531 7,436 6.67%

5 RQ3: USEFULNESS OF GENERATED DATA

In this RQ, we investigate whether our DL-generated vulnerable
samples help improve DL-based vulnerability detectors that predict
whether a given sample is vulnerable. We choose two state-of-the-
art detectors, Devign [66] and ReVeal [9], as they are considered
the most effective such detectors for C so far [9, 33]. Their original
datasets are summarized in Table 8. Since the ultimate goal of a
vulnerability detector is being able to detect unseen vulnerabilities
in real-world software, we apply independent testing for our ex-
periments, i.e., the testing and training samples are from different
datasets. To test the detectors more comprehensively, we further
use a third-party dataset Xen, which is a subset of the dataset in-
troduced in [37] as an additional testing set, also shown in Table 8.

Using these datasets, we consider three experiment settings:
(1) Reproduction: We use the same experiment setting used in [9]:
the training set is Devign and the testing set is ReVeal.

(2) Partial replication: We keep the training set Devign used
in [9] and only change the testing set to Xen.

(3) Full replication: We change both the training set and the test-
ing set by using ReVeal for training and Devign for testing.

We use these three settings against the two detectors as baselines.
Then, we improve their training set by adding the 2, 333 X 34.93% =
815 success samples from Graph2Edit (as it is the most effective
editor), and test whether the re-trained models perform better. Note
that the testing set is kept the same in this process. Since these
added samples are all labeled as vulnerable, to avoid the impacts of
data balance changes, we add proportional numbers of real-world
normal samples from [37] (others than those already included in
the Xen dataset above) such that the balance does not change.

Table 9 column Baseline shows the effectiveness of the two de-
tectors using the original training sets and column Improved shows
the relative improvements after adding the samples to the train-
ing sets.For example, in reproduction, Devign’s F1 improves from
16.83% t0 19.31%, i.e., by 14.74%. In any setting, all the metrics (preci-
sion, recall, F1) improve significantly after adding the DL-generated
samples, except for a 3.67% decrease in Devign’s precision in full
replication. This indicates that the DL-generated vulnerable sam-
ples have very good potential—they are indeed useful in boosting
the effectiveness of DL-based vulnerability detectors.

To validate that the DL-generated data is more useful than sim-
ply adding the same amount of synthetic, samples we replace the
815 DL-generated samples with 815 vulnerable samples from the
synthetic dataset used in RQ1. Then, we redo the experiments with
no other changes. Table 9 column Synthetic shows the results: the
overall improvements are much less than those in the Improved
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Table 9: RQ3: Does the DL-generated samples help improve
the DL-based vulnerability detectors?

Ground All

Metric Baseline Improved Synthetic Truth Generated

Tool  Setting

Reproduction: Precision  10.75% 9.67%1 9.95%1 8.56%T 3.35%7
Training: Devign Recall 38.78%  37.26%] 11.76%T 56.88%7 57.86%T
Testing: ReVeal F1 16.83% 14.74%] 10.40%] 16.34%]  11.76%
Partial Replication: Precision 8.73%  16.04%1 -10.31%T 30.81%7 5.04%1
Training: Devign Recall 37.48% 102.48%1 -1.52%T 50.24%7 26.12%1
Devign Testing: Xen F1 14.16% 26.20%7 -8.76%] 34.11%7  8.47%]
Full Replication:  Precision 55.56%  -3.67%7 0.92%7 1.64%7 7.61%1
Training: ReVeal Recall 2.76%  38.04%7 8.70%T 74.28%7 5.43%1
Testing: Devign F1 5.25% 35.43%] 8.57%] 68.76%T 5.52%T
Reproduction: Precision  11.24% 9.79%1 2.94%1 22.06%7 -1.42%7
Training: Devign Recall 68.82%  13.27%T 9.39%7 -8.28%7 22.65%T
Testing: ReVeal F1 19.31% 10.36%]  3.94%] 16.68%]  1.45%]
Partial Replication: Precision 6.21%  34.94%1 12.88%T 40.90%7T 34.62%T
Training: Devign Recall 29.94% 210.09%7 -49.06%7 184.94%7  204.44%T
ReVeal Tegting: Xen F1 10.28% 49.51%] -6.61%] 54.38%]  48.93%
Full Replication: ~ Precision  53.62% 5.86%1 -2.93%T -2.24%7 -0.71%7
Training: ReVeal Recall 22.67%  20.78%T -60.87%1 36.48% 19.89%1
Testing: Devign F1 31.86% 15.94%] -52.42%] 22.16%]  12.96%]

experiments (e.g., 8.57% versus 35.43% in Devign’s F1 in full repli-
cation). In several cases, the effectiveness even decreases (e.g., by
52.42% in ReVeal’s F1 in full replication). This indicates that the
quality of the synthetic samples is lower than the DL-generated
ones, as the latter are more realistic.

We also compare the DL-generated vulnerable samples with
the ground-truth ones. From these samples, we replace the success
but not-exactly-match ones with their ground truths. As Table 9
column Ground Truth shows, this brings even larger improvements
(e.g., 16.68% versus 10.36% in ReVeal’s F1 in reproduction). This
indicates that, while the DL-generated samples are realistic and
useful, they still have gaps in these regards compared to real-world
vulnerabilities.

Finally, we try to use all the 2,333 DL-generated samples. To
be consistent with the previous experiments (keeping the data
balance and #added samples the same), we undersample the 2,333
by randomly removing samples until 815 are left. Then, we add these
815 to the baseline training sets. As Table 9 column All Generated
shows, in any setting, the improvements are less than the ones in the
Improved experiments in terms of F1 (e.g., 1.45% versus 10.36% with
ReVeal in reproduction) because of the noisy samples. However,
the augmentation still brings improvements over the Baseline, and
in most cases the Synthetic, experiments. This indicates that the
DL-generated samples have the potential to improve vulnerability
datasets even without manual filtering.

On a side note, generally the numbers of generated samples
added do affect the improvement of the vulnerability detectors
achieved by taking those additional samples. In our preliminary
experiments, the larger the number of realistic samples added, the
larger the improvement seen by the detectors.

Despite gaps from real-world data, DL-generated samples
have great (and greater-than-synthetic-ones) potentials for
boosting DL-based vulnerability detectors.

6 DISCUSSION

We further discuss what properties of neural code editors makes
them effective at generating realistic vulnerabilities.
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6.1 Incremental Edit

A key design factor of DL models is the output space. We eval-
uate both sequence- and graph-based models and show that the
latter can be more effective (Sections 3.1 and 4.1) and generalizable
(Section 3.2). Besides the general merits of graph-based models,
predicting target edits (as what Hoppity and Graph2Edit do) rather
than target programs has several advantages: (1) modeling incre-
mental edits better mimics the behavior of human in code editing—
developers make code changes incrementally; (2) the search space
of an edit (sequence) is much smaller than that of a target program
and more decomposable to lower-level primitives; and (3) smaller
search space also implies less data needed to train and activate the
neural models.

Decomposing the search space into lower-level editing primitives
also makes the resultant models more interpretable. When lower-
level primitives are produced by the model, it is clear what the
model is doing at each step and how it behaves to generate certain
types of vulnerability (e.g., buffer overflows). We discuss further
about the design of these editing primitives (Section 6.3).

Thus, we suggest DL-based vulnerability generation approaches
learn predicting incremental edits rather than the changed code.

6.2 Data Representation

As we discuss in Sections 3.1 and 3.2, SequenceR uses text sequences
while Graph2Edit and Hoppity use AST-based graphs to represent
programs. Despite Graph2Edit having the best accuracy among
the three editors on both datasets, the comparison between Hop-
pity and SequenceR seems also interesting. Although Hoppity has
lower accuracy than SequenceR on the synthetic dataset (Table 1),
it performed better on the realistic dataset (Table 5) , demonstrat-
ing the advantage of a more structured representation when data
complexity increases.

A high-level explanation is that ASTs have richer and easily
accessible information (syntactic structure) than text sequences,
which is important for vulnerable code generation. The GNN also
helps, as it only takes a few steps of message propagation, and
hence, avoids overfitting by restricting message passing to local
structures. While the LSTM in SequenceR allows forgetting and
dynamically adjusting its memory, the model can still learn noisy
long-distance correlations between tokens.

Yet, ASTs do not contain easily accessible semantic information
behind the syntactic structure. As a vulnerability is more related
to semantic than syntactic information, representations that in-
corporate semantic information (e.g., control/data flow) may be
better.

6.3 Code Editing Primitives

In Section 3.1, we find that one main weakness of Hoppity is its
inability to predict a primitive operation for copying a subtree in
the AST. This contributes to Hoppity’s limited accuracy because
the common traits of code editing is not considered in the design
of its edit primitives. When the code is represented as a tree like
AST, a relatively small change to a code line translates to changes
in a subtree ¢ (which represents the code line) where most parts (a
subtree tt of t) often remain unchanged. Thus, a model learning to
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predict individual (token-level) edits to build ¢t is apparently cum-
bersome and error-prone (the more edits to predict, the less likely to
correctly predict them all). Accordingly, we suggest future models
design should consider copying a subtree as a direct, lowest-level
edit primitive when the code representation is a tree. At a higher
level, the granularity of edit prediction should respect (i.e., be con-
sidered based on) the granularity of changes to the particular code
representation rather than to the code itself (as a text sequence).
More generally, this Hoppity weakness represents a mismatch be-
tween the design of the model/algorithm and the characteristics of its
application domain (e.g., code editing). We suggest to design edit
primitives based on such characteristics to avoid the mismatch.

Compared to Graph2Edit, another weakness of Hoppity is its
ineffective preprocessing: instead of training the network against
just one direct edit for deleting a code line, it feeds the network
with an excessive number of edits that realize the deletion through
cascading replacement of a line with the line below it (starting
from the bottom of the AST all the way until the line to be deleted).
Seemingly an implementation issue, this generally represents a
major design flaw (in Hoppity)—it overly burdens the model with
learning tasks of unnecessary complexity hence downgrades the
model accuracy (Section 3.1). We suggest to shift such burdens of
low-level (e.g., editing) operations to a deterministic process outside
the network, hence minimize the #decisions to be made by the NN
model. Moreover, we suggest to let the model focus on learning
the most essential, probabilistic steps (e.g., predicting which line to
delete), while offloading deterministic steps (e.g., actually deleting
the line) from the model itself. As one example of validating the mer-
its of these suggestions, we implemented a dynamic-programming
algorithm to reduce the average (ground-truth) edit length by 33%,
which resulted in noticeably more accurate edit location prediction
with Hoppity. As another example, we also realized the insight of
learning the most essential probabilistic steps to separate edit local-
ization and editing, by removing the irrelevant context of edits on
ASTs, which reduced program lengths by about 50% and increased
the overall editing accuracy.

In Section 4.2, we notice that almost half (41.19%) of the ground-
truth vulnerability injections only delete line(s). This is natural
because the vulnerability fixes, which are the reversal edits of vul-
nerability injections, tend to add new line(s) in many cases [23].
Graph2Edit captures this pattern and almost always deletes line(s)
for the real-world samples, making it achieve 10.03% exactly-match
accuracy and 34.93% success rate. While an advantage, this also
indicates Graph2Edit’s limited capability to replace code. In com-
parison, Hoppity has broader capabilities so that it has success
cases on different kinds of edits. Nevertheless, it still succeeds more
on the deleting line(s) only cases. This indicates that the current
neural code editors are more capable of deleting code, because this
primitive is simpler (with no need to predict the node type and
value). Thus, we suggest to improve the designs of other editing
primitives to enhance the ability of editors to add and replace code.

6.4 Model/Algorithm Design

Intuitively, at least for code editing, a more sophisticated mod-
el/algorithm (e.g., graph-based, as exemplified in Graph2Edit and
Hoppity, which help capture semantic information) is generally
expected to outperform a simplified one (e.g., sequence modeling in
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SequenceR) that ignores semantic information. Yet, in Section 3.1,
we observe counter-intuitive results (as summarized in Table 1): The
sophisticated designs do not perform much better (with Graph2Edit)
or even much worse (with Hoppity) than the (seemingly over-) sim-
plified design (with SequenceR). The reason is that the specific
design may also significantly impact the potential. For example, as
noted earlier, Hoppity has several critical weaknesses in its design
(e.g., mismatch with the nature of the application domain, as exem-
plified in its lack of an edit primitive for copying a subtree). Our
results suggest that its limited accuracy is largely attributed to such
major design flaws. In short, a careful design is key for leveraging
the potential of a generally more powerful model (architecture)
or learning algorithm. Thus, we suggest not to simply adopt a so-
phisticated model/algorithm assuming it to surely outperform a
simplified one, but to compare both.

6.5 Data Quality

In Section 5, we show the impact of different data properties on the
accuracy of DL-based vulnerability detectors. Based on the results,
we notice that the data quality of the vulnerability samples matters
and there are three main aspects we should consider to improve it.
Representativeness. Table 9 shows that the synthetic samples are
not very helpful or even have a negative impact on the vulnerability
detectors for detecting real-world vulnerabilities. In contrast, the
DL-generated samples confirmed as vulnerable and realistic, as well
as the real-world samples, are much more helpful. The reason is
that the synthetic code and vulnerabilities are not representative of
those in real-world programs, e.g., in terms of structural complexity
and vocabulary diversity. Thus, we suggest that, when building
vulnerability datasets, we should aim at realistic samples rather
than synthetic ones. As manually curating them may not be a viable
path to make the datasets sizable, especially for training DL models,
we suggest to develop automated approaches to generating large-
scale realistic vulnerability datasets as supported by our study.

Diversity. In Section 4.2, we notice that the neural code editors tend
to generate more generic vulnerabilities than domain-specific ones.
This distribution difference indicates that the abilities of editors to
generate different types of vulnerabilities are imbalanced, which
compromises the diversity of the generated data. Thus, we suggest
to improve the capability of models on the more difficult types of
vulnerabilities so as to improve the diversity.

From our study, an interesting observation is that the graph-
based editors are able to generate valid/realistic vulnerable samples
that do not match the ground truth (Section 4.1), resulting in some
kind of diversity. We also notice that the success of vulnerable in-
jection is not just inadvertently gained by incomplete reversal of
vulnerability-fixing changes to retain the same vulnerability type,
but also by additional changes to spawn a new type of vulnerabil-
ity. Thus, the diversity can be a result of the non-duality between
vulnerability injection and vulnerability fixing: to inject vulnerabil-
ities, we do not need complete reversal of all vulnerability-fixing
changes. Future work could leverage this non-duality for diverse
data generation by decomposing vulnerability-fixing changes and
using parts of them combinatorially to inject vulnerabilities.

Noise. In Section 5, we show that even without manual filtering, our
DL-generated samples still improve the vulnerability detectors over
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the baselines. This shows the value of DL-generated samples and
thus shed a light on using automatic approaches to generate high-
quality vulnerability data. Yet, the improvements by using all these
samples are much less than just using the manually selected success
samples and the ground-truth samples, because of the noisy nature
of the former. Thus, we suggest, for generating high-quality data, to
reduce noise in the data, e.g., by using a dynamic analyzer [41, 42]
to validate the generated sample as indeed vulnerable.

7 THREATS TO VALIDITY

Internal validity. The major threat to the internal validity of this
study lies in the possible errors when we manually review the
source code of the techniques. We provide many in-depth technical
insights based on the source code we review. Some of the insights
are not rigorous proved by experiments or theoretical analysis. To
mitigate this problem, we do literature studies on other papers and
ensure that our technical insights have related support.

External validity. The major threat to the external validity of
our study lies in the datasets and the evaluated techniques we
select. The evaluated techniques may not represent the state-of-
the-art techniques that are suitable for our software vulnerability
data generation task. The datasets we select may not be fairly
evaluate the techniques comprehensively, and our insights may not
generalize to other datasets. To mitigate the two problems, we set
several criteria to select suitable techniques, and we use several
different and reliable datasets to validate our insights.

8 RELATED WORK

Many DL-based code editing/transformation techniques were de-
veloped. Harer et al. [22] proposed an generative adversarial net-
work (GAN) approach to repair software vulnerabilities without
requiring vulnerable and non-vulnerable samples to be paired at
training time. Dinella et al. [16] and Yao et al. [60] proposed graph-
based models for program editing. Yasunaga et al. [61] proposed a
semi-supervised, graph-based model for program repairing based
on diagnostic feedback. Chen et al. [11] proposed a NMT-based
model to translate buggy code to fixed code. Tarlow et al. [54] used
graph2diff neural model to fix build errors in programs. Berabi et
al. [6] built a high quality dataset and used it to train a capable
text-to-text transformer model to fix software bugs. Yasunaga et
al. [62] built an unsupervised model to fix software defects with the
help of static analyzers and compilers. We select SequenceR [11],
Graph2Edit [60], and Hoppity [16] for our empirical study, not
only because they are the state-of-the-art code editing/transfor-
mation techniques, but also they are open-source, standalone, and
configurable which well satisfied our task requirements.

Other empirical studies on DL-based code analysis/transforma-
tion exist. Kang et al. [26] assessed if the popular model code2vec
was able to generalize to the tasks of code comment generation,
code author identification, and code clone detection. Ciniselli et
al. [12] did an empirical study to evaluate the capability of the BERT
model for code completion. They also did an extended study [12] to
investigate whether several transformer-based models were capable
for code completion task. Rabin et al. [49] compared the capabilities
of several neural program models for semantic-preserving code
transformations. Tufano et al. [55] assessed the feasibility of using
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NMT techniques to fix bugs in the wild. Paltenghi and Pradel [45]
compare DL-based models of code to human developers. In compar-
ison, we are the first to evaluate the feasibility of using DL-based
code editing techniques for software vulnerability data generation.

There have been prior studies on vulnerability datasets. SARD [7]
and SATE IV [44] are synthetic databases of over 60,000 vulnerable
samples. The CVE/NVD [8] database archives vulnerabilities found
in real-world software. The BigVul [17] dataset used in our study
was built to include source code associated with known CVEs, in-
cluding 3,754 pairs of code samples. A few other works [18, 30, 65]
built datasets by detecting vulnerability patches. In [64], a spe-
cial dataset, including only null-pointer-dereference vulnerability
samples, was presented. Overall, these datasets are either not af-
firmatively realistic or in relatively small numbers, as we discuss
earlier. SemSeed [46] injects synthetic bugs by imitating real-world
bugs, but does not focus specifically on vulnerabilities. In compar-
ison, in this work, we focus on exploring how far we are from
automated realistic data generation via neural code editing, while
validating the usefulness of such generated datasets.

9 CONCLUSION

We conduct an in-depth exploratory study on realistic vulnerability
data generation via neural code editing. Using two vulnerability
datasets, we reveal the technical strengths and weaknesses of three
state-of-the-art neural code editors. Through extensive empirical
and technical analyses, we find key limitations for code editing
in general, as well as technical gaps for vulnerability data genera-
tion in particular, of these neural editors. On the positive side, we
show the greater potential of the graph-based techniques over the
sequence-based techniques for generating realistic vulnerable code.
We also validate that such generated code samples can indeed boost
the accuracy of deep learning-based vulnerability detectors in de-
tecting real-world vulnerabilities. We offer significant insights and
actionable suggestions for the design of future neural code editing
techniques and generation of realistic, high-quality vulnerability
datasets.
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