

A New Proof of the Erdős–Simonovits Conjecture on Walks

Grigoriy Blekherman¹ · Annie Raymond²

Received: 15 September 2021 / Revised: 15 February 2023 / Accepted: 23 March 2023

© The Author(s), under exclusive licence to Springer Nature Japan KK, part of Springer Nature 2023

Abstract

Let G^n be a graph on n vertices and let $w_k(G^n)$ denote the number of walks of length k in G^n divided by n . Erdős and Simonovits conjectured that $w_k(G^n)^t \geq w_t(G^n)^k$ when $k \geq t$ and both t and k are odd. In 2018, Sağlam proved this conjecture. We give a new shorter proof of this result.

Keywords Graph homomorphism inequalities · Paths · Walks

1 Introduction

Let G^n be a graph on n vertices, let $e(G^n)$ be the number of edges in G^n , and let $w_k(G^n)$ denote the number of walks of length k (i.e., with k edges) in G^n divided by n . In [2], Conjecture 6 reads as follows:

Conjecture 1 (Erdős–Simonovits, 1982) If d is the average degree in G^n , i.e., $d = \frac{2e(G^n)}{n}$ then

$$w_k(G^n) \geq d^k,$$

further if $k \geq t$, and both t and k are odd, then

$$w_k(G^n)^t \geq w_t(G^n)^k.$$

✉ Annie Raymond
anneraymond@umass.edu

Grigoriy Blekherman
greg@math.gatech.edu

¹ School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta, GA 30332, USA

² Department of Mathematics and Statistics, University of Massachusetts, Lederle Graduate Research Tower, 1623D, 710 N. Pleasant Street, Amherst, MA 01003, USA

Erdős and Simonovits mention that the first inequality in the conjecture had already been proven in [1, 4, 5]. Today, it is known as the Blakley-Roy inequality. They then go on to remark that the second inequality in the conjecture is a generalization of the first, and it is known to hold when k is even and they give a proof due to C.D. Godsil. The authors finally point out that the second inequality does not hold when k is odd and t is even.

In this paper, we prove the remaining case of the conjecture: we prove the second inequality when both t and k are odd. To do so, we reformulate the conjecture in terms of numbers of graph homomorphisms, and then apply a theorem from Kopparty and Rossman [3]. We present the background needed in Sect. 2, and the proof in Sect. 3. In Sect. 4, we rewrite the proof in the language of entropy. After putting a first version of this paper on the arXiv, we learned that the conjecture was no more: Sağlam had recently turned it into a theorem in [6]. The proof we present here is substantially different and quite simple; we believe it deserves consideration.

2 Reformulation and a Theorem by Kopparty and Rossman

Let $V(G)$ and $E(G)$ denote respectively the vertex set and the edge set of a graph G . A *graph homomorphism* from a graph F to a graph G is a map from the vertex set of F to the vertex set of G that sends edges to edges, i.e., that preserves adjacency. More precisely, a graph homomorphism is a function $\varphi : V(F) \rightarrow V(G)$ such that for any edge $\{v_1, v_2\} \in E(F)$, $\{\varphi(v_1), \varphi(v_2)\} \in E(G)$. Let $\text{Hom}(F; G)$ be the set of homomorphisms from F to G . Let $t(F; G)$ be the homomorphism density of F in G , i.e., the probability that a random map from the $V(F)$ to $V(G)$ is a graph homomorphism. Note that $t(F; G) = \frac{|\text{Hom}(F; G)|}{|V(G)|^{|V(F)|}}$. One well-known property is that $|\text{Hom}(F_1; G)| \cdot |\text{Hom}(F_2; G)| = |\text{Hom}(F_1 F_2; G)|$ and $t(F_1; G) \cdot t(F_2; G) = t(F_1 F_2; G)$ where $F_1 F_2$ denotes the disjoint union of F_1 and F_2 .

In this paper, G will normally vary over all graphs on n vertices. To lighten the notation, in inequalities, we will write F to mean the function that can be evaluated on graphs G by taking the number of homomorphisms from F to G . The property $|\text{Hom}(F_1; G)| \cdot |\text{Hom}(F_2; G)| = |\text{Hom}(F_1 F_2; G)|$ thus becomes $F_1 \cdot F_2 = F_1 F_2$.

Let P_k be the function that evaluates the number of homomorphisms from a path with k edges to some graph G on n vertices. Note that $\frac{P_k}{n} = w_k(G)$. When $k = 0$, P_0 is a single vertex (i.e., a 0-path), and thus $P_0 = n$. The second part of Conjecture 6 from [2] can thus be reformulated as

$$\left(\frac{P_k}{n}\right)^t \geq \left(\frac{P_t}{n}\right)^k$$

when $k \geq t$ and both t and k are odd. Another way to formulate the conjecture is to say that $n^{k-t} P_k^t \geq P_t^k$ or that $P_0^{k-t} P_k^t \geq P_t^k$ for all $k \geq t$ where t and k are both odd. Finally, observe that by dividing $n^{k-t} P_k^t \geq P_t^k$ by $n^{k(t+1)}$ on both sides, we obtain $t(P_k^t; G^n) \geq t(P_t^k; G^n)$ or equivalently $t(P_k; G^n)^t \geq t(P_t; G^n)^k$, which thus yields another way of formulating the conjecture.

Lemma 1 *To prove the conjecture, it suffices to show that $P_0^2 P_{t+2}^t \geq P_t^{t+2}$ for any odd $t+2$.*

Proof Suppose that we know that $P_0^2 P_{t+2}^t \geq P_t^{t+2}$ for any odd $t+2$. This is equivalent to knowing that $t(P_{t+2}; G^n) \geq t(P_t; G^n)^{\frac{t+2}{t}}$. If $k = t+2i$ where $i > 1$, then we have

$$\begin{aligned} t(P_k; G^n) &= t(P_{t+2i}; G^n) \\ &\geq t(P_{t+2i-2}; G^n)^{\frac{t+2i}{t+2i-2}} \\ &\geq \left(t(P_{t+2i-4}; G^n)^{\frac{t-2i-2}{t-2i-4}} \right)^{\frac{t+2i}{t+2i-2}} \\ &\geq \dots \\ &\geq \left(\left(t(P_t; G^n)^{\frac{t+2}{t}} \right)^{\frac{t+4}{t+2}} \dots \right)^{\frac{t-2i-2}{t-2i-4}} \\ &= t(P_t; G^n)^{\frac{t+2i}{t}} = t(P_t; G^n)^{\frac{k}{t}} \end{aligned}$$

as desired. \square

The concept of homomorphism domination exponent was introduced in [3], though the idea behind it had been central to many problems in extremal graph theory for a long time. Let the *homomorphism domination exponent* of a pair of graphs F_1 and F_2 , denoted by $\text{HDE}(F_1; F_2)$, be the maximum value of c such that $|\text{Hom}(F_1; G)| \geq |\text{Hom}(F_2; G)|^c$ for every graph G . Thus, by Lemma 1, to prove the conjecture, it suffices to show that $\text{HDE}(P_0^2 P_{t+2}^t; P_t) = t+2$ for any odd t (where we now think simply of P_t as a graph, namely the path with t edges, and not as a function).

In [3], Kopparty and Rossman showed that $\text{HDE}(F_1; F_2)$ can be found by solving a linear program when F_1 is chordal and F_2 is series-parallel. Since this is the case when $F_1 = P_0^2 P_{t+2}^t$ and $F_2 = P_t$, we will use this linear program to prove the conjecture. We now briefly describe Kopparty and Rossman's result which is based on comparing the entropies of different distributions on $\text{Hom}(F_2; G)$. We later pull back such distributions, and in particular the uniform distribution on all homomorphisms.

Let $\mathcal{P}(F_2)$ be the polytope consisting of normalized F_2 -polymatroidal functions, which is defined to be

$$\begin{aligned} \mathcal{P}(F_2) = \{p \in \mathbb{R}^{2^{|V(F_2)|}} \mid p(\emptyset) &= 0 \\ p(V(F_2)) &= 1 \\ p(A) &\leq p(B) \quad \forall A \subseteq B \subseteq V(F_2) \\ p(A \cap B) + p(A \cup B) &\leq p(A) + p(B) \quad \forall A, B \subseteq V(F_2) \\ p(A \cap B) + p(A \cup B) &= p(A) + p(B) \quad \forall A, B \subseteq V(F_2) \text{ such that } A \cap B \\ &\text{separates } A \setminus B \text{ and } B \setminus A\}. \end{aligned}$$

Note that $A \cap B$ is said to separate $A \setminus B$ and $B \setminus A$ if there are no edges in F_2 between $A \setminus B$ and $B \setminus A$.

Theorem 1 (Kopparty–Rossman, 2011) *Let F_1 be a chordal graph and let F_2 be a series–parallel graph. Then*

$$\text{HDE}(F_1, F_2) = \min_{p \in \mathcal{P}(F_2)} \max_{\varphi \in \text{Hom}(F_1; F_2)} \sum_{S \subseteq \text{MaxCliques}(F_1)} -(-1)^{|S|} p(\varphi(\cap S))$$

where $\text{MaxCliques}(F_1)$ is the set of maximal cliques of F_1 and $\cap S$ is the intersection of the maximal cliques in S .

3 Proof of the Conjecture

Let $[m] := \{1, 2, \dots, m\}$, $V(P_t) = [t+1]$, and let $E(P_t) = \{\{i, i+1\} \mid i \in [t]\}$. Lemma 2.5 of [3] implies that for any $p \in \mathcal{P}(P_t)$,

$$p(V(P_t)) = \sum_{S \subseteq \text{MaxCliques}(P_t)} -(-1)^{|S|} p(\cap S).$$

For completeness, we give a short argument.

Lemma 2 *For any $p \in \mathcal{P}(P_t)$ for some $t \geq 1$ (not necessarily odd),*

$$p(V(P_t)) = \sum_{\{i, i+1\} \in E(P_t)} p(\{i, i+1\}) - \sum_{i \in \{2, \dots, t\}} p(\{i\}).$$

Proof We prove it by induction on t . If $t = 1$, it is trivially true since there are no negative terms to consider. Suppose it is true for t . Consider P_{t+1} . Let $A = [t+1]$ and let $B = \{t+1, t+2\}$. Then $A \cup B = [t+2] = V(P_{t+1})$, and $A \cap B = \{t+1\}$. Note that $A \cap B$ separates $A \setminus B$ and $B \setminus A$, so $p(A \cup B) = p(A) + p(B) - p(A \cap B)$. Thus

$$\begin{aligned} p(V(P_{t+1})) &= p(V(P_t)) + p(\{t+1, t+2\}) - p(\{t+1\}) \\ &= p(\{1, 2\}) + \dots + p(\{t, t+1\}) - p(\{2\}) - \dots \\ &\quad - p(\{t\}) + p(\{t+1, t+2\}) - p(\{t+1\}) \\ &= \sum_{\{i, i+1\} \in E(P_{t+1})} p(\{i, i+1\}) - \sum_{i \in \{2, \dots, t+1\}} p(\{i\}), \end{aligned}$$

where the second line follows from the induction hypothesis. \square

Theorem 2 *We have that $\text{HDE}(P_0^2 P_{t+2}^t; P_t) = t+2$, and thus that Conjecture 1 holds.*

Proof We first show that $\text{HDE}(P_0^2 P_{t+2}^t; P_t) \leq t+2$. For $i \in [t+1]$ and $S \subseteq [t+1]$, let $p_i \in \mathbb{R}^{2^{t+1}}$ be such that $p_i(S) = 1$ if S contains i , and $p_i(S) = 0$ otherwise. It's easy to check that $p_i \in \mathcal{P}(P_t)$. Let p^* be the average of the p_i 's, i.e., $p^* = \frac{1}{t+1} \sum_{i \in [t+1]} p_i$. In

particular, this means that $p^*(\{i\}) = \frac{1}{t+1}$ for any $i \in [t+1]$, and $p^*(\{i, i+1\}) = \frac{2}{t+1}$ for any $i \in [t]$. Since p^* is a convex combination of the p_i 's, $p^* \in \mathcal{P}(P_t)$. For any homomorphism φ from $P_0^2 P_{t+2}^t$ to P_t ,

$$\begin{aligned} & \sum_{S \subseteq \text{MaxCliques}(P_0^2 P_{t+2}^t)} -(-1)^{|S|} p^*(\varphi(\cap S)) \\ &= t \cdot (t+2) \frac{2}{t+1} - t \cdot (t+1) \frac{1}{t+1} + 2 \frac{1}{t+1} = t+2, \end{aligned}$$

which implies that the optimal value of the linear program is at most $t+2$.

We now show that $\text{HDE}(P_0^2 P_{t+2}^t; P_t) \geq t+2$. For $1 \leq i \leq t$ let φ_i be the homomorphism from P_{t+2} to P_t such that $\varphi_i(j) = j$ for all $j \leq i+1$, and $\varphi_i(j) = j-2$ for all $j \geq i+2$. In other words, every edge of P_t is visited by P_{t+2} once, except for $\{i, i+1\}$ which is visited three times. Let ψ be the homomorphism from $P_0^2 P_{t+2}^t$ to P_t such that one copy of P_0 gets sent to vertex 1 in P_t , the other copy of P_0 is sent to vertex $t+1$ of P_t (i.e., the two copies of P_0 are sent to the end vertices of P_t), and the i -th copy of P_{t+2} is mapped to P_t via φ_i for $1 \leq i \leq t$.

Now for any $p \in \mathcal{P}(P_t)$, we compute

$$\sum_{S \subseteq \text{MaxCliques}(P_0^2 P_{t+2}^t)} -(-1)^{|S|} p(\psi(\cap S)).$$

Observe that only sets S of size one or two contribute in the above sum since no three maximal cliques of $P_0^2 P_{t+2}^t$ intersect. Every edge of P_t is covered by an image of an edge of P_{t+2} via ψ exactly $t+2$ times. Every inner (non-end) vertex of P_t is covered by an image of an inner (non-end) vertex of P_{t+2} via ψ exactly $t+2$ times. Note that each inner vertex of some copy of P_{t+2} is the intersection of two maximal cliques (i.e., edges) of P_{t+2} , and thus the coefficient will be negative. Finally, the end vertices of P_t are covered by an image of an inner (non-end) vertex of P_{t+2} via ψ exactly once each (which brings again a negative coefficient as it is the intersection of two maximal cliques), as well as once each by one copy of P_0 (which brings a positive coefficient as each P_0 is a maximal clique in itself). Thus the coefficients for the end vertices of P_t are zero. Accordingly we have

$$\begin{aligned} \sum_{S \subseteq \text{MaxCliques}(P_0^2 P_{t+2}^t)} -(-1)^{|S|} p(\psi(\cap S)) &= (t+2) \left(\sum_{\{i, i+1\} \in E(P_t)} p(\{i, i+1\}) - \sum_{i \in \{2, \dots, t\}} p(\{i\}) \right) \\ &= (t+2)p(V(P_t)) \\ &= t+2. \end{aligned}$$

The second line follows from Lemma 2, and the third line follows from $p(V(P_t)) = 1$ since $p \in \mathcal{P}(P_t)$. Therefore, for every $p \in \mathcal{P}(P_t)$, there is an homomorphism that yields $t+2$, so we see that $\text{HDE}(P_0^2 P_{t+2}^t; P_t) \geq t+2$. This proves that $\text{HDE}(P_0^2 P_{t+2}^t; P_t) = t+2$, and therefore the conjecture holds. \square

Corollary 1 We also have that $t(P_k; G^n)^t \geq t(P_t; G^n)^k$ holds.

4 Proof in the Language of Entropy

We now rewrite the proof of the preceding section in the language of entropy.

Given a discrete random variable X taking values in S , its *entropy* is $H(X) := \sum_{s \in S} -\mathbb{P}(X = s) \log_2 \mathbb{P}(X = s)$. One can think of entropy as recording the amount of surprise in the possible outcomes of X . Given jointly distributed random variables X and Y , the *conditional entropy*

$$H(X|Y) := \sum_{y \in \text{support}(Y)} \mathbb{P}(Y = y) \sum_{x \in \text{support}(X)} -\mathbb{P}(X = x|Y = y) \log_2 \mathbb{P}(X = x|Y = y).$$

One can think of conditional entropy as recording the amount of additional surprise in X not contained in Y . Here are a few well-known properties of entropy, some of which we will use in the proof.

1. We have that $H(X) \leq \log_2 |\text{support}(X)|$, and equality holds if and only if X is uniformly distributed.
2. If X and Y are independent random variables, then $H(X, Y) = H(X) + H(Y)$.
3. The chain rule states that $H(X, Y) = H(X) + H(Y|X)$.
4. For jointly distributed random variables X_1, X_2, \dots, X_l , we have that $H(X_1, \dots, X_l) \leq H(X_1) + \dots + H(X_l)$.
5. We have that $H(X|Y) \leq H(X)$.

Fix an arbitrary graph G with at least one edge, and let $X = (X_0, \dots, X_t)$ be a uniform random walk of length t in G , that is, a uniform random element of $\text{Hom}(P_t; G)$. By (1), we have that $H(X) = \log_2 |\text{Hom}(P_t; G)|$.

Let ψ be the homomorphism from $P_0^2 P_{t+2}^t$ to P_t defined in the previous section. Consider the pullback of X via ψ . This is the unique distribution Y on $\text{Hom}(P_0^2 P_{t+2}^t; G)$ whose marginals satisfy $Y_u = X_{\psi(u)}$ and $(Y_v, Y_w) = (X_{\psi(v)}, X_{\psi(w)})$ for each vertex u and edge $\{v, w\}$ in $P_0^2 P_{t+2}^t$ and where Y is a Markov random field over $P_0^2 P_{t+2}^t$. This means that the marginals Y_I and Y_J are conditionally independent over Y_K for all $I, J, K \subseteq V(P_0^2 P_{t+2}^t)$ such that K separates I and J .

It follows from the choice of ψ and the definition of Y that the entropy of Y is given by

$$\begin{aligned} H(Y) &= H(X_0) + H(X_t) \\ &+ \sum_{i=1}^t (H(X_{i-1}, X_i) + H(X_0, \dots, X_{i-1}|X_i) + H(X_i, \dots, X_t|X_{i-1})). \end{aligned}$$

Rearranging the terms, we get

$$H(Y) = (H(X_0) + H(X_1, \dots, X_t|X_0)) + (H(X_0, X_1) + H(X_2, \dots, X_t|X_1))$$

$$\begin{aligned}
& + \sum_{i=2}^{t-1} (H(X_{i-1}, X_i) + H(X_0, \dots, X_{i-1}|X_i) + H(X_i, \dots, X_t|X_{i-1})) \\
& + (H(X_{t-1}, X_t) + H(X_0, \dots, X_{t-2}|X_{t-1})) + (H(X_t) + H(X_0, \dots, X_{t-1}|X_t))
\end{aligned}$$

By the conditional independence of (X_0, \dots, X_{i-1}) and (X_{i+1}, \dots, X_t) over X_i , we have that each of the $t+2$ sums between parentheses are equal to $H(X_0, \dots, X_t)$. Thus

$$\log |\text{Hom}(P_0^2 P_{t+2}^t; G)| \geq H(Y) = (t+2)H(X) = (t+2) \log |\text{Hom}(P_t; G)|$$

where the first inequality holds by (1). Therefore, $\text{HDE}(P_0 P_{t+2}^t; P_t) \geq t+2$. To show that $\text{HDE}(P_0 P_{t+2}^t; P_t) \leq t+2$, one can use a construction corresponding to p^* in the previous section: let G^* be a $(t+1)$ -partite graph where parts 1 through $t+1$ all have the same number of vertices, say n , and where every vertex in part i forms an edge with every vertex in part $i+1$ for $1 \leq i \leq t$. Then $\text{hom}(P_0 P_{t+2}^t; G^*) = O(n^{2+t(t+3)}) = O(n^{t^2+3t+2})$ and $\text{hom}(P_t; G^*) = O(n^{t+1})$. Thus, as $n \rightarrow \infty$, we see that $\text{HDE}(P_0 P_{t+2}^t; P_t) \leq \frac{t^2+3t+2}{t+1} = t+2$. More simply, one could simply take G^* to be K_n or $K_{n,n}$ as $n \rightarrow \infty$.

Acknowledgements The authors are indebted to Mike Tait who shared this conjecture with them. We thank the anonymous referee who suggested the proof in the language of entropy.

Funding Grigoriy Blekherman was partially supported by National Science Foundation Grant DMS-1901950. Annie Raymond was partially supported by National Science Foundation Grant DMS-2054404.

Declarations

Conflict of interest The authors have not disclosed any competing interests.

References

1. Blakley, G.R., Roy, P.: Hölder type inequality for symmetric matrices with nonnegative entries. Proc. Am. Math. Soc. **16**, 1244–1245 (1965)
2. Erdős, P., Simonovits, M.: Compactness results in extremal graph theory. Combinatorica **2**(3), 275–283 (1982)
3. Kopparty, S., Rossman, B.: The homomorphism domination exponent. Eur. J. Comb. **32**(7), 1097–1114 (2011)
4. London, D.: Inequalities in quadratic forms. Duke Math. J. **33**, 511–522 (1966)
5. Mulholland, H.P., Smith Cedric, A.B.: An inequality arising in genetical theory. Am. Math. Mon. **66**, 673–683 (1959)
6. Mert, S.: Near log-convexity of measured heat in (discrete) time and consequences. In: 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7–9, 2018, pp. 967–978 (2018)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.