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ABSTRACT 

Recently, various Deep Neural Network (DNN) models have been 

proposed for environments like embedded systems with stringent 

energy constraints. The fundamental problem of determining the ro- 

bustness of a DNN with respect to its energy consumption (energy 

robustness) is relatively unexplored compared to accuracy-based ro- 

bustness. This work investigates the energy robustness of Adaptive 

Neural Networks (AdNNs), a type of energy-saving DNNs proposed 

for many energy-sensitive domains and have recently gained trac- 

tion. We propose EREBA, the first black-box testing method for 

determining the energy robustness of an AdNN. EREBA explores 

and infers the relationship between inputs and the energy con- 

sumption of AdNNs to generate energy surging samples. Extensive 

implementation and evaluation using three state-of-the-art AdNNs 

demonstrate that test inputs generated by EREBA could degrade 

the performance of the system substantially. The test inputs gener- 

ated by EREBA can increase the energy consumption of AdNNs by 

2,000% compared to the original inputs. Our results also show that 

test inputs generated via EREBA are valuable in detecting energy 

surging inputs. 
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1 INTRODUCTION 

Recently there has been a considerable amount of research in de- 
veloping energy-saving DNN models to allow state-of-art DNNs 

with high computational costs to be deployed in mobile and em- 
bedded architecture. Adaptive Neural Networks (AdNNs) [2, 7, 33] 

are energy-saving DNN models that determine when to switch off 
certain parts of the network to reduce the number of computations. 

Because an AdNN model determines which parts of the neural 
network to run based on inputs, an adversary’s ability to surge 

the energy consumption by carefully crafting inputs is a crucial 
concern in energy-critical environments. For example, AdNNs like 
BlockDrop [41] and SkipNet [38] can reduce the computations in 

ResNet significantly and an alteration on the input can nullify a 
large portion of the reduced computations, invalidating the models’ 
purpose. Such behavior would lead the app or software using an 

AdNN model to consume energy erratically, resulting in devices’ 
power failure and disastrous consequences. Thus, there is a strong 
need to provide a systematic testing method to find energy hotspots 
in the model and filter out potential “power-surging” inputs that 

will negatively impact the model’s performance. 

Creating testing inputs to increase the energy consumption of a 

DNN model is challenging because inferring the relation between 

energy consumption and input is a challenging task. Unlike infer- 

ring the relation between input and output, where we can find the 

derivatives from a series of computation functions in the model, 

energy consumption can only be measured by running the model. 

Traditional DNN testing methods [22, 30, 37, 43] and traditional 

adversarial attacks [4, 10, 29] on DNNs have been designed to cre- 

ate carefully crafted synthetic testing inputs using the gradient of 

generated output with respect to the input. However, for energy 

testing, it is unclear whether a change in the input induces an in- 

crease or decrease in the energy consumption of the model. To 

the best of our knowledge, ILFO [13] is the first work that seeks 

to formulate all types of AdNN’s energy robustness (Section 2.1) 

problem by modeling the relation between input and intermediate 

output [13] (DeepSloth [15] only evaluates energy robustness of 

Early-termination AdNNs). 

However, our investigations (Section 3) show that ILFO gener- 
ated energy surging samples lack traditional transferability, i.e.,, 

the adversarial samples generated by ILFO for a target AdNN can- 
not be applied to a new AdNN to increase its energy consumption. 
Therefore, the traditional black-box accuracy testing method of 
DNNs using surrogate model [5, 21, 28] can not be used for energy 
robustness evaluation. Therefore, ILFO generated samples cannot 
evaluate the energy robustness of AdNNs in a black-box scenario. 

mailto:mirazul.haque@utdallas.edu
mailto:wei.yang@utdallas.edu
mailto:permissions@acm.org
mailto:ermissions@acm.org
mailto:yaswanth.yadlapalli@utdallas.edu
mailto:cong@utdallas.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3510003.3510088&domain=pdf&date_stamp=2022-07-05


836  

𝑥 

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Mirazul Haque, Yaswanth Yadlapalli, Wei Yang, and Cong Liu 

 

This paper presents EREBA (Energy Robustness using Estimator 

Based Approach) to perform energy testing on AdNNs under the 

black-box setting where there is no prior knowledge known about 

the AdNN model. To our knowledge, this is the first attempt in 

this direction. EREBA aims to evaluate the energy robustness of 

AdNN and identify inputs that will negatively impact the model’s 

performance. Specifically, we develop two testing methods to assess 

any given AdNN model’s energy robustness, namely Input-based 

testing and Universal testing. Input-based testing evaluates energy 

robustness where testing inputs are semantically meaningful to the 

AdNN (e.g., meaningful images, compilable programs). On the other 

hand, universal testing evaluates worst-case energy robustness 

where each testing input maximizes the energy consumption for 

● Two applications demonstrating the energy-saving capabil- 
ity of EREBA. 

2 BACKGROUND 

2.1 Energy Robustness 
ILFO [13] has defined the energy robustness of a DNN as the sta- 

bility of the model’s energy consumption after getting a perturbed 

input. However, a model’s energy robustness should not only de- 

pend on the inputs that belong to the training data distribution 

of the model. Energy robustness should also be evaluated based 

on the out-of-distribution inputs. Because of this reason, we de- 

fine two types of energy robustness for DNNs: Input-based Energy 

Robustness (𝐸 ) and Universal Energy Robustness (𝐸 ). each target AdNN. 
𝑖 𝑢 

For generating testing inputs for AdNNs in a black-box setting, it 

is needed to find a relation between input and energy consumption 

of AdNNs. Based on the working mechanism of AdNNs, we know 

that different numbers of residual blocks/layers are activated during 

inference for different inputs. The number of activated blocks/layers 

during inference has a semi-linear (step-wise) relation with energy 

consumption, which can also be noticed in Figure 7. Through this 

step-wise relation between the number of activated blocks and 

energy consumption, we can conclude that input and energy con- 

sumption of AdNNs are related. Because of this reason, EREBA is 

𝐸𝑖 is defined by the maximum energy consumed by the model 
for an input which belongs to the training data distribution of 
the model. Let us assume, 𝑥 is an input that is within the data 

distribution of a DNN 𝑓 . We want to add perturbation 𝛿 to 𝑥 such 

that energy consumption is maximum. In that scenario, 𝐸𝑖 can be 
represented as, 

 
𝐸𝑖 = −max (𝐸𝑁𝐺𝑓 (𝑥 + 𝛿)−  𝐸𝑁𝐺𝑓 (𝑥 )) 

𝛿∈𝑅 

, where 𝑅 is set of admissible perturbations such that 𝑥 + 𝛿 remains 

able to learn a decent approximation of the energy consumption 
of an AdNN given the input. Based on such approximation, EREBA 

then generates input perturbations that significantly increase the 
energy consumption of the AdNN. 

We evaluate EREBA on four criteria: effectiveness, sensitivity, 

quality, and robustness using the CIFAR-10 and CIFAR-100 datasets 
[19, 35, 36]. First, to evaluate the effectiveness of the testing inputs 
generated by EREBA, we calculate the energy required for AdNNs 
to classify these inputs while running on an Nvidia TX2 server. We 

then compare this value with the energy required by the inputs gen- 

erated from common corruptions and perturbations techniques [14] 
and a surrogate model-based approach. We observe that EREBA is 
twice as effective. The sensitivity of EREBA is measured through the 

behavior of the energy consumption of testing inputs generated 

while limiting the magnitude of perturbation allowed, which en- 

ables a comparison between the AdNN models’ energy robustness. 

The quality of the generated testing inputs is evaluated against 

the original input through Peak Signal-to-Noise Ratio (PSNR) and 

Structural Similarity Index (SSIM) [39, 40]. Finally, the robustness 

of EREBA is demonstrated by providing corrupted input images for 
the generation of testing inputs, which reveals the capability of the 
estimator model to imitate the shortcomings of the target AdNN. 
We further demonstrate two ways to show how EREBA generated 

test inputs can help to increase energy robustness: through input 
filtering and gradient-based detection. 

Our paper makes the following contributions: 

 
● An approach, EREBA, the first energy-oriented black-box test- 

ing methodology for AdNNs. 

● A systematic empirical study on transferability of energy- 

based testing inputs. 

● Four evaluations to demonstrate the effectiveness, sensitivity, 
quality, and robustness of EREBA. 

within distribution, and 𝐸𝑁𝐺𝑓 represents the energy consumption 
of DNN 𝑓 . 

𝐸𝑢 can be described as the highest possible energy consumed 

by a model for any input. Inputs used to measure 𝐸𝑢 can be out-of- 

distribution inputs also. For a DNN 𝑓 and any input 𝑥 , 𝐸𝑢 can be 
represented as, 

 
𝐸𝑢 = −max 𝐸𝑁𝐺𝑓 (𝑥) 

, where 𝐸𝑁𝐺𝑓 represents energy consumption of DNN. By increas- 

ing the value of 𝐸𝑖 and 𝐸𝑢 , energy robustness of a model can be 
increased. 

2.2 AdNNs 

The main objective of AdNNs is to minimize executing layers in 

a Neural Network while maintaining reasonable accuracy. The 

AdNNs can be divided mainly into two types: Conditional-skipping 

AdNNs [38, 41] and Early-termination AdNNs [2, 33]. Both types of 

AdNNs reduce computations if their intermediate output values sat- 

isfy predefined conditions. For reducing computations, Conditional- 

skipping AdNNs skip a few layers or residual blocks 1 (in the case of 

ResNet), while Early-termination AdNNs terminates the operations 

within a block or network early. 

3 TRANSFERABILITY OF ENERGY-BASED 
TESTING INPUTS. 

In this section, by carrying out a preliminary study, we show that 

traditional transferability does not exist in energy testing inputs, 

and existing technique like attacking surrogate model to generate 

accuracy-based testing inputs cannot be applied in energy testing. 

For traditional accuracy-based testing, transferability refers to the 
 

1 Residual block consists of multiple layers whose output is determined by adding the 
output of the last layer and input to the block. 
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property that adversarial examples generated for one model may 

also be misclassified by another model. 

Motivation. In a black-box setting, existing techniques [5, 21, 28] 
evaluate the accuracy-robustness of DNNs based on the traditional 
transferability of adversarial samples [27] . Adversarial examples of 
DNNs are perturbed inputs close to the original correctly classified 
inputs but are misclassified by DNNs. Because adversarial examples 
are commonly used as testing inputs to measure the robustness 
of the neural networks [23, 43]), we will also use the term testing 

inputs to refer to the adversarial examples in this paper. Goodfellow 

et al. and Szegedy et al. [10, 32] have concluded that accuracy- 

based testing inputs on a traditional DNN model are transferable. 
Therefore, adversarial examples generated by attacking a surrogate 
DNN model can be applied to other DNNs for evaluating robustness. 

In this section, we investigate if traditional transferability, which is 
used for measuring accuracy robustness in a black-box setting, can 
be applicable for energy-based testing inputs. 

Table 1: 𝐼𝑇 𝑃 among different architectures. RN is ResNet, BD 
is BlockDrop, BN is BranchyNet. BM represents Base Model, 
while TM is Target Model. 

 
TM 

BM 
RAN BD (RN 110) BN BD (RN 32) 

RAN 100.0 46.0 41.0 12.5 

BD (RN 110) 64.0 100.0 68.0 72.4 

BN 61.0 52.0 100.0 4.0 

BD (RN 32) 5.5 45.0 75.2 100.0 

 

Table 2: 𝐸𝑇 𝑃 among different architectures. RN is ResNet, BD 
is BlockDrop, BN is BranchyNet. BM represents Base Model, 
while TM is Target Model. 

 
TM 

BM 
RAN BD (RN 110) BN BD(RN 32) 

RAN 100.0 0.1 40.0 -1.8 

BD (RN 110) 200.0 100.0 350.0 52.5 

BN 38.0 3.0 100.0 -3.8 

BD (RN 32) -3.5 10.0 228.0 100.0 

 
Preliminary study. We have conducted a study to investigate the 

traditional transferability of energy-based testing input on AdNNs. 

To our knowledge, this is the first effort to explore the transferabil- 

ity of energy-based testing input on AdNNs. We define base and 

target models for this study. The white-box attack is performed on 

the base model, and the target model classifies the testing input. 

We focus on two metrics to measure transferability: the percentage 

of the transferable adversarial inputs and the average percentage of 

the transferable energy consumption increase. We define two terms: 

Effectiveness Transferability Percentage (ETP) and Input Transfer- 
ability Percentage (ITP). ETP is defined based on IncRF, which is 

the fractional increase in AdNN-reduced floating-point operations 

(FLOPs) after feeding energy-based testing inputs. We also define 𝑃𝑏 

and 𝑃𝑡 , the average IncRF on base and target models, respectively, 

with the same testing inputs. We define ETP=(𝑃𝑡 /𝑃𝑏 ) × 100. ITP 

is defined as the percentage of testing inputs for which the FLOPs 
count during inference increases in the target model. For an attack, 
if ITP is high, it means that most of the generated testing inputs 
for the base model can also increase the energy consumption in 

the target model. If ETP is high, it means that the average increase 

in the target model’s energy consumption is comparable with the 
base model. Thus, if both ETP and ITP are high, then it confirms 

transferability in the attack. 

For example, we attack the base model and perturb ten inputs. If 
the average 𝐼𝑛𝑐𝑅𝐹 on base model is 0.5, i.e., 𝑃𝑏 = 0.5. If seven out of 

ten testing inputs increase the FLOPs on the target model, 𝐼𝑇 𝑃 will 
be 70 %. For target model, The average IncRF is 0.3. 𝑃𝑡 would be 
0.3 and ETP=(0.3/0.5)× 100 = 60%. We have set multiple thresholds 

of 𝐼𝑇 𝑃 and 𝐸𝑇 𝑃 to determine whether an attack is transferable. In 

this study, we explore how many combinations of base AdNN and 
target AdNN exceeds the different ITP and ETP thresholds. 

We have conducted a transferability study on four AdNN models: 
RANet [44], BlockDrop (ResNet-38, ResNet-110) [41], and BranchyNet 
[33]. 1000 images sampled from the CIFAR-10 dataset were used in 

this study. We generate testing inputs using the ILFO attack [13] 
(Figure 1 Sub-figure I) on the base model. Tables 1 and 2 show the 
ITP and ETP among the architectures. From the tables, we can see 

that only four combinations (out of 12) of base and target models 

exceed the 50% threshold for both ITP and ETP (For other thresh- 

olds, we have added a table in the website). From these results, we 
can conclude that for the majority of AdNN models, the white-box 

attack is non-transferable. 
Although traditional transferability may not be feasible for at- 

tacking AdNNs, the observation of this failure motivates us to de- 
velop an effective alternative. Specifically, our key observation on 
the non-transferability of energy-based attacks is that the energy- 
saving mechanisms of AdNN models behave differently for the 

same input, i.e., an input causing high energy consumption on one 

model might consume low energy for another model. Hence, extend- 
ing any white-box attack method such as ILFO through Surrogate 
models is not viable in the black-box scenario. 

1 OACH 

As we have observed that Surrogate models are not feasible to test 

the energy robustness of AdNNs, we develop EREBA, an Estimator 

model-based black-box testing system. EREBA contains two ma- 

jor components, namely an Estimator model and a testing input 

generator. Figure 1 illustrates the Estimator model’s training for 

an AdNN using its energy consumption on an Nvidia TX2 server. 

The Estimator model addresses the challenge of non-transferability 

discovered in the previous section. Additionally, the testing input 

generator in EREBA has two modes of testing: Input-based, where 

an input image is perturbed to achieve higher energy consump- 

tion, and Universal, where a noisy testing input that can maximize 

energy consumption is generated. These modes enable EREBA to 

assess the energy robustness of each AdNN effectively. Figure 1 

(Sub-figure ii) shows the generation of testing inputs using the 

trained Estimator model. 

4.1  Estimator Model Design 

Traditionally, misclassification black-box adversarial methods on 

DNNs are achieved through Surrogate models (also DNNs) trained 

using the output labels produced by feeding the target DNN with 

original images. Testing inputs generated by a white-box method 

against the trained Surrogate model are then used against the target 
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Figure 1: Difference between testing using Estimator model and Surrogate model 
 

DNN as illustrated in Figure 1 (inside the blue-dotted box). How- 

ever, this approach is not feasible for the current use-case due to a 

lack of traditional transferability in white-box attacks (Section 3). 

Because building such a Surrogate model with the target function 

of mapping an image to a class would not transfer similar energy 

characteristics to the Surrogate model. The target function should 

be the energy-saving mechanism in an AdNN, but the output di- 

mensions of these change with different AdNNs. So, we need a 

separate Surrogate model for each AdNN; this is not viable for two 

for images used for training and, to address the noise in the data due 

to the system environment, we deactivate the dynamic frequency 

scaling of Nvidia TX2 and ensure that no other user processes are 

running. Additionally, we record the energy consumption by the 

target AdNN during inference of an input image twenty times and 

discard values, which are 50% higher than the median value. We 

define the mean of the remaining values is defined as 𝐹 (𝑥𝑖 ), where 

𝑥𝑖 represents an input in the dataset. We define the Estimator’s 
DNN loss function as: 

reasons. First, such a model would require a new neural network 1 𝑁 
2

 

architecture for each AdNN, which makes it hard to apply to future 

AdNN models. Second, the energy-saving mechanisms’ outputs are 

intermediate values within an AdNN, which are not accessible in a 

black-box scenario. 

To tackle this, we build an Estimator model to emulate the charac- 

teristics of the energy-saving mechanism in AdNNs. The feasibility 

of the Estimator model follows from the following two key observa- 

tions. 1) We can perceive the energy-saving mechanisms’ character- 

istics through system diagnostics such as the energy consumption 

for each inference, which can be observed even in a black-box 

setting. 2) Even though each AdNN has a different energy-saving 
mechanism, the resulting energy consumption is always expected 

to lie in a step-wise pattern 2; see Figure 7 and Section 7.3 for more 
details. Thus, we seek to leverage this patterned energy consump- 

tion in our black-box approach to train an Estimator model for each 

target AdNN at which point the Estimator model can predict the 

energy consumption of each image. 

However, the energy consumption of an embedded system such 
as Nvidia TX2 is affected by noise from the system environment, 
such as background processes and dynamic frequency scaling, mak- 
ing it challenging to create an accurate model. Further, in a black- 
box environment, it is hard to categorize which data is noisy. We 
do not have any additional information (e.g., number of the exe- 

cuted blocks) about the inference; our approach has to tackle these 
challenges. 

An overview of the Estimator model training is given in Figure 

1 (Inside red dotted box). First, we collect energy consumption data 
 

2 Energy consumption of processing an extra residual block or layer in an AdNN will 
always add similar energy consumption into the total energy consumption, making 
the energy consumption pattern step-wise. 

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝑙𝑜𝑠𝑠 = ∑[𝐹(𝑥𝑖 )−  𝐸𝑆𝑇 (𝑥𝑖 )] 
𝑖=1 

where 𝐸𝑆𝑇 denote the Estimator model, and 𝑁 is the size of the 

dataset. 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝑙𝑜𝑠𝑠 is used to train the Estimator for each target 
AdNN, which enables the model to give a reasonable prediction of 
energy consumption of the target AdNN for a given input. 

4.2  Testing input generator 

The objective of the testing input generator is to create testing 

inputs that increase the Estimator model’s prediction, which in 

turn should increase the actual energy consumption of the AdNN. 

We explore two use cases of EREBA: 1) Input-based test, and 2) 

Universal test for measuring the Input-based and Universal energy 

robustness as defined in Section-2.1. 

4.2.1 Input-based testing. In this use case, we modify the input 

image in such a way that it is imperceptible by a human, and the 

resulting testing input has higher energy consumption on the target 

AdNN. We thus add a perturbation 𝛿𝑖 to the input 𝑥𝑖 . Picking the 

best 𝛿𝑖 (𝛿ˆ
𝑖 ) can be formulated as: 

𝛿ˆ
𝑖 = argmax 𝐸𝑆𝑇 (𝑥𝑖 + 𝛿𝑖 ). 

𝛿𝑖 

Additionally, we have to ensure that the magnitude of perturbation 

is also small as higher magnitude perturbations are more susceptible 

to detection. We can reformulate the maximization problem to a 

minimization problem as follows: 

minimize (∣∣𝛿𝑖 ∣∣ − 𝑐 ⋅ 𝐸𝑆𝑇 (𝑥𝑖 + 𝛿𝑖 )) where, (𝑥𝑖 + 𝛿𝑖 ) ∈ [0, 1]
𝑛  

(1) 
𝛿𝑖 

where 𝑐 > 0 is a hyperparameter chosen through grid search de- 

pending on the AdNN model. Also, 𝑐 controls the magnitude of 
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generated perturbation (∣∣𝛿𝑖 ∣∣), where a large 𝑐 makes the loss func- 
tion more dependant on the energy estimate, allowing for larger 
perturbations. Whereas a smaller 𝑐 makes the loss function more 

dependant on ∣∣𝛿𝑖 ∣∣. Hence, 𝑐 and ∣∣𝛿𝑖 ∣∣ are directly proportional. 
This constrained optimization problem in 𝛿𝑖 can be converted 

into a non-constrained optimization problem in 𝑤𝑖 , where the rela- 
tionship between 𝛿𝑖 and 𝑤𝑖 is: 

2 VALUATION 
We evaluate the performance of EREBA on three popular AdNNs, 

RANet [44], BlockDrop [41] and BranchyNet [33, 34], in terms 
of four research questions (RQs): 

RQ1: Effectiveness. How much increase in energy consump- 
tion is achievable by the testing inputs generated by EREBA? 

RQ2: Sensitivity. How does the energy consumption of AdNNs 

𝛿𝑖 = 
tanh(𝑤𝑖 )+  1 

− 

𝑥𝑖
 

react to limiting the magnitude of perturbation in EREBA? 
RQ3: Quality. What is the difference in semantic quality be- 

The 𝑡𝑎𝑛ℎ function would ensure that the generated test input values 

stay between 0 and 1. The equivalent optimization problem in 𝑤𝑖 

is: 

tween original images and testing inputs generated by EREBA? 

RQ4: Robustness. Is EREBA robust against distribution shifts? 

minimize 
,, tanh(𝑤𝑖 )+ 1 − 𝑥𝑖 

,, 
− 𝑐 ⋅ 𝐸𝑆𝑇 ⎛ tanh(𝑤𝑖 )+ 1 ⎞ (2) 2.1 erimental Setup 

𝑤𝑖 
,, 

2
 ,, ⎝ 2 ⎠ Datasets. For all AdNN models, the CIFAR-10 and CIFAR-100 

4.2.2 Universal Testing. In this use case, EREBA generates a testing 

input only using the Estimator model. Unlike Input-based testing, 

which adds human imperceptible perturbation to original images, 

universal testing creates noisy testing inputs, which can maximize 

the energy consumption of the target DNN independent of the 

input. The intuition behind this testing is that adversaries can send 

noisy testing inputs exclusively to increase the system’s energy 

consumption because human perception may not be a concern in 

every scenario. Hence we modify the optimization function from 

equation 2 to: 

datasets [19, 35, 36] have been used to train the Estimator model 

and generate testing inputs. Both the datasets consist of 50000 train- 

ing and 10000 test images, where CIFAR-10 and CIFAR-100 have 

10 and 100 class labels, respectively. By using these two datasets, 

we show that EREBA is useful for both easier (CIFAR-10) and more 

complex prediction (CIFAR-100) tasks. 

Baseline. As there are no existing black-box energy testing frame- 

works, we compare our technique with two different types of 
baseline techniques. First, we compare our techniques with real- 
world corruption and perturbation techniques (like fog, frost) [14]. 
The datasets generated from these techniques are commonly used 

minimize − 𝐸𝑆𝑇 
⎛ tanh(𝑤𝑖 )+ 1 ⎞

 (3) [9, 26, 42] to test the robustness of neural networks. Second, we use 

𝑤𝑖 ⎝ 2 ⎠ a surrogate model technique that utilizes ILFO to generate testing 

inputs. 
Common corruption techniques [14] contain different visual cor- 

Algorithm 1: Testing input generation using EREBA 
Inputs : 𝑥𝑖 ∶ 𝐼𝑛𝑝𝑢𝑡 𝐼𝑚𝑎𝑔𝑒 
Outputs : 𝑓𝑖 ∶ 𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑 𝐼𝑚𝑎𝑔𝑒 

1 begin 
2 Initialize(𝑤𝑖 ) 

ruption, which includes practical corruptions like fog, snow, frost. 

We use 19 different corruption types, and for each type, five visual 

corruptions are created from severity level one to five, resulting in 

a total of 95 different visual corruptions. In the images generated 
3 

4 

5 

6 

7 

8 

9 

10 

11 end 

𝑇 = 𝑛𝑢𝑚𝑏𝑒𝑟 _𝑜𝑓 _𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

𝑖𝑡𝑒𝑟 _𝑛𝑜 = 0 

while 𝑖𝑡𝑒𝑟 _𝑛𝑜 < 𝑇 do 

𝐿 = 𝑙𝑜𝑠𝑠(𝑥𝑖 , 𝑤𝑖 , 𝑐) 

𝐿𝑛𝑒𝑤, 𝑤𝑖 = 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 (𝐿, 𝑤𝑖 ) 

𝑖𝑡𝑒𝑟 _𝑛𝑜 ++  

end 

𝑓𝑖 = 
tanh 𝑤𝑖 +1 

by common corruption techniques, the noise present in the inputs 

is human perceptible. 

Common perturbation techniques [14] use 14 practical perturba- 

tion types; for each original input, 30 different images are created 

with different amounts of perturbation. With perturbation, slightly 

perturbed images are generated that are difficult for humans to 

differentiate from the original images. 
Other than using common corruptions and perturbations [14], 

Both minimization problems can be solved through an iterative 

approach given by Algorithm 1, which is also illustrated in Figure 1 

(sub-figure (ii) inside green box). The algorithm outputs the testing 

input 𝑓𝑖 while taking the current image 𝑥𝑖 (not required in Universal 

test mode) as input. 𝑤𝑖 is initialized to a random tensor (multi- 

dimensional array) with a size equal to the input image dimension. 

For each iteration, the loss function of the current mode (given in 

equations 2, 3) is computed (at line 6). This loss is back-propagated, 

and the optimizer takes a step in the direction of the negative 

gradient of the loss w.r.t 𝑤𝑖 and updates 𝑤𝑖 with its next value. Once 

the iteration threshold (𝑇 ) is reached, the algorithm computes and 

returns the testing input 𝑓𝑖 (at Line 10). In the Universal test mode, 
this algorithm is repeated for 𝑁𝑟 different random initializations of 

𝑤𝑖 , out of which 𝑤𝑖 corresponding to the lowest loss value is used 
for computing 𝑓𝑖 . 

we also use the Surrogate model-based technique as a baseline. For 

this approach, we create a Surrogate model for each AdNN and use 

the Surrogate model to generate adversarial images. As we see in 

Tables 1 and 2 that adversarial inputs generated using BlockDrop 

as the surrogate model are more effective on other AdNNs, we 

add a baseline that uses BlockDrop as a Surrogate model and is 

referred to as SURRG in the followings sections. For each AdNN, we 

first classify 50000 CIFAR-10 and CIFAR-100 training data on the 

target AdNN and based on its outputs, and we train the Surrogate 

model. Then we use the ILFO attack on the Surrogate model to 

generate test inputs. We use Surrogate model to generate both 

limited perturbation (Input-based SURRG) and noisy (Universal 

SURRG) test samples. 

Models. We have selected AdNN models where the range of max- 
imum energy consumption during inference is large (15 J-160J). 
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Table 3: Hyperparameters of EREBA 

 
 

 
 
 
 

We show that EREBA can be used against AdNN models with both 

higher and lower number of parameters. AdNN BlockDrop is built 

modifying ResNet-110 architecture and trained on CIFAR-10. While 

for training using CIFAR-100 dataset, BlockDrop is built modifying 

ResNet-32 architecture because ResNet-110 BlockDrop architecture 

trained on CIFAR-10 dataset has shown less adaptability. ResNet ar- 

chitecture starts with a 2D convolution layer, which is followed by 

residual blocks. BlockDrop selects which blocks to execute through 

Policy Network for BlockDrop. Both RANet and BranchyNet are 

multi-exit networks, where operation can be terminated in one 

of the earlier exits based on the confidence score of the exit. The 

Estimator Model is a ResNet-110, with the output fully connected 

ten node layer changed to a fully connected single node. The loss 

function is changed to the function defined in section 4.1. Hyperpa- 

rameters chosen by the Estimator model (𝑐, learning rate, number 

of iterations (𝑇 )) for each AdNN model are in Table 3, reasons for 

choosing these parameters are given in section 5.2.1. These are 

parameters used for the results reported in sections 5.2.1 and 5.2.3, 

whereas section 5.2.2 reports the behaviour of EREBA when 𝑐,𝑇 are 

changed. 

Hardware Platform. We use the Nvidia Jetson TX2 board for our 

energy consumption measurements, which are used to train the Es- 
timator Model. By default, TX2 has a dynamic power model, which 
scales the CPU and GPU frequencies based upon the current system 
load, which adds additional uncertainty to the energy consumption 

measurements. To combat this, we set the TX2 board to Max-N 
mode, which forces CPU and GPU clock to run at their maximum 
possible values, which are 2.0 GHz and 1.30 GHz, respectively. 

Jetson TX2 module has two power monitor chips on board for 

measuring power consumption. One of the power monitors mea- 

sures the power consumption of CPU, GPU, and SOC as in Fig. 

8, 9 of the user manual of Nvidia TX2 [25]. During the inference 

process of the AdNNs, we measure the power consumption of GPU 

using a monitor program. Since the monitor program only uses 

the CPU, the program does not affect the energy measurement. 

Additionally, TX2 Internal power monitors have been validated by 

other studies such as S. Köhler et al. [18] (see Fig 1b.), where it is 

shown that the power measurements using the internal monitor 

chips collaborate with external measurement techniques. As stated 

in [18], one concern with using the internal chips is that the power 

consumption from the carrier board, fan, and power supply is not 

measured, which comes out to be around 2W. However, since our 

study measures the effect of various testing inputs, which cannot 

affect such components’ behavior and both measurements (testing 

input, original image) ignore the consumption from these com- 

ponents, the conclusions drawn are valid. Further, to ensure the 

 
(a) Original (b) Testing Inputs 

 

Figure 2: Testing inputs generated by EREBA for BlockDrop 
in Input-based testing mode 

 
than the median value. The mean of the remaining values is used 

as the single energy consumption value reported. 

Metrics. We evaluate the effectiveness and robustness of EREBA 
using the percentage increase in energy consumption for each 

target AdNN: 

𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝑓𝑖 )−  𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝑥𝑖 ) 
100

 

𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝑥𝑖 ) 

where 𝑥𝑖 is the input image provided to EREBA and 𝑓𝑖 is the testing 

input generated. For Sensitivity (RQ2) measurements, we use the 

increment in energy consumption in Joules (J) to better compare 

sensitivity between target AdNNs and use the average squared 

difference in pixels values between the input image and the testing 

input to quantify the magnitude of the perturbation. The testing 

inputs’ quality is measured using Peak Signal to Noise Ratio (PSNR) 

[39], and Structural Similarity Index (SSIM) [40] because of usage 

of these metrics in the industry to measure image quality. 

2.2 erimental Results 

2.2.1 ectiveness. To evaluate testing effectiveness by EREBA, we 

have measured the average percentage increase in each AdNN 

model’s energy consumption between the original images in the 

dataset and the corresponding testing inputs generated by EREBA. 

We compare the effectiveness of Universal testing against the com- 

mon corruption techniques [14] because, in both approaches, noise 

introduced to the inputs is human perceptible. Whereas Input- 

based testing adds imperceptible perturbation to the input, hence 

we compare against the common perturbation techniques [14]. The 

hyperparameters chosen for each model are in Table 3. Parame- 

ters vary between AdNNs due to variations in input normalization, 

which is only applied in BranchyNet and RANet. We evaluate on 

images from the CIFAR-10 and CIFAR-100 datasets, which have a 

considerable reduction in the energy consumption on the target 

AdNNs [33, 34, 41, 44]. The Estimator models have been trained 

on 50000 CIFAR-10 and CIFAR-100 training images. We apply com- 

mon corruption and perturbation techniques [14] to CIFAR-10 and 

CIFAR-100 test images. As there are numerous corruption, and 

perturbation techniques, we only report the best performing tech- 

niques (i.e., highest IncRF ) for each AdNN model (For the IncRF 
values of other corruptions and perturbations, please see the web- 

site3); Table 4 reports the exact corruption/perturbation technique. 

Table 5 reports the mean percentage increase in energy consump- 

tion of the AdNN models under EREBA (Universal, Input-based test- 

ings) and the baselines on the CIFAR-10 dataset. Figure 2 illustrates 

some Input-based testing inputs generated by EREBA for Block- 

Drop. We observe that EREBA Input-based testing inputs dominate 
collected energy consumption data is correct, we run the inference   

twenty times and discard values outlier values that are 50% higher 3 https://sites.google.com/view/ereba/home 

Mode AdNN 𝑐 Learning Rate 𝑇 𝑁𝑟 

Input-based 

BlockDrop 1 0.01 500 - 

BranchyNet 100 0.01 500 - 
RANet 10 0.01 500 - 

Universal 

BlockDrop - 0.01 500 30 

BranchyNet - 0.01 500 30 
RANet - 0.01 500 30 
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Table 4: Corruptions and perturbations we have used for 
comparison for each model. corr represents corruptions and 
per represents perturbations. 

 

Models 
Data 
Type 

 
BlockDrop 

 
BranchyNet 

 
RANet 

Best Corr (CIFAR-10) Contrast Impulse Noise Contrast 

Best Per (CIFAR-10) Gaussian Blur Snow Gaussian Blur 

Best Corr (CIFAR-100) Contrast Impulse Noise Fog 

Best Corr (CIFAR-100) Zoom Blur Zoom Blur Shot Noise 

 
Table 5: Mean percentage increase in energy consumption of 
the models for CIFAR-10 dataset against EREBA and baseline 
techniques. 

 

Models 

Perturbation 
Type 

 
BlockDrop 

 
BranchyNet 

 
RANet 

Universal Testing (EREBA) 97.54 528.51 1846.18 

Best Corr 77.77 186.79 1209.00 

Universal SURRG 137.8 26.87 302.42 

Input-based Testing (EREBA) 67.92 288.90 885.00 

Best Per 16.24 153.72 1480.87 

Input-based SURRG 135.5 118.39 554.69 

 
the baseline methods for mean energy increase on BranchyNet. 

Whereas for BlockDrop, because SURRG has BlockDrop as its archi- 

tecture and ILFO is a white-box method, it is expected to outperform 

EREBA, a black-box method. Interestingly, for RANet, common per- 

turbation techniques [14] induce a much higher energy increase 

than the corruption techniques, which is quite different from the be- 

havior observed in the other AdNNs. While EREBA underperforms 

the perturbations in terms of energy consumption increase, EREBA 

still outperforms SURRG. Also, we observe that for all AdNNs, sam- 

ples generated through Universal testing outperform the baseline 

techniques. Furthermore, for BranchyNet and RANet, due to fewer 

execution modes (two in BranchyNet and eight in RANet), the en- 

ergy consumption is higher than BlockDrop (up to 2000 % more 

than the original data) with 254 modes. 

For the CIFAR-100 dataset, Table 6 shows the average percentage 

increase in energy consumption for EREBA and the baseline tech- 

Table 6: Mean percentage increase in energy consumption of 
the models for CIFAR-100 dataset against EREBA and baseline 
techniques. 

 

Models 

Perturbation 
Type 

 
BlockDrop 

 
BranchyNet 

 
RANet 

Universal Testing (EREBA) 27.22 580.50 479.80 

Best Corr -29.61 5.74 -31.80 

Universal SURRG 55.40 71.42 -29.50 

Input-based Testing (EREBA) 17.27 283.60 1113.28 

Best Per -54.28 37.80 -30.73 

Input-based SURRG 41.31 37.90 754.69 

 

(a) CIFAR-10 (b) CIFAR-100 

 

Figure 3: Average energy consumption increase of testing 
inputs constrained by magnitude of perturbation for Block- 
Drop, BranchyNet and RANet. 

 
We know that 𝑐 and ∣𝛿𝑖 ∣ are directly propositional, given that the 
number of iterations is constant. Through empirical observations, 

𝑇 = 500 is sufficient to achieve convergence in EREBA for all AdNN 

models. Note that sensitivity cannot be compared using the mag- 

nitude of 𝑐 as only BranchyNet and RANet use normalization fil- 

ters, whereas BlockDrop does not, which makes the optimal 𝑐 of 
BranchyNet and RANet larger (see Table 3). To measure the mag- 
nitude of perturbation for a set of c, T we measure the average 
squared difference between the testing input and the input image, 
which is defined as follows: 

Average squared difference = 
1 𝑁 

(  −  )
2

 

niques. We notice that EREBA generated inputs outperform common 

corruption and perturbation techniques for all three AdNNs. Sim- 

∑ 𝑥𝑖 
𝑖=1 

𝑓𝑖 

ilar to the CIFAR-10 dataset, SURRG generated inputs consume 

more energy than EREBA generated inputs only for the BlockDrop 

model. For RANet, Universal testing inputs can not significantly 

increase energy consumption because RANet always predicts an 

input with high noise as road or shrew with high confidence; there- 

fore, the inference is stopped at initial exits, resulting in lower 

energy consumption. Nevertheless, the Input-based testing inputs 

can increase up to 4000% energy consumption of the original inputs 

for the RANet model. Thus, we conclude that, on average, over all 

three AdNN models, EREBA performs better than any other baseline 

technique in terms of increasing energy consumption. 

2.2.2 y. We define the sensitivity of EREBA in terms of the 

magnitude of the perturbation ∣𝛿𝑖 ∣. Intuitively, if an AdNN 

model’s energy consumption spikes up with a relatively lower 

average perturbation magnitude, then that model is less robust. 

where 𝑥𝑖 is the input image, and 𝑓𝑖 is its corresponding testing 
input. Figures 3a and 3b show the average percentage increase 

in energy consumption versus the average squared difference on 

the CIFAR-10 and CIFAR-100 datasets. We observe that for both 

datasets compared to BlockDrop, BranchyNet and RANet are more 

sensitive to the perturbation magnitude. BlockDrop’s lower sensi- 

tivity is mainly due to BlockDrop’s Policy Network, which provides 

more refined control over energy consumption; hence BlockDrop 

is more robust than the other two AdNNs. Additionally, we can see 

the potency of the Estimator model for every AdNN model. A direct 

proportionality between the average increase in energy consump- 

tion and the average squared difference is observed in all the AdNN 

models, which is evidence that the Estimator model is successful 

in imitating the energy consumption of each AdNN. Additionally, 
we observe that EREBA performs very similarly for both CIFAR-10 
and CIFAR-100 datasets for BlockDrop and BranchyNet. Whereas 

𝑁 
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Table 7: Effect of corruptions on EREBA. Average percentage 
increase in energy consumption for all AdNN models for 
various corrupted inputs from CIFAR-10 and CIFAR-100. 

 

 

 
(a) PSNR between original and (b) SSIM between between origi- 

generated images nal and generated images. 

 

Figure 4: Quality of the generated images for each AdNN 
model for CIFAR-10 dataset 

 

(a) PSNR between original and (b) SSIM between between origi- 

5.2.4 RQ4: Robustness. EREBA estimates energy consumption based 

on the training data, which can be impacted by distribution shift [31]. 

Therefore, to evaluate the robustness of EREBA against distribution 

shifts, we have analyzed the behavior of EREBA against Practical cor- 

ruptions. Practical corruptions (e.g., fog, snow etc.) are frequently 

noticed, mainly when we use mobile phones or autonomous ve- 

hicles to take images. For this purpose, we have used real-world 

common corruption techniques [14]. 

Table 7 shows the average percentage increase in energy con- 

sumption for the testing inputs generated using the original and 

corrupted images of CIFAR-10 and CIFAR-100 by EREBA in Input- 

based testing. We picked the corruption classes of fog, frost, and 

snow due to their natural occurrence. In general, the corrupted 
generated images nal and generated images. images do not hinder the performance of EREBA except for the 

Figure 5: Quality of the generated images for each AdNN 
model for CIFAR-100 dataset 

 
for RANet for CIFAR-10, the energy spike induced is much higher 

than that for CIFAR-100, indicating that the CIFAR-100 RANet is 

more robust than the CIFAR-10 version. 

2.2.3 y. In this section, we evaluate the quality of the 

perturbation generated by Input-based testing of EREBA with the 

hyper-parameters set to the values given in Section 5.1 using Peak 

Signal to Noise ratio (PSNR) [39] and Structural Similarity Index 

(SSIM) [40]. Both of these metrics are used in the industry to mea- 

sure the image quality of noisy images. SNR of an image can be 

represented by, 
𝜇𝑖𝑚𝑎𝑔𝑒 

𝑆𝑁𝑅 
𝜎𝑖𝑚𝑎𝑔𝑒 

where 𝜇𝑖𝑚𝑎𝑔𝑒 is the mean value of the image pixels and 𝜎𝑖𝑚𝑎𝑔𝑒 is 

the error value of the pixel values. For PSNR, the highest value of 
the image pixels is used instead of the mean value. The Structural 
Similarity Index (SSIM) is a perceptual metric that quantifies the 
image quality degradation caused by processing such as data com- 
pression or by losses in data transmission. Higher values for SSIM 
and PSNR indicate higher quality test inputs. 

Figure 4 and Figure 5 show the values of SSIM and PSNR between 

the testing inputs and the original images for CIFAR-10 and CIFAR- 

100 datasets. For both datasets, we see that SSIM for the generated 

testing inputs is similar for all the target AdNNs. Whereas PSNR for 

RANet is worse but still comparable to BlockDrop and BranchyNet. 

We conclude that most of the inputs generated through Input-based 

testing are of high quality; even if some test inputs might have 

noise, they are structurally similar to the original inputs. 

CIFAR-100 version of RANet. In other cases, the increase in energy 
consumption achieved by EREBA using corrupted images is, in fact, 

higher than that achieved using the original CIFAR-10 and CIFAR- 
100 datasets. This is mainly due to the common corruptions [14], 
introducing better initialization spots (white areas). For CIFAR-100 
RANet, EREBA manages to increase the energy consumption slightly. 

However, similar to the Universal testing case, inputs with high 
noise are classified as road or shrew with high confidence, which 
leads to lower performance in comparison to other settings. 

Additionally, through these results, we further notice the high 

stability of the Estimator model in approximating the shortcomings 
of the target AdNNs. EREBA can generate high energy-consuming 

testing inputs despite the corruption of images. While there is some 
variance in how EREBA behaves when provided with an image 

with different corruption classes; the median energy consumption 
increment is consistent for all target AdNNs. 

3 ENERGY ROBUSTNESS 

In this section, we demonstrate two ways to increase the energy 

robustness of AdNNs. In both ways, we use prior EREBA generated 

inputs to detect new EREBA generated energy-surging inputs for 

AdNNs. For detecting Universal test inputs, we use input filtering 

method based on pixel values, while for detecting input-based test 

inputs, we use gradient-based input detection. 

Input Filtering. As we can notice that noisy samples generated 

from Universal testing can increase energy consumption by a sig- 
nificant amount, hence it is essential to adapt the AdNN mechanism 
against these noisy images. For traditional DNNs, highly noisy im- 
ages consume the same energy as the standard images and are no 
threat to the robustness of the DNN (the object is not visible in those 
noisy images). To adapt AdNNs against high energy-consuming 
images, we propose to include a filter in AdNNs. 

AdNN Dataset Normal Frost Fog Snow 

RANet 
CIFAR-10 929.76 2 085.36 2 027.20 2 099.41 

CIFAR-100 340.75 6.98 13.54 25.51 

BranchyNet 
CIFAR-10 283.05 475.08 355.70 323.72 

CIFAR-100 278.17 197.58 374.62 360.37 

BlockDrop 
CIFAR-10 72.78 108.37 89.61 111.80 

CIFAR-100 17.50 24.91 21.49 36.95 
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As a filter, we have created a ResNet model (binary classifier) 
with only six residual blocks. The classifier can classify into two 

categories: normal input and energy-consuming noisy input. 

For each AdNN, We have trained the ResNet model with 2500 
normal dataset images and 2500 high energy-consuming noisy 
images, creating three different trained ResNet models. For testing 
the models, 1000 images have been used (500 from each class). Our 
results show that the filter can identify each test image with the 
correct class (100% accuracy) for all three AdNNs for both datasets. 
The results confirm that we can filter out high energy-consuming 
noisy images with a model whose energy consumption is low. 

Gradient-based Input Detection. In contrast to detecting adver- 

sarial inputs similar to the samples generated by the Universal 
testing mode, adversarial inputs similar to the samples generated 
by the Input-based testing mode are harder to differentiate from 
benign inputs. Additionally, the energy constraint on such a de- 
tection system is a significant challenge. Therefore, the detection 
technique must consume significantly low energy with respect to 

the energy consumed by Input-based testing inputs during infer- 
ence. To address these challenges, we propose a gradient-based 
adversarial input detection mechanism that uses partial inference 
from the AdNN. 

In this detection mechanism, we leverage the behavior of the 

energy-saving mechanism within various AdNNs. These mecha- 

nisms, in general, try to ensure that the difference between an 

intermediate output and a predefined condition is large, which will 

deactivate certain parts of the AdNN. In other words, if the loss 

function of intermediate outputs is large for any input, the energy 

consumption will be low [13]. Therefore, if the gradients of the 

intermediate loss function with respect to the weights are large, the 

input is more likely to be a benign input. Hence, we only need par- 

tial inference (weight gradients of an initial layer) from the AdNNs, 

and a linear SVM [6] to detect the energy-surging inputs, where 

both are low energy consuming steps. So, the energy impact of our 

detection component is significantly low. If the input is predicted 

as energy-surging by the detector, the inference is stopped early. 

To evaluate our detection component, we generate input-based 

testing inputs for CIFAR-10 and CIFAR-100 training and test datasets 

for all three AdNNs. Next, we calculate the gradients of the weights 

with respect to the intermediate loss function for the training sec- 

tion of datasets. For all three AdNNs, we consider the weights of 

the first layer of the AdNN. Specifically for BlockDrop, we calculate 

the intermediate loss function of the policy network, whereas, for 

RANet and BranchyNet, we use the first exit’s loss function (Section 

5.1). After calculating the weight gradients for the training section 

of datasets, we label them as either original or testing inputs and 

use them for training an SVM binary classification model for each 

AdNN. Finally, we test the SVM classifiers on the gradients gener- 

ated by the original and input-based testing input for the testing 

section of datasets. 

Table 8 shows the detection accuracy (%) and AUC score [3] of 

our gradient-based input detection technique. AUC score computes 

the area under the Receiver Operating Characteristic Curve (ROC 

AUC) [3] and measures the efficacy of any binary classifier, with 

higher AUC scores corresponding to better classifiers. The results 

Table 8: Detection Accuracy (%), AUC score, Accuracy Drop 
percentage, Adversarial Energy Decrease Percentage, and 
Benign Energy Increase Percentage of the Gradient-based in- 
put detection incorporated in to various AdNN models 

 
AdNN Dataset Detection (%) AUC Acc Drop(%) Adv Eng Dec (%) Ben Eng Inc (%) 

RANet 
CIFAR-10 92.50 0.924 11.50 77.10 26.80 

CIFAR-100 81.60 0.816 3.90 84.30 17.74 

BranchyNet 
CIFAR-10 99.90 0.999 0.01 84.40 17.90 

CIFAR-100 99.80 0.998 0.01 87.50 15.60 

BlockDrop 
CIFAR-10 94.39 0.943 3.30 95.00 6.25 

CIFAR-100 66.90 0.666 30.40 92.80 7.60 

 
approach’s efficacy. Additionally, we also report the accuracy drop 

of the AdNNs due to false positives from the detection system. We 

observe that the accuracy drop is minimal in all cases except for 

the CIFAR-100 BlockDrop model. 

Furthermore, to demonstrate the benefits of our gradient-based 

detection system from the energy perspective, we also report the 

average energy decrease percentage for an adversarial input (Adv 

Eng Dec) and average energy increase percentage for a benign 

input (Ben Eng Inc). We observe that our detection system can 

significantly reduce energy consumption induced by adversarial 

inputs (up to 95%) while introducing minimal energy burden as 

evidenced by a low increase in consumption for benign inputs. 

4  

We discuss the alternative defense for AdNNs, the adaptability of 

AdNNs on different datasets, and the relationship between block 

activation and energy consumption of AdNNs. Also, we discuss 

correlation between measured and estimated energy consumption, 

and the correlation between energy consumption increased by 

different techniques. 

4.1 ve Defense. 

We have investigated the application of adversarial training as an 

alternative defense mechanism against EREBA generated energy- 

surging inputs. To understand the effect of adversarial training on 

AdNNs, we use the EREBA generated testing inputs for CIFAR-10 

dataset to retrain the original AdNNs. We used Input-based testing 

inputs generated from 1000 images of the CIFAR-10 training dataset 

as the training set and retrained the BranchyNet and RANet AdNNs 

for 150 epochs with a learning rate same parameters as the initial 

training. We generate the test set using a batch of 600 images from 

the CIFAR-10 test dataset. We found that adversarial training does 

not increase the energy robustness for all AdNN models. Specifically, 

RANet is easier to improve using adversarial training compared to 

BranchyNet. Due to space constraints, we have reported the results 

for Adversarial training in our website 4. 

4.2 of AdNNs 
In our observations, we see that AdNNs may not be adaptive un- 
der all circumstances. Each AdNN can decrease its FLOPs count; 
however, this may not always result in concrete energy consump- 
tion patterns. Figures 6a, 6b, 6c, and 6d show BlockDrop (ResNet- 
110) and SkipNet models’ adaptability on CIFAR-100 and ImageNet 

show that in 5 out of 6 scenarios, both AUC score is higher than 0.8   

and the detection accuracy is higher than 80 percent, showing our 4 https://sites.google.com/view/ereba/home 
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(a) Adaptability of BlockDrop (b) Adaptability of SkipNet on 

the p-values are less than 0.0005. These results conclude that the 

values are correlated. 

For CIFAR-10 dataset, the value of r for RANet is 0.021; however 

p-value is 0.03; therefore, it is more likely that the values are corre- 

lated. For BlockDrop model, the value of r and p-value are 0.004 and 

0.66, which suggests that the values are less likely to be correlated. 

But if we consider only the inputs whose energy consumption is 

higher than the 75th percentile value, the p-value becomes 0.14, 

suggesting a correlation. Therefore, if the estimator model can ac- 

(RN-110) on CIFAR-100 Dataset CIFAR-100 Dataset 

 

 

curately predict high energy-consuming inputs (i.e., differentiate 

clearly between low/mid and high energy-consuming inputs), we 

can use the estimator model to generate energy-expensive testing 

inputs. 

7.5  Correlation of Increase of Energy 
Consumption between Different 
Techniques 

In this section, we try to explore the correlation between energy con- 

(c) Adaptability of BlockDrop (d) Adaptability of SkipNet on sumption modified by Input-based testing and baseline techniques. 

(RN-110) on ImageNet Dataset  ImageNet Dataset We use Pearson Correlation for that purpose. Pearson Correlation 

is one of the metrics that can find the strength of the relationship 

Figure 6: Adaptability of AdNNs on ImageNet and CIFAR- 
100 dataset. 

 

datasets. We can see that the BlockDrop’s adaptability (the differ- 

ence between the highest and lowest number of activated blocks) 

for both datasets is limited (less than 4). For SkipNet, the range of 

adaptability is better than BlockDrop’s range. 

7.3 Comparison to Misclassification Attacks 

We can assume that the energy-saving mechanisms of Conditional- 

Skipping networks like BlockDrop would classify an image into 
𝑁 − 1 categories. 𝑁 is the number of blocks in the DNN, with each 

image in category 𝑖 activating 𝑖 + 1 (the first block is always active) 
blocks. Whereas for the case of Early-Termination networks such 

as BranchyNet and RANet, they classify an image into 𝐸 categories 

where 𝐸 is the number of exits in the network. However, due to 
noise from the system environment, our Estimator model cannot 
differentiate between all the classes. Figure 7 shows the scatter 
plots between these image classes and their energy consumption 
for each AdNN model. We can see the step-wise pattern in the plot 
for all the AdNN models. The Estimator model is trained to learn 
this pattern of energy consumption of AdNNs. 

7.4 Correlation between Actual Energy 
Consumption and Estimated Energy 
Consumption 

To illustrate the correlation between energy consumption predicted 

by the estimator model and original energy consumption, we use 

the Pearson Correlation Coefficient (r) [1] and correlation p-value. 

If two sets of values are correlated, the r value would be significant, 

and the p-value will be low. 

For CIFAR-100 dataset, the r values are 0.38, 0.17, and 0.31 for 

RANet, BlockDrop, and BranchtNet models, respectively, where all 

between two variables. For CIFAR-100 data, we show the Table 

9 that represents the Pearson Correlation Coeff (r) and p-value 

between the percentage of energy consumption increased by Input- 

based testing inputs and energy consumption increased by baseline 

technique generated inputs. It can be noticed that for most of the 

cases, the energy increase percentages are less likely to be cor- 

related. Only for BranchyNet, we can find a significant negative 

correlation between Input-based and Perturbation-induced energy 

consumption increase. 

Table 9: Correlation between the percentage of energy con- 
sumption increased by Input-based testing inputs and per- 
centage energy consumption increased by baseline tech- 
nique generated inputs for different models for CIFAR-100 
data 

 

Baseline 

Models 
r(Perturb) p-value(Perturb) r(SURRG) p-value(SURRG) 

RANet 0.142 0.328 -0.04 0.976 

BlockDrop -0.007 0.908 -0.037 0.544 

BranchyNet -0.296 0.133 -0.118 0.556 

 
5 ATED WORKS 

AdNNs. Among Conditional-skipping models, Hua et al. [16] and 

Gao et al. [8] explore channel gating to determine computational 

blind spots for channel-specific regions unessential to classifica- 
tion. Liu et al. [20] propose a new type of AdNN which utilizes 

reinforcement learning to achieve selective execution of neurons. 
SkipNet [38] uses gating techniques to skip residual blocks. On 
the other hand, Graves et al. [11], Figurnov et al. [7], and Teer- 

apittayanon et al. [33] propose SACT and BranchyNet respectively, 

which are Early-termination AdNNs. SACT terminates the compu- 
tation within a residual block early based on intermediate outputs, 
while BranchyNet uses separate exits within network for early ter- 
mination. Cascading multiple DNNs with various computational 
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Figure 7: Energy consumption of (a) RANet, (b) BlockDrop, (c) BranchyNet for CIFAR-10 Training Set 
 

costs through a single computation unit to decide which DNN to 

execute has been proposed. The cascading models use various tech- 

niques such as termination policy [2], reinforcement learning [12], 

and gating techniques [24] to achieve early termination. 

Adversarial Examples. Adversarial Examples are the synthe- 
sized inputs that is able to modify the prediction of the ML model. 
Szegedy et al. [32] and Goodfellow et al. [10] propose white-box 

adversarial attacks on convolutional neural networks. Papernot et 

al. [28] have used surrogate model to attack a DNN in black-box 

setting. Liu et al. [21] use ensemble of multiple white-box models to 

generate adversarial examples, which can attack black-box models. 
Ilyas et al. [17] use evolutionary search strategies to estimate the 

gradient of a model to attack black-box models. 

However, all these attacks focus on changing the prediction and 

do not concentrate on increasing test time. ILFO [13] is the first 

work to attack a DNN by increasing the energy consumption of 

the model. However, ILFO uses white-box setting and does not 

have transferability. Therefore, ILFO can not be used for black-box 

attack. 

Next, DeepSloth [15] uses modified PGD to attack against Early- 

termination AdNNs using the confidence scores in each exit. How- 

ever, DeepSloth can not be used against Conditional-skipping AdNNs. 

Also, DeepSloth provides a study about the transferability of the 

attack. The study considers the efficacy of the Early-termination 

models as the transferability metric. However, we propose a more 

systematic transferability study by introducing of metrics like ETP 

and ITP. 

DNN Testing. Multiple testing methods have been proposed 

recently to test DNNs. DeepGauge [22] is proposed based on a 

test criteria set that verifies the corner neuron activation values. 

DeepXplore [30] proposes to cover each neuron’s binary activation 

status and use neuron coverage to test DNNs. DeepTest [37] tests 

autonomous driving cars by using neuron coverage. Recently, Deep- 

Hunter [43] proposes to use coverage-guided fuzz testing on DNNs. 

EREBA evaluates the energy-robustness of AdNNs in a black-box 

setting unlike the aforementioned techniques, which are focused on 

testing the accuracy-robustness of traditional DNNs in white-box 

setting 

6  

In this paper, we have proposed practical black-box testing meth- 

ods to evaluate energy robustness of AdNNs. The core idea behind 
the technique is to create inputs which increase the energy con- 

sumption of AdNN to a higher level. To achieve this goal, we have 

presented EREBA 5, where we have proposed two types of testing: 
Universal testing and Input-based testing. To our knowledge, we 

are the first to explore black-box testing on AdNNs. Test inputs 
generated by EREBA can improve the energy robustness of AdNNs. 

Finally, this paper also analyzes the behavior of AdNNs and suggests 
model improvement strategies. 
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