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ABSTRACT

In many scenarios, 1) data streams are generated in real time; 2)
labeled data are expensive and only limited labels are available in
the beginning; 3) real-world data is not always i.i.d. and data drift
over time gradually; 4) the storage of historical streams is limited.
This learning setting limits the applicability and availability of many
Machine Learning (ML) algorithms. We generalize the learning task
under such setting as a semi-supervised drifted stream learning with
short lookback problem (SDSL). SDSL imposes two under-addressed
challenges on existing methods in semi-supervised learning and
continuous learning: 1) robust pseudo-labeling under gradual shifts
and 2) anti-forgetting adaptation with short lookback. To tackle
these challenges, we propose a principled and generic generation-
replay framework to solve SDSL. To achieve robust pseudo-labeling,
we develop a novel pseudo-label classification model to leverage
supervised knowledge of previously labeled data, unsupervised
knowledge of new data, and, structure knowledge of invariant
label semantics. To achieve adaptive anti-forgetting model replay,
we propose to view the anti-forgetting adaptation task as a flat
region search problem. We propose a novel minimax game-based
replay objective function to solve the flat region search problem
and develop an effective optimization solver. Experimental results
demonstrate the effectiveness of the proposed method.
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Figure 1: Learning in the semi-supervised, stream, gradually
drifted data environment with short lookback.
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1 INTRODUCTION

Many mobile Apps, such as Snapchat, generate unlabeled internet
traffic streams in real time. In-App activities (e.g., share photos,
videos, text, and drawings) could drift over time, resulting in dis-
tribution shifts. Due to mobile privacy concerns, many companies
implement a very short data retention duration policy. We only
have access to the most recent data (e.g., a short lookback window).
Therefore, learning with short lookback in unlabeled drifted streams
is critical for in-App activity classification. This scenario can be gen-
eralized as a new learning problem: Semi-supervised Drifted Stream
learning with short Lookback (SDSL), which is depicted in Figure
1. SDSL can enable a model to adaptively learn from an unlabeled
stream of evolving distribution shifts, with limited initial labels and
small lookback windows for training. Solving SDSL can address
multiple critical issues to increase the availability and applicabil-
ity of ML algorithms. For example, in many scenarios, 1) data are
generated in real time; 2) and labeled data are expensive and only
limited labels are available in the beginning of time; 3) real-world
data is not always i.i.d. and data drift over time gradually; 4) the
storage of historical streams is limited, so model updating can only
be achieved based on a very short lookback window.

There are two major challenges in solving SDSL: 1) robust pseudo-
labeling under distribution shifts, 2) anti-forgetting adaptation with
short lookback. First, except for the initially given labels, all the
incoming streams are unlabeled. The evolving distribution shifts
further introduce bias into the task of labeling new data: training a
classifier on the previously labeled data, but utilizing the classifier to
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predict labels of forthcoming drifted data. Robust pseudo-labeling
seeks to answer: how can we generate robust and quality pseudo-
labels of unlabeled streams to augment old data? Second, SDSL can
suffer from forgetting. This is because: 1) due to stream storage
limitations and privacy-driven short data retention policies, less old
data are stored for retraining; 2) and when a model adapts to new
drifted data, the model parameters change to fit new data and forget
old knowledge. A model that forgets old knowledge will perform
poorly when new data with old distribution re-appear in the future
stream. Therefore, anti-forgetting adaptation under short lookback
is intended to answer: how can we learn new knowledge, while not
forgetting old knowledge with limited historical data for replay?

Relevant works can only partially solve SDSL. First, SDSL is
related to Semi-Supervised Learning (SSL) algorithms [1, 5], which
combine a small amount of labeled data with a large amount of
unlabeled data during training. However, in classic SSL, 1) the
labeled and unlabeled data are assumed to sample from an i.i.d dis-
tribution; 2) and unlabeled data is static without evolving shift over
streams [1]. Second, SDSL is related to continual learning that learns
knowledge of new data without forgetting learned knowledge of
old data. However, classic continual learning assumes newly gener-
ated data in streams are all labeled [15, 18]. Third, SDSL is related to
domain adaptation [24, 25] that aims to transfer knowledge learned
from one or multiple labeled source domains to an unlabeled target
domain. However, in classic domain adaption, both source domains
and target domains are static [15, 18]. Existing studies demonstrate
the inability to jointly address both robust pseudo-labeling and
anti-forgetting adaptation with short lookback in SDSL. As a result,
we need a novel perspective to derive the novel formulation and
solver of SDSL.

Our insights: an integrated robust and antiforgetting per-
spective. We formulate a generic learning problem of SDSL for
semi-supervised, stream, limited lookback memory, evolving distri-
bution shift environments. We show that semi-supervised learning
in streams can be solved by iterating the label generation and the
model replay process, where the label generation is to generate
pseudo-labels for the newly coming unlabeled data stream, and
the model replay is to retrain the learning model with old data of
short lookback and pseudo-labeled new data. Robust pseudo-labels
are important for effective SDSL. We find that leveraging invariant
structure knowledge in streaming data can fight against the bias in-
troduced by evolving distribution drifts for the robust pseudo-label
generation. We demonstrate that to better learn patterns at the
transition between old and new data, the model replay needs to be
adaptive while anti-forgetting, even with a short lookback window.
This requirement can be reformulated into a task of automated
identification of flat regions. We highlight that the automated flat
gradient region identification problem is indeed a minimax game.
Solving the minimax game can effectively help the model to achieve
both the anti-forgetting replay with limited old lookback data and
adaption to new data.

Summary of Proposed Approach. Inspired by these findings,
this paper presents the first attempt to develop a principled and
generic generation-replay framework for the SDSL problem by
iterating the robust pseudo-label generation and the adaptive anti-
forgetting model replay. The framework has two goals: 1) robust
pseudo-label generation against evolving distribution shifts in the
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Figure 2: The training and testing stage of SDSL.
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generation step; 2) balancing anti-forgetting replay and effective
adaptation in the replay step. To achieve Goal 1, we develop a
three-step robust label generation method to leverage multi-level
knowledge. In particular, we find that robustness of pseudo-labels
can be improved by modeling supervised knowledge from previ-
ously labeled data, unsupervised knowledge from new unlabeled
drifted data, and structure knowledge from invariant label class
semantics. Step 1 develops a supervised neural encoder-based clas-
sifier trained on previously labeled data. Then, we adopt a center-
based clustering method to adjust labels on new drifted data, and
leverage the invariance of label class semantics to regularize the
neural encoder-based classifier. To achieve Goal 2, we develop an
adaptive anti-forgetting model replay technique. In particular, we
reformulate the adaptive anti-forgetting model replay into a flat
region search problem. We propose a novel minimax game-based
replay objective to automatically find the flat region to minimize
the predictive loss on both previous data and new drifted data. And
we develop an effective optimization method to solve the minimax
game. Finally, we present extensive empirical results to demonstrate
the effectiveness of our method for learning in the semi-supervised,
streaming, gradually drifted, and short lookback setting.

2 PROBLEM STATEMENT

The SDSL Problem. Let D to denote gold standard label data at
t=0 and D to denote pseudo-labeled data at #>0. Considering the
existence of the initial labeled data that includes a feature matrix X
and a gold standard label vector yy in the very beginning (denoted
by D = {Xo,y0} ), and a drifted unlabeled data stream (denoted
by a feature matrix list of stream segmentations [Xt]z;l). we aim
to train an adaptive model to classify all the data points of the
unlabeled data stream into a fixed number of classes. At time t, the
model generates a list of pseudo-labeled sets [y1, ..., ys—1] for the
list of unlabeled stream segmentations [Xj, ..., X;—1].

During the training phase (Figure 2), we iteratively learn the
adaptive model h that takes only the initial gold standard labeled
data O and the short lookback of the (¢-1)-th pseudo-labeled stream
segmentation (denoted by Dyoq = {X¢-1,¥:-1}) as inputs, and pre-
dicts the pseudo-labels (denoted by ;) of the ¢-th stream segmen-
tation (denoted by X;) at the time t. Formally, the approximation
function h with learning parameters 0 is given by:

ho(D, Di-1,Xs) = V- (1)
The optimization objective is to learn the model that can 1) gener-
ate robust pseudo-labels, and 2) prevent forgetting old data while
adapting well to new data.
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Figure 3: Overview of the proposed framework.

3 THE GENERATION-REPLAY FRAMEWORK

3.1 Overview

Figure 3 shows our proposed generation-replay framework includ-
ing two components: 1) pseudo label generation; 2) adaptive anti-
forgetting model replay. To achieve robust pseudo-label generation,
we propose a three-step approach to improve the robustness of gen-
erated pseudo-labels by leveraging the knowledge from previously
labeled data, new unlabeled data, and invariant label classes seman-
tics, i.e., class correlations. In particular, in Step 1, we first train an
integrated encoder and a classifier by minimizing the predictive
loss on previous gold-labeled data and pseudo-labeled data at ¢-1.
We then use the trained classifier to predict and obtain the initial
pseudo-labels of forthcoming unlabeled drifted data at ¢. Since the
trained neural classifier learns previous knowledge that is partially
overlapped with the knowledge of forthcoming drifted data, the
labels of new drifted data that are non-overlapped with previous
knowledge could be biased and inaccurate. In Step 2, we then pro-
pose to use an unsupervised centroid-based clustering method to
adjust the labels of new drifted data by repeatably assigning the
new drifted data to the nearest class centroid and updating class
centroids until converged. The adjusted pseudo-labels of the forth-
coming unlabeled drifted data are compared with model predicted
labels to create loss signals as feedback to improve the neural inte-
grated encoder-classifier method. Besides, we find that the semantic
meanings of label classes remain invariant during the SDSL. We pro-
pose to leverage the invariance property of label class embeddings
to further refine the class centroids. Specifically, we optimize the
label class centroid via fixing label latent embedding learned from
initial gold-labeled data. After obtaining the refined class centroids,
we reassign forthcoming drifted data to the nearest class cluster
centroid to generate debiased and robust labels. To achieve adap-
tive anti-forgetting model replay, we aim to retrain the integrated
encoder-classifier to prevent forgetting previous knowledge while
adapting well to new drifted data. We formulate this joint objec-
tive into a problem of searching the flat region. It is challenging
to not just search the flat region but also identify the width of the
flat region. We found that the challenge can be converted into a
formulation of solving a minimax game. We develop an effective
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Figure 4: The Robust Pseudo-Label Generation Process.

optimization method to solve the minimax game to find the flat
region and identify its width.

3.2 Robust Pseudo Label Generation

Why Robust Pseudo Label Generation Matters. Conventional
semi-supervised learning generates pseudo-labels based on the
predictions of a supervised model on labeled data (i.e., pseudo-label
generation stage) and then integrates the pseudo-labeled new data
to retrain an updated model (i.e., replay stage). In this way, the
network gradually generalizes to unlabeled data in a self-paced
curriculum learning manner [7]. However, such a strategy is not
applicable to the SDSL setting because the unlabeled stream data
drift over time. Note that the supervised model is trained based on
previously labeled data. When the supervised model predicts on
forthcoming drifted unlabeled data, the generated pseudo-labels
are likely to be biased and inaccurate, which will propagate errors
to the replay stage.

Leveraging Multi-level Knowledge to Robustify Pseudo-Label
Generation. We find that label generation of unlabeled drifted data
under SDSL can be made more robust by integrating supervised
knowledge from previously labeled data, unsupervised knowledge
from new unlabeled drifted data, and structure knowledge from
invariant label class semantic meanings and relationships. Based
on our unique insight, we propose a step-by-step testable method
that includes three steps. Figure 4 illustrates the framework of the
robust pseudo-label generation process.

Step 1: Leveraging Supervised Knowledge In a stream, data
distributions drift gradually. In other words, the distribution of
forthcoming unlabeled drifted data partially overlaps with the dis-
tribution of previous data. As shown in Figure 4, historical gold-
labeled data and pseudo-labeled data still contain useful knowledge
that can be used to predict the overlapped part of forthcoming
drifted unlabeled data.

To this end, we develop an encoder-based neural classification
model. This model jointly includes a multi-layer neural encoder
f and a neural classifier g as an approximation function of the
classification model: h = g(f(-)). The neural encoder takes a data
point as input and outputs the embedding of the data point. The
neural classifier takes the embedding of the data point as features
and outputs the predicted labels. Aside from the approximation
function, we use the Cross-Entropy (CE) loss £(-,-) to measure
classification errors. Formally, the optimization objective function
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can be formulated as:

main Lcp(D,Dy-136) = t(hg(xi),yi)- (2)

2

(x1,y:) {DUD,1 }

In this way, we leverage the gold labels and previous pseudo-labels
of historical data as supervision signals to learn the encoder-based
neural classifier to further generate initial pseudo-labels for current
unlabeled data X;, which will be introduced next.

Step 2: Leveraging Unsupervised Knowledge. Since the trained
encoder-based neural classifier learns previous knowledge that is
partially overlapped with the knowledge of forthcoming drifted
data, the labels of new drifted data that are non-overlapped with
previous data distributions could be biased and inaccurate. How
can we improve the label quality of new drifted data whose patterns
are not seen in the knowledge of previous data?

We find that unsupervised knowledge in new drifted unlabeled
data is helpful for improving and refining the labels of such data
themselves. Centroid-based clustering is an unsupervised learning
method to exploit unsupervised information to discover data group-
ing patterns. Different from using the centroid-based clustering
for data grouping, we propose to use such a method for data label
adjustment. The high-level idea is to exploit the centroid-based
clustering to adjust the labels of new drifted data by repeatably
assigning the new drifted data to the nearest class centroid and
updating class centroids until converged. The underlying insight is
that label class centroid-based clustering reassigns labels based on
the global pattern structure of new unlabeled drifted data.

Specifically, in Step 2, we firstly use the trained encoder-based
neural classifier to classify the labels of new drifted unlabeled data.
We then use these classified labels to compute the centroids of all the
label classes. In the initialization of the centroid-based clustering,
we exploit all the class centroids as the initial cluster centroids.
Formally, the centroid embedding in class c are initialized as via:

2x;ex, 0(h(xi)) f(xi)
Zxiex, O0(h(x)) -

where §(-) is the softmax function [10]. We then repeat two tasks: as-
signing data points to the nearest class and updating class centroids,
until converged (e.g., maximum number of iterations). Particularly,
in the data reassignment task, given the class centroid uy, we con-
struct the nearest centroid classifier to assign each unlabeled data
point x; € X; to a class cluster as:

o =

®)

; = arg Hgg d(f(xi),ue), 4

where d(-, -) measures the cosine distance between data x; and the
class centroid u.. And C denotes class numbers. Given the new
pseudo-labels, we update the class centroids at each iteration k by:

2xex, f(xi) * L(yi == 1)
thex,» I(yi == ¢)

o =

®)

where 1(-) is the indicator function. The centroid-based clustering
can reduce the error caused by supervised prediction under drifted
data, and generate adjusted pseudo-labels.

Finally, the adjusted pseudo-labels of the forthcoming unlabeled
drifted data are compared with model predictions to create loss
signals as feedback to improve the training of the encoder-based
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neural classifier. The objective function can be formulated as:

min Lpy(Xe:0) = ) £(ho(xi). Gi).

X; €Xs

(6)

Step 3: Leveraging Structure Knowledge of Invariant Label se-
mantics Intuitively, the semantic meanings of label classes remain
invariant during the SDSL. We show that leveraging the invariance
property of label class semantics can further refine the quality of the
generated pseudo-labels of new drifted data. Our insight is based
on the invariance property of label classes. The embeddings of label
classes should remain invariant over timelines.

The underlying idea is that label quality can be improved by
reassigning data points based on improved label class centroids. To
improve the accuracy of label class centroids, we can treat label
class centroids as a matrix and exploit factorization-based matrix
reconstruction to reconstruct improved label class centroids. No-
tablely, factorizing the class centroid matrix can factorized into the
embeddings of features and the embeddings of label classes, which
links to the invariance regularization of label class embedding.

Specifically, in Step 3, we first obtain the gold standard label class
embedding V by factorizing the class centroid matrix U of the gold
standard labeled data (D) at t=0. We then perform factorization-
based class centroid matrix reconstruction, by fixing the embedding
of label classes V to that learned from initial gold standard label
data at t=0. Formally, the regularization term is defined as:

R(Up) = min [Us = H V2. )
With the given label class embedding V, we update class centroids
U; and feature latent embeddings H; iteratively. By solving the
optimization problem, we obtain the refined class centroids. Finally,
we reassign forthcoming drifted data to the nearest class cluster
centroid to generate debiased and robust pseudo-labels.

Final loss function The final objective function of robust pseudo-
label generation can be represented as :

Liotal = Lop(D, Di—1;0) + Lpr(Xe; 0) + R(Uy), ®)

where Lcg(D, Dy_1; 0) represents cross-entropy loss on gold-labeled
data D and pseudo-labeled data Dy_1. Besides, R(U;) term stabi-
lizes the updating of centroids which contains invariant label class
semantics. A detailed optimization process can be referred to Algo-
rithm 1 in Appendix A.1.

3.3 Adaptive Anti-forgetting Model Replay

After generating robust pseudo-labels for the newly coming unla-
beled drifted data at time ¢, we treat such pseudo-labeled data as
part of training data, and retrain the encoder-based neural classifier
using the gold label data D and the newly generated pseudo-labeled
data D, at time ¢. To simplify our description, we ignore D in the
following sections, since D is available across timelines.

Why Anti-forgetting Adaptation Matters? The key challenge
of retraining the model is that, due to the privacy concerned short
data retention policies in mobile and social applications and limited
memory storage capacity of big stream data, a continuous learning
model adapts to new data, new patterns, and new knowledge, while
forgetting old data and knowledge at the same time. Figure 5 (a)
shows that after adapting to new data, the new model (6) shifts to
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(b)

the right side of the old model (61). There are two key observations
of adapting to drifted data: 1) the overlapped area between the
new model and the old model becomes smaller and smaller. 2) the
red inflection point of loss minimal in the new model results in a
higher loss in the old model. Both observations indicate the new
adapted model loses previous knowledge. How can we strive for
a balance between anti-forgetting and adaptation? Many studies
develop various technical solutions [9] to impose a regularization:
the parameters of the new model should not deviate too much from
previous parameters, i.e., ming, ||6; — 62||2. Such a regularization
term, however, can still cause a significant performance drop on
previous data. Figure 5 (b) shows the new model parameters are
forced to be similar to the old model parameters, so that the over-
lapped area of the two models grows larger. However, the red-color
loss minimal point of the new model still obtains a high loss in the
old model, i.e., L(02) > L(01).

Anti-forgetting Adaptation as A Minimax Game. Inspired by
[20], we leverage the concept of the flat region to strive a balance
between anti-forgetting and adaptation in semi-supervised stream
learning. Figure 5 (c) shows why the flat region (denoted by 0* —
a < 0 < 0* + a, where a is the width of the flat region) concept
works. Fundamentally, the flat region represents a set of optimal
or near optimal candidate model instantiations in the model space
on old data. Finding such a flat region can effectively increase the
overlapped area of the new model and the old model and maintain
a low loss on previous data, while at the same time allowing the
new model to adapt and shift to new data. This flat region searching
and optimization relaxation process to strive for a balance between
anti-forgetting and adaptation can be described by finding a model
parameter (0) that satisfies:

min Z L(x;0)
XiEDt (9)
st. 0 —a<0<60*+a.

where the width a of the flat region is manually specified based on
empirical and domain experiences [20, 21].

However, in a dynamic learning environment of SDSL, the best
flat region width will dynamically vary when both old data and new
data change at different times. Therefore, it is impractical to directly
integrate the above formulation of the flat region. The key research
question is: can we find the flat region while automatically identify
the best width of the flat region? We find that searching the flat
region while identifying the best width can be reformulated into a
computationally tangible minimax game. Assuming the parameters
of a model can vary in a certain flat region defined by 6* — ¢ <
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0 < 0* + £. We identify the upper bound of the model loss in the
region of ¢ and find the worst case by maximizing the training
loss of the network on the new data @t, which is described by
maxg Yy, e, Lo, (Xil0 + §). After the loss upper bound (worst
case) over the region is measured, we minimize and lower the loss
upper bound over the region to find the feasible parameters that
can minimize the current loss. Besides, as depicted in Figure 5.(c), &
lies in the neighborhoods around parameters trained on previous
data D;_1, the optimization of ¢ should follow ¢ € M where M
represents the space span by previous parameters trained on D;_j.
Formally, the objective function can be formulated as:

meinmax Z Lp,(xi;0+8)
x; €Dy (10)
st. e M.

Solving the Optimization Problem. Based on the gradient pro-
jection method [19], the adversarial weight perturbation & can be
updated with the projection on space M via the step size 71,

&= E+mprojy (Vg Lo, (0 + ). (11)

Notably, 6 at time ¢t —1 preserves the previously acquired knowledge
which is spanned by M. When coming to D;, we only update 0
along the orthogonal direction of M, leading to the least change (or
locally no change) to the learned 6. Especially, the parameter € can
be adaptively updated with each D; as:

0 «— 0 —n2(I - projy) (Vg Lo, (0r +&)). (12)

where I is the identity matrix and 72 is the step size. Concretely,
we present the Algorithm overview of the model replay stage in
Appendix A.2. Additionally, we show a theoretical analysis on why
the flat region can help mitigate forgetting when adapting on shifted
streaming data with short lookback and why our method works in
Appendix A.3.

4 EXPERIMENTS

We conduct extensive experiments on various datasets to evaluate
the performance of our method. Specifically, our experiments aim
to answer the following questions: Q1: Can our method outperform
baselines on the semi-supervised drifted stream learning problem?
Q2: Can our method generate robust pseudo-labels? Q3: Can our
method effectively alleviate the forgetting problem? Q4: Can the
flat region theory be supported by empirical investigations?

4.1 Experimental Setup

4.1.1  Data Description. We conducted experiments on eight datasets,
including four widely-used synthetic benchmark datasets of stream
learning research (i.e., UG_2C_2D, UG_2C_3D, UG_2C_5D and
MG_2C_2D ) and four real-world stationary classification datasets
(i.e., Optdigits, Spam, Satimage and Twonorm). Table 2 in Appendix
A4 shows the statistics of datasets. Specifically, we exploited the
same setting in [5, 22] to simulate the distribution shift manually by
regrouping the instances for the four classification datasets, At each
time, 1,000 instances arrived for UG_2C_2D and 2,000 instances
arrived for UG_2C_3D, UG_2C_5D, MG_2C_2D, which were split
into test and unlabeled datasets in a 30% and 70% ratio. For the
Optdigits, Twonorm and Satimage datasets, 200 instances arrived
each time and were split into 160 as unlabeled data and 40 as test
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data. For the Spam dataset, 400 instances arrived at every time step
and were split into 280 as unlabeled data and 120 as test data.

4.1.2  Baseline Algorithms. Since there are limited studies work-
ing on the SDSL setting, we compared our method with the semi-
supervised learning methods [5], domain adaptation methods via
evolving shifted data [9, 24] and other competitive baseline meth-
ods: (1) Supervised Training (ST): simply trains the model on the
gold standard labeled data once and tests the model on stream data
without adaptation. (2) Joint Training (JT): assumes that the gold
standard labels are available for all the streaming data at each time.
The model is jointly trained on all the labeled data ever seen. (3)
Pseudo-labeling with high confidence (PL-Conf) [7]: stores
examples with high softmax probability at each time. (4) Evolu-
tion Adaptive Meta-Learning (EAML) [9]: is a strong baseline
that adapts to gradually shifted data without forgetting. EAML
penalizes model parameters with a Ly Regularizer to alleviate for-
getting. (5) Resource Constrained SSL under Distribution Shift
(Record) [5]: exploits a generation-detection-restoring pipeline.
Differently, Record needs to generate the pseudo- labeled set based
on the previously trained model and restore influential samples
ever seen with a memory buffer. (6) Domain-adversarial train-
ing of neural networks (DANN) [24]: is a representative domain
adaptation method. We applied DANN to the evolving distribution
shift setting by training the model with labeled data, and learning
an invariant embedding on the evolving shifted data sequentially.
We reported the average results with standard deviations of 5
runs for all experiments. Following the setting in [5], we chose the
mean teacher (MT) [23] as the base model of SSL classifier in our
framework. We used a two-layer multi-layer perceptron as a feature
extractor. The memory reply buffer is set as 100 for our framework
(the look back size) and baselines, i.e., only 100 unlabeled examples
can be stored in memory. For PL_Conf, we chose the 100 most
confident samples to retrain the model. The parameters of all the
baseline models are defined in accordance with their respective
publications. The step size n; and 2 are set as 0.01.
4.1.3  Evaluation Metric. Following the setting in [5, 9], we eval-
uated the classification performance by averaging classification
accuracy through each time as Acc; and we evaluate the memoriza-
tion ability by averaging classification accuracy on the final model
as Accr:
1< 1<
Accy = T ;RZ),, Acer = T ;RT,,. (13)
where T is the total number of data sequences. R; ; is the test clas-
sification accuracy of the model at time j after learning the last
sample from i-th data.

4.2 Q1: Overall Comparison

To answer Q1, we compared our method with baselines that
leverage unlabeled data through different strategies. Figure
6 shows the mean classification accuracy and standard deviation
on the test data for five runs. The Y-axis represents accuracy (Accy
here), while the shaded regions show standard error computed using
various random seeds. Figure 6 shows that our method achieves
significant improvements over the baselines and is even comparable
with the JT method (upper bound of the setting). The observation
validates the effectiveness of leveraging multi-level knowledge
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(supervised, unsupervised, and structure) for robust labeling and
minimax-based flat region solver for anti-forgetting adaptation.

One interesting observation arises from the results that unla-
beled data matter for streaming adaption in the semi-supervised
setting. Specifically, both DANN and EAML perform poorly in
streaming shifted data. Our method and Record that utilize pseudo
labels show significantly better performance. This implies pseudo
labels can introduce auxiliary information about shifted data and
improve generalization ability for streaming data. Moreover, while
Record benefits from the influential shifted data detection mech-
anism, the pseudo labels are generated by the classifier trained
on previous data. The performance gap between our method and
Record validates the necessity to mitigate classifier bias and verified
our motivation to leverage the structure knowledge of invariant
label class semantics.

4.3 Q2: Study of Robust Pseudo Labeling

4.3.1 Effectiveness of Robust Pseudo Labeling . To validate the ef-
fectiveness of the proposed robust pseudo labeling method, we
compare our method with two variants. Since our proposed so-
lution is a generation-replay pipeline, we replace the generation
part (pseudo label generation) with two widely used methods to
construct the two variants: (1) the variant that takes PL_conf as the
generation part, denoted by “Ours_PL”; (2) the variant that takes
the Record’s generation method as the generation part, denoted
by “Ours_Record”. The difference is the variant “Ours_PL” selects
the most confident samples based on the softmax-based predictive
confidence, while the variant “Ours_Record” selects the influential
samples for the pseudo-labels generation.

Figure 7 shows our method uses the robust pseudo labeling
method and outperforms the two variants. Specifically, the variant
“Ours_Record” performs better than the variant “Ours_PL” since
the Record method selects the most influential samples for the
distribution change. This observation verified our motivation that
mining unlabeled shifted data could boost adaptation performance.
However, the selected pseudo labels still lie in the overlap region
with previous data. Thus, it is insufficient to incorporate the non-
overlapped information. In contrast, our method achieves consis-
tently promising performance. The boost in performance verifies
our motivation that class centroid-based clustering can exploit the
global pattern structure and assign accurate labels for the new unla-
beled drifted data that are non-overlapped with previous knowledge.

4.3.2  Ablation study of Robust Pseudo labeling. Our proposed ro-
bust pseudo labeling method generates promising pseudo labels
for unlabeled data by preserving the invariant label semantics. To
validate the contribution of the invariant label semantics, we con-
duct the ablation study, in which we compare our method with the
variant that omits the Invariant Label Semantics (ILS) constraint in
Equation 7. We denote the variant as “Ours w/o ILS”.

Figure 8 suggests that the ILS constraint contributes a stable
classifier learning and can generate high-quality pseudo-labeled
pairs. so, the model is easy to adapt well and mitigate forgetting to
some extent due to the denoise ability. The observation verifies our
motivation that the utilization of unsupervised knowledge of new
data could provide extra information than previous labeled data
and benefits the pseudo label generation of shifted data.
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Figure 6: Overall performance comparisons between our method and baseline methods.

Table 1: Comparison of effectiveness on alleviating forgetting. Noted that Joint Training (JT) shows the ideal performance of
the SDSL setting. The closer to JT, the better the performance.

Method MG 2C 2D UG_2C_2D UG _2C_3D UG_2C_5D Optdigits Satimage Spam Twonorm
ST 0.479+0.020 0.367+0.020 0.438 £0.019  0.570+£0.015 0.439+0.032 0.318+0.019  0.965+0.018 0.881+0.009
JT 0.593+0.012 0.907+0.0252 0.837+0.0103 0.919+0.007 0.921+0.019 0.816 £0.018 0.971+0.016 0.966+0.012
PL_conf 0.513%+0.020 0.531+0.021 0.567+0.219 0.614+0.019 0.406+0.025 0.385+0.026  0.966+0.021 0.956+0.011
DANN  0.532+0.039 0.349+0.011 0.578+0.018 0.701+£0.014 0.415+0.031 0.607+£0.019  0.969+0.013 0.948+0.018
EAML 0.508+0.014 0.499+0.016 0.499+0.012 0.569+0.016 0.527+0.018 0.397+0.015 0.725+0.014 0.729+0.021
Record  0.499+0.021 0.883+0.010 0.599+0.035 0.725+0.020 0.613+0.021 0.536+0.026  0.965+0.018 0.961+0.010
Ours 0.549+0.021 0.894+0.017 0.717+0.015 0.768+0.057 0.657+0.024 0.635+0.034  0.973+0.012 0.964+0.015
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(a) Classification performance through (b) Classification performance through
timelines on the UG_2C_5D dataset. timelines on the Satimage dataset.

Figure 7: Validation of robust pseudo labeling,.
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Figure 8: Ablation study in Pseudo labeling.
4.4 Q3: Study of Alleviating Forgetting

4.4.1 Effectiveness of alleviating forgetting. To answer Q3, we val-
idated the competence of our method on remembering previous
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(a) Memorization ability through timelines (b) Memorization ability through time-
on the UG_2C_5D dataset. lines on the Satimage dataset.

Figure 9: Memorization ability through timelines. Noted that
JT shows the ideal performance of the SDSL setting. The
closer to JT (in green curve), the better the performance.

knowledge. Noted that JT is the upper bound of the performance
since JT assumes the availability of ground-truth labels across
streaming data and restores all these data for training the model. In
our experiments, we considered a sequential setting where shifted
data come one after another. To validate the effectiveness of the
proposed algorithm, we trained the model until the final task, and
then tested the model performance on all previously seen tasks. All
methods stop at t = T after seeing all tasks.

Table 1 shows the average accuracy across all the tasks (AccT)
on all the datasets. Specifically, we show the detailed results for
each task along the timeline on UG_2C_5D and Satimage datasets,
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Figure 10: Ablation study on flat region searching term.

which is illustrated in Figure 9. The results indicate that our method
achieves better performance than other baseline methods on alle-
viating forgetting. Specifically, Record takes a reply method and
stores influential samples with a memory buffer on each sequential
task. However, the restricted storing buffer determines the gen-
eralization ability and is incapable of recovering all the learned
information. On the contrary, EAML, DANN and our method re-
lax the storage requirements. But EAML uses the meta-learning
strategies and is inferior to other techniques due to the lack of
high-quality validation set on shifted data. Moreover, DANN mit-
igates forgetting via learning an invariant representation, which
is insufficient to store distinctive knowledge about previous data.
Compared to these baseline algorithms, the performance of our
method is closest to the upper bound (JT). The reason is that the
generated high-quality pseudo labels provide exact supervisions
to adjust model decision boundary, meanwhile, seek a flat minimal
region to further enhance generalization ability.

4.4.2  Ablation study of alleviating forgetting. We introduce a Flat
Region (FR) constraint to better alleviate the forgetting issue. In
the experiment, we also conduct an ablation study to investigate
the contribution of the flat region constraint. Specifically, we com-
pare our method with a variant that omits the FR constraint in
Equation 10, denoted as “Ours w/o FR”.

Figure 10 shows our method benefits from finding the flat mini-
mal region. The flatness of the optimal minima makes the model
insensitive to parameter change. Besides, the model updates the pa-
rameters in the orthogonal direction of previous parameters space,
which preserves previous knowledge when adapting to new data.

4.5
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Figure 11: Flat region validation.

In the Appendix A.2, we introduced the theoretical analysis of
the flat region concept for boosting the model generalization ability.
The flat region enables the model insensitive to the drift, resulting
in promising generalization ability. Our question is: whether the
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flat region exists? If yes, can our method find a wider flat region?
Therefore, we conducted an empirical validation to answer the
question. Suppose the flat region exists, the deviation of the model
parameters within the region will not cause significant fluctuation
of the model performance. Therefore, in the experiment, we val-
idated the flat region theory based on a noise-sampling method.
Specifically, to find the local optimal 0*, we measure its flatness
as follows. We first sampled noise from a pre-defined region [0, b],
then injected the noise to the trained model parameters only in
the testing phase, and reported Acct. We changed the value of
b, and averaged the model classification accuracy to measure its
sensitiveness to noise. Intuitively, if the flat region exists, the model
will be more robust against (less sensitive to) the injected noise. We
compare our method with one variant that does not take flat region
search (denoted as Record) in the same setting. Due to the page
limitation, we only present the result on UG_2C_5D and Satimage.

Figure 11 shows that all the models have a respective flat re-
gion, but the range of the region is different. For example, for the
UG_2C_5D dataset, when the upper bound b changes from 0 to 0.1,
the performance of our method barely changes; when b is larger
than 0.1, the performance begins to drop significantly. The observa-
tion reveals the fact that there exists a flat region [0, 0.1], in which
the model is insensitive to the drift. Similarly, we can also observe a
flat region [0, 0.15] for our method on the Satimage dataset. Among
the comparisons, our method has the widest flat region, which
means our method has the best generalization ability. Therefore,
the empirical results validate the effectiveness of the seeking for a
flat region method.

5 RELATED WORKS

Our work lies at the intersection of semi-supervised learning, con-
tinual learning (life-long learning) , and domain adaptation. Next,

we provide an overview of the related research efforts and briefly

discuss the connections with our work.

Semi-Supervised Learning. Our work is related to semi-supervised
learning (SSL) [7]. SSL is a special case of machine learning that

leverages a large amount of unlabeled data with a small portion of
labeled data to enhance the learning performance. SSL methods can

be categorized into consistency-based [1], temporal ensembling [6],

virtual adversarial training [13], pseudo labeling [7]. Most of SSL

studies are designed both for offline and “identical and independent

distribution” (i.i.d.) data but ignore the evolving nature of unlabeled

samples. There are some emerging works designed for streaming

data in the SSL setting by integrating local consistency propagation

on graph [26, 27]. However, these methods assume the streaming

data are i.i.d. with the labeled data which is not ideal for a realistic

scenario. Recently, [5] considers learning from streaming data with

a distribution shift in a semi-supervised way. However, they still

generate pseudo labels via classifiers trained on previous data and

maintain a memory buffer to store pseudo labeled data sequen-
tially. Differently, We improve the pseudo label generation process

considering shifted data, and only replay data with short lookback.

Continual Learning. Our method also connects to continual learn-
ing (CL). CL studies the problem of learning new information

throughout their lifespan, without forgetting previously learned

data or tasks. Generally speaking, there are three typical scenarios

for CL: (1) class-incremental [11], (2) task-incremental [12], and
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(3) data-incremental scenario (with class label set fixed) [2, 17].
Our work is related to the third category, but the incoming data
is shifted without any supervision. In contrast, we release the re-
quirement of the availability of labeled incoming data. Different
from traditional regularization-based methods that penalize any
changes to previous important parameters, we modify the objective
function by introducing a flat region [20, 21] into SDSL setting.
Different from previous works in CL that learn the flat region with
prior knowledge [20, 21], we formulate the automated flat region
identification problem as a minimax game into SDSL, which can
ease the forgetting issue and adapt well to the new timeline.
Unsupervised Domain Adaptation. Our work is relevant to unsu-
pervised domain adaptation [24]. Unsupervised domain adaptation
aims to transfer the knowledge learned from labeled source do-
mains to the unlabeled target domain. Existing works mainly focus
on minimizing the discrepancy between the source and target dis-
tributions for learning domain-invariant features [4, 24]. Yet, recent
theoretical analysis and empirical findings suggest that distinct mar-
ginal label distributions across domains provably undermine the
target generalization. Therefore, to minimize the distance between
labeling functions, [8, 16] accesses a small amount of labeled data
in the target domain as extra supervision. Our work is enlightened
by this line of works, however, we consider label class semantic
constraints. Besides, we aim to alleviate the catastrophic forgetting
problem, which is ignored by this pipeline.

6 CONCLUSION REMARKS

In this work, we provide a systematic analysis of semi-supervised
drifted streaming learning with short lookback (SDSL), which is a
realistic yet challenging setting without extensive study. To address
this, we propose a novel method that follows the "generation-replay’
pipiline. To generate accurate pseudo labels for incoming shifted
data, we leverage supervised knowledge of previously labeled data
to label overlapped data, unsupervised knowledge of new data
to refine non-overlapped data, as well as structure knowledge of
invariant label semantic embedding to regularize the classifier. To
achieve adaptive anti-forgetting model replay, we introduce the flat
region notion and search the feasible region with a minimax game.
Comprehensive experimental results verified our motivations and
demonstrated the effectiveness of our method. In the future, we aim
to explore more properties of unlabeled data to further improve the
robustness of SDSL setting.
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A APPENDIX the weights, the expected error can be bounded with probability at

A.1 Algorithm of Robust Pseudo-Label least 1-0:

Generation rrAlign E¢[ Lo, ,ug, (0 +A0 +§)]

1 2N
< min Eg[L 0+ A0+ +4\/—KL 0+ ¢&||P) +In—
Algorithm 1 Robust Pseudo-Label Generation A@eMe el Lo ol n (O+£11P) 1)
+?1aMx[£D[ (0+A0+8] - Lp, ,(0+A0)+Lyp, ,(0+A0)
€

Require: gold-label data D, Pseudo-labeled set 15,_1, Randomly
initialization on model parameter 6, Randomly initialization
on latent feature matrix Hy.

1: Pretraining the model on golden label set D with feature ex-
tractor and classifier.

2: Generating latent label vector V with classifier parameters via
SVD decomposition.

Generalization Gap
(14)
where £ € M and A6 is updated along the orthogonal direction
of previous optimal solution 8 learned on previous data D;_, i.e.,
0 € M€. So that Agleijréc Eg[Lp,_, (0 +A0+&)] does not change too

3. fortin T do much compared with the previously minimized £, , (6). Similarly,
4 Training the model with D and D;_; with 6. the updated parameters will not increase the training loss on D;_1.
5. Applying the model with 6 on X; to initialize prototypes Uy The second term depicts the Kullback Leibler (KL) divergence to the
in Eq.3. “prior” P [14]. Our method exactly optimizes the worst-case of the
6. while Not Converged do flatness of weight loss landscape Igne%\)/l( Lo, (0+A0+E) - Lp, (0+
7 Calculat.ing I:It .With current Uy and V in Eq.7. A0) to control the above PAC-Bayes bound, which theoretically
5 Generating g in Eq.4. justifies why our method works.
9: Updating prototypes U; with Eq.5 and Eq.7.
10: Update 6 with gradients to minimize Loss L. A.4 Dataset Description
11:  end while
122 return Pseudo-labeled set D; and model parameter 6. Table 2: Statistic Analysis of Datasets.
13: end for
Dataset Instances Features Classes
UG_2C_2D 100,000 2 2
UG_2C 3D 200,000 3 2
A.2 Algorithm of Adaptive Anti-forgetting UG_2C 5D 200,000 5 2
Model Replay MG_2C_2D 200,000 2 2
After the robust pseudo-label generation stage, we obtain pseduo- Optdigits 3620 64 10
labeled pairs D (also collected it with memory buffer as shown Satimage 6435 36 7
in the paper.). Then we replay the data D and Dy, and then move Spambase 9324 500 2
Twonorm 7400 2 2

to the next robust pseudo-label generation stage (t+1). Here, we
represent the adaptive anti-forgetting model replay stage.

A.5 Additional Implementation Details

Algorithm 2 daptive Anti-forgetting Model Replay All experiments were conducted on the Ubuntu 18.04.5 LTS oper-
ating system, Intel(R) Core(TM) i9-10900X CPU@ 3.70GHz, and
1 way SLI RTX 3090 and 128GB of RAM, with the framework of
Python 3.8.5 and PyTorch 1.8.1.

Require: gold-label data D, Pseudo-labeled set D, trained model
parameters after time t — 1, step size n; and 73, the model
parameters 6 train on ¢ — 1

: while Not Converged do

update 6 on D and Dy via Eq.12

update ¢ via Eq.11

: end while

: return model parameter 6.

S N

A.3 Theoretical Analysis

We present a theoretical analysis on why the flat region can charac-
terize the continual learning property on streaming data and why
our method works. Without loss of generalization, we simplify the
drifted stream data with D;_; and D;, which are sampled from data
distribution Q;—1 and Q, respectively. Based on previous works on
PAC-Bayes bound [3, 14], given a ‘prior’ distribution P (a common
assumption is zero mean, ¢® variance Gaussian distribution) over
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