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ABSTRACT

Recently, various Deep Neural Network (DNN) models have been
proposed for environments like embedded systems with stringent
energy constraints. The fundamental problem of determining the ro-
bustness of a DNN with respect to its energy consumption (energy
robustness) is relatively unexplored compared to accuracy-based ro-
bustness. This work investigates the energy robustness of Adaptive
Neural Networks (AdNNs), a type of energy-saving DNNs proposed
for many energy-sensitive domains and have recently gained trac-
tion. We propose EREBA, the first black-box testing method for
determining the energy robustness of an AANN. EREBA explores
and infers the relationship between inputs and the energy con-
sumption of AANNs to generate energy surging samples. Extensive
implementation and evaluation using three state-of-the-art AANNs
demonstrate that test inputs generated by EREBA could degrade
the performance of the system substantially. The test inputs gener-
ated by EREBA can increase the energy consumption of AANNs by
2,000% compared to the original inputs. Our results also show that
test inputs generated via EREBA are valuable in detecting energy
surging inputs.

CCS CONCEPTS

¢ Security and privacy — Software and application security.

KEYWORDS
Green Al, Al Energy Testing, Adversarial Machine Learning

ACM Reference Format:

Mirazul Haque, Yaswanth Yadlapalli, Wei Yang, and Cong Liu. 2022. EREBA:
Black-box Energy Testing of Adaptive Neural Networks. In 44th Interna-
tional Conference on Software Engineering (ICSE '22), May 21-29, 2022, Pitts-
burgh, PA, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3510003.3510088

*Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE '22, May 21-29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9221-1/22/05...$15.00
https://doi.org/10.1145/3510003.3510088

835

Yaswanth Yadlapalli*
yaswanth.yadlapalli@utdallas.edu
The University of Texas at Dallas

Cong Liu
cong@utdallas.edu
The University of Texas at Dallas

1 INTRODUCTION

Recently there has been a considerable amount of research in de-
veloping energy-saving DNN models to allow state-of-art DNNs
with high computational costs to be deployed in mobile and em-
bedded architecture. Adaptive Neural Networks (AdNNs) [2,7, 33]
are energy-saving DNN models that determine when to switch off
certain parts of the network to reduce the number of computations.
Because an AANN model determines which parts of the neural
network to run based on inputs, an adversary’s ability to surge
the energy consumption by carefully crafting inputs is a crucial
concern in energy-critical environments. For example, AANNs like
BlockDrop [41] and SkipNet [38] can reduce the computations in
ResNet significantly and an alteration on the input can nullify a
large portion of the reduced computations, invalidating the models’
purpose. Such behavior would lead the app or software using an
AdNN model to consume energy erratically, resulting in devices’
power failure and disastrous consequences. Thus, there is a strong
need to provide a systematic testing method to find energy hotspots
in the model and filter out potential “power-surging” inputs that
will negatively impact the model’s performance.

Creating testing inputs to increase the energy consumption of a
DNN model is challenging because inferring the relation between
energy consumption and input is a challenging task. Unlike infer-
ring the relation between input and output, where we can find the
derivatives from a series of computation functions in the model,
energy consumption can only be measured by running the model.
Traditional DNN testing methods [22, 30, 37, 43] and traditional
adversarial attacks [4, 10, 29] on DNNs have been designed to cre-
ate carefully crafted synthetic testing inputs using the gradient of
generated output with respect to the input. However, for energy
testing, it is unclear whether a change in the input induces an in-
crease or decrease in the energy consumption of the model. To
the best of our knowledge, ILFO [13] is the first work that seeks
to formulate all types of AANN’s energy robustness (Section 2.1)
problem by modeling the relation between input and intermediate
output [13] (DeepSloth [15] only evaluates energy robustness of
Early-termination AANNs).

However, our investigations (Section 3) show that ILFO gener-
ated energy surging samples lack traditional transferability, i.e.,,
the adversarial samples generated by ILFO for a target AANN can-
not be applied to a new AdNN to increase its energy consumption.
Therefore, the traditional black-box accuracy testing method of
DNNs using surrogate model [5, 21, 28] can not be used for energy
robustness evaluation. Therefore, ILFO generated samples cannot
evaluate the energy robustness of AANNs in a black-box scenario.
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This paper presents EREBA (Energy Robustness using Estimator
Based Approach) to perform energy testing on AANNs under the
black-box setting where there is no prior knowledge known about
the AANN model. To our knowledge, this is the first attempt in
this direction. EREBA aims to evaluate the energy robustness of
AdNN and identify inputs that will negatively impact the model’s
performance. Specifically, we develop two testing methods to assess
any given AANN model’s energy robustness, namely Input-based
testing and Universal testing. Input-based testing evaluates energy
robustness where testing inputs are semantically meaningful to the
AdNN (e.g., meaningful images, compilable programs). On the other
hand, universal testing evaluates worst-case energy robustness

where each testing input maximizes the energy consumption for
each target AANN.

For generating testing inputs for AANNs in a black-box setting, it
is needed to find a relation between input and energy consumption
of AANNs. Based on the working mechanism of AANNs, we know
that different numbers of residual blocks/layers are activated during
inference for different inputs. The number of activated blocks/layers
during inference has a semi-linear (step-wise) relation with energy
consumption, which can also be noticed in Figure 7. Through this
step-wise relation between the number of activated blocks and
energy consumption, we can conclude that input and energy con-
sumption of AdNNs are related. Because of this reason, EREBA is

able to learn a decent approximation of the energy consumption
of an AANN given the input. Based on such approximation, EREBA
then generates input perturbations that significantly increase the
energy consumption of the AANN.

We evaluate EREBA on four criteria: effectiveness, sensitivity,
quality, and robustness using the CIFAR-10 and CIFAR-100 datasets
[19, 35, 36]. First, to evaluate the effectiveness of the testing inputs
generated by EREBA, we calculate the energy required for AANNs
to classify these inputs while running on an Nvidia TX2 server. We
then compare this value with the energy required by the inputs gen-
erated from common corruptions and perturbations techniques [14]
and a surrogate model-based approach. We observe that EREBA is
twice as effective. The sensitivity of EREBA is measured through the
behavior of the energy consumption of testing inputs generated
while limiting the magnitude of perturbation allowed, which en-
ables a comparison between the AANN models’ energy robustness.
The quality of the generated testing inputs is evaluated against
the original input through Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index (SSIM) [39, 40]. Finally, the robustness
of EREBA is demonstrated by providing corrupted input images for
the generation of testing inputs, which reveals the capability of the
estimator model to imitate the shortcomings of the target AANN.
We further demonstrate two ways to show how EREBA generated
test inputs can help to increase energy robustness: through input
filtering and gradient-based detection.

Our paper makes the following contributions:

0 Anapproach, EREBA, the first energy-oriented black-box test-
ing methodology for AANNs.

0 A systematic empirical study on transferability of energy-
based testing inputs.

0 Four evaluations to demonstrate the effectiveness, sensitivity,
quality, and robustness of EREBA.
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0 Two applications demonstrating the energy-saving capabil-
ity of EREBA.

2 BACKGROUND

2.1 Energy Robustness

ILFO [13] has defined the energy robustness of a DNN as the sta-
bility of the model’s energy consumption after getting a perturbed
input. However, a model’s energy robustness should not only de-
pend on the inputs that belong to the training data distribution
of the model. Energy robustness should also be evaluated based
on the out-of-distribution inputs. Because of this reason, we de-
fine two types of energy robustness for DNNs: Input-based Energy
Robustness (E ) and Universal Energy Robustness (E ).

i u

E; is defined by the maximum energy consumed by the model
for an input which belongs to the training data distribution of
the model. Let us assume, x is an input that is within the data
distribution of a DNN f . We want to add perturbation § to x such
that energy consumption is maximum. In that scenario, E; can be
represented as,

E; = -max (ENGf (x +8)- ENGy (x))
S€ER

,where R is set of admissible perturbations such that x + § remains

within distribution, and ENGf represents the energy consumption
of DNN f.

Ey can be described as the highest possible energy consumed
by a model for any input. Inputs used to measure Ey, can be out-of-
distribution inputs also. For a DNN f and any input x , Ey can be
represented as,

Ey =-max ENGf (x)
X

,where ENG represents energy consumption of DNN. By increas-

ing the value of E; and Eu, energy robustness of a model can be
increased.

2.2 AdNNs

The main objective of AANNs is to minimize executing layers in
a Neural Network while maintaining reasonable accuracy. The
AdNNSs can be divided mainly into two types: Conditional-skipping
AdNNs [38, 41] and Early-termination AANNs [2, 33]. Both types of
AdNNs reduce computations if their intermediate output values sat-
isfy predefined conditions. For reducing computations, Conditional-
skipping AdNNs skip a few layers or residual blocks 1 (in the case of
ResNet), while Early-termination AANNs terminates the operations
within a block or network early.

3 TRANSFERABILITY OF ENERGY-BASED
TESTING INPUTS.

In this section, by carrying out a preliminary study, we show that
traditional transferability does not exist in energy testing inputs,
and existing technique like attacking surrogate model to generate
accuracy-based testing inputs cannot be applied in energy testing.
For traditional accuracy-based testing, transferability refers to the

! Residual block consists of multiple layers whose output is determined by adding the
output of the last layer and input to the block.
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property that adversarial examples generated for one model may
also be misclassified by another model.

Motivation. In a black-box setting, existing techniques [5, 21, 28]
evaluate the accuracy-robustness of DNNs based on the traditional
transferability of adversarial samples [27] . Adversarial examples of
DNNs are perturbed inputs close to the original correctly classified
inputs but are misclassified by DNNs. Because adversarial examples
are commonly used as testing inputs to measure the robustness
of the neural networks [23, 43]), we will also use the term testing
inputs to refer to the adversarial examples in this paper. Goodfellow
etal. and Szegedy et al. [10, 32] have concluded that accuracy-
based testing inputs on a traditional DNN model are transferable.
Therefore, adversarial examples generated by attacking a surrogate
DNN model can be applied to other DNNs for evaluating robustness.
In this section, we investigate if traditional transferability, which is
used for measuring accuracy robustness in a black-box setting, can
be applicable for energy-based testing inputs.

Table1: IT P among different architectures. RN is ResNet, BD
is BlockDrop, BN is BranchyNet. BM represents Base Model,
while TM is Target Model.

™

BM RAN | BD (RN 110) | BN [ BD (RN 32)
RAN 100.0 260 | 410 125
BD (RN 110) 64.0 100.0 | 680 724
BN 61.0 520 | 100.0 2.0
BD (RN 32) 55 450 752 100.0

Table 2: ET P among different architectures. RN is ResNet, BD
is BlockDrop, BN is BranchyNet. BM represents Base Model,
while TM is Target Model.

™
BM RAN | BD (RN 110) BN | BD(RN 32)
RAN 100.0 01| 400 -1.8
BD (RN 110) 200.0 100.0 | 350.0 525
BN 38.0 3.0 100.0 -38
BD (RN 32) -3.5 10.0 | 228.0 100.0

Preliminary study. We have conducted a study to investigate the
traditional transferability of energy-based testing input on AdNNs.
To our knowledge, this is the first effort to explore the transferabil-
ity of energy-based testing input on AANNs. We define base and
target models for this study. The white-box attack is performed on
the base model, and the target model classifies the testing input.
We focus on two metrics to measure transferability: the percentage
of the transferable adversarial inputs and the average percentage of
the transferable energy consumption increase. We define two terms:
Effectiveness Transferability Percentage (ETP) and Input Transfer-
ability Percentage (ITP). ETP is defined based on IncRF, which is
the fractional increase in AdNN-reduced floating-point operations
(FLOPs) after feeding energy-based testing inputs. We also define Pj,

and P¢, the average IncRF on base and target models, respectively,
with the same testing inputs. We define ETP=(P¢/Pp) x 100. ITP
is defined as the percentage of testing inputs for which the FLOPs
count during inference increases in the target model. For an attack,
if ITP is high, it means that most of the generated testing inputs
for the base model can also increase the energy consumption in
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the target model. If ETP is high, it means that the average increase
in the target model’s energy consumption is comparable with the
base model. Thus, if both ETP and ITP are high, then it confirms
transferability in the attack.

For example, we attack the base model and perturb ten inputs. If
the average IncRF on base model is 0.5, i.e., Py, = 0.5. If seven out of
ten testing inputs increase the FLOPs on the target model, IT P will
be 70 %. For target model, The average IncRF is 0.3. Pt would be
0.3 and ETP=(0.3/0.5)x 100 = 60%. We have set multiple thresholds
of IT P and ET P to determine whether an attack is transferable. In
this study, we explore how many combinations of base AANN and
target AANN exceeds the different ITP and ETP thresholds.

We have conducted a transferability study on four AANN models:
RANet [44], BlockDrop (ResNet-38, ResNet-110) [41], and BranchyNet
[33].1000 images sampled from the CIFAR-10 dataset were used in
this study. We generate testing inputs using the ILFO attack [13]
(Figure 1 Sub-figure I) on the base model. Tables 1 and 2 show the
ITP and ETP among the architectures. From the tables, we can see
that only four combinations (out of 12) of base and target models
exceed the 50% threshold for both ITP and ETP (For other thresh-
olds, we have added a table in the website). From these results, we
can conclude that for the majority of AANN models, the white-box
attack is non-transferable.

Although traditional transferability may not be feasible for at-
tacking AdNNs, the observation of this failure motivates us to de-
velop an effective alternative. Specifically, our key observation on
the non-transferability of energy-based attacks is that the energy-
saving mechanisms of AANN models behave differently for the
same input, i.e., an input causing high energy consumption on one
model might consume low energy for another model. Hence, extend-
ing any white-box attack method such as ILFO through Surrogate
models is not viable in the black-box scenario.

1 OACH

As we have observed that Surrogate models are not feasible to test
the energy robustness of AANNs, we develop EREBA, an Estimator
model-based black-box testing system. EREBA contains two ma-
jor components, namely an Estimator model and a testing input
generator. Figure 1 illustrates the Estimator model’s training for
an AdNN using its energy consumption on an Nvidia TX2 server.
The Estimator model addresses the challenge of non-transferability
discovered in the previous section. Additionally, the testing input
generator in EREBA has two modes of testing: Input-based, where
an input image is perturbed to achieve higher energy consump-
tion, and Universal, where a noisy testing input that can maximize
energy consumption is generated. These modes enable EREBA to
assess the energy robustness of each AANN effectively. Figure 1
(Sub-figure ii) shows the generation of testing inputs using the
trained Estimator model.

4.1 Estimator Model Design

Traditionally, misclassification black-box adversarial methods on
DNNs are achieved through Surrogate models (also DNNs) trained
using the output labels produced by feeding the target DNN with
original images. Testing inputs generated by a white-box method
against the trained Surrogate model are then used against the target
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Figure 1: Difference between testing using Estimator model and Surrogate model

DNN as illustrated in Figure 1 (inside the blue-dotted box). How-
ever, this approach is not feasible for the current use-case due to a
lack of traditional transferability in white-box attacks (Section 3).
Because building such a Surrogate model with the target function
of mapping an image to a class would not transfer similar energy
characteristics to the Surrogate model. The target function should
be the energy-saving mechanism in an AdANN, but the output di-
mensions of these change with different AANNs. So, we need a
separate Surrogate model for each AANN; this is not viable for two

reasons. First, such a model would require a new neural network

architecture for each AANN, which makes it hard to apply to future
AdNN models. Second, the energy-saving mechanisms’ outputs are
intermediate values within an AANN, which are not accessible in a
black-box scenario.

To tackle this, we build an Estimator model to emulate the charac-
teristics of the energy-saving mechanism in AANNs. The feasibility
of the Estimator model follows from the following two key observa-
tions. 1) We can perceive the energy-saving mechanisms’ character-
istics through system diagnostics such as the energy consumption
for each inference, which can be observed even in a black-box
setting. 2) Even though each AANN has a different energy-saving
mechanism, the resulting energy consumption is always expected
to lie in a step-wise pattern “; see Figure 7 and Section 7.3 for more
details. Thus, we seek to leverage this patterned energy consump-
tion in our black-box approach to train an Estimator model for each
target AANN at which point the Estimator model can predict the
energy consumption of each image.

However, the energy consumption of an embedded system such
as Nvidia TX2 is affected by noise from the system environment,
such as background processes and dynamic frequency scaling, mak-
ing it challenging to create an accurate model. Further, in a black-
box environment, it is hard to categorize which data is noisy. We
do not have any additional information (e.g., number of the exe-
cuted blocks) about the inference; our approach has to tackle these
challenges.

An overview of the Estimator model training is given in Figure
1 (Inside red dotted box). First, we collect energy consumption data

2Energy consumption of processing an extra residual block or layer in an AANN will
always add similar energy consumption into the total energy consumption, making
the energy consumption pattern step-wise.
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for images used for training and, to address the noise in the data due
to the system environment, we deactivate the dynamic frequency
scaling of Nvidia TX2 and ensure that no other user processes are
running. Additionally, we record the energy consumption by the
target AANN during inference of an input image twenty times and
discard values, which are 50% higher than the median value. We
define the mean of the remaining values is defined as F (x;), where
x; represents an input in the dataset. We define the Estimator’s
DNN loss function as:

¥ 2
estimator loss = N SF(xi)- EST (xi)]
i=1

where EST denote the Estimator model, and N is the size of the
dataset. estimator loss is used to train the Estimator for each target
AdNN, which enables the model to give a reasonable prediction of
energy consumption of the target AANN for a given input.

4.2 Testing input generator

The objective of the testing input generator is to create testing
inputs that increase the Estimator model’s prediction, which in
turn should increase the actual energy consumption of the AANN.
We explore two use cases of EREBA: 1) Input-based test, and 2)
Universal test for measuring the Input-based and Universal energy
robustness as defined in Section-2.1.

4.2.1 Input-based testing. In this use case, we modify the input
image in such a way that it is imperceptible by a human, and the
resulting testing input has higher energy consumption on the target
AdNN. We thus add a perturbation §; to the input x;. Picking the
best §; (SAL') can be formulated as:
6Ai =argmax EST (xi + 6;).
i

Additionally, we have to ensure that the magnitude of perturbation
is also small as higher magnitude perturbations are more susceptible
to detection. We can reformulate the maximization problem to a
minimization problem as follows:

minimize (118;11 - ¢ - EST (x; + 8;)) where, (x; +8;) € [0,1]" (1)
where ¢ > 0 is a hyperparameter chosen through grid search de-
pending on the AANN model. Also, ¢ controls the magnitude of
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generated perturbation (||6; 1), where a large ¢ makes the loss func-
tion more dependant on the energy estimate, allowing for larger
perturbations. Whereas a smaller ¢ makes the loss function more
dependant on [|5;]]. Hence, ¢ and ||5;]| are directly proportional.

This constrained optimization problem in §; can be converted
into a non-constrained optimization problem in w;, where the rela-
tionship between §; and w; is:

5 = tanh(w;)+ 1
;= -
2

The tanh function would ensure that the generated test input values

stay between 0 and 1. The equivalent optimization problem in w;

is:

Jtanh(wi)+ 1 - x;”” —c - EST | tanh(w;)+ 1 V)]
2

minjmize 5

»

3

4.2.2 Universal Testing. In this use case, EREBA generates a testing
input only using the Estimator model. Unlike Input-based testing,
which adds human imperceptible perturbation to original images,
universal testing creates noisy testing inputs, which can maximize
the energy consumption of the target DNN independent of the
input. The intuition behind this testing is that adversaries can send
noisy testing inputs exclusively to increase the system’s energy
consumption because human perception may not be a concern in
every scenario. Hence we modify the optimization function from
equation 2 to:

minimize - EST | 22pWi)+ 1 3)
Wi 2

Algorithm 1: Testing input generation using EREBA

Inputs :xi : Input Image
Outputs: f; : Perturbed Image

Initialize(wi )

T = number _of _iterations

iter no =0

while iter_no <T do
L = loss(xi, wi, c)
Lnew, wi = Optimizer (L, wi)
iter_no ++

end

fi = tanh;v;Ll

Both minimization problems can be solved through an iterative
approach given by Algorithm 1, which is also illustrated in Figure 1
(sub-figure (ii) inside green box). The algorithm outputs the testing
input f; while taking the current image x; (not required in Universal
test mode) as input. w; is initialized to a random tensor (multi-
dimensional array) with a size equal to the input image dimension.
For each iteration, the loss function of the current mode (given in
equations 2, 3) is computed (atline 6). This loss is back-propagated,
and the optimizer takes a step in the direction of the negative
gradient of the loss w.r.t w; and updates w; with its next value. Once
the iteration threshold (T ) is reached, the algorithm computes and
returns the testing input f; (at Line 10). In the Universal test mode,
this algorithm is repeated for N, different random initializations of
wi, out of which w; corresponding to the lowest loss value is used
for computing fi.
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2 VALUATION

We evaluate the performance of EREBA on three popular AANNs,
RANet [44], BlockDrop [41] and BranchyNet [33, 34], in terms
of four research questions (RQs):

RQ1: Effectiveness. How much increase in energy consump-
tion is achievable by the testing inputs generated by EREBA?

RQ2: Sensitivity. How does the energy consumption of AdNNs
react to limiting the magnitude of perturbation in EREBA?

RQ3: Quality. What is the difference in semantic quality be-

tween original images and testing inputs generated by EREBA?
RQ4: Robustness. Is EREBA robust against distribution shifts?

2.1 erimental Setup

Datasets. For all AANN models, the CIFAR-10 and CIFAR-100
datasets [19, 35, 36] have been used to train the Estimator model
and generate testing inputs. Both the datasets consist of 50000 train-
ing and 10000 test images, where CIFAR-10 and CIFAR-100 have
10 and 100 class labels, respectively. By using these two datasets,
we show that EREBA is useful for both easier (CIFAR-10) and more
complex prediction (CIFAR-100) tasks.

Baseline. As there are no existing black-box energy testing frame-
works, we compare our technique with two different types of
baseline techniques. First, we compare our techniques with real-
world corruption and perturbation techniques (like fog, frost) [14].
The datasets generated from these techniques are commonly used
[9, 26, 42] to test the robustness of neural networks. Second, we use
asurrogate model technique that utilizes ILFO to generate testing
inputs.

Common corruption techniques [14] contain different visual cor-
ruption, which includes practical corruptions like fog, snow, frost.
We use 19 different corruption types, and for each type, five visual
corruptions are created from severity level one to five, resulting in
a total of 95 different visual corruptions. In the images generated
by common corruption techniques, the noise present in the inputs
is human perceptible.

Common perturbation techniques [14] use 14 practical perturba-
tion types; for each original input, 30 different images are created
with different amounts of perturbation. With perturbation, slightly
perturbed images are generated that are difficult for humans to
differentiate from the original images.

Other than using common corruptions and perturbations [14],
we also use the Surrogate model-based technique as a baseline. For
this approach, we create a Surrogate model for each AANN and use
the Surrogate model to generate adversarial images. As we see in
Tables 1 and 2 that adversarial inputs generated using BlockDrop
as the surrogate model are more effective on other AANNs, we
add a baseline that uses BlockDrop as a Surrogate model and is
referred to as SURRG in the followings sections. For each AANN, we
first classify 50000 CIFAR-10 and CIFAR-100 training data on the
target AANN and based on its outputs, and we train the Surrogate
model. Then we use the ILFO attack on the Surrogate model to
generate test inputs. We use Surrogate model to generate both
limited perturbation (Input-based SURRG) and noisy (Universal
SURRG) test samples.

Models. We have selected ADNN models where the range of max-
imum energy consumption during inference is large (15 J-160]).
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Table 3: Hyperparameters of EREBA

Mode AdNN c
BlockDrop | 1
BranchyNet | 100
RANet 10
BlockDrop | -
BranchyNet
RANet

Learning Rate
0.01
0.01
0.01
0.01
0.01
0.01

T |Nr
500( -
500( -
500( -
500| 30

Input-based

Universal

500] 30

We show that EREBA can be used against AANN models with both
higher and lower number of parameters. AANN BlockDrop is built
modifying ResNet-110 architecture and trained on CIFAR-10. While
for training using CIFAR-100 dataset, BlockDrop is built modifying
ResNet-32 architecture because ResNet-110 BlockDrop architecture
trained on CIFAR-10 dataset has shown less adaptability. ResNet ar-
chitecture starts with a 2D convolution layer, which is followed by
residual blocks. BlockDrop selects which blocks to execute through
Policy Network for BlockDrop. Both RANet and BranchyNet are
multi-exit networks, where operation can be terminated in one
of the earlier exits based on the confidence score of the exit. The
Estimator Model is a ResNet-110, with the output fully connected
ten node layer changed to a fully connected single node. The loss
function is changed to the function defined in section 4.1. Hyperpa-
rameters chosen by the Estimator model (¢, learning rate, number
of iterations (T )) for each AANN model are in Table 3, reasons for
choosing these parameters are given in section 5.2.1. These are
parameters used for the results reported in sections 5.2.1 and 5.2.3,
whereas section 5.2.2 reports the behaviour of EREBA when ¢,T are
changed.
Hardware Platform. We use the Nvidia Jetson TX2 board for our
energy consumption measurements, which are used to train the Es-
timator Model. By default, TX2 has a dynamic power model, which
scales the CPU and GPU frequencies based upon the current system
load, which adds additional uncertainty to the energy consumption
measurements. To combat this, we set the TX2 board to Max-N
mode, which forces CPU and GPU clock to run at their maximum
possible values, which are 2.0 GHz and 1.30 GHz, respectively.
Jetson TX2 module has two power monitor chips on board for
measuring power consumption. One of the power monitors mea-
sures the power consumption of CPU, GPU, and SOC as in Fig.
8, 9 of the user manual of Nvidia TX2 [25]. During the inference
process of the AANNs, we measure the power consumption of GPU
using a monitor program. Since the monitor program only uses
the CPU, the program does not affect the energy measurement.
Additionally, TX2 Internal power monitors have been validated by
other studies such as S. Kohler et al. [18] (see Fig 1b.), where it is
shown that the power measurements using the internal monitor
chips collaborate with external measurement techniques. As stated
in [18], one concern with using the internal chips is that the power
consumption from the carrier board, fan, and power supply is not
measured, which comes out to be around 2W. However, since our
study measures the effect of various testing inputs, which cannot
affect such components’ behavior and both measurements (testing
input, original image) ignore the consumption from these com-
ponents, the conclusions drawn are valid. Further, to ensure the
collected energy consumption data is correct, we run the inference
twenty times and discard values outlier values that are 50% higher
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(a) Original

(b) Testing Inputs

Figure 2: Testing inputs generated by EREBA for BlockDrop
in Input-based testing mode

than the median value. The mean of the remaining values is used
as the single energy consumption value reported.

Metrics. We evaluate the effectiveness and robustness of EREBA
using the percentage increase in energy consumption for each
target AANN:

EnergyConsumption(f; )~ EnergyConsumption(x; )

x 100
EnergyConsumption(x; )

where x;is the input image provided to EREBA and f; is the testing
input generated. For Sensitivity (RQ2) measurements, we use the
increment in energy consumption in Joules (J) to better compare
sensitivity between target AdNNs and use the average squared
difference in pixels values between the input image and the testing
input to quantify the magnitude of the perturbation. The testing
inputs’ quality is measured using Peak Signal to Noise Ratio (PSNR)
[39], and Structural Similarity Index (SSIM) [40] because of usage
of these metrics in the industry to measure image quality.

2.2 erimental Results

22|  ectiveness. To evaluate testing effectiveness by EREBA, we
have measured the average percentage increase in each AANN
model’s energy consumption between the original images in the
dataset and the corresponding testing inputs generated by EREBA.
We compare the effectiveness of Universal testing against the com-
mon corruption techniques [14] because, in both approaches, noise
introduced to the inputs is human perceptible. Whereas Input-
based testing adds imperceptible perturbation to the input, hence
we compare against the common perturbation techniques [14]. The
hyperparameters chosen for each model are in Table 3. Parame-
ters vary between AANNs due to variations in input normalization,
which is only applied in BranchyNet and RANet. We evaluate on
images from the CIFAR-10 and CIFAR-100 datasets, which have a
considerable reduction in the energy consumption on the target
AdNNs [33, 34, 41, 44]. The Estimator models have been trained
on 50000 CIFAR-10 and CIFAR-100 training images. We apply com-
mon corruption and perturbation techniques [14] to CIFAR-10 and
CIFAR-100 test images. As there are numerous corruption, and
perturbation techniques, we only report the best performing tech-
niques (i.e., highest IncRF) for each AANN model (For the IncRF
values of other corruptions and perturbations, please see the web-
site3) ; Table 4 reports the exact corruption/perturbation technique.
Table 5 reports the mean percentage increase in energy consump-
tion of the AANN models under EREBA (Universal, Input-based test-
ings) and the baselines on the CIFAR-10 dataset. Figure 2 illustrates
some Input-based testing inputs generated by EREBA for Block-
Drop. We observe that EREBA Input-based testing inputs dominate

3https://sites.google.com/view/ereba/home
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Table 4: Corruptions and perturbations we have used for
comparison for each model. corr represents corruptions and
per represents perturbations.

Models
Data BlockDrop BranchyNet RANet
Type
Best Corr (CIFAR-10) Contrast Impulse Noise Contrast

Best Per (CIFAR-10)
Best Corr (CIFAR-100)
Best Corr (CIFAR-100)

Gaussian Blur
Fog
Shot Noise

Snow
Impulse Noise
Zoom Blur

Gaussian Blur
Contrast
Zoom Blur

Table 5: Mean percentage increase in energy consumption of
the models for CIFAR-10 dataset against EREBA and baseline
techniques.

Models

Perturbation BlockDrop| BranchyNet| RANet
Type

Universal Testing (EREBA) 97.54 528.51| 1846.18
Best Corr 77.77 186.79 | 1209.00
Universal SURRG 137.8 26.87| 302.42
Input-based Testing (EREBA) 67.92 288.90| 885.00
Best Per 16.24 153.72| 1480.87
Input-based SURRG 135.5 11839| 554.69

the baseline methods for mean energy increase on BranchyNet.
Whereas for BlockDrop, because SURRG has BlockDrop as its archi-
tecture and ILFO is a white-box method, it is expected to outperform
EREBA, a black-box method. Interestingly, for RANet, common per-
turbation techniques [14] induce a much higher energy increase
than the corruption techniques, which is quite different from the be-
havior observed in the other AANNs. While EREBA underperforms
the perturbations in terms of energy consumption increase, EREBA
still outperforms SURRG. Also, we observe that for all AdNNs, sam-
ples generated through Universal testing outperform the baseline
techniques. Furthermore, for BranchyNet and RANet, due to fewer
execution modes (two in BranchyNet and eight in RANet), the en-
ergy consumption is higher than BlockDrop (up to 2000 % more
than the original data) with 2% modes.

For the CIFAR-100 dataset, Table 6 shows the average percentage
increase in energy consumption for EREBA and the baseline tech-
niques. We notice that EREBA generated inputs outperform common
corruption and perturbation techniques for all three AANNs. Sim-
ilar to the CIFAR-10 dataset, SURRG generated inputs consume
more energy than EREBA generated inputs only for the BlockDrop
model. For RANet, Universal testing inputs can not significantly
increase energy consumption because RANet always predicts an
input with high noise as road or shrew with high confidence; there-
fore, the inference is stopped at initial exits, resulting in lower
energy consumption. Nevertheless, the Input-based testing inputs
can increase up to 4000% energy consumption of the original inputs
for the RANet model. Thus, we conclude that, on average, over all
three AANN models, EREBA performs better than any other baseline
technique in terms of increasing energy consumption.

222 y. We define the sensitivity of EREBA in terms of the
magnitude of the perturbation |§; |. Intuitively, if an AANN
model’s energy consumption spikes up with a relatively lower
average perturbation magnitude, then that model is less robust.
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Table 6: Mean percentage increase in energy consumption of
the models for CIFAR-100 dataset against EREBA and baseline
techniques.

Models
BlockDrop| BranchyNet| RANet
Perturbation
Type
Universal Testing (EREBA) 27.22 580.50| 479.80
Best Corr -29.61 574| -31.80
Universal SURRG 55.40 71.42| -29.50
Input-based Testing (EREBA) 17.27 283.60 1113.28
Best Per -54.28 37.80| -30.73
Input-based SURRG 41.31 37.90| 754.69
: oSl B L S e

e

—e— BranchyNet
- RANet

£ gon  —w— BranchyNet
8 - RANet

0 20 40 6 s 0o 120 140

Average squared difference

(a) CIFAR-10 (b) CIFAR-100

Figure 3: Average energy consumption increase of testing
inputs constrained by magnitude of perturbation for Block-
Drop, BranchyNet and RANet.

We know that ¢ and |§;| are directly propositional, given that the
number of iterations is constant. Through empirical observations,
T =500 is sufficient to achieve convergence in EREBA for all AANN
models. Note that sensitivity cannot be compared using the mag-
nitude of ¢ as only BranchyNet and RANet use normalization fil-
ters, whereas BlockDrop does not, which makes the optimal ¢ of
BranchyNet and RANet larger (see Table 3). To measure the mag-
nitude of perturbation for a set of ¢, T we measure the average
squared difference between the testing input and the input image,
which is defined as follows: 1N
Average squared difference= = (- )

> X fi

i=1

2

N

where x; is the input image, and f; is its corresponding testing

input. Figures 3a and 3b show the average percentage increase
in energy consumption versus the average squared difference on
the CIFAR-10 and CIFAR-100 datasets. We observe that for both
datasets compared to BlockDrop, BranchyNet and RANet are more
sensitive to the perturbation magnitude. BlockDrop’s lower sensi-
tivity is mainly due to BlockDrop’s Policy Network, which provides
more refined control over energy consumption; hence BlockDrop
is more robust than the other two AdNNs. Additionally, we can see
the potency of the Estimator model for every AANN model. A direct
proportionality between the average increase in energy consump-
tion and the average squared difference is observed in all the AANN
models, which is evidence that the Estimator model is successful
in imitating the energy consumption of each AANN. Additionally,

we observe that EREBA performs very similarly for both CIFAR-10
and CIFAR-100 datasets for BlockDrop and BranchyNet. Whereas
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Figure 4: Quality of the generated images for each AANN
model for CIFAR-10 dataset
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(a) PSNR between original and (b) SSIM between between origi-
generated images nal and generated images.
Figure 5: Quality of the generated images for each AANN
model for CIFAR-100 dataset

for RANet for CIFAR-10, the energy spike induced is much higher
than that for CIFAR-100, indicating that the CIFAR-100 RANet is
more robust than the CIFAR-10 version.

223 y. In this section, we evaluate the quality of the
perturbation generated by Input-based testing of EREBA with the
hyper-parameters set to the values given in Section 5.1 using Peak
Signal to Noise ratio (PSNR) [39] and Structural Similarity Index
(SSIM) [40]. Both of these metrics are used in the industry to mea-
sure the image quality of noisy images. SNR of an image can be

represented by,
Himage

SNR =

Oimage

where [iimage is the mean value of the image pixels and gimage is
the error value of the pixel values. For PSNR, the highest value of
the image pixels is used instead of the mean value. The Structural
Similarity Index (SSIM) is a perceptual metric that quantifies the
image quality degradation caused by processing such as data com-
pression or by losses in data transmission. Higher values for SSIM
and PSNR indicate higher quality test inputs.

Figure 4 and Figure 5 show the values of SSIM and PSNR between
the testing inputs and the original images for CIFAR-10 and CIFAR-
100 datasets. For both datasets, we see that SSIM for the generated
testing inputs is similar for all the target AANNs. Whereas PSNR for
RANet is worse but still comparable to BlockDrop and BranchyNet.
We conclude that most of the inputs generated through Input-based
testing are of high quality; even if some test inputs might have
noise, they are structurally similar to the original inputs.
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Table 7: Effect of corruptions on EREBA. Average percentage
increase in energy consumption for all AANN models for
various corrupted inputs from CIFAR-10 and CIFAR-100.

AdNN Dataset | Normal Frost Fog Snow
RANet CIFAR-10 929.76 2085.36[ 202720 2099.41
CIFAR-100[  340.75 6.98 13.54 25,51
BranchyNet CIFAR-10 283.05| 475.08| 355.70| 323.72
CIFAR-100| 278.17| 197.58| 374.62| 360.37
BlockDrop CIFAR-10 72.78| 108.37 89.61| 111.80
CIFAR-100 17.50 2491 21.49 36.95

5.2.4 RQ4: Robustness. EREBA estimates energy consumption based
on the training data, which can be impacted by distribution shift [31].
Therefore, to evaluate the robustness of EREBA against distribution
shifts, we have analyzed the behavior of EREBA against Practical cor-
ruptions. Practical corruptions (e.g., fog, snow etc.) are frequently
noticed, mainly when we use mobile phones or autonomous ve-
hicles to take images. For this purpose, we have used real-world
common corruption techniques [14].

Table 7 shows the average percentage increase in energy con-
sumption for the testing inputs generated using the original and
corrupted images of CIFAR-10 and CIFAR-100 by EREBA in Input-
based testing. We picked the corruption classes of fog, frost, and
snow due to their natural occurrence. In general, the corrupted
images do not hinder the performance of EREBA except for the
CIFAR-100 version of RANet. In other cases, the increase in energy
consumption achieved by EREBA using corrupted images is, in fact,
higher than that achieved using the original CIFAR-10 and CIFAR-
100 datasets. This is mainly due to the common corruptions [14],
introducing better initialization spots (white areas). For CIFAR-100
RANet, EREBA manages to increase the energy consumption slightly.
However, similar to the Universal testing case, inputs with high
noise are classified as road or shrew with high confidence, which
leads to lower performance in comparison to other settings.

Additionally, through these results, we further notice the high
stability of the Estimator model in approximating the shortcomings
of the target AANNs. EREBA can generate high energy-consuming
testing inputs despite the corruption of images. While there is some
variance in how EREBA behaves when provided with an image
with different corruption classes; the median energy consumption
increment is consistent for all target AANNs.

3 ENERGY ROBUSTNESS

In this section, we demonstrate two ways to increase the energy
robustness of AANNs. In both ways, we use prior EREBA generated
inputs to detect new EREBA generated energy-surging inputs for
AdNNs. For detecting Universal test inputs, we use input filtering
method based on pixel values, while for detecting input-based test
inputs, we use gradient-based input detection.

Input Filtering. As we can notice that noisy samples generated
from Universal testing can increase energy consumption by a sig-
nificant amount, hence it is essential to adapt the AANN mechanism
against these noisy images. For traditional DNNs, highly noisy im-
ages consume the same energy as the standard images and are no
threat to the robustness of the DNN (the object is not visible in those
noisy images). To adapt AANNs against high energy-consuming
images, we propose to include a filter in AANNs.
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As a filter, we have created a ResNet model (binary classifier)
with only six residual blocks. The classifier can classify into two
categories: normal input and energy-consuming noisy input.
For each AANN, We have trained the ResNet model with 2500
normal dataset images and 2500 high energy-consuming noisy
images, creating three different trained ResNet models. For testing
the models, 1000 images have been used (500 from each class). Our
results show that the filter can identify each test image with the
correct class (100% accuracy) for all three AANNSs for both datasets.
The results confirm that we can filter out high energy-consuming
noisy images with a model whose energy consumption is low.
Gradient-based Input Detection. In contrast to detecting adver-
sarial inputs similar to the samples generated by the Universal
testing mode, adversarial inputs similar to the samples generated
by the Input-based testing mode are harder to differentiate from
benign inputs. Additionally, the energy constraint on such a de-
tection system is a significant challenge. Therefore, the detection
technique must consume significantly low energy with respect to
the energy consumed by Input-based testing inputs during infer-
ence. To address these challenges, we propose a gradient-based
adversarial input detection mechanism that uses partial inference
from the AANN.

In this detection mechanism, we leverage the behavior of the
energy-saving mechanism within various AANNs. These mecha-
nisms, in general, try to ensure that the difference between an
intermediate output and a predefined condition is large, which will
deactivate certain parts of the AANN. In other words, if the loss
function of intermediate outputs is large for any input, the energy
consumption will be low [13]. Therefore, if the gradients of the
intermediate loss function with respect to the weights are large, the
input is more likely to be a benign input. Hence, we only need par-
tial inference (weight gradients of an initial layer) from the AANNs,
and a linear SVM [6] to detect the energy-surging inputs, where
both are low energy consuming steps. So, the energy impact of our
detection component is significantly low. If the input is predicted
as energy-surging by the detector, the inference is stopped early.

To evaluate our detection component, we generate input-based
testing inputs for CIFAR-10 and CIFAR-100 training and test datasets
for all three AANNs. Next, we calculate the gradients of the weights
with respect to the intermediate loss function for the training sec-
tion of datasets. For all three AANNs, we consider the weights of
the first layer of the AANN. Specifically for BlockDrop, we calculate
the intermediate loss function of the policy network, whereas, for
RANet and BranchyNet, we use the first exit’s loss function (Section
5.1). After calculating the weight gradients for the training section
of datasets, we label them as either original or testing inputs and
use them for training an SVM binary classification model for each
AdNN. Finally, we test the SVM classifiers on the gradients gener-
ated by the original and input-based testing input for the testing
section of datasets.

Table 8 shows the detection accuracy (%) and AUC score [3] of
our gradient-based input detection technique. AUC score computes
the area under the Receiver Operating Characteristic Curve (ROC
AUC) [3] and measures the efficacy of any binary classifier, with
higher AUC scores corresponding to better classifiers. The results
show thatin 5 out of 6 scenarios, both AUC score is higher than 0.8
and the detection accuracy is higher than 80 percent, showing our
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Table 8: Detection Accuracy (%), AUC score, Accuracy Drop
percentage, Adversarial Energy Decrease Percentage, and
Benign Energy Increase Percentage of the Gradient-based in-
put detection incorporated in to various AANN models

AdNN Dataset |Detection (%)| AUC | Acc Drop(%)|Adv Eng Dec (%)| Ben Eng Inc (%)
RANet CIFAR-10 92.50 0.924 11.50 77.10 26.80
CIFAR-100 81.60 0.816 3.90 84.30 17.74
BranchyNet CIFAR-10 99.90 0.999 0.01 84.40 17.90
CIFAR-100 99.80 0.998] 0.01 87.50 15.60
BlockDrop CIFAR-10 94.39 0.94—3| 3.30 95.00 6.25
CIFAR-100 66.90 0.666] 3040 92.80 7.60

approach’s efficacy. Additionally, we also report the accuracy drop
of the AANNSs due to false positives from the detection system. We
observe that the accuracy drop is minimal in all cases except for
the CIFAR-100 BlockDrop model.

Furthermore, to demonstrate the benefits of our gradient-based
detection system from the energy perspective, we also report the
average energy decrease percentage for an adversarial input (Adv
Eng Dec) and average energy increase percentage for a benign
input (Ben Eng Inc). We observe that our detection system can
significantly reduce energy consumption induced by adversarial
inputs (up to 95%) while introducing minimal energy burden as
evidenced by a low increase in consumption for benign inputs.

4

We discuss the alternative defense for AANNs, the adaptability of
AdNNs on different datasets, and the relationship between block
activation and energy consumption of AdANNs. Also, we discuss
correlation between measured and estimated energy consumption,
and the correlation between energy consumption increased by
different techniques.

4.1 ve Defense.

We have investigated the application of adversarial training as an
alternative defense mechanism against EREBA generated energy-
surging inputs. To understand the effect of adversarial training on
AdNNs, we use the EREBA generated testing inputs for CIFAR-10
dataset to retrain the original AANNs. We used Input-based testing
inputs generated from 1000 images of the CIFAR-10 training dataset
as the training set and retrained the BranchyNet and RANet AANNs
for 150 epochs with a learning rate same parameters as the initial
training. We generate the test set using a batch of 600 images from
the CIFAR-10 test dataset. We found that adversarial training does
not increase the energy robustness for all AANN models. Specifically,
RANet is easier to improve using adversarial training compared to
BranchyNet. Due to space constraints, we have reported the results

for Adversarial training in our website 4

4.2 of AANNs

In our observations, we see that AANNs may not be adaptive un-
der all circumstances. Each AANN can decrease its FLOPs count;
however, this may not always result in concrete energy consump-
tion patterns. Figures 6a, 6b, 6¢, and 6d show BlockDrop (ResNet-
110) and SkipNet models’ adaptability on CIFAR-100 and ImageNet

4https://sites.google.com/view/ereba/home
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Figure 6: Adaptability of AANNs on ImageNet and CIFAR-
100 dataset.

datasets. We can see that the BlockDrop’s adaptability (the differ-
ence between the highest and lowest number of activated blocks)
for both datasets is limited (less than 4). For SkipNet, the range of
adaptability is better than BlockDrop’s range.

7.3 Comparison to Misclassification Attacks

We can assume that the energy-saving mechanisms of Conditional-
Skipping networks like BlockDrop would classify an image into
N -1 categories. N is the number of blocks in the DNN, with each
image in category i activatingi + 1 (the first block is always active)
blocks. Whereas for the case of Early-Termination networks such
as BranchyNet and RANet, they classify an image into E categories
where E is the number of exits in the network. However, due to
noise from the system environment, our Estimator model cannot
differentiate between all the classes. Figure 7 shows the scatter
plots between these image classes and their energy consumption
for each AANN model. We can see the step-wise pattern in the plot
for all the AANN models. The Estimator model is trained to learn
this pattern of energy consumption of AANNs.

7.4 Correlation between Actual Energy
Consumption and Estimated Energy
Consumption

To illustrate the correlation between energy consumption predicted
by the estimator model and original energy consumption, we use
the Pearson Correlation Coefficient (r) [1] and correlation p-value.
If two sets of values are correlated, the r value would be significant,
and the p-value will be low.

For CIFAR-100 dataset, the r values are 0.38,0.17, and 0.31 for
RANet, BlockDrop, and BranchtNet models, respectively, where all
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the p-values are less than 0.0005. These results conclude that the
values are correlated.

For CIFAR-10 dataset, the value of r for RANet is 0.021; however
p-value is 0.03; therefore, it is more likely that the values are corre-
lated. For BlockDrop model, the value of r and p-value are 0.004 and
0.66, which suggests that the values are less likely to be correlated.
But if we consider only the inputs whose energy consumption is
higher than the 75th percentile value, the p-value becomes 0.14,
suggesting a correlation. Therefore, if the estimator model can ac-
curately predict high energy-consuming inputs (i.e., differentiate
clearly between low/mid and high energy-consuming inputs), we
can use the estimator model to generate energy-expensive testing
inputs.

7.5 Correlation of Increase of Energy
Consumption between Different
Techniques

In this section, we try to explore the correlation between energy con-
sumption modified by Input-based testing and baseline techniques.
We use Pearson Correlation for that purpose. Pearson Correlation
is one of the metrics that can find the strength of the relationship
between two variables. For CIFAR-100 data, we show the Table
9 that represents the Pearson Correlation Coeff (r) and p-value
between the percentage of energy consumption increased by Input-
based testing inputs and energy consumption increased by baseline
technique generated inputs. It can be noticed that for most of the
cases, the energy increase percentages are less likely to be cor-
related. Only for BranchyNet, we can find a significant negative
correlation between Input-based and Perturbation-induced energy
consumption increase.

Table 9: Correlation between the percentage of energy con-
sumption increased by Input-based testing inputs and per-
centage energy consumption increased by baseline tech-
nique generated inputs for different models for CIFAR-100
data

Baseline| | perturb) | p-value(Perturb) | r(SURRG)| p-value(SURRG)
Models
RANet 0.142 0328 004 0976
BlockDrop 0,007 0908] 0037 0544
BranchyNet 0296 0133 0118 0556

5 ATED WORKS

AdNNSs. Among Conditional-skipping models, Hua et al. [16] and
Gao et al. [8] explore channel gating to determine computational
blind spots for channel-specific regions unessential to classifica-
tion. Liu ef al. [20] propose a new type of AANN which utilizes
reinforcement learning to achieve selective execution of neurons.
SkipNet [38] uses gating techniques to skip residual blocks. On
the other hand, Graves ef al. [11], Figurnov et al. [7], and Teer-
apittayanon et al. [33] propose SACT and BranchyNet respectively,
which are Early-termination AANNs. SACT terminates the compu-
tation within a residual block early based on intermediate outputs,
while BranchyNet uses separate exits within network for early ter-
mination. Cascading multiple DNNs with various computational
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Figure 7: Energy consumption of (a) RANet, (b) BlockDrop, (c) BranchyNet for CIFAR-10 Training Set

costs through a single computation unit to decide which DNN to
execute has been proposed. The cascading models use various tech-
niques such as termination policy [2], reinforcement learning [12],
and gating techniques [24] to achieve early termination.

Adversarial Examples. Adversarial Examples are the synthe-
sized inputs that is able to modify the prediction of the ML model.
Szegedy et al. [32] and Goodfellow et al. [10] propose white-box
adversarial attacks on convolutional neural networks. Papernot et
al. [28] have used surrogate model to attack a DNN in black-box
setting. Liu et al. [21] use ensemble of multiple white-box models to
generate adversarial examples, which can attack black-box models.
Ilyas et al. [17] use evolutionary search strategies to estimate the
gradient of a model to attack black-box models.

However, all these attacks focus on changing the prediction and
do not concentrate on increasing test time. ILFO [13] is the first
work to attack a DNN by increasing the energy consumption of
the model. However, ILFO uses white-box setting and does not
have transferability. Therefore, ILFO can not be used for black-box
attack.

Next, DeepSloth [15] uses modified PGD to attack against Early-
termination AdNNs using the confidence scores in each exit. How-
ever, DeepSloth can not be used against Conditional-skipping AdNNs.
Also, DeepSloth provides a study about the transferability of the
attack. The study considers the efficacy of the Early-termination
models as the transferability metric. However, we propose a more
systematic transferability study by introducing of metrics like ETP
and ITP.
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DNN Testing. Multiple testing methods have been proposed
recently to test DNNs. DeepGauge [22] is proposed based on a
test criteria set that verifies the corner neuron activation values.
DeepXplore [30] proposes to cover each neuron’s binary activation
status and use neuron coverage to test DNNs. DeepTest [37] tests
autonomous driving cars by using neuron coverage. Recently, Deep-
Hunter [43] proposes to use coverage-guided fuzz testing on DNNs.
EREBA evaluates the energy-robustness of AANNs in a black-box
setting unlike the aforementioned techniques, which are focused on
testing the accuracy-robustness of traditional DNNs in white-box
setting

6

In this paper, we have proposed practical black-box testing meth-

ods to evaluate energy robustness of AANNs. The core idea behind
the technique is to create inputs which increase the energy con-

sumption of AANN to a higher level. To achieve this goal, we have
presented EREBA 5, where we have proposed two types of testing:

Universal testing and Input-based testing. To our knowledge, we

are the first to explore black-box testing on AANNs. Test inputs
generated by EREBA can improve the energy robustness of AANNs.
Finally, this paper also analyzes the behavior of AANNs and suggests
model improvement strategies.
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