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Abstract

Let G" be a graph on n vertices and let wi (G™) denote the number of walks of length
k in G" divided by n. Erd6s and Simonovits conjectured that wy (G™)! > w,(G")¥
when k > t and both ¢ and k are odd. In 2018, Saglam proved this conjecture. We give
a new shorter proof of this result.
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1 Introduction

Let G" be a graph on n vertices, let ¢(G") be the number of edges in G", and let
wy (G") denote the number of walks of length k (i.e., with k edges) in G" divided by
n. In [2], Conjecture 6 reads as follows:

Conjecture 1 (Erdés—Simonovits, 1982) If d is the average degree in G", i.e., d =

2¢(GY) then
n

we(G") > d,
further if £ > ¢, and both ¢ and k are odd, then

wi(GM' = w, (GMF.
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Erd6s and Simonovits mention that the first inequality in the conjecture had already
been proven in [1, 4, 5]. Today, it is known as the Blakley-Roy inequality. They then
go on to remark that the second inequality in the conjecture is a generalization of the
first, and it is known to hold when & is even and they give a proof due to C.D. Godsil.
The authors finally point out that the second inequality does not hold when & is odd
and ¢ is even.

In this paper, we prove the remaining case of the conjecture: we prove the second
inequality when both ¢ and k are odd. To do so, we reformulate the conjecture in terms
of numbers of graph homomorphisms, and then apply a theorem from Kopparty and
Rossman [3]. We present the background needed in Sect.2, and the proof in Sect. 3.
In Sect. 4, we rewrite the proof in the language of entropy. After putting a first version
of this paper on the arXiv, we learned that the conjecture was no more: Saglam had
recently turned it into a theorem in [6]. The proof we present here is substantially
different and quite simple; we believe it deserves consideration.

2 Reformulation and a Theorem by Kopparty and Rossman

Let V(G) and E(G) denote respectively the vertex set and the edge set of a graph
G. A graph homomorphism from a graph F to a graph G is a map from the vertex
set of F' to the vertex set of G that sends edges to edges, i.e., that preserves adja-
cency. More precisely, a graph homomorphism is a function ¢ : V(F) — V(G)
such that for any edge {vi, v2} € E(F), {p(v1), 9(v2)} € E(G). Let Hom(F; G)
be the set of homomorphisms from F to G. Let t(F'; G) be the homomorphism den-
sity of F in G, i.e., the probability that a random map from the V(F) to V(G) is a
graph homomorphism. Note that 7 (F; G) = % One well-known property is
that | Hom(F1; G)| - | Hom(F;; G)| = |Hom(F F3; G)| and t(Fy1; G) - t(F>; G) =
t(F1 F>; G) where F1 F> denotes the disjoint union of F| and F>.

In this paper, G will normally vary over all graphs on n vertices. To lighten the
notation, in inequalities, we will write F' to mean the function that can be evaluated
on graphs G by taking the number of homomorphisms from F to G. The property
| Hom(Fy; G)| - | Hom(F3; G)| = | Hom(F; F3; G)| thus becomes F; - F> = F{ F.

Let Py be the function that evaluates the number of homomorphisms from a path
with k edges to some graph G on n vertices. Note that % = wi(G). When k =0, Py
is a single vertex (i.e., a O-path), and thus Py = n. The second part of Conjecture 6
from [2] can thus be reformulated as

t k
Py S (B
n T \n
when k£ > ¢ and both ¢ and k are odd. Another way to formulate the conjecture is to
say that n*~* P! > P,* or that P¥™' P! > P} forall k > t where r and k are both odd.

Finally, observe that by dividing n~' P/ > P} by n**D on both sides, we obtain
t(P{; G") > t(P}; G") or equivalently £(P; G")' > t(P;; G")*, which thus yields
another way of formulating the conjecture.
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Lemma 1 To prove the conjecture, it suffices to show that P0 P! o = PtH'2 for any
oddt 4 2.

Proof Suppose that we know that P p +2 > P/ +2 for any odd ¢ +2. This is equivalent

to knowing that t (Pyy2; G™) > t(Py; G")*. If k =t +2i wherei > 1, then we have

t(Py; G") = t(Pry2i; G")

o A2
> t(Pry2i—2; G") 22

+2
) +2i—2

> (1(Pry2ima: G
>
t—2i—2 H2~.2i2
. +4 t:Z;:4 +2i=
> ((t(P,, G")ﬁ) )
= (P G" T = 1(P; G
as desired. O

The concept of homomorphism domination exponent was introduced in [3], though
the idea behind it had been central to many problems in extremal graph theory for a
long time. Let the homomorphism domination exponent of a pair of graphs F; and
F>, denoted by HDE(Fy; F>), be the maximum value of ¢ such that | Hom(Fp; G)| >
| Hom(Fy; G)|¢ for every graph G. Thus, by Lemma 1, to prove the conjecture, it
suffices to show that HDE(P2 P/ P;) =t + 2 for any odd ¢ (where we now think
simply of P; as a graph, namely the path with i edges, and not as a function).

In [3], Kopparty and Rossman showed that HDE(F}; F3) can be found by solving
a linear program when Fj is chordal and F, is series—parallel. Since this is the case
when F; = PZP’ o and F, = P, we will use this linear program to prove the
conjecture. We now briefly describe Kopparty and Rossman’s result which is based on
comparing the entropies of different distributions on Hom(F>; G). We later pull back

such distributions, and in particular the uniform distribution on all homomorphisms.
Let P(F>) be the polytope consisting of normalized F>-polymatroidal functions,
which is defined to be

P ={p R pwy =0
p(V(F)) =1
p(A) < p(B) VAC BCV(F)
p(ANB)+ p(AUB) < p(A)+p(B) VA, BCV(F)
p(ANB)+ p(AUB) = p(A)+ p(B) Y A,B C V(F,)suchthat AN B
separates A\ B and B\A}.

Note that A N B is said to separate A\ B and B\ A if there are no edges in F; between
A\B and B\A.
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Theorem 1 (Kopparty—Rossman, 2011) Let Fy be a chordal graph and let F, be a
series—parallel graph. Then

HDE(F;, F;) = min max Z —(=DP pp(ns))
pEP(Fy) peHom(Fy; F2) SCMaxCliques(F)

where MaxCliques(F}) is the set of maximal cliques of F| and NS is the intersection
of the maximal cliques in S.

3 Proof of the Conjecture

Let [m] := {1,2,...,m}, V(P;) = [t + 1], and let E(P;) = {{i,i + 1}|i € [t]}.
Lemma 2.5 of [3] implies that for any p € P(F;),

pV(P) = > =(=DFIpns).

SCMaxCliques(P;)

For completeness, we give a short argument.

Lemma2 Forany p € P(P;) for some t > 1 (not necessarily odd),

p(V(P)Y= > plii+1h— Y pdiD.

{i,i+1}eE(P) i€{2,...t}

Proof We prove it by induction on ¢. If ¢+ = 1, it is trivially true since there are no
negative terms to consider. Suppose it is true for ¢. Consider P;41. Let A = [¢ 4 1]
andlet B={t+1,t+2}. Then AUB = [t +2] = V(P41),and AN B = {r + 1}.
Note that A N B separates A\ B and B\ A, so p(AU B) = p(A) + p(B) — p(AN B).
Thus

p(V(Pii1) = p(V(P) + p({r + 11 +2}) — p({rt + 1}
=p{L2)+...+p{t,t +1}) — p({2H —...
—p{th+p{r+ 1,0 +2) — p(fr + 1))

= Y pdii+y— Y @,

{i,i+1}eE(Pis1) i€(2,.t+1)
where the second line follows from the induction hypothesis. O

Theorem 2 We have that HDE(P02 Pt’ 428 P,) = t+2, and thus that Conjecture 1 holds.

Proof We first showthatHDE(Poth’H; P)) <t+2.Fori € [t+1]and S C [t+1],let
pi € R2"" be such that pi(S) = 1if S contains i, and p; (S) = 0 otherwise. It’s easy to

check that p; € P(P;).Let p* be the average of the p;’s,i.e., p* = ,J+1 Dicp+1y Pi-In
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particular, this means that p*({i}) = t+1 foranyi € [t + 1], andp i,i+1}) = z+_1
for any i € [¢]. Since p* is a convex combination of the p;’s, p* € P(P;). For any
homomorphism ¢ from Pg P!, to P,

> — (=D p*p(nS))

SCMaxCliques(Pg P/, ,)

2 1 1
=1-(t 2——1‘ t — +2—— =t 42,
(t+2) T (+)t+l+ P +

which implies that the optimal Value of the linear program is at most ¢ + 2.

We now show that HDE(P§ P/, ,; ;) > t + 2. For 1 < i < 1 let ; be the
homomorphism from P;4, to P; suchthate; (j) = jforall j <i+41,and¢;(j) = j—2
for all j > i + 2. In other words, every edge of P; is visited by Py; once, except for
{i, i 4+ 1} which is visited three times. Let ¥y be the homomorphism from P P! 4o 1O
Py such that one copy of Py gets sent to vertex 1 in P;, the other copy of Py is sent to
vertex t + 1 of P; (i.e., the two copies of Py are sent to the end vertices of P;), and the
i-th copy of P;4» is mapped to P; via ¢; for 1 <i <t.

Now for any p € P(P;), we compute

> (=D p(nS)).

N gMaxCliques(Po2 Pl)

Observe that only sets S of size one or two contribute in the above sum since no three
maximal cliques of P 4o intersect. Every edge of P; is covered by an image of an
edge of P;yp viayr exactly t + 2 times. Every inner (non-end) vertex of P; is covered
by an image of an inner (non-end) vertex of P4, via ¢ exactly ¢ 4+ 2 times. Note that
each inner vertex of some copy of P, is the intersection of two maximal cliques (i.e.,
edges) of P;4», and thus the coefficient will be negative. Finally, the end vertices of
P, are covered by an image of an inner (non-end) vertex of P4, via ¥ exactly once
each (which brings again a negative coefficient as it is the intersection of two maximal
cliques), as well as once each by one copy of Py (which brings a positive coefficient
as each Py is a maximal clique in itself). Thus the coefficients for the end vertices of
P; are zero. Accordingly we have

> —(—1)'Sp<me))=(z+2>( oo opiit+in-— ) p({i}))

SSMaxCliques(Pg P!, ,) (i.i+1}eE(P) i€2,....1}

=@ +2)p(V(P))
=1r+2.

The second line follows from Lemma 2, and the third line follows from p(V (P;)) =
1 since p € P(P;). Therefore, for every p e P(P;), there is an homomorphism
that yields ¢+ + 2, so we see that HDE(P2 Pl P;) > t + 2. This proves that

HDE(P2 Pl P;) =t + 2, and therefore the conjecture holds. O
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Corollary 1 We also have that t(Py; G")' > t(P;; G™)* holds.

4 Proof in the Language of Entropy

We now rewrite the proof of the preceding section in the language of entropy.

Given a discrete random variable X taking values in S, its entropy is H(X) :=
ZS cs —P(X = s)log, P(X = s). One can think of entropy as recording the amount
of surprise in the possible outcomes of X. Given jointly distributed random variables
X and Y, the conditional entropy

HX|Y):= ) PBY=y 3 -PX=xl¥=ylog
yesupport(Y) xesupport(X)

P(X =x|Y = y).

One can think of conditional entropy as recording the amount of additional surprise
in X not contained in Y. Here are a few well-known properties of entropy, some of
which we will use in the proof.

1. We have that H(X) < log, |support(X)|, and equality holds if and only if X is
uniformly distributed.

2. If X and Y are independent random variables, then H(X,Y) = H(X) + H(Y).

3. The chain rule states that H(X,Y) = H(X) + H(Y|X).

4. For jointly distributed random variables Xi, X»,...,X;, we have that
HXq,...,X)) <HXp +...+ HX)).

5. We have that H(X|Y) < H(X).
Fix an arbitrary graph G with at least one edge, and let X = (Xo, ..., X;) be a uni-

form random walk of length 7 in G, that is, a uniform random element of Hom(Ps; G).
By (1), we have that H (X) = log, | Hom(FP;; G)|.

Let ¢ be the homomorphism from PO2 P! 4o to Py defined in the previous
section. Consider the pullback of X via . This is the unique distribution Y
on Hom(Poth’H; G) whose marginals satisfy ¥, = Xy and (Yy,Yy) =
(X v)» Xy (w)) for each vertex u and edge {v, w} in Po2 Pt’+2 and where Y is a Markov
random field over PO2 P! o~ This means that the marginals ¥; and Y are conditionally
independent over Yk forall I, J, K C V(PO2 Pt’ +2) such that K separates I and J.

It follows from the choice of 1 and the definition of Y that the entropy of Y is given

by
H(Y) = H(Xo) + H(X,)

t
+ ) (HXio1, Xi) + H(Xo, ..., Xi1|X0) + H(Xi, ... X Xi1)
i=1

Rearranging the terms, we get
H(Y) =(H(Xo) + H(X1, ..., X:|X0)) + (H(Xo, X1) + H(X2, ..., X;1X1))
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t—1
+ Z (HXi—1, X))+ H(Xo, ..., Xi—1|1X) + HX;, ..., X(|X;_1))
i=2
+ (H(Xi—1. X0) + H(Xo, ... Xi—21X;—1)) + (H(X) + H(Xo, ..., Xi—11X1))

By the conditional independence of (Xo, ..., X;—1) and (Xj+1, ..., X;) over Xj,
we have that each of the 7 + 2 sums between parentheses are equal to H (X, ..., X;).
Thus

log | Hom(POZPf_ﬂ; G| =>=HY)=t+2)H(X) = (t +2)log|Hom(F; G)|

where the first inequality holds by (1). Therefore, HDE( Py Pt’ 425 P;) > t+2. To show
that HDE(Py P/ o5 Pr) <1+ 2, one can use a construction corresponding to p* in
the previous section: let G* be a (¢ + 1)-partite graph where parts 1 through ¢ + 1
all have the same number of vertices, say n, and where every vertex in part i forms

an edge with every vertex in part i + 1 for I < i < r. Then hom(PyP/ 12 GY) =

O (M*+1+3) = 0 (n*+3+2) and hom(P;: G*) = O(n'*!). Thus, as n — 0o, we see

that HDE(Py P/ i Pr) < IZ‘L_# = t + 2. More simply, one could simply take G*

tobe K, or K, , asn — o0.
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