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Abstract
Let Gn be a graph on n vertices and let wk(Gn) denote the number of walks of length
k in Gn divided by n. Erdős and Simonovits conjectured that wk(Gn)t ≥ wt (Gn)k

when k ≥ t and both t and k are odd. In 2018, Sağlam proved this conjecture. We give
a new shorter proof of this result.

Keywords Graph homomorphism inequalities · Paths · Walks

1 Introduction

Let Gn be a graph on n vertices, let e(Gn) be the number of edges in Gn , and let
wk(Gn) denote the number of walks of length k (i.e., with k edges) in Gn divided by
n. In [2], Conjecture 6 reads as follows:

Conjecture 1 (Erdős–Simonovits, 1982) If d is the average degree in Gn , i.e., d =
2e(Gn)

n then

wk(G
n) ≥ dk,

further if k ≥ t , and both t and k are odd, then

wk(G
n)t ≥ wt (G

n)k .
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Erdős and Simonovits mention that the first inequality in the conjecture had already
been proven in [1, 4, 5]. Today, it is known as the Blakley-Roy inequality. They then
go on to remark that the second inequality in the conjecture is a generalization of the
first, and it is known to hold when k is even and they give a proof due to C.D. Godsil.
The authors finally point out that the second inequality does not hold when k is odd
and t is even.

In this paper, we prove the remaining case of the conjecture: we prove the second
inequality when both t and k are odd. To do so, we reformulate the conjecture in terms
of numbers of graph homomorphisms, and then apply a theorem from Kopparty and
Rossman [3]. We present the background needed in Sect. 2, and the proof in Sect. 3.
In Sect. 4, we rewrite the proof in the language of entropy. After putting a first version
of this paper on the arXiv, we learned that the conjecture was no more: Sağlam had
recently turned it into a theorem in [6]. The proof we present here is substantially
different and quite simple; we believe it deserves consideration.

2 Reformulation and a Theorem by Kopparty and Rossman

Let V (G) and E(G) denote respectively the vertex set and the edge set of a graph
G. A graph homomorphism from a graph F to a graph G is a map from the vertex
set of F to the vertex set of G that sends edges to edges, i.e., that preserves adja-
cency. More precisely, a graph homomorphism is a function ϕ : V (F) → V (G)

such that for any edge {v1, v2} ∈ E(F), {ϕ(v1), ϕ(v2)} ∈ E(G). Let Hom(F;G)

be the set of homomorphisms from F to G. Let t(F;G) be the homomorphism den-
sity of F in G, i.e., the probability that a random map from the V (F) to V (G) is a
graph homomorphism. Note that t(F;G) = |Hom(F;G)|

|V (G)||V (F)| . One well-known property is
that |Hom(F1;G)| · |Hom(F2;G)| = |Hom(F1F2;G)| and t(F1;G) · t(F2;G) =
t(F1F2;G) where F1F2 denotes the disjoint union of F1 and F2.

In this paper, G will normally vary over all graphs on n vertices. To lighten the
notation, in inequalities, we will write F to mean the function that can be evaluated
on graphs G by taking the number of homomorphisms from F to G. The property
|Hom(F1;G)| · |Hom(F2;G)| = |Hom(F1F2;G)| thus becomes F1 · F2 = F1F2.

Let Pk be the function that evaluates the number of homomorphisms from a path
with k edges to some graph G on n vertices. Note that Pk

n = wk(G). When k = 0, P0
is a single vertex (i.e., a 0-path), and thus P0 = n. The second part of Conjecture 6
from [2] can thus be reformulated as

(
Pk
n

)t

≥
(
Pt
n

)k

when k ≥ t and both t and k are odd. Another way to formulate the conjecture is to
say that nk−t Pk t ≥ Pt k or that P

k−t
0 Pt

k ≥ Pk
t for all k ≥ t where t and k are both odd.

Finally, observe that by dividing nk−t Pt
k ≥ Pk

t by nk(t+1) on both sides, we obtain
t(Pt

k ;Gn) ≥ t(Pk
t ;Gn) or equivalently t(Pk;Gn)t ≥ t(Pt ;Gn)k , which thus yields

another way of formulating the conjecture.
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Lemma 1 To prove the conjecture, it suffices to show that P2
0 P

t
t+2 ≥ Pt+2

t for any
odd t + 2.

Proof Suppose that we know that P2
0 P

t
t+2 ≥ Pt+2

t for any odd t+2. This is equivalent

to knowing that t(Pt+2;Gn) ≥ t(Pt ;Gn)
t+2
t . If k = t +2i where i > 1, then we have

t(Pk;Gn) = t(Pt+2i ;Gn)

≥ t(Pt+2i−2;Gn)
t+2i

t+2i−2

≥
(
t(Pt+2i−4;Gn)

t−2i−2
t−2i−4

) t+2i
t+2i−2

≥ . . .

≥
⎛
⎝((

t(Pt ;Gn)
t+2
t

) t+4
t+2

. . .

) t−2i−2
t−2i−4

⎞
⎠

t+2i
t+2i−2

= t(Pt ;Gn)
t+2i
t = t(Pt ;Gn)

k
t

as desired. ��
The concept of homomorphism domination exponent was introduced in [3], though

the idea behind it had been central to many problems in extremal graph theory for a
long time. Let the homomorphism domination exponent of a pair of graphs F1 and
F2, denoted by HDE(F1; F2), be the maximum value of c such that |Hom(F1;G)| ≥
|Hom(F2;G)|c for every graph G. Thus, by Lemma 1, to prove the conjecture, it
suffices to show that HDE(P2

0 P
t
t+2; Pt ) = t + 2 for any odd t (where we now think

simply of Pi as a graph, namely the path with i edges, and not as a function).
In [3], Kopparty and Rossman showed that HDE(F1; F2) can be found by solving

a linear program when F1 is chordal and F2 is series–parallel. Since this is the case
when F1 = P2

0 P
t
t+2 and F2 = Pt , we will use this linear program to prove the

conjecture. We now briefly describe Kopparty and Rossman’s result which is based on
comparing the entropies of different distributions on Hom(F2;G). We later pull back
such distributions, and in particular the uniform distribution on all homomorphisms.

Let P(F2) be the polytope consisting of normalized F2-polymatroidal functions,
which is defined to be

P(F2) = {
p ∈ R

2|V (F2)| |p(∅) = 0

p(V (F2)) = 1

p(A) ≤ p(B) ∀ A ⊆ B ⊆ V (F2)

p(A ∩ B) + p(A ∪ B) ≤ p(A) + p(B) ∀ A, B ⊆ V (F2)

p(A ∩ B) + p(A ∪ B) = p(A) + p(B) ∀ A, B ⊆ V (F2) such that A ∩ B

separates A\B and B\A}
.

Note that A∩ B is said to separate A\B and B\A if there are no edges in F2 between
A\B and B\A.
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Theorem 1 (Kopparty–Rossman, 2011) Let F1 be a chordal graph and let F2 be a
series–parallel graph. Then

HDE(F1, F2) = min
p∈P(F2)

max
ϕ∈Hom(F1;F2)

∑
S⊆MaxCliques(F1)

−(−1)|S| p(ϕ(∩S))

where MaxCliques(F1) is the set of maximal cliques of F1 and ∩S is the intersection
of the maximal cliques in S.

3 Proof of the Conjecture

Let [m] := {1, 2, . . . ,m}, V (Pt ) = [t + 1], and let E(Pt ) = {{i, i + 1}|i ∈ [t]}.
Lemma 2.5 of [3] implies that for any p ∈ P(Pt ),

p(V (Pt )) =
∑

S⊆MaxCliques(Pt )

−(−1)|S| p(∩S).

For completeness, we give a short argument.

Lemma 2 For any p ∈ P(Pt ) for some t ≥ 1 (not necessarily odd),

p(V (Pt )) =
∑

{i,i+1}∈E(Pt )

p({i, i + 1}) −
∑

i∈{2,...,t}
p({i}).

Proof We prove it by induction on t . If t = 1, it is trivially true since there are no
negative terms to consider. Suppose it is true for t . Consider Pt+1. Let A = [t + 1]
and let B = {t + 1, t + 2}. Then A ∪ B = [t + 2] = V (Pt+1), and A ∩ B = {t + 1}.
Note that A∩ B separates A\B and B\A, so p(A∪ B) = p(A) + p(B) − p(A∩ B).
Thus

p(V (Pt+1)) = p(V (Pt )) + p({t + 1, t + 2}) − p({t + 1})
= p({1, 2}) + . . . + p({t, t + 1}) − p({2}) − . . .

− p({t}) + p({t + 1, t + 2}) − p({t + 1})
=

∑
{i,i+1}∈E(Pt+1)

p({i, i + 1}) −
∑

i∈{2,...,t+1}
p({i}),

where the second line follows from the induction hypothesis. ��
Theorem 2 We have thatHDE(P2

0 P
t
t+2; Pt ) = t+2, and thus that Conjecture 1 holds.

Proof Wefirst show that HDE(P2
0 P

t
t+2; Pt ) ≤ t+2. For i ∈ [t+1] and S ⊆ [t+1], let

pi ∈ R
2t+1

be such that pi (S) = 1 if S contains i , and pi (S) = 0 otherwise. It’s easy to
check that pi ∈ P(Pt ). Let p∗ be the average of the pi ’s, i.e., p∗ = 1

t+1

∑
i∈[t+1] pi . In
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particular, this means that p∗({i}) = 1
t+1 for any i ∈ [t +1], and p∗({i, i +1}) = 2

t+1
for any i ∈ [t]. Since p∗ is a convex combination of the pi ’s, p∗ ∈ P(Pt ). For any
homomorphism ϕ from P2

0 P
t
t+2 to Pt ,

∑
S⊆MaxCliques(P2

0 P
t
t+2)

−(−1)|S| p∗(ϕ(∩S))

= t · (t + 2)
2

t + 1
− t · (t + 1)

1

t + 1
+ 2

1

t + 1
= t + 2,

which implies that the optimal value of the linear program is at most t + 2.
We now show that HDE(P2

0 P
t
t+2; Pt ) ≥ t + 2. For 1 ≤ i ≤ t let ϕi be the

homomorphism from Pt+2 to Pt such thatϕi ( j) = j for all j ≤ i+1, andϕi ( j) = j−2
for all j ≥ i + 2. In other words, every edge of Pt is visited by Pt+2 once, except for
{i, i + 1} which is visited three times. Let ψ be the homomorphism from P2

0 P
t
t+2 to

Pt such that one copy of P0 gets sent to vertex 1 in Pt , the other copy of P0 is sent to
vertex t + 1 of Pt (i.e., the two copies of P0 are sent to the end vertices of Pt ), and the
i-th copy of Pt+2 is mapped to Pt via ϕi for 1 ≤ i ≤ t .

Now for any p ∈ P(Pt ), we compute

∑
S⊆MaxCliques(P2

0 P
t
t+2)

−(−1)|S| p(ψ(∩S)).

Observe that only sets S of size one or two contribute in the above sum since no three
maximal cliques of P2

0 P
t
t+2 intersect. Every edge of Pt is covered by an image of an

edge of Pt+2 via ψ exactly t + 2 times. Every inner (non-end) vertex of Pt is covered
by an image of an inner (non-end) vertex of Pt+2 via ψ exactly t + 2 times. Note that
each inner vertex of some copy of Pt+2 is the intersection of twomaximal cliques (i.e.,
edges) of Pt+2, and thus the coefficient will be negative. Finally, the end vertices of
Pt are covered by an image of an inner (non-end) vertex of Pt+2 via ψ exactly once
each (which brings again a negative coefficient as it is the intersection of two maximal
cliques), as well as once each by one copy of P0 (which brings a positive coefficient
as each P0 is a maximal clique in itself). Thus the coefficients for the end vertices of
Pt are zero. Accordingly we have

∑
S⊆MaxCliques(P2

0 P
t
t+2)

−(−1)|S| p(ψ(∩S)) = (t + 2)

⎛
⎝ ∑

{i,i+1}∈E(Pt )

p({i, i + 1}) −
∑

i∈{2,...,t}
p({i})

⎞
⎠

= (t + 2)p(V (Pt ))

= t + 2.

The second line follows fromLemma 2, and the third line follows from p(V (Pt )) =
1 since p ∈ P(Pt ). Therefore, for every p ∈ P(Pt ), there is an homomorphism
that yields t + 2, so we see that HDE(P2

0 P
t
t+2; Pt ) ≥ t + 2. This proves that

HDE(P2
0 P

t
t+2; Pt ) = t + 2, and therefore the conjecture holds. ��
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Corollary 1 We also have that t(Pk;Gn)t ≥ t(Pt ;Gn)k holds.

4 Proof in the Language of Entropy

We now rewrite the proof of the preceding section in the language of entropy.
Given a discrete random variable X taking values in S, its entropy is H(X) :=∑
s∈S −P(X = s) log2 P(X = s). One can think of entropy as recording the amount

of surprise in the possible outcomes of X . Given jointly distributed random variables
X and Y , the conditional entropy

H(X |Y ) :=
∑

y∈support(Y )

P(Y = y)
∑

x∈support(X)

−P(X = x |Y = y) log2

P(X = x |Y = y).

One can think of conditional entropy as recording the amount of additional surprise
in X not contained in Y . Here are a few well-known properties of entropy, some of
which we will use in the proof.

1. We have that H(X) ≤ log2 |support(X)|, and equality holds if and only if X is
uniformly distributed.

2. If X and Y are independent random variables, then H(X ,Y ) = H(X) + H(Y ).
3. The chain rule states that H(X ,Y ) = H(X) + H(Y |X).
4. For jointly distributed random variables X1, X2, . . . , Xl , we have that

H(X1, . . . , Xl) ≤ H(X1) + . . . + H(Xl).
5. We have that H(X |Y ) ≤ H(X).

Fix an arbitrary graph G with at least one edge, and let X = (X0, . . . , Xt ) be a uni-
form randomwalk of length t inG, that is, a uniform random element of Hom(Pt ;G).
By (1), we have that H(X) = log2 |Hom(Pt ;G)|.

Let ψ be the homomorphism from P2
0 P

t
t+2 to Pt defined in the previous

section. Consider the pullback of X via ψ . This is the unique distribution Y
on Hom(P2

0 P
t
t+2;G) whose marginals satisfy Yu = Xψ(u) and (Yv,Yw) =

(Xψ(v), Xψ(w)) for each vertex u and edge {v,w} in P2
0 P

t
t+2 and where Y is a Markov

random field over P2
0 P

t
t+2. This means that the marginals YI and YJ are conditionally

independent over YK for all I , J , K ⊆ V (P2
0 P

t
t+2) such that K separates I and J .

It follows from the choice ofψ and the definition of Y that the entropy of Y is given
by

H(Y ) = H(X0) + H(Xt )

+
t∑

i=1

(H(Xi−1, Xi ) + H(X0, . . . , Xi−1|Xi ) + H(Xi , . . . , Xt |Xi−1)) .

Rearranging the terms, we get

H(Y ) = (H(X0) + H(X1, . . . , Xt |X0)) + (H(X0, X1) + H(X2, . . . , Xt |X1))
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+
t−1∑
i=2

(
H(Xi−1, Xi ) + H(X0, . . . , Xi−1|Xi ) + H(Xi , . . . , Xt |Xi−1)

)

+ (
H(Xt−1, Xt ) + H(X0, . . . , Xt−2|Xt−1)

) + (
H(Xt ) + H(X0, . . . , Xt−1|Xt )

)

By the conditional independence of (X0, . . . , Xi−1) and (Xi+1, . . . , Xt ) over Xi ,
we have that each of the t +2 sums between parentheses are equal to H(X0, . . . , Xt ).
Thus

log |Hom(P2
0 P

t
t+2;G)| ≥ H(Y ) = (t + 2)H(X) = (t + 2) log |Hom(Pt ;G)|

where the first inequality holds by (1). Therefore, HDE(P0Pt
t+2; Pt ) ≥ t +2. To show

that HDE(P0Pt
t+2; Pt ) ≤ t + 2, one can use a construction corresponding to p∗ in

the previous section: let G∗ be a (t + 1)-partite graph where parts 1 through t + 1
all have the same number of vertices, say n, and where every vertex in part i forms
an edge with every vertex in part i + 1 for 1 ≤ i ≤ t . Then hom(P0Pt

t+2;G∗) =
O(n2+t(t+3)) = O(nt

2+3t+2) and hom(Pt ;G∗) = O(nt+1). Thus, as n → ∞, we see
that HDE(P0Pt

t+2; Pt ) ≤ t2+3t+2
t+1 = t + 2. More simply, one could simply take G∗

to be Kn or Kn,n as n → ∞.
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