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significantly affect the battery power in real-world mobile devices 

Neural Machine Translation (NMT) systems have received much 
recent attention due to their human-level accuracy. While existing 
works mostly focus on either improving accuracy or testing accu- 
racy robustness, the computation efficiency of NMT systems, which 
is of paramount importance due to often vast translation demands 
and real-time requirements, has surprisingly received little atten- 
tion. In this paper, we make the first attempt to understand and 
test potential computation efficiency robustness in state-of-the-art 
NMT systems. By analyzing the working mechanism and imple- 
mentation of 1455 public-accessible NMT systems, we observe a 
fundamental property in NMT systems that could be manipulated 
in an adversarial manner to reduce computation efficiency sig- 
nificantly. Our interesting observation is that the output length 
determines the computation efficiency of NMT systems instead 
of the input, where the output length depends on two factors: an 
often sufficiently large yet pessimistic pre-configured threshold 
controlling the max number of iterations and a runtime generated 
end of sentence (EOS) token. Our key motivation is to generate 
test inputs that could sufficiently delay the generation of EOS such 
that NMT systems would have to go through enough iterations to 
satisfy the pre-configured threshold. We present NMTSloth, which 
develops a gradient-guided technique that searches for a minimal 
and unnoticeable perturbation at character-level, token-level, and 
structure-level, which sufficiently delays the appearance of EOS and 
forces these inputs to reach the naturally-unreachable threshold. 
To demonstrate the effectiveness of NMTSloth, we conduct a sys- 
tematic evaluation on three public-available NMT systems: Google 
T5, AllenAI WMT14, and Helsinki-NLP translators. Experimental 
results show that NMTSloth can increase NMT systems’ response 
latency and energy consumption by 85% to 3153% and 86% to 3052%, 
respectively, by perturbing just one character or token in the input 
sentence. Our case study shows that inputs generated by NMTSloth 
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(i.e., drain more than 30 times battery power than normal inputs). 
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1 INTRODUCTION 
Neural Machine Translation (NMT) is a promising approach that 
applies neural networks to resolve machine translation problems. 
NMT systems have received significant recent attention from both 
academia [2, 3, 33, 49] and industry [6, 17, 21–23, 41, 48], due to 
its advantages over traditional translation methods (e.g., phrase- 
based translation models [35]). For instance, due to being capable 
of capturing rather long dependencies in sentences, NMT systems 
are seeing a wide adoption in commercial translation systems in- 
cluding Microsoft’s translation products [17, 21–23] and Google 
Translate [6, 41, 48]. 

Much research has been done on enhancing the accuracy of 
NMT systems [42, 42, 49]. Recently, research [18, 25, 26, 45] has 
been conducted to understand the accuracy robustness of existing 
NMT systems by developing a series of adversarial test input gener- 
ation frameworks that reduce the translation accuracy of existing 
NMT systems. While accuracy robustness is clearly important, we 
observe that the computation efficiency of NMT systems, partic- 
ularly in terms of the latency and energy spent on translating an 
input with a specific length, is an equivalently critical property that 
has surprisingly received little attention. A common and unique 
characteristic of the machine translation domain is the need to 
process a huge amount of real-time requests (e.g., Google Trans- 
late claims to have been translating over 100 billion words daily 
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in 109 languages [6, 41, 48]). The vast demand for translation re- 
quests combined with the real-time requirements naturally makes 
the computation efficiency of any NMT system be one of the most 
critical optimization goals. In this paper, we make the first attempt 
in understanding and testing potential vulnerabilities in terms of 
computation efficiency of existing NMT systems. 
Key observations revealing vulnerabilities on NMT computa- 
tion efficiency. Our findings are motivated by several observations. 
Particularly, through analyzing the working mechanisms and de- 
tailed implementation of 1,455 public-accessible NMT systems (e.g., 
Google T5 [15, 43], Meta [39]), we observe a fundamental property 
of NMT systems that could be manipulated in an adversarial man- 
ner to significantly reduce computation efficiency. Specifically, we 
observe that the computation efficiency of NMT systems is highly 
sensitive to different inputs, even those exhibiting just minor dif- 
ferences. For instance, slightly modifying an input could incur an 
order of magnitude more computation demand (e.g., as shown in 
Fig. 2, inserting a character “b” in token “Genäckstück” will increase 
the latency of HuggingFace’s NMT systems from 0.876s to 20.382s, 
representing an over 20× latency increase). Such dramatic impact 

on computation efficiency may occur fundamentally because NMT 
systems often need to invoke the underlying decoder with non- 
deterministic numbers of iterations to generate outputs [38, 49]. 
Intuitively, the computation efficiency of NMT systems is deter- 
mined by the output length instead of the input, where the output 
length depends on two factors: an often sufficiently large yet pes- 
simistic pre-configured threshold controlling the max number of 
iterations (e.g., as shown in 3, a dominant number of our studied 
NMT systems set this threshold to be 500-600, which is significantly 
larger than the actual output length in most cases), and a runtime 
generated end of sentence (EOS) token. By observing such proper- 
ties, our key motivation is that it may be possible to generate test 
inputs that could sufficiently delay the generation of EOS such that 
NMT systems would have to go through max iterations to satisfy 
the pessimistic pre-configured threshold. 

This implies an important yet unexplored vulnerability of NMT 
systems: adversarially-designed inputs that may cause enormous, 
abnormal computation demand in existing NMT systems, thus sig- 
nificantly wasting the computational resources and energy and 
may adversely impair user experience and even service availability. 
Such adversarial inputs could result in devastating consequences 
for many real-world applications (also proved by our experiments). 
For example, abusing computational resources on commercial ma- 
chine translation service providers (e.g., HuggingFace [55]) could 
negatively impact the quality of service (e.g., enormously long re- 
sponse time or even denial of service). For application domains 
that are sensitive to latency or energy, such as mobile and IoT de- 
vices, abusing computational resources might consume battery in 
an unaffordable fast manner. 

Motivated by these observations, we aim to systematically de- 
velop a framework that generates inputs to test the robustness 
w.r.t computation efficiency of NMT systems. The generated test 
inputs may significantly increase the computational demand and 
thus hinder the computation efficiency regarding response latency, 
energy consumption, and availability. To make such testing prac- 

on normal textual inputs to generate such test inputs. We present 
NMTSloth that effectively achieves our objectives. NMTSloth is de- 
veloped based on the aforementioned observation. Specifically, 
NMT systems iteratively compute the output token until either 
the system generates an end-of-sentence (EOS) token or a pre- 
configured threshold controlling the max number of iterations has 

been met. For our studied 1455 NMT systems 1, the appearance of 
EOS is computed from the underlying DNNs output probability. 
NMTSloth develops techniques that could perturb input sentences 
to change the underlying DNNs output probability and sufficiently 
delay the generation of EOS, thus forcing these inputs to reach 
the naturally-unreachable threshold. NMTSloth further develops a 
gradient-guided technique that searches for a minimal perturba- 
tion (including both character-level, token-level, and structure-level 
ones) that can effectively delay the generation of EOS. Applying 
this minimal perturbation on the seed input would result in signifi- 
cantly longer output, costing NMT systems more computational 
resources and thus reducing computation efficiency. 
Implementation and evaluation. We have conducted extensive 
experiments to evaluate the effectiveness of NMTSloth. Particu- 
larly, we applied NMTSloth on three real-world public-available 
and widely used (e.g., with more than 592,793 downloads in Jan 
2022) NMT systems (i.e., Google T5 [15, 43], AllenAI WMT14 [1], 
and Helsinki-NLP [27]). The selected NMT systems are trained with 
different corpus and feature diverse DNN architectures as well as 
various configurations. We compare NMTSloth against four state- 
of-the-art methods that focus on testing NMT systems’ accuracy 
and correctness. Evaluation results show that NMTSloth is highly 
effective in generating test inputs to degrade computation efficiency 
of the NMT systems under test. Specifically, NMTSloth generates 
test inputs that could increase the NMT systems’ CPU latency, CPU 
energy consumption, GPU latency, and GPU energy consumption 
by 85% to 3153%, 86% to 3052%, 76% to 1953%, and 68% to 1532%, 
respectively, through only perturbing one character or token in any 
seed input sentences. Our case study shows that inputs generated 
by NMTSloth significantly affect the battery power in real-world 
mobile devices (i.e., drain more than 30 times battery power than 
normal inputs). 
Contribution. Our contribution are summarized as follows: 

• Characterization: We are the first to study and characterize 
the computation efficiency vulnerability in state-of-the-art 
NMT systems, which may critically impair latency and en- 
ergy performance, as well as user experience and service 
availability. Such vulnerability is revealed by conducting 
extensive empirical studies on 1,455 public-available NMT 
systems, which have been downloaded more than 8,286,413 
times in Jan/2022. The results show that the revealed vulner- 
ability could widely exist due to a fundamental property of 
NMT systems. 

• Approach: We design and implement NMTSloth, the first 
framework for testing NMT systems’ computation efficiency. 
Specifically, given a seed input, NMTSloth applies a gradient- 
guided approach to mutate the seed input to generate test 
inputs. Test inputs generated by NMTSloth only perturb one 
to three tokens in any seed inputs. 

tical, any generated NMT test inputs shall not be attack-obvious.   

One objective is thus to make trivial or unnoticeable modifications 1 https://huggingface.co/models?pipeline_tag=translation&sort=downloads 



NMTSloth: Understanding and Testing Efficiency Degradation of Neural Machine Translation Systems ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore 

1150 

 

 

Input 
SOS I Like  Reading 

Encoder H Decoder 

Output I Like Reading EOS 

1 2 3 4 

 

• Evaluation: We evaluate NMTSloth on three real-world public- 
available NMT systems (i.e., Google T5, AllenAI WMT14, 
and Helsinki-NLP) against four correctness-based testing 
methods. In addition, we propose a series of metrics (Eq.(4)) 
to quantify the effectiveness of the triggered computation 
efficiency degradation. Evaluation results suggest existing 
correctness-based testing methods cannot generate test in- 
puts that impact computation efficiency. In contrast, NMTSloth 
generates test inputs that increase NMT systems’ latency 
and energy consumption by 85% to 3153% and 86% to 3052%, 
respectively. 

• Mitigation: We propose one lightweight method to miti- 
gate possible computation efficiency degradation: running 
a detector at runtime for input validation. We evaluate the 
performance of our proposed mitigation method in terms 
of accuracy and additional overheads. Results confirm the 
efficacy and efficiency of our proposed mitigation method. 

2 BACKGROUND 

2.1 Neural Machine Translation Systems 
 
 

 

Figure 1: Working mechanism of NMT systems 

 
Much recent research has been done towards developing more 

accurate and efficient machine translation systems [6, 38, 41, 46, 
48, 49, 49]. The fundamental of machine translation systems is 
the language model, which computes the conditional probability 
𝑃 (𝑌 |𝑋 ), where 𝑋 = [𝑥1, 𝑥2, · · · , 𝑥𝑚] is the input token sequence 

and 𝑌 = [𝑦1, 𝑦2, · · · , 𝑦𝑛 ] is the output token sequence. Modern NMT 

systems apply the neural networks to approximate such conditional 
probability 𝑃 (𝑌 |𝑋 ). As shown in Fig. 1, a typical NMT system 

consists of an encoder 𝑓𝑒𝑛 (·) and a decoder 𝑓𝑑𝑒 (·). The encoder 

encodes the source input 𝑋 into hidden representation 𝐻 , then 𝐻 is 
feed into the decoder for decoding. An implementation example of 

NMT systems’ decoding process is shown in Listing 1 2. From the 
code snippet, we observe that the decoding process starts with a 
special token (SOS) and iteratively accesses 𝐻 for an auto-regressive 
generation of each token 𝑦𝑖 until the end of sequence token (EOS) 
or the maximum iteration (e.g., max_length) is reached (whichever 
condition is reached earlier). To improve NMT systems’ accuracy, a 
common practice is to apply the beam search algorithm to search 
multiple top tokens at each iteration and select the best one after 
the whole decoding process. 

 

2The code snippet is downloaded from PyTorch NMT tutorial 
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Listing 1: Source Code of NMT Systems Implementation 

 

2.2 Testing NMT Systems 
Although modern NMT systems demonstrate human-level perfor- 
mance in terms of accuracy, NMT systems are still far from robust 
due to the complexity and intractability of the underlying neural 
networks. To improve the robustness of NMT systems, a series 
of testing methods have been proposed, which focus on accuracy 
testing. The core idea of existing work is to perturb seed input 
sentences with different perturbations and detect output incon- 
sistency between perturbed and seed outputs. At high-level, the 
perturbations in existing work can be categorized into three types. 
(i) character-level: This type of perturbations [3, 10, 11, 36, 61] rep- 
resents the natural typos and noises in textual inputs. For example, 
character swap (e.g., noise → nosie), order random (e.g., noise → 

nisoe), character insertions (e.g., noise → noisde), and keyboard 

typo (e.g., noise → noide) (ii) token-level: This type of perturbations 

[9, 36, 44, 45, 58, 59] replaces a few tokens in the seed sentences 
with other tokens. However, token replacement sometimes would 
completely change the semantic of the input text; thus, this type of 
perturbation usually appears in adversary scenarios; (iii) structure- 
level: Different from the above two perturbations, this type of per- 
turbations [18, 25, 26, 37] seeks to generate legal sentences that do 
not contain lexical or syntactic errors. For example, [25] proposes 
a structure invariant testing method to perturb seed inputs with 
Bert [31], and the perturbed sentences will exhibit similar sentence 
structure with the seed sentences. 

3 MOTIVATION & PRELIMINARY STUDY 
In this section, we first give a motivating example in detail to show 
efficiency degradation issues in real-world NMT systems. We then 
present a comprehensive empirical study based on 1455 state-of- 
the-art NMT systems, which reveals an important vulnerability in 
existing NMT systems that may suffer from significant efficiency 
degradation. 

3.1 Motivating Example 
Fig. 2 illustrates the efficiency degradation issue that HuggingFace 

NMT API 3 may experience due to unnoticeable perturbations. This 
selected NMT API is rather popular among developers, with 136,902 
downloads merely in Jan 2022. Fig. 2 shows the computation time 
using two input sentences, where a normal (abnormal) input is used 

 

3 https://huggingface.co/Helsinki-NLP/opus-mt-de-en 

''' 

Encoding process 

''' 

decoded_words = [' <SOS >'] 

for di in range ( max_length ): 

decoder_output , decoder_hidden = decoder ( 

decoder_input , decoder_hidden , encoder_outputs ) 

topv , topi = decoder_output . data . topk (1) 

if topi . item () == EOS_token : 

decoded_words . append (' <EOS >') 

break 

else : 

decoded_words . append ( index 2 word [ topi . item () ]) 

decoder_input = topi . squeeze (). detach () 

return decoded_words 
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Table 1: Top 10 popular NMT systems on HuggingFace web- 
site (the order is based on the number of downloads) 

  
 

Figure 2: Example illustrating NMT systems’ efficiency degra- 
dation by inserting one character (using HuggingFace API) 

 
in the left (right) sub-figure. Note that the abnormal input differs 
from the normal input by only one character “b” (highlighted in 
blue). Nonetheless, due to such a one-character difference in the 
input, the computation time increases from 0.876s to 20.382s (a 
2226.7% increase). This real-world example reveals that state-of-the- 
art NMT systems may have critical yet unrevealed vulnerabilities 
that negatively impact computation efficiency. 

As we discussed in Sec. 2.1, the working mechanism of NMT 
systems is to iteratively call the decoder 𝑓𝑑𝑒 (·) to generate output 

tokens until either the particular token EOS is reached or the pre- 
configured threshold is met. Thus, NMT systems with more decoder 
calls (i.e., denoted as || 𝑓𝑑𝑒 (·) ||) will consume more computational 

resources and incur longer computational times. An intuitive ap- 
proach to mitigate the efficiency degradation issue in Fig. 2 is to 
set a small threshold to limit || 𝑓𝑑𝑒 (·) ||. However, this solution is 

impractical due to inherently significant differences of || 𝑓𝑑𝑒 (·) || in 

the translation corpus. According to our empirical study of 1,455 
NMT systems (detailed in 3.2), 1,370 of them set max_length within 
a range of 500 to 600. To further understand why this intuitive ap- 
proach does not work, we conduct a comprehensive empirical study 
using 1455 state-of-the-art NMT systems. Specifically, we focus on 
answering the following two research questions. 

• RQ 1.1: What is the current engineering configurations in 
real-world NMT systems that control || 𝑓𝑑𝑒 (·) || (Sec. 3.2) 

• RQ 1.2: Why small threshold is impractical to mitigate effi- 
ciency degradation? (Sec. 3.3) 

3.2 Current Engineering Configurations 
3.2.1 Study Methodology. We investigate the configurations of 
existing mainstream NMT systems. Specifically, we studies 1,455 
NMT systems (e.g., Google T5, Meta FairSeq) from HuggingFace 

online NMT service 4. HuggingFace is a commercial platform that 
provides third-party real-time translation service, which covers 
almost all NMT model architectures. NMT systems on the Hugging- 
Face platform are open-source and widely used by public, as shown 
in Table 1 (e.g., the most popular NMT systems in HuggingFace 
have been downloaded for more than 3,141,480 times in Jan 2022). 
HuggingFace provides high-level abstraction API for NMT service. 
List 2 shows code snippets of using HuggingFace API to load Google 

 

4 https://huggingface.co/ 

 
T5 translation service. All NMT model classes are inherited from a 
common parent class, GenerationMixin, which contains all func- 
tions supporting sentence translation. We parse the source code 
of the GenerationMixin.generate function and observe that the 
translation flow could be divided into nine parts. Among all nine 
parts, we find that the eighth part determines the critical stopping 
criteria. The source code of the eighth part is shown in List 3. From 
the source code, we observe that two variables, max_length and 
max_time, determine the stopping criteria. max_length is a vari- 
able from the NMT systems’ configuration file that determines the 
maximum length of the sequence to be generated, equivalent to 
the maximum number of decoder calls mentioned earlier. Similarly, 
max_time is a variable that determines the maximum computation 
time. According to HuggingFace programming specifications, only 
one of these two fields needs to be set. Finally, We select all NMT 

models from HuggingFace’s API services 5 and parse each NMT 
model’s configuration file to check how max_length and max_time 
have been set. 

1 

2 

3 

4 

5 

Listing 2: HuggingFace libraries high-level translation API 

 
1 

2 

3 

4 

5 

Listing 3: Stopping criteria in translation 

 

3.2.2 Study Results. Among all 1, 455 NMT systems, we success- 
fully collect 1, 438 configuration files, where 1, 400 of them include 
the max_length field and none of them includes the max_time field. 
This is mainly because the max_time field is hardware-dependent. 
The statistical results of the max_length values are shown in Fig. 3. 
We have the following two observations. First, there is a signifi- 
cant variance in the max_length value (ranging from 20 to 1024); 
Second, almost all NMT systems (97.86%) set the max_length to 
be from 500 to 600, i.e., maximum 500-600 decoder calls. Note that 
real-world NMT systems prefer to set such a large threshold just to 
prevent unresponsiveness (e.g., dead-loop). However, in most cases 

 

5 https://huggingface.co/models?pipeline_tag=translation&sort=downloads 

Rank Model Name max_length # of Downloads 

1 Helsinki-NLP/opus-mt-zh-en 512 3141840 
2 Google/t5-base 300 1736544 
3 Helsinki-NLP/opus-mt-en-de 512 749228 
4 Helsinki-NLP/opus-mt-en-ROMANCE 512 599267 
5 Google/t5-small 300 592793 
6 Helsinki-NLP/opus-mt-ar-en 512 196033 
7 Helsinki-NLP/opus-mt-de-en 512 129923 
8 Helsinki-NLP/opus-mt-es-en 512 111028 
9 Helsinki-NLP/opus-mt-ROMANCE-en 512 92987 

10 Helsinki-NLP/opus-mt-fr-en 512 91552 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Computation time on cpu: 20.381999999999s Computation time on cpu: 0.876s 

# Hugging Face high - level API for translation 

model = Auto Model With LMHead . from_pretrained (" t5 - base ") 

s = " CS is the study of computational systems " 

input_tk = tokenizer (s, return_tensors =" pt"). input_ids 

trans_res = model . generate ( input_tk ) 

 

# 8. prepare stopping criteria 

stopping_criteria = self . _get_stopping_criteria ( 

max_length = max_length , 

max_time = max_time , 

stopping_criteria = stopping_criteria ) 

 

https://huggingface.co/
https://huggingface.co/models?pipeline_tag=translation&sort=downloads
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Figure 3: The distribution of max_length values 

 
Table 2: Statistical results of efficiency differences in machine 
translation (1%, 10%, 50%, 90%, 100% represent quantile) 

 
Language 
Src Tgt # of pairs 

Quantile of Target Length 
10% 50% 90% 100% (max) 

Quantile of Length Ratio 

1% (min) 10% 50% 90% 100% (max) 

fr en 13,172,019 4.00 24.00 52.00 97.00 0.50 0.87 1.10 1.47 3.00 
zh en 9,564,315 11.00 41.00 87.00 179.00 0.90 1.38 1.83 3.00 8.26 
zh es 9,847,770 10.00 40.00 87.00 176.00 0.75 1.19 1.57 2.68 8.50 
zh fr 9,690,914 11.00 41.00 88.00 178.00 0.74 1.21 1.63 2.85 8.29 

zh ru 9,557,007 10.00 42.00 90.00 180.00 0.62 1.60 2.25 5.00 13.75 

 
with normal inputs, such a threshold will not yield any real impact 
as the EOS token often appears much earlier. 

3.3 Feasibility Analysis of an Intuitive Solution 
3.3.1 Study Methodology. An intuitive solution to mitigate the 
efficiency degradation is to limit || 𝑓𝑑𝑒 (·) || (i.e., the max_length 

field). In this section, we conduct a statistical analysis to prove that 
such an intuitive solution is infeasible. We analyze the distribution 
of max_length of the target sentence (ground truth) in the training 
corpus. We select the MultiUN dataset [12] as the subject in our 
empirical study because of the following criteria: (i) the datasets 
are open-source and public-available; (ii) the datasets are widely 
studied in recent works (with more than 1,000 citations until Jan 
2022); (iii) the datasets are diverse in covering various areas (e.g., 
different languages, concepts, etc). MultiUN dataset is a collection 
of translated documents from the United Nations. It includes seven 
languages with 489,334 files and a total number of 81.41M sentence 
fragments. We parse the source/target sentence pairs in the MultiUN 
dataset and measure the length of all target sentences. 

3.3.2 Study Results. The statistic results of the output length are 
shown in Table 2 (full results could be found in an anonymous web- 

site 6). Column “Target Length” shows the target sentence length 
under different quantiles, and Column “Target and Source Ratio” 
shows the ratio of sentence length between the source and target. 
From the results, we observe that the lengths of target sentences 
(ground truth) are in sparse distributions. Particularly, the ratio 
of sentence length between the source and target exhibits rather 
large variance. For instance, the length of target sentence varies 
from 4 to 97 and the ratio is from 0.62 to 13.75 for language fr 
and en. As a result, setting a small max_length field will lead to 
low-precision translation results. For instance, in the last line of 
Table 2, i.e., translating zh to ru, if setting max_length to 42, at 

 

6 https://github.com/SeekingDream/NMTSloth 

least 50% of data will not be translated completely. Thus, we can 
conclude that the intuitive solution, i.e., setting a small max_length 
field, is impractical to avoid efficiency degradation issues. On the 
contrary, setting a sufficiently large max_length can address the 
limitation of incomplete translation while not incurring efficiency 
issues for any ordinary inputs due to the EOS mechanism. 

4 PROBLEM FORMULATION 
Our goal is to generate test inputs that can degrade computation 
efficiency of NMT systems. Our proposed method seeks to perturb 
a seed sentence to craft test inputs. The perturbed test inputs will 
incur significantly long computation time, thus impairing user ex- 
perience and even cause service unavailability. Note that we allow 
general and unnoticeable perturbation patterns, including adding 
limited number of characters (e.g., 1-3 characters) at arbitrary po- 
sitions and replacing arbitrary tokens using semantic-equivalent 
alternatives. As we discussed in Sec. 2, NMT systems’ computa- 
tion efficiency depends on the output length, where a lengthier 
output implies less computation efficiency. Thus, our goal can be 
achieved through increasing NMT systems’ output length through 
generating effective test inputs. We thus formulate our problem 
of generating test inputs for computation efficiency testing as the 
following optimization: 

Δ = argmax𝛿 || 𝑓𝑑𝑒 (𝑥 + 𝛿) || 𝑠.𝑡 . ||𝛿 || ≤ 𝜖, (1) 

where 𝑥 is the seed input, 𝑓𝑑𝑒 (·) is the decoder of the NMT system 

under test, 𝜖 is the maximum allowed perturbation, and || 𝑓𝑑𝑒 (·) || 

measures the number of times of NMT’s decoders being called. Our 
proposed NMTSloth tries to search a perturbation Δ that maximizes 
the decoders’ calling times (decreasing target NMT systems effi- 
ciency) within a minimum allowable perturbation threshold (which 
ensures unnoticeable perturbations). 

5 METHODOLOGY 
We now present NMTSloth and provides three specific implementa- 
tions including character-level perturbation, token-level perturba- 
tion, and structure-level perturbation. 

 

5.1 Design Overview 
NMTSloth is an iterative approach. During each iteration, NMTSloth 
perturbs one token in a seed sentence with different types of per- 
turbations. An overview of the detailed procedure of each iteration 
is illustrated in Fig. 4, which contains three major steps: 

(1) Finding critical tokens. For each seed sentence, we feed it to 
the NMT system under test and apply a gradient-based ap- 
proach to search for the critical tokens that have the highest 
impact on NMT systems’ computation efficiency. 

(2) Mutating seed input sentences. After identifying the critical 
tokens in the seed sentences, we mutate the seed sentences 
with three types of perturbations and generate three lists of 
similar sentences. 

(3) Detecting efficiency degradation. We feed the mutated sen- 
tences and the seed sentence into NMT systems and detect 
any efficiency degradation. 

>1000. (0.64%) 

500-600. (97.86%) 

300-400. (0.64%) 

200-300. (0.43%) 

100-200. (0.21%) 

0-100.  (0.21%) 
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𝑛 

𝑖 

𝑖 

𝑖 

𝑗 

𝑖 

 
 
 

Seed Sentence 
 

If you understand this one, then 
the others are nearly the same. 

 

 
(1) Find 

Critical Tokens 
 
 

Critical Tokens 
 

If you understand this one, then 
the others are nearly the same. 

 

Mutated Sentences 

Character-Level 
(1) If you unsderstand this one, then the others are 
nearly the same. 
(2) If you undaerstand this one, then the others are 
nearly the same. 

… 
 

Token-Level 
(1) If you share this one, then the others are nearly 
the same. 
(2) If you old this one, then the others are nearly the 
same. 

… 
 

Structure-Level 
(1) If you know this one, then the others are nearly 
the same. 
(2) If you see this one, then the others are nearly the 
same. 

 
 

Generated Test Inputs 
 

 
Character-Level 
(✓) If you undaerstand this one, 
then the others are nearly the 
same. 

 

Token-Level 
(✓) If you share this one, then the 
others are nearly the same. 

 

Structure-Level 
(✓) If you know this one, then the 
others are nearly the same. 

(2) Input Mutation (3) Degradation Detection 
 

 
 

5.2 Detail Design 

Figure 4: Design overview of NMTSloth 

 
Table 3: Examples of token-level, character-level, and 

Finding Critical Tokens: Given a seed sentence 𝑥 = [𝑡𝑘1, · · · , 𝑡𝑘𝑚], structure-level perturbation under different size 

the first step is to identify tokens that are critical to NMT systems’   

efficiency. As we discussed earlier, NMT systems’ computation effi- 
ciency depends on the corresponding output length given any input, 
which is determined by the pre-configured threshold and the EOS 
token. In Sec. 3, we showed that the pre-configured threshold is set 
as a fixed value in the configuration files of NMT systems. Thus, to 
generate effective testing inputs, our objective is to decrease the 
probability that the EOS token would appear given a specific input 
to reduce NMT systems’ computation efficiency. 

Formally, let NMT system’s output probability be a sequence of 

vectors, i.e., [𝑝1, 𝑝2, · · · , 𝑝𝑛 ], and the probability of EOS token ap- pearance be [𝑝𝑒𝑜𝑠 , 𝑝𝑒𝑜𝑠 , · · · , 𝑝𝑒𝑜𝑠 ]. We seek to find the importance in out-of-vocabulary (OOV), it is thus challenging to compute the 
of each token 

1 2 𝑛
 token replace increment at token-level. Instead, we enumerate pos- 

𝑡𝑘𝑖 in 𝑥 to this probability sequence. We also observe 
that the output token sequence will affect EOS’s probability. Thus, 
we define the importance score of token 𝑡𝑘𝑖 as 𝑔𝑖 , shown in (2). 

𝑜𝑖 = argmax(𝑝𝑖 ) 𝑓 (𝑥 ) = 
1 ∑︁

(𝑝𝑒𝑜𝑠 +𝑝
𝑜𝑖 ) 𝑔𝑖 = 

∑︁ 𝜕𝑓 (𝑥 ) 
, 

sible 𝛿 after character insertion to get a candidate set 𝐿. Specifically, 
we consider all letters and digits as the possible character 𝑐 because 
humans can type these characters through the keyboard, and we 
consider all positions as the potential insertion position. Clearly, 
for token 𝑡𝑘 which contains 𝑙 characters, there are (𝑙 + 1) × ||𝐶 || 

𝑛 
𝑖 

𝑖 
𝑗 𝜕𝑡𝑘 

𝑗
 

(2) 
perturbation candidates, where ||𝐶 || denotes the size of all possible 
characters. For token-level perturbation, we consider replacing the 

where [𝑜1, 𝑜2, · · · , 𝑜𝑛 ] is the current output token, 𝑓 (𝑥 ) is the prob- 

ability we seek to minimize, 𝑡𝑘 
𝑗 is the 𝑗𝑡ℎ dimension of 𝑡𝑘’s embed- 

dings, and 𝑔𝑖 is the derivative of 𝑓 (𝑥 ) to 𝑖𝑡ℎ token’s embedding. 
Input Mutation: After identifying important tokens, the next step 
is to mutate the important token with unnoticeable perturbations. 
In this step, we get a set of perturbation candidate 𝐿 after we perturb 
the most important tokens in the original input. We consider two 
kinds of perturbations, i.e.,, token-level perturbation and character- 
level perturbation. Table 3 shows some examples of token-level and 
character-level perturbations with different perturbation sizes 𝜖 

original token 𝑡𝑘 with another token 𝛿. To compute the target to- 
ken 𝛿, we define token replace increment I𝑠𝑟𝑐,𝑡𝑔𝑡 to measure the 

efficiency degradation of replacing token 𝑠𝑟𝑐 to 𝑡𝑔𝑡 . As shown in (3), 
𝐸 (·) is the function to obtain the corresponding token’s embedding, 
𝐸 (𝑡𝑔𝑡 ) − 𝐸 (𝑠𝑟𝑐) is the vector increment in the embedding space. 

Because 
𝜕𝑓 (𝑥 ) 

indicates the sensitivity of output length to each em- 
𝜕𝑡𝑘 𝑗 

bedding dimension, I𝑠𝑟𝑐,𝑡𝑔𝑡 denotes the total benefits of replacing 

token 𝑠𝑟𝑐 with 𝑡𝑔𝑡 . We search the target token 𝛿 in the vocabulary 
to maximize the token replace increment with the source token 𝑡𝑘. 

(the perturbation is highlighted with the color red). 
For character-level perturbation, we consider character insertion I𝑠𝑟𝑐,𝑡𝑔𝑡 = 

∑︁
(𝐸(𝑡𝑔𝑡) − 𝐸 (𝑠𝑟𝑐)) × 

𝜕𝑓 (𝑥 )
 𝜕𝑡𝑘 

𝛿 = 

argmax𝑡𝑔𝑡 

I𝑡𝑘,𝑡𝑔𝑡 ; 

𝑗 𝑖 
perturbation. Specifically, we insert one character 𝑐 into token 𝑡𝑘 to (3)  

get another token 𝛿. The character-inset perturbation is common in 
the real world when typing quickly and can be unnoticeable without 
careful examination. Because character insertion is likely to result 

For structure-level perturbation, we follow existing work [25, 45] 
to parse the seed input sentence as a constituency tree and replace 
the critical token with another token based on Bert [4]. Unlike 

Original 𝜖 Do you know who Rie Miyazawa is? 

 
Character-Level 

1 Do you know who Rie Miya-zawa is? 

2 Do you know whoo Rie Miya-zawa is? 

 
Token-Level 

1 Do Hello know who Rie Miyazawa is? 

2 Do Hello know who Hill Miyazawa is? 

 
Structure-Level 

1 Do you remember who Rie Miyazawa is? 

2 Do you remember what Rie Miyazawa is? 
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token-level perturbation, the structure-level perturbation ensures Table 4: The NMT systems under test in our experiments 

the constituency structure of the perturbed sentence is the same   

as the seed one. Fig. 5 shows an example of the structure-level 
perturbation. After replacing the critical token, the constituency 
tree is the same as the seed one. 

Model Source Target Vocab Size max_length 

 

S 

 
 
 

PRP$ 

 
NP VP 

 
NN  VBZ VP NP 

  
VBG NP PP NP 

 
efficiency degradation issue. To show that existing correctness test- 
ing methods can not generate test inputs that trigger efficiency 
degradation for NMT systems. We compare NMTSloth against four 

NNS IN NN NN NNS state-of-the-art correctness testing methods, which are designed to 
group 

Our  is detecting  bugs  in deep 
team 

neural  networks generate testing inputs that produce incorrect translation results. 
Specifically, we choose SIT [25], TransRepair [45], Seq2Sick [9], 
and SynError [3] as our comparison baselines. SIT proposes a 

Figure 5: Constituency tree of sentence 

 
Efficiency Degradation Detection: After collecting candidate per- 
turbations 𝐿, we select an optimal perturbation from the collected 
candidate sets. Since our objective is searching this perturbation 
candidate set that will produce a longer output length, we straight- 
forwardly test all perturbations in this set and select the optimal 
perturbation that produces the maximum output length. 

6 EVALUATION 

We evaluate NMTSloth and answer the following research questions. 

• RQ 2.1 (Severity): How severe will NMTSloth degrade NMT 
systems efficiency? 

• RQ 2.2 (Effectiveness): How effective is NMTSloth in gener- 
ating test samples that degrade NMT systems efficiency? 

• RQ 2.3 (Sensitivity): Can NMTSloth generate useful test 
samples that decrease NMT systems efficiency under differ- 
ent NMT systems’ configurations? 

• RQ 2.4 (Overheads): What is the overhead of NMTSloth in 
generating test samples? 

6.1 Experimental Setup 
Models and Datasets. As shown in Table 4, we consider the follow- 
ing three public NMT systems as our evaluation models: Google’s 
T5 [43], AllenAI’s WMT14 Transformer [39], and Helsinki-NLP’s 
H-NLP Translator [32]. T5 is released by Google, which is first 
pre-trained with multiple language problems, and then fine-tuned 
on the English-German translation task. We apply English sen- 
tences from dataset ZH19 as seed inputs to generate test samples. 
AllenAI’s WMT14 is one of the NMT models from the company 
AllenAI, which is trained on the WMT19 shared news translation 
task based on the transformer architecture. We select the WMT14 
en-de model as our evaluation model, which is designed for the 
English-German translation task. H-NLP is a seq2seq model, where 
the source language is English and the target language is Chinese. 
For each experimental subject, we randomly select 1,000 inputs 
from the test dataset as the seed inputs. 
Comparison Baselines. A branch of existing works have been 
proposed for testing NMT systems [3, 9, 18, 25, 26, 45]. However, 
all of them focus on testing NMT systems’ correctness. To the 
best of our knowledge, we are the first to study NMT systems’ 

structure-invariant testing method, which is a metamorphic test- 
ing approach for validating machine translation software. Given 
a seed sentence, SIT first generates a list of similar sentences by 
modifying tokens in the seed sentence. After that, SIT compares 
the structure of the original outputs and the generated outputs 
to detect translation errors. TransRepair is similar to SIT, with 
a difference that the unperturbed parts of the sentences preserve 
their adequacy and fluency modulo the mutated tokens. Thus, any 
perturbed input sentence violating this assumption will be treated 
as incorrect. Seq2Sick replaces the tokens in seed inputs to pro- 
duce adversarial translation outputs that are entirely different from 
the original outputs. SynError is a character-level testing method, 
which minimizes the NMT system’s accuracy (BLUE score) by in- 
troducing synthetic noise. Specifically, SynError introduces four 
character-level perturbations: swap, fully random, and keyboard 
typos to perturb seed inputs to decrease the BLUE score. 
Experimental Procedure. We run NMTSloth to test the above- 
mentioned three NMT systems. Given a seed input, NMTSloth per- 
turbs the seed input with different types of perturbations. NMTSloth 
has one hyper-parameter (𝜖) that is configurable. In our experi- 
ments, we follow existing works [36] and set perturbation size (i.e., 
𝜖) from 1 to 3, representing different degrees of perturbation. For 
RQ1 (severity), we measure the percentage of the increased compu- 
tational resource, in terms of iteration loops, latency, and energy 
consumption (Eq.(4)), due to the generated test inputs compared to 
the seed inputs. For RQ2 (effectiveness), we measure the degrada- 
tion success ratio (Eq.(5)), which quantifies the percentage of the 
test inputs out of all generated by NMTSloth that can degrade the 
efficiency to a degree that is larger than a pre-defined threshold. A 
higher ratio would imply better efficacy in generating useful test in- 
puts. For RQ3 (sensitivity), we run NMTSloth on NMT systems with 
different configurations to study whether the efficacy of NMTSloth 
is sensitive to configurations. For RQ4 (overheads), we measure the 
average overheads of running NMTSloth to generate test inputs. 
Implementation. We implement NMTSloth with the PyTorch li- 
brary, using a server with Intel Xeon E5-26 CPU and eight Nvidia 
1080Ti GPUs. For the baseline methods, we implement SIT and 
TransRepair using the authors’ open sourced code [24, 25]. We 
re-implement Seq2sick and SynError according to the correspond- 
ing papers as the original implementations are not open sourced. 
For the NMT models used in our evaluation, we download the 
pre-trained models using the HuggingFace APIs, and we configure 

H-NLP 
AllenAi 

En 
En 

De 
De 

65,001 
42,024 

512 
200 

T5 En Zh 32,100 200 
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the NMT systems using both default configurations and varied 
configurations to answer RQ3. 

 

6.2 RQ 2.1: Severity 
Metrics. Our evaluation considers both hardware-independent 
metrics (i.e., number of iteration loops) and hardware-dependent 
metrics (i.e., latency and energy consumption), which quantitatively 
represent NMT systems’ efficiency. The number of iteration loops is 
a widely used hardware-independent metric for measuring software 
computational efficiency [54]. More iteration loops imply that more 

 

 

6.3 RQ2.2: Effectiveness 
This section evaluates the effectiveness of NMTSloth in generating 
useful test samples that successfully degrade the efficiency of NMT. 
Metrics. We define a metric of degradation success ratio (𝜂) to 
evaluate the effectiveness of NMTSloth. 

computations are required to be performed to handle an input, rep- 
resenting less efficiency. Response latency and energy consumption 
are two widely-used hardware-dependent metrics for measuring 

 

𝜂 = 

 
𝑥 ∈ X I([Loop(𝑥′) − Loop(𝑥)] ≥ 𝜆 × MSE𝑜𝑟𝑖𝑔) 

||X|| 
× 100% (5) 

systems efficiency. Larger latency and energy consumption clearly 
indicate less efficiency. 

 
Loops(𝑥′) − Loops(𝑥) 

As shown in Eq.(5), X is a randomly selected seed input set, Loop(𝑥) 

is the function that measures the iteration number of NMT systems 
in handling input 𝑥 , MSE𝑜𝑟𝑖𝑔 is the Mean Squared Error of the itera- 
tion number in the seed datasets that have the same input length as 

I-Loops = 

 
I-Latency = 

Loops(𝑥) 
× 100% 

Latency(𝑥′) − Latency(𝑥) 

Latency(𝑥) 
×

 

 
(4) 

𝑥 , and I(·) is the indicator function, which returns one if the state- 

ment is true, zero otherwise. The above equation assumes that the 
computational costs required by an NMT system given perturbed 
inputs shall be within 𝜆 times the MSE produced by the seed inputs 

I-Energy = 
Energy(𝑥′) − Energy(𝑥) 

Energy(𝑥) 
×
 

with the same input length. Otherwise, the perturbed inputs trigger 
efficiency degradation. Note that this same assumption is also used 
in existing works [47]. 

We use I-Loops, I-Latency, and I-energy to denote number of itera- 
tion loops, response latency, and energy consumption respectively. 

 

 

 

SIT  Seq2Sick  TransRepair  SynError  NMTSlower(C)  NMTSlower(T)  NMTSlower(S) 
 

H-NLP AllenAI T5 

The formal definitions of I-Loops, I-Latency, and I-energy are shown 

in Eq.(4), where 𝑥 denotes the seed input and 𝑥 ′ represents the per- 
turbed input under NMTSloth, Loops(·), Latency(·) and Energy(·) 

denote the functions which calculate the average number of itera- 
tion loops, latency, and energy consumption, respectively. Larger 
values of I-Loops, I-Latency, I-energy indicate a more severe ef- 
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ficiency degradation caused by the test inputs generated under 
NMTSloth. In our evaluation, we measure the hardware-dependent 
efficiency metrics (i.e., latency and energy consumption) on two 
popular hardware platforms: Intel Xeon E5-2660v3 CPU and Nvidia 
1080Ti GPU, and we measure the energy consumption on CPU and 
GPU using Intel’s RAPL interface and Nvidia’s PyNVML library. 
Results. The results of degrading NMT systems’ efficiency are 
shown in Table 5, where NMTSloth (C), NMTSloth (T), NMTSloth 
(S) represent the character-level, token-level, structure-level per- 
turbations, respectively. From the results, we have the following 
observations: (i) For all NMT systems under test, NMTSloth gener- 
ates test samples that trigger more severe efficiency degradation 
by a large margin compared to the baseline methods. For instance, 
NMTSloth generates test inputs that on average increase NMT sys- 
tems’ CPU latency, CPU energy consumption, GPU latency, and 
GPU energy consumption by 85% to 3153%, 86% to 3052%, 76% to 
1953% , and 68% to 1532%, respectively, through only perturbing one 
character or token in any seed input sentences. However, baseline 
methods could not effectively impact efficiency, since they are de- 
signed to reduce NMT systems’ accuracy, not efficiency. (ii) With an 
increased perturbation size, the corresponding test samples gener- 
ated by NMTSloth effectively degrade the NMT systems’ efficiency 
to a larger degree. 

Figure 6: Degradation success ratio under different settings 

 
Results. The results on the degradation successful ratio (𝜂) under 
different 𝜆 values are shown in Fig. 6. We observe that for all exper- 
imental settings, NMTSloth outperforms the baseline methods by a 

significant margin. For example, for H-NLP and 𝜆 = 5, NMTSloth 
achieves a degradation success ratio of 76% and 98% with token 
and character level perturbations, respectively; while all the com- 
passion baseline methods’ degradation success ratios are below 5%. 
The results indicate that NMTSloth effectively generates useful test 
samples to trigger NMT systems’ efficiency degradation. Another 
observation is that when 𝜆 = 0, baselines may generate some test 
samples that require more computations than seed inputs (𝜂 ≥ 50 

for H-NLP). However, such extra computations are not significant 
enough to indicate efficiency degradation. As we studied in Sec. 3, 
the natural efficiency variance in the NMT task could be significant, 
and the degree of extra computations incurred under baseline meth- 
ods are within the range of natural efficiency variance. As 𝜆 grows, 
𝜂 under baseline methods drop quickly. However, this observation 
does not hold for NMTSloth, where the average degradation success 
ratio of NMTSloth is still 68.9% when 𝜆 = 3. Recall that from the 
statistical prospective [30], 99.73% of the inputs will locate in the 

Answers to RQ2.1: Test samples generated by NMTSloth 
significantly degrade NMT systems efficiency in number of 
iteration loops, latency, and energy consumption. 
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Table 5: The Effectiveness Results of Test Samples in Degrading NMT Performance 

 

Subject Method 
 

𝜖 = 1 

I-Loops 

𝜖 =2 

 

𝜖 =3 

I-Latency(CPU) 

𝜖 =1 𝜖 =2 𝜖 =3 

I-Energy(CPU) 

𝜖 =1 𝜖 =2 𝜖 =3 

I-Latency(GPU) 

𝜖 =1 𝜖 =2 𝜖 =3 

I-Energy(GPU) 

𝜖 =1 𝜖 =2 𝜖 =3 
 Seq2Sick 4.31 5.84 12.28 4.83 8.85 19.55 4.84 8.85 21.47 3.73 5.90 13.24 3.77 5.96 13.33 
 19.09 19.59 19.59 19.35 19.82 19.82 19.63 20.10 20.10 14.14 14.52 14.52 14.27 14.65 14.65 SynError 
 11.83 5.99 5.35 -1.68 -8.53 -11.21 8.17 6.32 7.41 9.84 5.50 5.75 9.90 5.58 5.83 SIT 

H-NLP 0.17 
564.45 

0.17 
995.45 

0.17 
1357.77 

0.76 
764.92 

0.10 
1487.92 

0.10 
2015.70 

0.93 
785.60 

0.33 
1471.26 

0.33 
1967.05 

-0.07 
462.24 

0.00 
851.80 

0.00 
1116.80 

-0.07 
406.39 

0.00 
755.18 

0.00 
972.92 

TransRepair 
NMTSloth (C) 

 2697.77 3735.38 3917.91 3153.97 4481.93 4681.28 3052.62 4544.65 4759.71 1953.57 2729.83 2854.89 1532.91 2137.53 2221.66 NMTSloth (T) 

 142.31 311.06 612.08 146.51 451.93 877.79 147.70 461.30 870.72 101.21 275.58 523.04 95.05 259.88 508.80 NMTSloth (S) 
 Seq2Sick 1.72 2.22 2.15 1.48 2.06 1.35 1.19 1.76 1.10 1.57 1.41 0.38 1.70 1.57 0.57 
 0.38 0.38 0.38 1.89 1.89 1.89 1.75 1.75 1.75 -0.85 -0.85 -0.85 -0.71 -0.71 -0.71 SynError 
 7.06 4.12 6.67 1.73 -3.24 -4.64 1.73 -3.24 -4.60 3.95 14.25 -2.05 4.12 14.64 -1.60 SIT 

AllenAI 0.08 
35.16 

0.08 
74.90 

0.08 
103.36 

-0.37 
26.69 

-0.37 
45.77 

-0.37 
85.09 

-0.55 
27.48 

-0.55 
48.09 

-0.55 
86.00 

-0.15 
21.82 

-0.15 
35.43 

-0.15 
91.48 

-0.14 
22.12 

-0.14 
43.21 

-0.14 
98.46 

TransRepair 
NMTSloth (C) 

 24.83 42.04 56.75 49.12 62.84 67.98 49.99 62.65 69.06 30.65 41.32 46.09 31.00 41.81 49.66 NMTSloth (T) 

 66.21 108.67 128.60 86.05 139.03 164.57 84.17 135.71 160.95 69.57 112.88 132.68 68.79 115.23 137.06 NMTSloth (S) 
 Seq2Sick 7.09 6.28 -6.03 7.21 6.04 -5.97 8.55 6.88 -5.16 9.01 8.00 -3.97 8.85 16.94 4.50 
 2.18 2.18 2.18 3.20 3.20 3.20 2.11 2.11 2.11 1.02 1.02 1.02 1.13 1.13 1.13 SynError 
 -8.06 1.05 6.27 -4.51 7.79 7.38 -3.79 9.84 10.59 -10.99 3.57 7.74 -10.90 3.78 8.07 SIT 

T5 3.73 
168.92 

8.06 
198.36 

8.06 
205.37 

4.90 
191.05 

9.47 
225.48 

9.26 
233.01 

6.42 
194.45 

11.39 
228.02 

10.74 
234.04 

3.70 
164.61 

8.34 
194.79 

8.35 
202.28 

3.76 
165.38 

8.42 
195.77 

8.39 
203.29 

TransRepair 
NMTSloth (C) 

 307.27 328.94 328.94 352.14 376.55 376.55 347.74 373.85 373.85 305.37 325.61 325.61 331.85 352.25 352.25 NMTSloth (T) 

 77.67 80.56 82.52 85.72 89.11 91.38 86.90 90.29 92.56 75.77 78.68 80.66 68.79 73.03 74.56 NMTSloth (S) 

 

range of 3MSE𝑜𝑟𝑖𝑔. Thus, these results clearly show that NMTSloth 
successfully triggers NMT systems’ efficiency degradation. 

gradient-guided approach can trigger more severe efficiency degra- 
dation under this configuration. Importantly, under other config- 
urations where num_beams ranges from 2 to 5, NMTSloth can still 
trigger NMT systems’ efficiency degradation in a stable and severe 
manner (e.g., T5 requires more than 100% and 300% computations). 
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6.5 RQ2.4: Overheads 
Table 6 shows the average overhead of NMTSloth in generating a 
test input, we report only the overhead of NMTSloth because the 

Figure 7: I-Loops under different beam search size 

 
6.4  RQ2.3: Sensitivity 
As we introduced in Sec. 2, modern NMT systems apply the beam 
search algorithm to generate the output token. The beam search 
algorithm requires one hyper-parameter, the beam search size 
(num_beams), to define the search space. In Sec. 6.3, we evaluate 
the effectiveness of NMTSloth under each NMT systems’ default 
num_beams. In this section, we evaluate whether NMTSloth is sen- 
sitive to the configuration of num_beams. We configure each NMT 
system under test with different num_beams (ranging from 1 to 5) 
and measure the I-Loops of the generated test samples. The experi- 
mental results are shown in Fig. 7. From the results, we observe that 
when the beam search size num_beams is set to 1, the test samples 
generated by NMTSloth can degrade the NMT systems efficiency 
slightly more than other beam search size settings. This is because 
when num_beams=1, the token generation process is a gradient- 
smooth process, and the token search space is limited. Thus, our 

comparison baselines cannot degrade NMT systems’ efficiency. The 
measured overhead of NMTSloth is rather reasonable (ranging from 
7.5s to 106.35s) and may increase linearly as the perturbation size 
increases. The linearly increasing overheads are due to the fact that 
NMTSloth is an iterative approach (iteration number equals to 𝜖), 
and the overhead within each iteration is stable. Note that such 
reasonable overhead is not a concern since perturbed test inputs 
are generated by NMTSloth offline. 

 

Table 6: Average overheads of NMTSloth (s) 

 
Method 𝜖 H-NLP AllenAI T5 Average 

 

NMTSloth (C) 

1 11.40 21.14 18.50 17.01 
2 31.80 44.66 45.59 40.68 

3 59.76 69.56 74.48 67.93 

 

NMTSloth (T) 

1 7.50 18.45 22.62 16.19 
2 31.41 39.48 61.86 44.25 

3 62.50 62.54 100.01 75.02 

 

NMTSloth (S) 

1 10.52 39.19 6.73 18.81 
2 23.33 75.21 17.45 38.66 

3 38.93 106.35 27.71 57.66 

Answers to RQ2.2: NMTSloth effectively generates test 
samples that trigger NMT systems’ efficiency degradation. 

Answers to RQ2.3: NMTSloth can generate test samples 
that degrade NMT systems efficiency under different beam 
search size configurations. Moreover, the efficiency degra- 
dation is more severe when the beam search size is config- 
ured as one. 
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7 DISCUSSION 
In this section, we further present a real-world case study to discuss 
how NMT systems’ efficiency degradation will impact real-world 
devices’ battery power. After that, we show how developers could 

the blue one is for the original seed input. The results show that the 
perturbed input consumes the mobile’s battery power significantly 
more quickly than the seed input. Specifically, after 300 iterations, 
the perturbed input consumes 30% of the battery power, while 
the seed input consumes less than 1%. The results demonstrate the 
vulnerability of the efficiency degradation for mobile devices. Recall 
that the perturbed example used in our experiment only inserts one 
character in the seed sentence, which would mimic many practical 
scenarios (e.g., typo). Thus, the results suggest the criticality and 
the necessity of improving NMT systems’ efficiency robustness. 

Table 8: The accuracy and extra overheads of the detector 

apply NMTSloth to improve NMT systems’ efficiency robustness   

and mitigate computational resource waste. Finally, we discuss 
potential threats that might threaten the applicability of NMTSloth 
and how we alleviate them. 

7.1 Real-World Case Study 

Table 7: Input sentences for experiments on mobile devices 

 

 

 

 

 

 
Experimental Setup. We select Google T5 as our evaluation NMT 
model in this case study. We first deploy the model on the Samsung 
Galaxy S9+, which has 6GB RAM and a battery capacity of 3500 
mAh. After that, we select one sentence from the dataset ZH19 as 
our seed input; we then apply NMTSloth to perturb the seed input 
with character-level perturbation and obtain the corresponding test 
sample. The seed sentence and the corresponding test sample are 
shown in Table 7, where the perturbation is colored in red. Notice 
the test sample inserts only one character in the seed sentence. This 
one-character perturbation is very common in the real world due 
to a user’s typo. Finally, we feed the seed input and test sample to 
the deployed NMT system and measure the mobile device’s battery 
consumption rate. 
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Figure 8: Remaining battery power of the mobile device after 
T5 translating seed and perturbed sentences 

 
Experimental Results. The mobile phone’s battery consumption 
status is shown in Fig. 8. The red line is for the perturbed input, and 

7.2 Mitigation. 
This section shows how developers leverage NMTSloth to develop 
runtime abnormal input detector, which mitigates possible effi- 
ciency degradation and computational waste under the adversary 
scenario (e.g., DOS attack). In detail, we propose a approach to filter 
out test inputs that require abnormal computational resources at 
runtime. Because the abnormal inputs are forced to quit at early 
stage, thus the computational resources waste are avoided. The 
idea of applying input validation to improve DNNs correctness 
robustness has been studied in recent works [50, 51]. However, ex- 
isting input validation techniques may not be suitable for improving 
NMT systems efficiency robustness due to the high overheads. Our 
intuition is that although normal inputs and the computational 
resource heavy inputs look similar in human eyes, the latent repre- 
sentations of these two categories of inputs are quite different [50]. 
Thus, we can leverage the latent representations of these two cat- 
egory inputs to train a light-weighted SVM classifier and apply 
the classifier to distinguish abnormal inputs at runtime. Because 
the classifier should be light-weighted, getting each input’s latent 
representations is preferable without additional computations. As 
we introduced in Sec. 2, NMT systems run the encoder once and 
only once for each input sentence to get the hidden state (i.e., ℎ in 
Fig. 1), we propose to use the output of the encoder as the latent 
representation to train a lighted-weighted SVM classifier. 

Experimental Setup. For each NMT system in our evaluation, we 
randomly choose 1,000 seed inputs and apply NMTSloth to generate 
1,000 abnormal inputs for each perturbation types. We randomly 
select 80% of the seed inputs and the abnormal inputs as the training 
data to train the SVM classifier, and use the rest 20% for testing. We 
run the trained SVM classifier on the testing dataset and measure 
the detectors’ AUC score, extra computation overheads. 

Answers to RQ2.4: The overheads of NMTSloth are rea- 
sonable and may increase linearly as the perturbation size 
increase. Specifically, when 𝜖 = 1, NMTSloth costs 17.01, 
16.19, and 18.81 seconds to generate character-level, token- 
level, and structure-level test samples. 

Adversarail 

Benign 

E
n

e
rg

y
 (
%
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Subject Metric (%) NMTSloth (C) 
Perturbation 

NMTSloth (T) 
Type 
NMTSloth (S) Mixed 

 Acc 99.98 99.99 99.98 99.98 

H-NLP 
AUC 

Overheads 
100.00 

0.17 
100.00 

0.32 
100.00 

0.18 
100.00 

0.74 
 Energy 0.09 0.17 0.12 0.48 
 Acc 100.00 100.00 87.00 98.00 

AllenAI 
AUC 

Overheads 
100.00 

0.17 
100.00 

0.08 
98.32 
0.49 

100.00 
0.86 

 Energy 0.11 0.05 0.30 0.79 
 Acc 99.97 100.00 99.99 100.00 

T5 
AUC 

Overheads 
100.00 

0.08 
100.00 

0.06 
100.00 

0.03 
100.00 

0.18 

 Energy 0.05 0.04 0.02 0.11 

 

 
Seed Input 

Death comes often to the soldiers and marines who are 
fighting in anbar province, which is roughly the size of 
louisiana and is the most intractable region in iraq. 

 
Test Input 

Death comes often to the soldiers and marines who are 
fighting in anbar province, which is roughly the (size of 
of louisiana and is the most intractable region in iraq. 
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Experimental Results. The experimental results are shown in 
Table 8. Each column in Table 8 represents the performance in de- 
tecting one specific perturbation type and “Mixed” represents the 
performance in detecting a mixed set of three perturbation types. 
We observe that the proposed detector achieves almost perfect de- 
tection accuracy with a lowest accuracy of 87.00%. Moreover, the 
proposed detector’s overheads and energy consumption are negli- 
gible compared to those incurred under the NMT system. All exper- 
imental subjects’ extra overheads and the energy consumption are 
merely at most 1% of the original NMT systems’ overheads in trans- 
lation normal sentences. The results show that our validation-based 
approach can effectively filter out the abnormal input sentences 
with negligible overheads. 

 

7.3 Threat Analysis. 
Our selection of the three NMT systems, namely, Google T5, AllenAI 
WMT14, and H-NLP, might threaten the external validity of our 
experimental conclusions. We alleviate this threat by the following 
efforts: (1) the three NMT systems are very popular and have been 
widely used among developers (with more than 592,793 downloads 
in Jan 2022); (2) their underlying DNN models are state-of-the-art 
models; (3) these systems differ from each other by diverse topics 
(e.g., model architecture, language, training corpus, training process) 
Therefore, our experimental conclusions should generally hold, al- 
though specific data could be inevitably different for other subjects. 
Our internal threat mainly comes from our definition of different 
perturbation types. Our introduced perturbation may not always 
be grammatically correct (e.g., inserting one character may result in 
an unknown token). However, as discussed in Sec. 2, such perturba- 
tions may not be typical but exist in the real-world (e.g., user typos, 
adversarial manner). Thus, it is meaningful to understand NMT 
systems’ efficiency degradation with such realistic perturbations. 
Moreover, all three perturbation types are well studied in related 
works [10, 11, 18, 25, 26, 44, 45, 58, 59, 61]. 

 

8 RELATED WORK 

NMT Systems. A detailed overview of recent works on NMT sys- 
tems and testing NMT systems have been given in Sec. 2. 

Adversarial Attacks & DNN Robustness. Recent works [5, 40, 
47, 56, 58, 59] show that DNN-based applications are not robust 
under adversarial attacks, which generate adversarial examples to 
fool the state-of-the-art DNN-based applications. Existing adver- 
sarial attacks can be grouped as white-box, and black-box attacks 
based on their access to the DNN parameters. To improve DNNs 
robustness and mitigate the threats of adversarial attacks, a series 
defense approaches [8, 13, 34, 52, 57] have been proposed. For ex- 
ample, FeatureSqueeze [57] introduces a series of feature squeeze 
approaches to mitigate the adversarial perturbations during DNN 
runtime. NNMutate[52] identifies that adversarial examples are the 
data points close to the DNN decision boundary and thus proposes 
applying model mutation techniques to detect adversarial samples. 

DNN’s Efficiency. Recently, the efficiency of DNNs has raised 
much concern due to their substantial inference-time costs. To im- 
prove DNN’ inference-time efficiency, many existing works have 
been proposed, categorized into two major techniques. The first 

category [29, 60] of techniques prune the DNNs offline to iden- 
tify important neurons and remove unimportant ones. After prun- 
ing, the smaller size DNNs could achieve competitive accuracy 
compared to the original DNNs while incurring significantly less 
computational costs. Another category of techniques [14, 16, 53], 
called input-adaptive techniques, dynamically skip a certain part of 
the DNNs to reduce the number of computations during inference 
time. By skipping certain parts of the DNNs, the input-adaptive 
DNNs can trade-off between accuracy and computational costs. 
However, recent studies [7, 19, 20, 28] show input-adaptive DNNs 
are not robustness against the adversary attack, which implies the 
input-adaptive will not save computational costs under attacks. 

9 CONCLUSIONS 
In this work, we study the efficiency robustness of NMT systems. 
Specifically, we propose NMTSloth, a framework that introduces im- 
perceptible perturbations to perturb seed inputs to reduce NMT sys- 
tems’ computation efficiency. Evaluation on three public-available 
NMT systems shows that NMTSloth can generate effective test in- 
puts that may significantly decrease NMT systems’ efficiency. 
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