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In this paper, we focus on the classification task in the
presence of test time attacks. In particular, we focus on evasion
attacks that aim to degrade the performance of deployed mod-
els, causing an increase of false positives and false negatives.
We leverage adversarial training (i.e., including adversarial
examples generated from known attacks) to develop a novel
adaptive defense strategy that is robust under both known and
unknown test time attacks. Our goal is to strengthen the model
robustness and improve predictive performance at the test
stage. Inspired by adaptive risk minimization (ARM) [5], we
develop the adversarially adaptive defense (AAD) framework
such that the trained prediction and detection models adapt
at test time to new attacks. We structure the training data
into groups and each group represents one attack scenario.
Different from ERM that trains a single robust model or
learns an invariant feature space, our AAD learns a context
vector from features of each batch during the training and
incorporates the learned context vector into both prediction
and detection tasks. Note that the context vector captures group
contextual information such as dynamics in a batch. During
the test time, AAD first learns the context vector of a coming
batch and then combines it with data examples as input to
both prediction and detection models. Thus, AAD can adapt
at test time to new adversarial attacks.

Fig. 1: Adaptive training illustration. There are two groups
in the training set and one group in the testing. Each group
represents one attack scenario and is indicated by a different
color. Clean examples are denoted as a circle and adversarial
examples as a triangle. Adversarial examples in one group are
produced by one particular attack.

Figure 1 shows a toy example to illustrate our AAD. During
the training, we have two groups and each group consists of

Abstract—Adversarial machine learning has been extensively 
studied from perspectives of attack settings and defense strate-
gies. However, existing adversarial training models fail to be 
adaptive and robust against new attacks during test time. In 
this paper, we propose a novel adversarially adaptive defense 
(AAD) framework based on adaptive training such that the 
trained prediction and detection models adapt at test time to 
new attacks. Our AAD structures the training data into groups 
and each group represents one attack scenario. Different from 
empirical risk minimization that trains a single robust model or 
learns an invariant feature space, our AAD learns a context vector 
from features of each batch during training and incorporates the 
learned context vector into both prediction and detection models. 
Thus, AAD can adapt at test time to new adversarial attacks. We 
formulate our problem by optimizing a joint loss from prediction, 
detection, and regularization via a multi-task learning frame-
work. We conduct comprehensive empirical evaluations with 
popular adversarial attacks and defense strategies on two real-
world datasets under different attack settings. Empirical results 
show that AAD achieves both high prediction and detection 
accuracy and significantly o utperforms baselines.

Index Terms—test time attack, adaptive training, adversarial 
machine learning

I. INTRODUCTION

Adversarial machine learning focuses on vulnerabilities in
machine learning models and has been extensively studied
from perspectives of attack settings and defense strategies (see
surveys [1]–[3]). Adversarial training is one of the widely
used defense approaches and aims to train a robust model
by injecting adversarial examples into training data. However,
as pointed out in [4], it is essential to include adversarial
examples produced by as many as known attacks in adversarial
training such that the deployed model could be potentially
robust at test time. There are two inherent challenges. First, it
is computationally expensive to find adversarial inputs by the
most known attacking techniques. Second, there are always
new or unknown attacks at test time. Most of the current
defense strategies are based on empirical risk minimization
(ERM) and assume the data distribution at test time matches
the training distribution. These methods are not adaptive to
new adversarial attacks as defense methods that are built to
block one kind of attack leave another vulnerability open to
other attacks. It is imperative to develop a defense model that
is robust and adaptive to new test time attacks.
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clean examples and adversarial examples generated by one
particular attack. We consider each group to represent one
attack scenario. We have a different attack scenario during the
test time. In each attack scenario, the input-output relationship
varies. Hence, techniques such as robust optimization and
learning an invariant feature space, e.g., [6], which try to derive
one consistent input-output relationship across all groups, are
not applicable. On the contrary, our AAD can achieve adaption
to groups in training and the new group at test time.

Our contributions are summarized as follows. First, we
propose AAD, a novel adversarial defense framework that
is robust and adaptive to new test time attacks. Second, we
develop a method to compute the joint loss from prediction,
detection, and regularization via a multi-task learning frame-
work. Third, we conduct comprehensive empirical evaluations
with 18 popular adversarial attacks, eight defense baselines,
and two real-world datasets with different settings of attack
scenarios. Empirical results show that AAD achieves both high
prediction and detection accuracy and outperforms all defense
baselines with a p-value less than 0.01.

II. RELATED WORK

A. Adaptive Learning

Recent research on robust machine learning has achieved
significant progress. One of the emerging approaches is test
time adaptation to tackle distribution shift. Traditional machine
learning algorithms typically assume that the training and test
data are generated from the same distribution. In real applica-
tions, this assumption is highly unrealistic due to distribution
shift over time or unseen data. In [5], Zhang et al. proposed
a test time adaptation model to group shift called adaptive
risk minimization for the setting where the training data
are structured into groups and test time data represents new
groups or new group distributions. ARM aims to learn models
that adapt at test time to shift using unlabeled test points.
Specifically, they introduced a meta-learning algorithm in
which models are optimized for post adaption performance on
training batches sampled from different groups. The sampling
process simulates group shifts that may occur at test time.
To deal with the similar test time adaption problem, Wang
et al. introduced a new method using entropy minimization
called tent [7]. The objective is to minimize the entropy
of the predictions from model. Different from [5], [7], our
AAD considers each attack scenario as a group, learns the
group’s context vector, and then incorporates it in prediction
and detection tasks.

B. Adversarial Machine Learning

1) Adversarial Attacks: The bulk of recent research on
adversarial machine learning has focused on test time at-
tacks where the attacker perturbs the test data to obtain a
desired classification. In evasion attack, the adversary tries
to evade the system by adjusting malicious examples and
forcing the model to produce incorrect outputs during test
phase. Test time attacks can be classified into white-box
or black-box attacks. Train time attacks leave the test data

unchanged, and instead perturb the training data to affect the
learned model. Data poisoning attacks are among the most
common train time attack methods in adversarial learning.
Approaches include optimization-based methods [8] (e.g.,
influence, KKT, and min-max attack), poisoning Generative
Adversarial Net (pGAN) model [9], and class-oriented poi-
soning attacks against neural network models [10]. Attacks
can be either targeted or non-targeted attacks where targeted
attacks maximize the probability of targeted adversarial class
and non-targeted attacks do not assign a specific class to the
classifier’s output. Attacks can also be white-box or black-box
where white-box attacks have complete access to the model,
including its structure and weights, and black-box attacks can
only access the probability or the label of a given input.
Black-box attacks can be further split into score-based and
decision-based. A score-based attack assumes access to the
output layer and a decision-based attack assumes access to
only the predicted label. In the supplementary file, we present
details of 18 attacks used in our implementation.

2) Adversarial Defense: Defense methods have three main
categories: adversarial training (or robust optimization), gra-
dient masking, and adversarial example detection. Adversarial
training [11]–[13] trains a robust model on a training set
augmented with adversarially perturbed data. Its goal is to
improve the classification accuracy of the target model on
adversarial examples while maintaining accuracy on normal
examples. Gradient masking, e.g., defensive distillation [14],
is a defense strategy where a defender deliberately hides the
gradient information of the model to confuse the adversary. It
applies regularizers or smooth labels to make the model output
less sensitive to the perturbation on input. Adversarial example
detection methods [15], [16] exploit adversarial examples to
train a detector. These methods typically require additional
information, e.g., a labeled set of outliers or a clean set,
and apply supervised classification to separate outliers from
normal examples. Moreover, these methods do not generalize
well across different attack parameters and attack generation
processes. In Section IV-B, we present details of eight defense
methods used as our baselines. Our AAD is among few meth-
ods, e.g., MagNet [15] and Feature Squeezing [16], that can
achieve both prediction and detection, and is the only one that
exploits adaptive training to achieve robustness against new
test time attacks. Very recently, transductive learning based
defense [17] was proposed to achieve adversarial robustness.
However, the method needs to dynamically retrain the model
based on test time input and requires solving expensive bi-
level attack objectives. Our AAD remains unchanged after
deployment and learns context vectors to adapt to new attacks.

III. ADAPTIVE TRAINING FRAMEWORK

A. Problem Formulation

In this section, we formulate and present our adversarially
adaptive defense framework. Let D be the training dataset
consisting of two types of data, clean data Dc and attack
data Da generated from a set of known attacks. The goal of
introducing Da is to increase robustness of the trained model
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Fig. 2: The architecture of our AAD framework. The dashed lines indicate the gradient flow direction of back-propagation.

and improve model prediction performance at test time. In
practice, the deployed model is often under one particular
attack during a given period. We use clean data Dc and attack
data Da to simulate possible attack scenarios. We call each
attack scenario as a group and assume there are M+1 groups,
i.e., D =

⋃
iDi, i ∈ [0,M ]. Without loss of generality, we

assume D0 contains only clean data, which represents the
scenario without any attack, and each Di (i ∈ [1,M ]) contains
a mixture of clean data and attack examples produced by a
particular attack i. Formally, we use (xk, yk, zk, gk) to denote
the k-th data point in D, where xk ∈ X denotes the feature
vector, yk ∈ Y denotes the output label of the prediction task,
zk ∈ {0, 1} denotes clean or adversarial, and gk ∈ [0,M ]
denotes the group index. We consider a classification task
ηθ : X → Y from an input x ∈ X to an output y ∈ Y .
The goal of the classification model is to obtain the optimal
parameters by minimizing the expected loss over test data
where the loss function is parameterized by θ ×X × Y .

In this paper, we adopt the widely studied threat model of
white-box attack that assumes the adversary knows everything
related to the basic classification model ηθ, including training
data, model architecture, and hyper-parameters. The adversary
seeks to increase error on the test set Dtest, which corresponds
to indiscriminate attack. Our goal is to build an adaptive
training model that would be robust against adversarial attacks
during test time. In Section V-D1, we further evaluate an
advanced threat model that assumes the adversary has full
knowledge of our AAD model and the training data.

We assume the training data points are repeatedly generated
by the following process: a data distribution pxy ∈ Pxy
is sampled from a set of distributions, and then each data
point is sampled from pxy . Each pxy then corresponds to a
group, i.e., an attack scenario. During the training stage, we
organize the labeled training data by groups. During the test
stage, there may exist multiple attack scenarios, where each

scenario is considered separately and contains unlabeled data
(only feature x) sampled via a new run of the same generative
process. The attack scenarios at test time are likely to be
different from those simulated in training, e.g., because of new
or unknown attacks. Note that Pxy is large or even infinite.

Our key idea of adversarially adaptive defense is to derive
fθ : X × Px → Y , indicating that fθ takes both the input of
data x and its marginal distribution px ∈ Px. Compared with
traditional classification models that usually do not include Px,
the adaptive model f uses px to adapt its prediction on x. The
underlying assumption of our adaptive model is that Px can
provide extra useful contextual information in addition to x for
classification. At the test stage, fθ first adapts its parameters
based on the distribution information Px of unlabelled data
and then produces the predictive results. Px is only dependent
on the feature information itself, which allows fθ to use the
information to improve the prediction from X → Y , especially
for unseen data or new attacks.

However, it is challenging to learn and then input Px
directly into the model fθ. Similar as [5], we use a batch
of data points (x1, . . . ,xK), where K is the batch size, to
derive an empirical distribution P̂x to approximate Px. Note
that the estimation of empirical distribution does not need
any label information. We also assume that the unlabelled
test data is available to form a batch and so it can be input
to fθ. Note that the notion of batch is different from the
group aforementioned. A batch here refers to a training batch
containing K data points sampled from a random group to
simulate the scenario that different groups contain different
attacks (e.g., different distributions). In the next section, we
expand the adaptive training to develop our adversarially
adaptive defense framework.

B. Framework
The schematic view of the adaptive defense framework is

shown in Figure 2. Our framework includes two joint tasks:
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prediction and detection. The purpose of the prediction task
is to produce classification results for unlabelled data while
the purpose of the detection task is to label data clean or
adversarial. To achieve each task in the changing environment,
we introduce an adaptive context learner h which ingests the
features of the data and produces context vectors. A prediction
model f and a detection model g then use the learned context
vectors, as well as input data, to make predictions. We note that
the proposed framework uses an end-to-end training process
and the dashed lines in Figure 2 indicate the gradient flow
direction of back-propagation.

The adaptive context learner, h(·;φ) : XK → C parameter-
ized by φ, takes a batch of K unlabelled data (x1, . . . ,xK)
as input, and outputs the context vector c. As mentioned
previously, the batch data (x1, . . . ,xK) serves as the empirical
approximation from P̂x to Px. Thus h(·,φ) acts as a mapping
function taking P̂x and producing adaptive data-dependent
context vectors. For each example xk in the batch data, the
adaptive context learner works as an encoder module and
outputs the context vector ck. As each batch is sampled from a
group, the model takes advantage of context vectors as repre-
sentations for the hidden distribution within the group. We then
conduct an aggregation (e.g., average) on the information from
the group to get the context vector c ← h(x1, . . . ,xK ;φ).
For both prediction and detection, ŷk ← f(xk, c;θf ) and
ẑk ← g(xk, c;θg), where xk and its corresponding context
vector c are the input, ŷk (ẑk) is the output and θf (θg) is the
parameters of the prediction model f (detection model g).

To improve robustness, we further approximate prediction
of f(θf ) by using a regularizer r(θr). As shown in Figure
2, for each data point xk, our h(φ) can generate ck ∈ Rd

and then derive the context vector of the whole batch by
c = 1

K

∑K
k=1 ck. We construct a network r(θr) taking each

ck and obtaining its prediction result ŷ′k ← r(ck;θr). During
the training process, we guide the outputs (ŷ′1, . . . , ŷ

′
K) to

approximate the prediction result (ŷ1, . . . , ŷK) produced from
f(θf ). Specifically we approximate ŷk and ŷ′k via the cross-
entropy loss lr = H(P (ŷk), P (ŷ′k)) where H is the cross-
entropy function, P (ŷk) denotes the softmax output from
f(θf ), and P (ŷ′k) denotes the softmax output from r(θr)
for each data point. Note that r(θr) reconstructs the outcome
based on only (c1, · · · , cK) and it does not use input data.

We then compute the joint loss from prediction, detection,
and regularization via a multi-task learning framework:

L(θr,θf ,θg,φ) =

K∑
k=1

lf (yk, ŷk) + λlg(zk, ẑk) + γ|lf − lr|

(1)
where lf is the loss of the prediction, lg is the loss for the
detection, |lf − lr| is the l1 regularization loss, λ and γ
are two hyper-parameters used to balance between prediction,
detection and regularization losses. We use stochastic gradient
descent to optimize and update the parameters:

(θr,θf ,θg,φ)← (θr,θf ,θg,φ)

− η∇(θr,θf ,θg,φ)L(θr,θf ,θg,φ) (2)

where η is the step size and ∇(θr,θf ,θg,φ)L denotes the
gradient of the joint loss function.

During the test stage, we first derive the context vector c
for each new batch of data. For each point xk in the batch, we
then use the prediction model f(xk, c;θf ) and the detection
model g(xk, c;θg) to make a prediction and detection. Note
that model parameters θf , θg and φ are fixed during test time
and the context vector c is only dependent on features of data
points in this batch.

Algorithm 1 Adversarially Adaptive Defense (AAD)
/* Training Stage */

Input: training steps T , sampling batch size K, training data
D =

⋃
iDi, i ∈ [0,M ], hyper-parameters λ and γ.

Output: adaptation model h(φ), prediction model f(θf ),
detection model g(θg).

1: Initialize θr,θf ,θg ∈ Θ, φ ∈ Φ.
2: for t = 1 to T do
3: Sample i uniformly from groups [0,M ]
4: for k = 1 to K do
5: Sample (xk, yk, zk) uniformly from group Di

6: c← h(x1, . . . ,xK ;φ)
7: for k = 1 to K do
8: ŷk ← f(xk, c;θf )
9: ẑk ← g(xk, c;θg)

10: ŷ′k ← r(ck;θr)

11: Update (θr,θf ,θg,φ) according to Eq. 2
/* Test Stage */

Input: θf ,θg,φ, test batch x1, . . . ,xK .
Output: ŷ1, . . . , ŷK ; ẑ1, . . . , ẑK .
12: c← h(x1, . . . ,xK ;φ)
13: for k = 1 to K do
14: ŷk ← f(xk, c;θf )
15: ẑk ← g(xk, c;θg)

Algorithm 1 shows the pseudo code of our algorithm. In line
3-5, we first randomly sample a batch of data (xk, yk, zk), k ∈
[1,K] from a sampled group Di, i ∈ [0,M ]. We then learn the
context vector c from the feature values of this batch data (line
6). In line 7-10, for each data point xk, we apply the predic-
tion model f(θf ), detection model g(θg), and reconstruction
model r(θr) to learn the outputs of prediction, detection, and
reconstruction. Note that both f(θf ) and g(θg) include the
context vector c in addition to xk as input and the regularizer
only uses ck as input. We then compute the joint loss via
a multi-task learning framework and use stochastic gradient
descent to optimize and update the parameters θr,θf ,θg , and
φ (line 11). During test time, we derive the adaptive vector c
for the new batch of data (line 12) and use the fixed models to
make prediction and detection for each data point (line 14-15).

C. Forming Attack Groups

To successfully develop our adversarially adaptive defense,
we need to address one critical challenge of forming represen-
tative and informative groups (attack scenarios) in our train-
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ing. In our framework, we can include adversarial examples
produced by both evasion attacks and poisoning attacks. We
take advantage of poisoning examples during model training
to diversify the attacking groups coming from the attacker and
augment the training data. Note that we only include poisoning
examples in the training data since poisoning attacks only
occur during the training stage. Attacks can also be white-box
or black-box where white-box attacks have complete access to
the model, including its structure and weights, and black-box
attacks can only access the probability or the label of a given
input. Theoretically, our AAD can handle both targeted attacks
and non-targeted attacks. But in our evaluation, we focus on
non-targeted attacks. Table I shows attacks used in our AAD
training and testing. We summarize these attacks below and
leave the descriptions of each attack as well as their parameter
settings used in our evaluation in the supplementary file.

Attack COMPAS MNIST
Training Test Training Test(S1) Test(S2)

Boundary Attack (Bond) [18] X X
LowProFool (LPF) [19] X
Carlini & Wagner (C&W) [20] X X
Newton Fool (NF) [21] X X X
Projected Gradient Descent (PGD) [13] X X X
Influence Attack (Inf) [8] X
Karush-Kuhn-Tucker Attack (KKT) [8] X
Hard Example Attack (HE) X
Label Flipping Attack (LF) X
Fast Sign Gradient Descent (FGSM) [22] X X X
Deep Fool (DF) [23] X X
Jacobian Saliency Map Attack (JSMA) [24] X X
Universal Perturbation Attack (UPA) [25] X
HopSkipJump Attack (HSJ) [26] X
Geometric Decision Attack (GDA) [27] X
Frame Saliency Attack (FSA) [28] X
Square Attack (SQA) [29] X X
Spatial Transformation Attack (STA) [30] X X

TABLE I: Attacks used in AAD evaluation

Evasion Attacks perturb the test example to obtain a de-
sired classification, leaving the training data and the model
unchanged. Roughly speaking, test time attacks, e.g., the L-
BFGS attack [31], which was the first method of attacking
deep neural network image classifiers, search for a minimally
distorted adversarial example x′ = x + δ by adding a
perturbation δ to the sample x, such that its classifier output
f(x′) equals to a particular target class t, or f(x′) 6= f(x) for
the non-targeted attack. Advanced and efficient attacks have
been further developed. For example, FGSM [22] presents an
efficient solution based on the fast gradient sign methodology;
PGD [13] is an iterative version of the one-step FGSM,
and heuristically searches for the adversarial examples that
have the largest loss value in the neighbor of x; DeepFool
[23] aims to find an optimal path such that x can pass the
decision boundary to make classifier fθ predict a different
label. Different from previous attacks which consider one
specific victim sample x, universal perturbation attack (UPA)
[25] tries to find a perturbation δ such that the classifier makes
wrong predictions on most of the examples. In addition to
the above white-box attacks, we also implement black-box
attacks such as boundary attack [18] that generates adversarial
examples based solely on observing output labels returned by
the targeted model; HopSkipJump attack [26] that is based on
the estimate of the gradient direction using binary information
at the decision boundary; zeroth order optimization attack

[32] that directly uses zeroth-order gradient estimation to craft
adversarial examples; and geometric decision based attack [27]
that generates query-efficient black-box perturbations.
Poisoning Attacks take place during the training of the ma-
chine learning model. An adversary tries to poison the training
data by injecting carefully crafted examples to compromise
the model performance. Poisoning attacks can be conducted
either by direct modification of labels of the training data or by
manipulating the input features depending on the adversaries
capabilities. Specifically, the attacker observes the test data set
Dtest, as well as a clean training data set Dc, and chooses a
fraction of poisoned points Da to inject to Dc. The defender
observes the combined training data D = Dc ∪ Da, uses a
data sanitization defense β = B(D) (where B is a function
specific to a particular defense) to remove anomalous points,
and builds a classification model from the remaining data.
Koh et al. [8] proposed three attacks based on three efficient
approximations to the bi-level optimization: influence func-
tions, minimax duality, and the Karush-Kuhn-Tucker (KKT)
conditions. Influence attack and KKT attack are stronger data
poisoning attacks breaking data sanitization defenses and both
control the label y and input features x of the poisoned points.
The influence attack is a gradient-based attack that iteratively
modifies each attack point (x, y) by following the gradient of
the test loss with respect to x. This attack can also be used at
test time as an evasion attack.

IV. EXPERIMENT SETTING

A. Datasets

We conduct our evaluations on COMPAS [33] and MNIST
[34], two widely studied benchmark datasets in adversarial
machine learning.

For COMPAS, we use five test time attacks (Bond, LPF,
C&W, NF, and PGD) and four poisoning attacks (INF, HE,
LF, and KKT) to train our AAD algorithm. During the testing
stage, we apply four test time attacks (NF, PGD, FGSM, and
DF), two of which (FGSM and DF) are new attacks that are not
included in the training data. We first split the original dataset
into three parts: clean Dc (2200), attack candidate Dk (2000),
and test Dtest (500). For each attack type, we randomly
select 250 examples from Dk and generate the adversarial
examples, 200 of which are used in training and the rest 50
are used in testing. For the training set, we then generate
each attack scenario by merging its 200 adversarial examples
with 200 clean examples randomly selected from Dc. In total,
our training dataset includes ten groups (4000 examples in
total) and each group has 400 examples. The first group has
400 clean examples and each of the remaining groups has a
combination of 200 clean examples and 200 attack examples.
We split the test data into seven groups. For the first three
groups, each has 100 clean examples. Each of the remaining
groups contains 50 clean examples and 50 attack examples.
In total, the test dataset includes 500 clean examples and 200
attack examples (50 for each attack type).

For MNIST, we have two settings: S1 and S2. For both
settings, we use the same nine test time attacks (FGSM, PGD,
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UPA, Bond, DF, JSMA, HSJ, GDA, FSA) to train our AAD
algorithm. During the testing stage, for S1 we apply four
test time attacks (FGSM, JSMA, SQA, and STA), two of
which (SQA and STA) are new attacks and are not included
in the training; and for S2 we apply four test time attacks
(C&W, NF, SQA, and STA), none of which are included in
the training. We split the original dataset (70000) into three
parts, clean Dc (44000), attack candidate Dk (16000), and
test Dtest (10000). We follow similar steps as COMPAS to
generate attack scenarios for both training and testing. Each
attack group has 4000 clean examples and 4000 adversarial
examples from one attack. We have ten groups in the training
where the first group contains all clean data and each of the
remaining groups contains a mixture of clean and adversarial
examples. For testing, we have seven groups. The first three
are clean groups and each has 2000 clean examples. The next
four are attack groups and each contains 1000 clean examples
and 1000 attack examples.

B. Defense Baselines

In our experiments, we use the following eight baselines,
including three defenses (1)-(3) from adversarial training, one
defense (4) from gradient masking, and four defenses (5)-(8)
from adversarial example detection.
1) Adversarial Training (AT) [11] is based on ensemble ad-
versarial training. It augments clean training data with crafted
adversarial examples from other pre-trained attacking models
and then trains a robust prediction model on the augmented
data set.
2) Adversarial Training Fast is Better than Free (FAT) [12]
uses adversarial examples from weaker and cheaper adversar-
ial attack methods like FGSM. The algorithm can yield models
with white-box robustness that is comparable to that obtained
with high cost multi-step attacks.
3) Training PGD (ATPGD) [13] uses adversarial examples
generated by a PGD attack and then trains the robust model
with both clean and crafted examples based on the min-max
formulation that casts both attacks and defenses into a common
theoretical framework.
4) Defensive Distillation (DD) [14] converts class labels
into soft targets (probability vectors instead of hard class
labels) which are then used to train an additional model.
The advantage of training the second model is to provide a
smoother loss function that is more generalized for unknown
data and is more robust for adversarial examples.
5) MagNet (MagNet) [15] includes a detector network and a
reformer network. The detector learns to separate normal and
adversarial examples by approximating the manifold of normal
examples and rejects the sample if the distance exceeds a
threshold. The reformer network uses auto-encoders to reform
an adversarial example to a similar normal example.
6) Activation Defense (AD) [35] uses activations analysis to
detect poisoning examples from poisoned dataset. The method
tries to get the information from the activation of the last
hidden layer of the trained neural network and then applies
dimensional reduction and a clustering method for detection.

7) Spectral Signature Defense (SSD) [36] trains a neural
network model on a poisoned dataset and then generates a
feature representation for each input. They then use singular
value decomposition of the covariance matrix of the above
representations to compute outlier score for each sample.
8) Feature Squeezing (FS) [16] compares the model’s predic-
tion on the original sample with its prediction on the squeezed
sample and labels the input as adversarial when the original
and squeezed inputs produce different model outputs.

For AT, DD, and AD, we choose the default setting. For
FAT, we choose the step size of FGSM attack α = 0.1
for COMPAS and keep the default value of 0.3 for MNIST.
For ATPGD, we choose the maximum perturbation ε = 0.1
for COMPAS and keep the default value of 0.3 for MNIST.
For MagNet, we use the default structure from [15] for the
detector, reformer, and base model with drop rate = 0.001.
For COMPAS, we use structures of Dense layers for those
modules with drop rate = 0.08. For SSD, we choose the
expected percentage of poison expected pp poison = 0.2
(0.5) and eps multiplier = 0.2 (0.15) for COMPAS (MNIST).
For FS, we use L1 distance and the detection threshold = 0.008
(0.002) for COMPAS (MNIST).

C. Implementation Setting

Our AAD algorithm has two hyper-parameters, λ and γ, to
balance between prediction, detection and regularization losses
as shown in Equation 1. We use AAD(λ, γ) to denote our
algorithm with chosen values of hyper-parameters. We choose
our default setting AAD(1, 0.1) and simply denote it as AAD.
We include AAD(1, 0), AAD(0, 0.1) and AAD(0, 0) in our
ablation study as they represent three variants of our adver-
sarially adaptive training, without the use of regularization,
detection, or both.

For COMPAS, we choose a two-layer perceptron as the
backbone structure for h in our AAD and the size of the
context vector c is set the same as the dimension of the
input data. For the prediction model f , detection model g, and
regularizer r, we choose a logistic regression (LR) model. In
both settings of MNIST, we choose two CNN layers (Conv2D
+ Conv2D) for h and one CNN layer for context vector c
with the dimension (channel) as 128. For both f and g, we
use two CNN layers followed by two dense layers (Conv2D +
Conv2D + Dense + Dense). We use the last two dense layers
(Dense + Dense) for regularizer r. In addition to the eight
defense baselines shown in Section IV-B, we also include two
naive baselines models, B1 and B2. For both of them, we
use logistic regression for COMPAS and CNN (Conv2D +
Conv2D + Dense + Dense) for MNIST. B1 is trained on only
Dc, and B2 has the same training data as our AAD. Note
that B1 does not contain a detection model as only clean data
is available. For all experiments on COMPAS, we set meta-
batch = 3, batch size = 50, training steps = 6000, and learning
rate = 0.0003. For MNIST, we choose meta-batch = 3, batch
size = 64, training steps = 2000, and learning rate = 0.0003.
For all attacks and defense baselines (AT, DD, FS, AD, and
SSD), we follow the implementation from IBM Adversarial
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Robustness Toolbox v1.2.0 [37]. We use the released code
from [12] for defense baselines (FAT, ATPGD), and code from
[15] for defense baseline (MagNet).
Metrics. We report the accuracy and F1 score for both
prediction and detection. We use macro F1 for prediction on
MNIST as it contains multiple output labels. We further report
the accuracy and F1 score for each attack scenario. For all of
the results, we run our experiments five times with different
seeds and report the average values. Due to the page limit,
we skip reporting the standard deviation values and instead
we summarize comparisons based on the t-test at the end of
Section V-A.

V. EXPERIMENT RESULTS

A. Overall Performance

Tables II, III, and IV show comparisons of our AAD
with all baselines in terms of accuracy and F1 score for
both prediction and detection of COMPAS, MNIST S1, and
MNIST S2, respectively. Our AAD significantly outperforms
all baselines from both prediction and detection perspectives,
which demonstrates the power of adaptive training. When
comparing the performances of AAD on MNIST S1 and S2,
we notice the detection performance of S2 decreases to a 0.65
when S1 obtained a 0.89 in terms of the F1 score, as shown in
the last column of Table III and IV. This is understandable as
all four attacks in S2 are new attacks. Note that we use N/A
to denote those non-applicable results. For example, the three
adversarial training based baselines (AT, FAT, and ATPGD)
focus on robust training of a prediction model and do not have
a detection model. Similarly, the two detection based baselines
(AD, SSD) only focus on adversarial sample detection and do
not have a prediction model. FS and MagNet are the only two
baselines that can both conduct prediction and detection. FS
uses feature squeezing and detects adversarial examples by
comparing the model’s prediction on the original sample with
its prediction on the squeezed sample. As demonstrated in our
results, FS has the collateral effect of worsening the accuracy
of the model, although it helps prevent adversarial attacks.
The performance of MagNet also degrades significantly for
both detection and prediction because it assumes independence
of the adversarial process and only uses normal examples in
training.
Significance Testing. We further test the statistical signifi-
cance of the improvements between our AAD and the base-
line models. We run our methods and all baseline models
five times, use the independent two-sample t-test, and then
calculate the p-value. For both COMPAS and MNIST (both
settings), the p-values of testing AAD(1,0.1) against all eight
defense baselines and two naive baselines (B1 and B2) are less
than 0.01 in terms of both prediction accuracy and detection
accuracy.
Execution Time. We report the execution time of AAD and
baselines for MNIST S1. All experiments are run on GPU
Tesla V100 (32GB RAM) and CPU Xeon 6258R 2.7 GHz.
AAD involves adversarial example generation and adaptive
training. To generate 5000 adversarial examples for each

attack, FGSM, JSMA and PGD take less than one minute;
FSA, STA, SQA, DF, UPA, GDA and NF take 4, 7, 9, 10, 15,
38 and 45 minutes, respectively; C&W, HSJ and Bond take
2.5, 3 and 11 hours, respectively. Given the training data, the
AAD takes 4 minutes for the training, which is comparable to
defense baselines models, e.g., AD, SSD, FS, AT, FAT, and
DD take less than one minute; MagNet and ATPGD take 5
and 40 minutes, respectively.

B. Group Level Performance
Tables V, VI, and VII further show group level comparisons

of AAD with all baselines for COMPAS, MNIST setting
S1, and MNIST setting S2, respectively. We see that for
each attack scenario, AAD outperforms all baselines on both
prediction and detection tasks with significant margins. Note
for MNIST S2, we include four new attacks during test
time, including the most challenging C&W attack [20] to
test robustness of AAD. The C&W attack, which searches
the whole feature space to find a modified point with the
lowest loss, is among the most effective attacks [37]. We
can see in Table VII AAD achieves high prediction accuracy
for all four attack scenarios and high detection accuracy
under three attack scenarios of NF, SQA, and STA. The only
exception in all our results is the detection accuracy under
C&W (50.18%); however, AAD still achieves high prediction
accuracy (97.29%).

Method Prediction Detection
Accuracy (%) F1 Score Accuracy (%) F1 Score

B1 77.43 0.76 N/A N/A
B2 69.00 0.66 62.71 0.26
AT 69.80 0.18 N/A N/A
FAT 82.17 0.42 N/A N/A
ATPGD 76.06 0.24 N/A N/A
DD 76.88 0.26 N/A N/A
FS 77.20 0.71 62.20 0.04
MagNet 52.26 0.19 68.03 0.12
AD N/A N/A 73.66 0.62
SSD N/A N/A 69.51 0.07
AAD 85.43 0.83 85.66 0.72
AAD(0, 0) 83.86 0.81 N/A N/A
AAD(0, 0.1) 86.91 0.85 N/A N/A
AAD(1, 0) 82.91 0.80 79.83 0.62

TABLE II: Comparison of AAD and baselines (COMPAS).

Method Prediction Detection
Accuracy (%) F1 Score Accuracy (%) F1 Score

B1 76.34 0.76 N/A N/A
B2 81.63 0.80 87.90 0.84
AT 87.19 0.87 N/A N/A
FAT 89.26 0.89 N/A N/A
ATPGD 89.05 0.89 N/A N/A
DD 85.43 0.86 N/A N/A
FS 84.37 0.85 88.42 0.74
MagNet 75.37 0.81 92.97 0.80
AD N/A N/A 71.87 0.33
SSD N/A N/A 66.69 0.01
AAD 92.46 0.92 93.91 0.89
AAD(0, 0) 90.48 0.90 N/A N/A
AAD(0, 0.1) 92.48 0.92 N/A N/A
AAD(1, 0) 90.61 0.91 90.02 0.82

TABLE III: Comparison of AAD and baselines (MNIST S1).

C. Ablation Study and Sensitivity Analysis
Ablation Study. Our AAD framework contains an adaptive
context learner, a prediction model, a detection model, and
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Method Prediction Detection
Accuracy (%) F1 Score Accuracy (%) F1 Score

B1 81.60 0.81 N/A N/A
B2 82.77 0.81 78.54 0.68
AT 87.97 0.88 N/A N/A
FAT 90.48 0.91 N/A N/A
ATPGD 90.09 0.90 N/A N/A
DD 89.62 0.90 N/A N/A
FS 88.59 0.89 81.83 0.53
MagNet 86.28 0.94 79.56 0.45
AD N/A N/A 73.84 0.32
SSD N/A N/A 71.33 0.00
AAD 93.29 0.93 84.04 0.65
AAD(0, 0) 91.34 0.91 N/A N/A
AAD(0, 0.1) 93.31 0.93 N/A N/A
AAD(1, 0) 91.57 0.91 80.70 0.59

TABLE IV: Comparison of AAD and baselines (MNIST S2).

a regularizer. In our ablation study, we include three vari-
ants AAD(1, 0), AAD(0, 0.1) and AAD(0, 0), representing
the cases where regularization and/or detection are not used.
We report their results in the last block of Tables II-VII.
Note that AAD(0, 0) only includes adaptive prediction and
AAD(0, 0.1) further adds reconstruction regularization, there-
fore their detection results are shown as N/A in the tables.
Comparing the prediction output of AAD(0, 0) with those
baselines, we can see our adaptive training itself (without
regularizer and detection) already significantly improves the
prediction accuracy. Comparing AAD(0, 0.1) with AAD(0, 0),
we can see the usefulness of our regularizer. We emphasize
again that our AAD algorithm achieves the best performance
when all components are used in the training.

(a) Sensitivity analysis of λ, γ =
0.1.

(b) Sensitivity analysis of γ, λ =
1.

Fig. 3: Sensitivity analysis of parameters λ and γ (COMPAS).

Sensitivity Analysis. Figure 3 shows the sensitivity analysis
of parameters λ and γ of AAD over COMPAS. As shown in
Figure 3a, when we fix γ = 0.1 and increase λ, the detec-
tion accuracy increases and the prediction accuracy decreases
slightly. This is because a large value of λ indicates more
weight on detection in the joint loss. Similarly, as shown in
Figure 3b, when we fix λ = 1 and increase γ, the detection
accuracy decreases whereas the prediction accuracy increases.
This is because our regularizer aims to reconstruct prediction
based on the context information.

D. AAD under Full Knowledge Attack

For all previous results, adversarial examples included in
training are produced by attacks based on the basic prediction
model η, and the adversary also generates test time adversarial

examples based on η. This corresponds to the scenario where
the adversary thought the baseline B1 is being deployed. Our
results reported in Sections V-A-V-C have demonstrated that
our trained AAD model, if deployed, would be robust against
those attacks. One interesting question is how robust AAD
would be if the adversary knows AAD’s deployment and
generates adversarial examples based on the full knowledge
of AAD training process and training data. To answer this
question, we conduct another experiment by enabling the
FGSM attack and PGD attack to have all the above knowledge.

(a) Full Knowledge FGSM attack (b) Full Knowledge PGD attack

Fig. 4: Full Knowledge FGSM/PGD attack on AAD (MNIST
S1).

1) AAD under Full Knowledge FGSM Attack: FGSM
generates adversarial examples based on x′ = x + α ·
sign(∇xL(θ,x, y)) for non-target attack where ∇x denotes
the gradient of the model with respect to a normal sample x
with correct label y, and α is the step size. Replacing L with
the joint loss L(θr,θf ,θg,φ) shown in Equation 1, we can
generate new adversarial examples against AAD. Figure 4a
shows the prediction and detection results for setting MNIST
S1 under the FGSM attack with five step size values. We can
see AAD still achieves high prediction accuracy and detection
accuracy. Moreover, when step size α increases, prediction
accuracy decreases while detection accuracy increases. This
is because a large α allows a larger distortion or perturbation
when generating adversarial examples.

2) AAD under Full Knowledge PGD Attack: Similar
to FGSM attack, we generate adversarial examples using
PGD L∞ attack with full knowledge of the joint loss
L(θr,θf ,θg,φ). We use setting MNIST S1 with the replace-
ment of FGSM with PGD in the testing stage. Figure 4b
shows the results for five maximum perturbation values ε
where the attack step size α is configured as 0.1 to adapt
to our model. Note that PGD is an extension of FGSM
using an iterative method to generate stronger adversarial
examples. When ε increases, prediction accuracy decreases
while detection accuracy increases because more perturbation
is allowed. This trend is also consistent with our observation
from Figure 4a in Section V-D1. Overall, ADD model is still
robust under white-box attacks.

E. Robustness of AAD when One Test Group Contains Multi-
ple Attack Types

In this section, we demonstrate the effectiveness of context
vector c defined in Section III-B in response to a remarkable
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Method Prediction Accuracy (%) Detection Accuracy (%)
Clean Test data NF PGD FGSM DF Clean Test data NF PGD FGSM DF

B1 90.73 74.40 61.20 63.60 70.60 N/A N/A N/A N/A N/A
B2 81.06 62.00 59.00 59.20 61.20 78.06 51.80 49.00 51.60 52.40
AT 81.13 56.00 61.40 64.00 63.80 N/A N/A N/A N/A N/A
FAT 96.40 78.60 62.00 68.40 77.00 N/A N/A N/A N/A N/A
ATPGD 90.60 61.80 62.40 67.40 69.00 N/A N/A N/A N/A N/A
DD 91.80 68.40 64.20 61.80 68.40 N/A N/A N/A N/A N/A
FS 92.14 69.00 64.40 61.20 69.40 86.20 44.20 45.60 44.40 42.60
MagNet 50.87 56.20 53.80 54.00 49.20 92.53 46.80 49.60 48.20 54.00
AD N/A N/A N/A N/A N/A 79.60 74.00 68.40 63.20 71.20
SSD N/A N/A N/A N/A N/A 95.80 48.60 49.60 49.80 52.00
AAD 97.33 74.00 83.60 74.60 73.80 95.47 90.20 68.80 73.20 81.00
AAD(0, 0) 96.47 71.80 72.20 79.60 74.00 N/A N/A N/A N/A N/A
AAD(0, 0.1) 97.13 77.40 89.20 77.20 72.80 N/A N/A N/A N/A N/A
AAD(1, 0) 96.20 72.20 73.60 71.60 74.40 91.20 87.20 60.80 62.60 74.60

TABLE V: Comparison of AAD and baselines on each group (COMPAS).

Method Prediction Accuracy (%) Detection Accuracy (%)
Clean Test data FGSM JSMA SQA STA Clean Test data FGSM JSMA SQA STA

B1 92.24 59.97 80.27 56.29 61.10 N/A N/A N/A N/A N/A
B2 90.87 81.44 85.42 72.07 59.89 93.95 98.16 76.82 97.65 60.81
AT 96.32 87.13 92.38 91.20 50.64 N/A N/A N/A N/A N/A
FAT 98.80 90.08 96.58 83.27 58.52 N/A N/A N/A N/A N/A
ATPGD 98.66 91.41 96.75 77.96 61.25 N/A N/A N/A N/A N/A
DD 98.23 77.46 91.15 79.21 55.49 N/A N/A N/A N/A N/A
FS 98.25 74.42 92.06 91.78 57.62 100.00 88.07 65.35 88.69 76.83
MagNet 99.22 49.36 66.34 49.68 64.56 99.82 99.93 82.25 99.59 52.38
AD N/A N/A N/A N/A N/A 92.23 50.90 50.21 50.04 79.61
SSD N/A N/A N/A N/A N/A 92.35 47.17 47.69 48.69 47.23
AAD 98.29 92.57 96.05 87.69 76.03 95.41 99.99 93.47 99.37 78.28
AAD(0, 0) 97.44 90.75 94.09 85.49 70.72 N/A N/A N/A N/A N/A
AAD(0, 0.1) 98.21 92.37 96.04 87.38 76.84 N/A N/A N/A N/A N/A
AAD(1, 0) 97.29 90.27 94.02 85.05 73.04 91.43 100.00 86.84 99.28 69.71

TABLE VI: Comparison of AAD and baselines on each group (MNIST S1).

Method Prediction Accuracy (%) Detection Accuracy (%)
Clean Test data C&W NF SQA STA Clean Test data C&W NF SQA STA

B1 92.24 89.14 87.96 56.29 61.10 N/A N/A N/A N/A N/A
B2 90.97 88.25 86.60 72.07 59.89 93.95 50.50 58.97 97.65 60.81
AT 96.01 93.80 92.70 90.40 50.83 N/A N/A N/A N/A N/A
FAT 98.78 97.85 97.63 82.87 58.68 N/A N/A N/A N/A N/A
ATPGD 98.72 97.72 97.59 77.65 61.48 N/A N/A N/A N/A N/A
DD 98.73 97.75 97.47 78.03 57.88 N/A N/A N/A N/A N/A
FS 98.47 97.39 96.41 73.58 57.38 100 51.17 56.68 86.95 77.72
MagNet 99.22 98.76 93.34 49.68 64.56 99.82 50.01 55.44 99.59 52.38
AD N/A N/A N/A N/A N/A 74.04 73.72 73.51 73.66 73.89
SSD N/A N/A N/A N/A N/A 71.59 71.30 70.83 71.01 71.40
AAD 98.29 97.29 97.02 87.69 76.03 95.41 50.18 74.12 99.37 78.28
AAD(0, 0) 97.44 95.74 95.09 85.49 70.72 N/A N/A N/A N/A N/A
AAD(0, 0.1) 98.21 97.31 96.94 87.38 76.93 N/A N/A N/A N/A N/A
AAD(1, 0) 97.29 95.71 95.28 85.05 73.04 91.43 50.33 71.30 99.28 69.71

TABLE VII: Comparison of AAD and baselines on each group (MNIST S2).

(a) Prediction robustness (b) Detection robustness

Fig. 5: AAD under hard test scenario (MNIST S2).

question of how effective the context vector would be in
capturing and presenting group contextual information such
that AAD can adapt to new test time attacks. Note that
previous results are conducted with the setting that each attack

group in test data contains only one type of attack. In real-
world situations, the adversary can include multiple attacks in
each group to make the defense fail to detect them. Therefore,
to answer the question of whether AAD could be robust
under challenging test scenarios, we design five test scenarios
L1 −→ L5 using setting MNIST S2 with increasing difficulty
in test attack groups. In L1, each attack group contains one
attack type (this is the default test scenario for setting MNIST
S2). For L2, L3, and L4, each attack group contains two,
three, and four types of attacks with the same ratio. For L5,
each attack group contains a random number of attacks with
random ratios. For the training, we still use the same training
scenario as setting MNIST S2, which includes one attack in
each training attack group. For a comprehensive comparison,
we also choose the top two baseline performers from the
prediction task and the detection task. As shown in Table
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IV, FAT and ATPGD are the two baselines with the best
performance for the prediction task. For the detection task, FS
and MagNet are the best two performers. Figures 5a and 5b
show the prediction comparison and the detection comparison
under five test scenarios, respectively. The prediction accuracy
and detection accuracy of all defensive models decrease when
the difficulty level increases from L1 to L5, which is a
typical trend. Our AAD model achieves the best performance
in all test scenarios in terms of both prediction and detection
accuracy. These results explicitly demonstrate the robustness
of our AAD model with new test time attacks and also reveal
that the context vector can certainly help learn contextual
information in different test environments.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a novel defense framework that adapts
at test time to unknown attacks. Models trained with our
adversarially adaptive defense are less sensitive to adversarial
examples, and are thus more suitable for deployment in sensi-
tive security settings. Our comprehensive empirical evaluations
showed the promising results of our AAD’s robustness and
adaption against a variety of new attacks. In future work, we
will continue the study of our approach’s robustness when
the adversary has full knowledge of AAD’s training process
and training data. We will also extend our approach to other
attacks, e.g., the backdoor attack [38] that injects the chosen
backdoor pattern onto particular training examples from a
given class, and does not affect a model’s behavior on typical,
benign data.
Reproducibility. All source code and datasets can be down-
loaded at https://github.com/minhhao97vn/AAD.
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