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up in finite time.
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1. Introduction

We consider the initial value problem associated to the generalized Hartree
(gHartree), or Schrodinger—Hartree equation

1
’LUt+AU+‘u(|$|T__Y*|U|p) |U|p72U:O, SCGRN, tGR, ( )
1.1

u(z,0) = up(x),

where 0 <y < N, p <2, p € C\{0} and u = u(x,t) is a complex-valued function.

For general nonlinearity p > 2, the local well-posedness in H! was established
in [2]. In this regard, our aim is to extend the well-posedness theory for nonlinearity
with p < 2. Such low powers appear, for example, when studying collapse or finite
time blow-up in the focusing gHartree equation, e.g., see [28]. Equation (1.1) is a
generalization of the standard Hartree equation with p = 2, which shows in a num-
ber of physical models, for further details see the introduction in [2] or review [3].
A generalized version of the Hartree equation allows more flexibility in approaches,
thus, we are interested in the powers of nonlinearities when 1 < p < 2. The typical
methods for well-posedness do not work in these low nonlinearities (see discussion
on that in [6]), however, using the weighted Sobolev spaces, we are able to obtain
the local well-posedness in a certain range of p < 2. The range that we obtain is not
optimal, but rather technical, since this is the first such study in the context of the
Hartree-type equation, where we use well known in harmonic analysis weighted esti-
mates for the Riesz transform. In fact, this approach can be helpful in establishing
well-posedness in equations with a potential that can be expressed as a Calderon—
Zygmund operator. Inspired by the results in [6] (see also [5, 7, 14, 16, 17, 20]),
we introduce a class of initial data, which guarantees existence of local solutions
of (1.1) for nonlinearity with power p < 2. Main difficulties arise in our analysis
due to the presence of the Riesz potential operator and the lack of regularity of the
term (Iﬂvl+*” * [ulP)|ulP~?u when p < 2. Before stating our results, we recall a few
invariances and introduce some notation.

Equation (1.1) formally conserves several quantities, in particular, if u € R\{0},
solutions of (1.1) satisfy the mass conservation

Mpu(t)] = [ ute 6 de = M, (12)

the energy conservation

1
—/ |Vu(z,t)|* dx
2 Jan

K #*u P (z, t)|u(z, t)P dx
(s # ) (Ot

2
E[UO]’ (13)

Elu(t)]
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Well-posedness in generalized Hartree for p < 2
and the momentum conservation
Plu(t)] = Im (/ u(z, t)Vu(x, t) dm) = Pluy). (1.4)
RN

Next, we fix % <p<2andtake 0 < v < 1\7(%{4). We choose m € RT such that

2v+ N N} N — 2y
—_ = m < ———. 1.5
Er 22 p) )
Additionally, we consider two positive integers My and M satisfying
(N =) (@mp - N)
M, N 1.
0>max{ Imp—1) —N +m (1.6)
and
N N
M>max{M0—N+2\‘§J+2,4\‘?J+5+m}. (1.7)

(Here, |x] denotes the floor function, i.e., the greatest integer that is less than or
equal to x).
We define the space X = X(m, M, M) as follows:

X = {f € HMAMo=N(RNYy.
m Qo 00 N .. N
(x)mo%f € L=°(R"Y), for each multi-index |a| < 5|

N
()mo*f € L*(RY), for each multi-index {?J <l|a| < M}, (1.8)

equipped with the norm

IFle= D &) fllee+ > 1) fllrz

lel<| %] & I<|al<M

+ > 0% f|l 2. (1.9)

M<|a|<M+My—N

where (z) = (1 + |2|?)/2. An example of such a space in one-dimensional setting
is given in (3.3).
Our main result is the following local well-posedness.

Theorem 1.1. Let 3 <p<2,0<~v< N(%ﬁ and p € C\{0}. Assume (1.5)—
(1.7) and let X be defined by (1.8) and (1.9). If ug € X with

[[uollx = m, (1.10)

and

inf ()™ uo(z)| = A >0, (1.11)

z€RN
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then there exist T = T (m, M, Mg, n, \) > 0 and a unique solution of u € C([0,T]; X)
of the initial value problem (1.1). Moreover, the map data-solution

ug — u(-t) (1.12)

from a neighborhood of the datum ug € X satisfying (1.10)—(1.11) into the class
C([0,T); %) is locally continuous.

Remark 1.2. It is worth to emphasize that the results for the equations studied
in [5-7, 14, 16, 17, 20] deal with weights of arbitrary size only limited by lower
bounds. Thus, in these references, it is more natural to consider weights with integer
powers. In our case, we obtain our results with fractional weights, where we also need
an upper bound in the condition (1.5). The upper constrain on the weight power
m stated in (1.5) is required to obtain weighted estimates for the term m% * Ju P
provided by the nonlinearity in (1.1). This restriction comes from the boundedness
of the Riesz potential in weighted LP(RY) spaces (see Proposition 2.2).

The two consequences of this local well-posedness result are the global existence
and scattering in the spirit of Cazenave and Naumkin [6, Theorem 1.3] and blow-up
in finite time in Theorem 1.4 and Corollary 1.5.

Theorem 1.3. Let § < p < 2,0 <7 <min{ X N(p—1)~1} and u € C\{0}.

ibla|?

Consider m € RT, Mo, M € Z7 satisfying (1.5)—(1.7). Suppose that ug = e~ 1 vy,
b >0, and vo € X satisfies (1.11). If b is sufficiently large, then for any 0 < s <
2m=N there exists a global solution u of (1.1) in the class

C([0, 00); H*(RN)) N L= (RN (2) % dax dt)).

Moreover, u scatters, i.e., there exists uy € H® (RN) such that
lim [Je” " u(t) — uy | gs = 0.
t—o0
t>0

In addition,

sup (1+1) 2 ||u(t)|| L= < oo
t>0

The result in [1, Theorem 1.3] establishes a blow-up criterion for solutions of
the focusing gHartree equation (1.1), p > 2. Following these ideas (see also [11,
12, 18, 19]), we can extend this conclusion to solutions of (1.1), p < 2, in the L2-
supercritical case (s, > 0) determined by Theorem 1.1. Here, the critical scaling
index s., determined from the scaling invariance of this equation, is defined as

N v 42

PRI (1.13)

Se =
We also define the variance
V() = / (2, )2 da. (1.14)
]RN

We note that the existence of blow-up in finite time for negative energy and finite
variance in the L?-critical (s, = 0) and L2-supercritical (s. > 0) cases extends
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automatically once the local well-posedness is available for solutions in H*. Here,
we consider initial data with positive energy.

Theorem 1.4. Let max{fF2 2} < p < 2,0 < v < min{N(p — 1) —
2, (N+2)(2p L- 2 N(?’ZI; 4)} and > 0. We take
N+2 2v+ N N -2
mx{—+,L} m< ——-L (1.15)
2 4lp-1) 2(2-p)

and Mo, M € Z% werifying (1.6) and (1.7). Let ugp € X satisfy (1.11). Assume
Elu] > 0. The following is a sufficient condition for the blow-up in finite time
for the solutions to the gHartree equation (1.1) with initial data ug in the mass-
supercritical case (sc >0 as in (1.13)):

aV(0) Eluo]V (0)
e < (Tt ) (1.16)

where w? = NQS(([;]V(&iQQ))f;[V:VW;Q) and the function F is defined as (here, ke = s.(p —

1))
1 1+ k. .
\/kcxkc—i-:n— W if0<x <1,

F(z) = (1.17)

1 Ttk
\/kcxkc+x o if x> 1.
ibla|?

In contrast with Theorem 1.3, one may look for initial data ug = e~z vy,
b < 0, such that the corresponding solution of (1.1) blows up in finite time. As a
consequence of Theorem 1.4, we provide several initial conditions exhibiting this

property.

Corollary 1.5. Let maLx{N‘L2 4} < p < 2,0 < v < mn{N@p-1) -
2, (N+2)(§ n-2 N(?’Z’; 4)} and pp > 0. Take
{N+2 27+N} N — 2y
max{ ——, ——— —
2 T4lp-1) 2(2-p)

and Mo, M € Z" wverifying (1.6) and (1.7). Furthermore, take k. and w. as in the
statement of Theorem 1.4. Let vy € X be real valued and satisfy (1.11).

(i) Assume

Elwo]||lzvo||3 - 2
VIR (1.18)
and
) (weM[vg]) %2 e
EW“““”<<m+kx [M)—mmmum@n> (1.19)
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Then there exists by > bg > 0 such that for all by < b < by the solution u
iblz|?
of (1.1) associated to ug = e = vo blows up in finite time. In particular, if

Elvg] > 0, one can take by = 0.
(i) Assume
Elvo]llzvoll2:  w?(1+ k)
(M[vo])? ke
Then there exist by < 0 such that for all b < by the solution u of (1.1) with

ibla|?

wiatial condition ug = e~ 2 vy blows up in finite time.

(1.20)

Remark 1.6. (i) The function ¢(z) 2 a € C\{0}, satisfies the hypothesis of

- @™
Theorem 1.1.
(ii) Setting %—;3 < 11—) < NL_M, the results in [21] establish that there exists a

non-negative ground state solution of

N —
T\ N/29y | pIN=7
F(Q)w 27|z

(1.21)

Ap + o =cy (2N 1 o) |p|P 20, ¢y =

such that ¢ € HY(RY) and for p < 2,
lim (p(2))* 7|2V = ¢y [l - (1.22)

z]—o00
One naturally looks for conditions such that (1;>7W2*;;) belongs to the class
in Theorem 1.1. However, Theorem 1.1 does not include the ground state
solutions of the equation in (1.21).
(iii) The conclusion of Corollary 1.5 is still true assuming Im [, To(x - Vo) dz =
0 instead of vy real valued. See also Remark 5.1 for further conclusions of
Theorem 1.4.

The paper is organized as follows: in Sec. 2, we recall some results on weighted
spaces and fractional derivatives. The proof of the main Theorem 1.1 is in Sec. 3.
The global well-posedness and scattering result is discussed in Sec. 4, and the blow-
up conditions are proved in Sec. 5.

Notation. Given two positive quantities a and b, a < b means that there exists a
positive constant ¢ > 0 such that a < ¢b. We write a ~ b to symbolize that a < b

and b < a. We use the standard multi-index notation, a = (aq,...,ay) € NV,
0% =921+ 0%, ol = XN |oyl, a < B, whenever a; < 3 for all 1 <j < N.

Let 1 <7 < oo, L"(RY; dw(x)) denote the weighted Lebesgue space defined by
the norm

1o = [ V@ dla), (123

with the respective modifications for the case r = oo. It is typical to denote weighted
spaces as LP(w) or LP(w"), but for clarity, we use notation as in (1.23). The Fourier
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transform and the inverse Fourier transform of a function f are denoted by f and
fV, respectively. For s € R, the Bessel potential of order —s is denoted by J¢ =
(1 — A)*/2, equivalently, J* is defined by the Fourier multiplier with symbol (£)* =
(14]€|?)*/2. The Riesz potential of order —s is denoted D* = (—A)*/?, that is, D* is
the Fourier multiplier operator determined by the function |£|*. Given b € (0,1), we
will also be using one of the Stein’s derivatives D*® (see (2.7)). The Sobolev spaces
H*(RY) consist of all tempered distributions such that ||f||gs = [|J*f]/12 < oo.
Given an integer [ > 0, the space H'(RY;dw(x)) denotes the weighted Sobolev
space defined by the norm

191wty = X, [ 10°7 (@) de(a).
g1<t /BT

Let 1 < r < ooand T > 0, if A denotes a function space (as those introduced
above), we define the spaces L}.A and L} A as follows:

T 1/r

g, = ( I nf(.,t)nw) |
1/r

I fllzra, = (/R ||f(.,t)||j4dt) .

2. Preliminary Estimates

This section aims to provide some results relating weighted spaces and fractional
derivatives. Additionally, we present some estimates in weighted spaces for solutions
of the linear equation associated to (1.1).

2.1. Preliminaries on weighted spaces and fractional derivatives

Since in this subsection we will not provide estimates for the nonlinear prob-
lem (1.1), a real number p > 1 will be used for some preliminaries presented in
this part. Thus, we say that a non-negative function f € L{ _(RY) satisfies the
classical Muckenhoupt A, condition with 1 < p < oo if

11, =5 (]{2 fia) o) (]é fay d) <0, (2.1)

where the supremum runs over cubes in R¢ and zl) + z% =1 (see [22]). In particular,
we have that (see [10, 26])

lz|' € A, if and only if I € (—N, N(p — 1)). (2.2)

Motivated by the nonlinear term in (1.1), we will need continuity properties of
Riesz potentials in weighted spaces.

2150074-7
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Theorem 2.1 ([9, 13, 23]). Given0 <~y < N and 1< p < %, let

A
-

=

1
q
Then the following are equivalent:

(i) we Ay

ol =0 (f wto dx)l/q (f vt dx)l/pl <o (24)

where the supremum is taken over any N -dimensional cube Q) and zl) + :z% =1.
(ii) The following inequality holds true:

(- 17N % follee S L fwllze,
for any f € LP(RN;wP dx), where the implicit constant is independent of f.

Since we are interested in applying Theorem 2.1 for the case w = (x)!, we have
to verify the relations between the indices [, p, ¢ assuring that <x)l € A, 4. We can
rephrase this last property in terms of the A, condition. But first, taking p and ¢
as in Theorem 2.1, we set

e =)= (7).

Then, by (2.1), (2.2) and (2.4), we deduce

lz|' € A, if and only if |z['Y € A,-

N — N N(p—-1
Neyyw N _, Ne-1) (2.5)
p q p

Summarizing the previous discussion, we have the following proposition.

if and only if —

Proposition 2.2. Let 0 <y < N, 1 <p< %,

N — Np-1
J 3 Py, Ne-1)
N p p
Then
(- 17N @) e S 1 (@) |z,
for any f € LP(RN;wP dx), where the implicit constant is independent of f.

We remark that Proposition 2.2 can also be deduced as a consequence of the
results due to Stein and Weiss [27]. Next, let b € (0,1), we define one of the Stein’s
fractional derivatives

) — 2 1/2
Dbf(x)</RN 7|ﬁzy|£(f’2)b| dy) , z€RY, (2.7)

2150074-8
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for a sufficiently regular function f (for instance, a Schwartz function). To deal with
fractional weights, we recall the following characterization of the spaces LP(RY) =
JSLP(RN).

Theorem 2.3 ([25]). Let b e (0,1) and NQTNQ& <p<oc. Then f € LY(RY) if and
only if

(i) f € LP(RN) and
(i) D*f € LP(RV)

with
1T Fllze = (L = D)2 f Lo ~ I fllze + 1D Fllze ~ [|flze + 1D°f e
(recalling that D* = (—A)¥/?).

Let us recall some useful consequences of Theorem 2.3. When p = 2 and b €
(0,1), one can deduce

ID°(f9)llee S 1/P°gllr= + [|9D° | 2, (2.8)
and also
IDhl|= S ]|z + VR Lo (2.9)
We will apply the following interpolation result deduced in [24, Lemma 4].
Proposition 2.4. For any a,b >0, 6 € (0,1),
) (T ) e S NI Fll? ) fl g, (2.10)
17 (@)= )llze S 1) F 11T 2. (2.11)

Remark 2.5. The inequality (2.10) is also valid in LP(RY), 1 < p < oo, see
[15, Lemma 2.7].

We also require the following lemma relating weighted estimates between homo-
geneous and non-homogeneous derivatives.

Lemma 2.6. Let 0 < b < s. Then it follows
@)* D fllee S I4@)° fll e + 17°7° Fllee + () T° F | 2

Proof. We write b = by + by, where by € ZT U {0} and by € [0,1). Then by
Plancherel’s identity and the linearity of the operator D2, we get

T2l e S > 10l Pl + 1D @° (€l F ) lze- (2.12)

0<|B]<bs

2150074-9
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When by = 0, we will assume that D2 is the identity operator. Let us bound each
term on the right-hand side of the above inequality. By Leibniz’s rule, we have

1%l )l = S [lo7 (L7

mgbl ' B%’ <<s> )m
s> 5 e (55| et hie
|8|<by B1+B2=0 Lo

SN2 F)llee,

where given that s — b > 0, we have used that

P (i
for all |51] < by. To deal with the second term on the right-hand side of (2.12), we

consider a real-valued smooth function ¢, compactly supported in the set [¢| < 2,
such that ¢(&) = 1 for || < 1. Then, we split that term as follows:

<1

~ )

1,o°

ID*2 (27 (€1* F )Lz = D" (0% (€16 f )Lz + 1 D7 (D% (1] (1 — ¢)F))llz2
= A1 (B) + A2(B),
for each || < by. We apply property (2.8) and Theorem 2.3 to get

TS ﬁHD”Z (o7 (=) 007

B1+P2= L2

< 3 Lo e (0 ()

x (||3ﬁ2(<§>5f)|\m + D¢ (9% ((€)° F))ll2)

ST F)ll e,

)

where we have used property (2.9) to deduce
o (o (K20=92)
: (€ Lo

<o (U)o (on (H0=9))
~ (&) Lo (&)
We remark that when by = 0, we will assume that D? denotes the identity operator.
This completes the study of Az(8), whenever |3] < b;. Next, we turn to A;(f).

< 00.
Loo
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Assuming that || > 1, by Theorem 2.3, (2.8) and (2.9), we have

AB) S DD D@7 (1g*)0%2¢0% [ ) L2 + D (07 (1€]*) S ) e
51+§2;g3:ﬁ

< YT 0% E)" bl + VO (1€1)0%2 8| )
51+g2;gazﬁ
< (0% F |l 12 + ID*28% f || 12) + | D2 (9P (1€]*) 6 )| 12
SNIETF |2 + DY (07 (1€1) 6 )| 2

Note that the conclusion of the above inequality is also valid for § = 0. Now, if
|B] < by (assuming that b; > 0), it follows that V(9°(|¢|*)¢) € L>(RY). Then
the estimate for ||D?2(8%(|¢|*)¢f )|z follows from the same arguments as above.
Otherwise, if | 3| = b1 > 0, we require the following claim.

Claim 2.7. Let by € ZTU{0}, by € [0,1), and s > by +bs. Then for any multi-index
B with |8] = by, it follows that

D (07 (I€1*)6(€) < (€)™, €40,
when by = 0, we assume that Dé’z 1s the identity operator.

Before proving Claim 2.7, let us complete the estimate for the case |5] = by in
A1 (). Indeed, by Theorem 2.3, property (2.8), and Claim 2.7, we get

1D (07 (1€1) 6 f ) 2
SNOP(El)OF 2 + 1D (0 (1€1)8) F Il = + 110°(1€]°) 6D (f )| 22
ST Fllze + 1166 %2 F | -
Collecting the estimates for A;(8) and Az(3), |3] < b1, and reversing the Fourier

variables, we complete the proof of the lemma. O

Proof of Claim 2.7. At once we deduce the case by = 0, hence, we assume by > 0.
To simplify the exposition of our arguments, we denote by F(&) := 9%(|¢]*)p(€).
By the definition of the fractional derivative (2.7), we divide our considerations in
the following manner:

ppr) = [ e

= ) d o) d
/y§2|£|( )y+/|y|22£( .

=: B1 + Bs.

2150074-11
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In the support of the integral By, we have |y| > |¢] and so |€ —y| ~ |y|. Then, since
o(y) is supported in the set |y| < 2, we get

|F (&) |F(y)]?
R
2l [yIV T2 yl>2e) [y 22

</ |£|2S*2b1 |y|2872b1
< LS / /] —,
yi>2lel [y T30 2le|<lyl<2 YV 22

< <§>23—2b1 —2bs ,

~

where we have also used that [3°(|¢]*)| < [€]*7b, |B] = by. Next, in virtue of the
identity

O°(Ig") = eI~ Pg (), € e RM\{0},
where Pjg((€) denotes a homogeneous polynomial of degree [3], we write
F(&) = Fy) = (1E°72P1Pg (€) — lyl"~ 71 Py (9))9(€)
+ [y P () (6(6) — b(y))
= €171 (Pig () — Py (1)) 8(€) + [€1° 21PNy | V1P gy () (Jy |
—1€117Dp(€) + 511 Py () (1717 = [y~ "he(€)
+ 1y P () (8() — b(v))-

Then, since |y| < 2|¢| in the support of the integral defining B;, we have
|F (&) — F(y)
S (P~ e =yl + 1€l =yl |1 e
+1y1° "6 (€) — o(y)]

€581 — ] 4 J& — y[* 181 4 g5~ 181](€) — B(y)),
< if0<s— |8 <1,

5181 e — y| + €718 (&) — p(y)], ifs—|B] > 1.

Hence, we arrive at

By < [¢[2o-2I01-2 / €~y N2 gy

lyl<20¢]
b [ ey Dl 0)) )
ly|<2[¢]
< <§>2572|ﬁ\72b2.
The proof is complete. O

2150074-12
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2.2. Some weighted estimates for the linear equation
This part is intended to provide weighted L? estimates for solutions of the homo-

geneous Schrodinger equation. We begin by recalling the following result.

Proposition 2.8. Let b € (0,1). For any |t| > 0,
D) S 12 + 1t fe )

For a proof of Proposition 2.8, see [24, Proposition 2]. We also require an exten-
sion to weights of arbitrary size of the result obtained by Nahas and Ponce in
[24, Lemma 2]. For the sake of completeness, we provide the proof of this exten-
sion.

Lemma 2.9. Let b € RY. Then for anyt € R
[(@)*e™ Fllee S O f Iz + 1(2)° Fll =),

where the implicit constant above is independent of t.

Proof. The case b € (0,1) is proved in [24, Lemma 2]. Hence, we assume that
b > 1. We write b = by + by, where by € Z*, by € [0,1). Then by Plancherel’s
identity and Leibniz’s rule, we get

()’ fllz < N1’ fllze + [llx]* 2l 2 £ e

N
Sfle + D ID? @ (e F )]l

j=1

N
<|\f|\L2+ZZHD’)Z (0F (e )R =F )] 2.

Jj=1k=0

Thus, we are reduced to control the second term on the right-hand side of the above
inequality. For a given multi-index 3, we use the following straightforward identity:

o o L181/2]
3B(e—zt|£| ):e—ztlﬁl Z tlﬁ\—lpwl_m(g%

=0

where P;(§) denotes a homogeneous polynomial of order I > 0 in the variables
¢ € RN. Thus, by Theorem 2.3, property (2.8) and Proposition 2.8, we have

ZZIIDb2 (9 (™€) = )l 2

7=1 k=0
by Lk/2] N
SO DD D e P, (g ) e
j=1k=0 =0

2150074-13
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b [F/2]

> O PLy (€)g  Flle

=0

Mz

Il
i

k=

o

J
e By (€082 F 12 + DL (PL_yy (€032~ )2)

b [k/2]
S R F L+ DR ()20 e,
=0 ’

Mz

Il
i

k=

o

J

(2.13)
where we have used properties (2.8) and (2.9) to deduce

1D (Pl (€3¢ F) 12
= D (&) Py ()"0~ )l e
S (O™ Py ()= + 1D (&~ Py (9))l|z~)

x D (&g~ )l -

At this point the very last term could be written via the term of the fractional
operator D% As before, when by = 0, we will assume that Db2 and Db are the
identity operator. Before estimating (2.13), let us deduce a more general inequality
involving weights and derivatives. Let b’ € [0,1), m’ € RT U{0} and ¥’ € ZT U {0},
we claim

IDY (™0 Flle S D NI QO™ " Fllee + 187 F e
0<I<k’
l<m’

(2.14)

Indeed, let us deduce (2.14). By applying the identity

v
(€)™ 0k J(6) = > et~k (&)™ T(€),

=0

we split the left-hand side of (2.14) as follows:

15 m’
Db’a‘g—l (%J <£>7 <€>m’lf>

IDY (™ )l S

m/—l1
0<I<K’ §) L2
l<m’
+ D IDYOE T ™ )l
m’ <1<k’
=T+1T.
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We proceed to estimate each term of the above expression. Theorem 2.3 and (2.9)

yield
’ ’ al . € ' ’ ’ ’ -
Db (afj ( <£§J><m’>l > aé; - (<§>7” _lf)>
0<I<k I'=0

, (O™
3 (W)
l<m’
X LT (™ ) | e

SO O™ T ) Iz
0<I<K’
l<m’

k' —1

15 Y Y

0<I<K' 1'=0
’

L2

(O™
o (45)

<y 5

)

s

By a similar argument, we get

k' —1
17T < Z Z | D° (ag-l (&m aécj—l—l e < ”Jé) = F .

mlglgk‘/ I'=0

Collecting the above estimates, we verify (2.14).

Now, let us estimate the first sum on the right-hand side of (2.13). Since the cases
k = by and bo+k—20 = 0 are easily verified, we assume 0 < k < b1 —1,0 <1 < |k/2]
and by + k — 20 > 0. Thus, these assumptions, (2.14) and Proposition 2.4 yield

(&)t k=2t = F s

SO IR Pl + 1€ F e + 18 Pl e

0<l'<b1—k
U <by+k—21
b b T botk—21—1' (b1—k—1")(by+bo)  by—k+2i41’
b1 +b by —kt20+17 by +b
D DR [(3 ke A e [ A
0<l' <by—k
U <by+k—21

IO Fllze + 1T+ F 22

~ . Gr kot (o 02)
S Fllue + 172l + 1 " e (2.15)
, (blfk*l')(bltbz) N -
Since % <1, we have [[J; "7 e < ||Jé’1+b2f |2, and thus, the

above estimate yields the desired result.
On the other hand, we assume by >0, 0 < k < by and 0 <[ < |k/2]. Since the
case k — 21 = 0 follows trivially, we assume k — 2] > 0. By the estimate (2.14) and
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the interpolation inequality in Proposition 2.4, we get
b k=2l abi—k 7
ID*((€)" 79" F)llz>

SO IETETEROE T ) le + 1€ T2 £l e
Ogl’gblfk
U'<k—21

+ {1780 Pl e

k=2t (b1+b2*k*l/)(b1+lb2) _ bitbo—k—2u4l
< Z H<§>bl+b2f HLI>21+b2 HJ5 (b1 +bg—k+20+17) f HL2 b1 02
0<l/' <by—k
U'<k—21

HIEP T Fllze + 17402 F 2
SIEP 2 Fllge + (I F e (2.16)

Plugging (2.15) and (2.16) into (2.13), and applying Plancherel’s identity, we com-
plete the proof. O

We close this section presenting some L>(R”) estimates for solutions of the
homogeneous equation associated to (1.1).

Proposition 2.10. Let b € RY, k, K € Zt U{0} and s > K + 2k +3+ | Y| +0.
Then for any t € R and any multi-index B of order |5] < K,

@) 0% fllee < (OF D I(2)° 0% fllpee + ()

la|<k

T2 fllze + > [(2)*0% fllrz | (2.17)

k<|o|<K+2k+3+[ 4 ]

Proof. From the relation % (e2f) = (iA)F(e™™ f), we apply Taylor’s formula to

find

| N o "

eztAf _ Z - A_]f + T (t _ t/)kAk-‘rl(elt Af) dt/, (218)
; J: : 0
7=0

for all ¢ > 0. Then for a given multi-index § of order |3] < K,

aﬁ(eitAf) _ zk:@GEAJf'i' Zk_—H

t
- o /(t—t’)’faﬁAk“(e”'Af)dt’, (2.19)
. . 0

=0
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Well-posedness in generalized Hartree for p < 2

so that by Sobolev embedding H!ZIT1(RN) «— L*°(RY) and an application of
Lemma 2.9, we get

1(z)*07 ("2 f)| Lo

SOF > @ flloe + [t > [[(2)* 20 f || oo
|| < K42k 2k+2<|a| <K +2k+2
SOF > @0 flle~ + B)FF > [(2)* 20 f | 2
la| <K+2k 2k+2<|o| <K 42k+3+[ & |
SOF D @) 0% fllne + (1)
la|<k
X AN fllee + > [(@)* 0% fl 2 |, (2.20)

k<|o|<K+2k+3+[ 4]

for all s > K + 2k +3+ [X] +0. O

3. Proof of Theorem 1.1
Let 3 <p<2and0<~y< N(%ﬁ. We consider m € RT, M, My € Z* satisfying
the conditions (1.5)—(1.7). We further set

N(u) = (Ja| =N s fuf?) jufP~?u. (3.1)

Recalling the space X determined by (1.8) and (1.9), we will establish well-posedness
conclusions by applying the contraction principle to the integral operator associated
to (1.1), namely,

t
CI)(u(t)) :eitAquri,u/ ei(tft’)AN(u(t/))dt/’
0

acting on the space

Xr(R,\) = queC([0,T];X): sup Yo @™o u()] e

0T \al<1 4]

+ > l@)motu®)ls + > [0%u(®)] 2

[ 5] <lal<M M<|a|<M+Mo—N

=lullegx <R, inf [(x)"u(z, b)) =

(3.2)
(x,t)eRN x[0,T]
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Note that in the one-dimensional case the space (3.2) reduces to

X317 (R,A) = que C([0,T];%): sup | [[(z)™u(t)]|

te[0,7)
M+Mo—1
+Z oy ou®lzz + Y N0du®)lz | = luluzx <R,
j=M+1
nf () (e, 0] > (33)
in )" u(z, t)| > = _
(z,t)ERX[0,T] 2
For example, setting - < p < 2,0 <~ < 23 and m = (3)* (e, m= 1+ e with

€ < 1), we can take M = 6 and My =4 in the space (3.3).
In what follows, we find an appropriate R > 0 and 0 < T < 1 such that ® maps
X7(R,\) into itself and defines a contraction with the || - [| e x-norm.

We begin by deducing the following proposition, which is convenient to estimate
the nonlinear part of the equation in (1.1).

Proposition 3.1. Let b € R, u € Xp(R,\) and 1 < r < co. For any multi-index
a of order |a| < M + My — N, it follows that

()"0 (Jul?) |3
o

5 RPH<-T>b_mPHL; + Z )\—(Qk‘—p)RQk‘—l
k=1

x| Rl(z)""

> @O e, | (34)
L5 1<IBI<]al

Moreover,

)0 (JulP=2u) | 3 2
|o]

< Z )\ (2 k+1 R2k

x| Rl @)=Y

Y, @O ey
L5 I<I8I<]al
(3.5)

Above, the convention for the empty summation (such as > -y<q) is defined as
zero.
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Proof. We first deal with (3.4). We prove the case |a| > 1, since the case with
a = 0 follows directly from the definition of the space Xr(R,\). In virtue of the
identity

||

() =3l | 3D om0 () O () | (36)
k=1 Bi+...+Br=c
1B51=1
and the fact |u(z, )|t < A7 {x)™, it is seen that

()0 (ful”) | e s

[
<STAT@R ST )RR 90 ([u2) - 0% (Juf?) | e
k=1 Br+..+Br=c
[B;1>1
[
— Z);(%fp) Z () + ()], (3.7)
k=1 Al(a) A2 (a)

where we have defined

Ap(a) == {(51,---,@)151—!—“-—1—@@ =q,

N

A(a) = A{(Br, - B) B+ + B =a, 1< B, 5 =1,..., k} \Ax(a).

(3.8)
To estimate the sum over A} (a) for a fixed k =1,...,|al, we use the identity
aBj(|u|2) = Z CBj1,85,2 (aﬂj’lu)(aﬁj’lﬂ)
Bi1+B5,2=0;

and the fact that all the derivatives in the sum over Aj(«) are of the order at most
M — | 5] -1 to get

ST @R (u?) - 0% (ul) e
(B1ye-Br)EAL ()
S ) S )bt 9Py gtieg . 9Pk udP | e g

(B1s--,Br)EAL (@) Bii +B5,2=B;
1<%k

2k
<< sup |<w>m55UIL°<3m> ()"~ l| e s (3.9)

~ \islem- 1Y)
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Now, by Sobolev embedding H L= 1T1(RY) < L>°(RY), we obtain

sup  [[{2)" 0 ull 1y,
IBl<M—|F]-1 7
S s @m0l - Y 1@ ulp: SR (310)
AI<L3 | ¥ I<IBl<M
Plugging (3.10) into (3.9) completes the estimate for the sum over A} (c).

On the other hand, since || < M + My — N, the restrictions on M and
My in (1.7) imply that for each (B1,...,8;) € A%(a) there exists a unique
k'€ {1,...,k} such that [By| > M — | § | —1, in other words, |8;| < M — [§] -1
for all j # k’. Therefore, by taking the L L?-norm of the term with the deriva-
tive of higher order, and computing the L3 L>°-norm with the weight (z)™ of the
remaining factors, we infer that the sum over A% («) is estimated as follows:

S @)D (juf?) - 0% (uf?) Ly
(B1y--.Br)EAZ ()

2k—1
5( sup ||<x>maﬁu||%>

IBI<M—|5]-1

x S @O
M—| 5 ]-1<|B|<]a]

sE (S oty ). (3.11)
L5 1<IBI<]a
Inserting (3.9)—(3.11) into (3.7), we complete the deduction of (3.4).

Now, we turn to (3.5). This estimate follows by a similar reasoning leading
0 (3.4). Indeed, for a given multi-index «, we recall the identity

||

® (julP~2u Z|U|P 2(k+1) Z oo, 070U ([uf?) ... 0% (|ul?)

Bo+P1+...+Br=a,
[B51>1, 1<j<k

+ |ulP~20%u. (3.12)
Consequently, since |u(z,t)|~! < A7 Hz)™, we find

()0 (lulP~*u) L 1,

||
< Z A~ @(k+1)=p) Z || ()b +mU2(k+1)=p) g
k=1 Bot+B1+...+Br=c
185121, 1<j<k
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% u8ﬁ1(|u|2) o 8ﬁk(|u|2)||L%OL; + Af(pr)||<w>b+m(27p)3au”L%oL;

=D o) Y ) AT (R gy e

(3.13)

where we have set

Bli(Oé) = {(ﬂo,...,ﬂk) cBo+ -+ Pr=a, |Bo] <M —1-— {gJ,

N

Bi(a) = {(ﬂmvﬂk) : 50+"'+ﬂk:aa IS |ﬁj|7 ]:177k}\Bli(O‘>a

(3.14)
for every k = 1,...,|al. In virtue of (3.13) and (3.14), we can apply similar
considerations as those used in (3.9) and (3.11) to obtain (3.5). To avoid repe-
titions, we omit these computations. O

We divide our considerations according to each component defining the norm
of the space X7 (R, \).

Estimate in the space L ([0, T]; WLz (RN; ()™ dx)). Let 3 be a multi-
index of order [8| < [4]. By applying Proposition 2.10 and the restrictions (1.7),
we find

sup_[|{x)" " ®(u)| Ly

SOEHE ST ()0 ug |

lo] < 5]

+ > @)ool + M N g2
[T I<lal<M

HITUD)LEIFE LS ()0 N (u) g

lo <[ 5]

+ D @m0 N W) gz + 1T NN ()| pgerz |- (3.15)
[FI<lalsM

We further divide our analysis according to the previous norms involving the non-
linear term N (u).
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Estimate for [[(z)™0“N(u)||rss_, || < L%J We set
(3.16)

which is well-defined provided that 0 < v < % Additionally, the condition (1.5)
yields

N N

(3.17)

Now, by Leibniz’s rule we write
[[{z)™ 0" N (u)|| g,

S @ (2N w0 ulP) g, )™ PP 0% (fufPw) |1,
a1taz=a

(3.18)

Bearing in mind that a1 ] < L%j, by applying Sobolev inequality WLz 1 +1.4 (RN) —
L>(RY) (with ¢ given by (3.16)) and Proposition 2.2 with the right-hand side
of (3.17), we get

)™ 2P (|| =V s 0% P e,

S 2 I@mC P (lam N P (jul)) | g
B1<2 & J+1

S D K@) (uf) e (3.19)
|Bl<21 4 J+1

To complete the estimate of the above inequality, we apply (3.4) with b = m(2 — p)
in Proposition 3.1 to get

Yo @)% (ul)| g re

1Bl<2[F]+1
23+

SRP ||<$>—2m(p—1)||Li+ Z )\—(Qk—p)RQk—l

k=1
x| Rl ()20~ V]| 2 + >, ()™ C2P 05 u|| e 12
L I<IBl<2[ 5§ ]+1
214 ]+1
SR+ Y ATCEIR (3.20)
k=1
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where we have used that 3 — 2p < 1 implies (z)™3=2P) < (2)™. Likewise, since
lao| < [&], (3.5) with b= m(p — 1) yields

2]
||<$>7n(p—1)8a2(|u|p 2 HL“’I 5 )\_(2(k+1)_p)R2k+1. (321)
k=0

w2

Collecting the previous estimates, we arrive at

2[5+ L5
)"0 N (u)lleg, S | BP+ Y ACH PR ATEEFUER REL Y
k=1 k=0

(3.22)
for each multi-index o with order |af < & .

Estimate for ||(x)™0%N(u)||Lsor2, |5 < |a] < M. By Leibniz’s rule

e N(@)lpgre S D0 W)™ 0™ (2]~ w02 (ulP~u) e 2.

altaz=«a

(3.23)
Let us divide our analysis according to the magnitude of the multi-index oy
n (3.23).
Case |a1| < N. We write
()™ (| =N =7 5 9% [ul|P)0 (fulP~%u) || e 2

< )™ (| =N 0% () e 2 1) ™0 ([l 0) | o 2,

~

where

1 1 1

— 4+ —=_. 3.24

T1 + T2 2 ( )
We will choose k, 1 and ry according to the value of the weight m. But first, to

apply Proposition 3.1, we write

. 3.25
roog N (3.25)
Now, if {4(;) ks Ml <m< ﬂ , we consider 1 < g2 < oo fixed, satisfying
1 4 -1)—-N
y L _Amp-D-N (3.26)

N aq2 2N

with this, (3.24) and (3.25), we define r; and 72, and therefore, we consider x such
that

N N
2 — p+—<fc<p—— (3.27)
mqz
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Assuming that % <m < %, we take ¢o according to
~ 1 N —2m(2—p)
< =< — < ——=. 3.28
N q2 < 2N ( )
This condition determines 71 and r3, and thus, for this case, we consider
N N N
2-p+ —<K< —— —. (3.29)
mnro m maqz

By (3.5) in Proposition 3.1, together with the conditions (3.27) and (3.29), we find
)™ 0% (Jul? =) | e 1.2

|az|

< Z A~ (2(k+1)—p) p2k
k=0
< RI@)™E P+ Y @)% e e
L5 1<IBI< ez
[aa|
< Z A~ @(k+1)=p) p2k+1 (3.30)
k=0

By applying Proposition 2.2 with our choice of ¢o and ko determined by (3.26)
and (3.28), we get

)™ (2| =N 5 0% (|uf)) | e S (@)™ 0% (Jul”) | ooz (3:31)
Now, for each multi-index |a1| < N, Proposition 3.1 yields
[[{z)™ 0 ([ul”)[| Lo .22
S RP[[(a) 0 o

[t ]
" Z A\~ (2k—p) p2k—1 I <z>*m(P*”) HL? R+ Z I <x>maﬂu”L%°,I

k=1 L5 I<IBI<]axl

[ |
SR+ APk (3.32)
k=1

Gathering together (3.30) and (3.32), we arrive at
)™ (2| == 0% ul?) 0% (Jul? =) | 2

M M
< (R:u + Z )\—(2k—p)R2k> (Z )\—(2(k+1)—p)R2k+1> 7 (3.33)

k=1 k=0

whenever |a;| < N.
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Case N < |a1| < M. We write
()™ 0% (Ja| == 5 [ul?) 02 (JulP~*w) | g 2
S )™ 2P0 (|| =N s ) e 2 1) PV 02 (ufP2w) | g -

Since [&] + 1 < |a|, we have |as| < M — [§] — 1, then by (3.5) and Sobolev
embedding

[{a)™ =00 (|ufP~2u) | g,

]

<Y ACEm DR Ry S @matul
k=0 [5]<IBI<]az]

||

SY ANCEDIR (R oy > ()™ 0% pge 2
k=0 L3 I<IBI<]ozl+ 5 ]+1
M
S P A (3.34)
k=0
Now, given that |a;] > N, there exists a multi-index a1 = (o4 y,...,a];) such

that o171 < oy and |aq,1| = N. Consequently, for some constant ¢, # 0, we write
[N £ 0% (uf?) = €0 D7 (ul?) = 0711 D79 = (ul?)
1 N
= (=1l RTV ORI DN TN T (jyfP), (3.35)

where R; = —aijfl denotes the Riesz transform in the j-variable for any dimen-
sion N > 2, and in the one-dimensional setting, we will use the same notation to

refer to the Hilbert transform operator. In view of the fact that 0 < m < 2(2#_:”),

we have (2)?"(2~P) is in the Ay class, and thus, the map
R LA(RY; (2)2m2P) dg) — LARY; (2)>" ) dx)

is bounded for each j = 1,..., N. By applying the previous decomposition (3.35),
we get

m(2— a1 —(N—7)
()™ 9% (Jao| =N =1 s |uf?) || pge 2
S @)™ 0 D ([uf?) | oo 12
o af) -y Hor—ar 1
S )RR - R DN () g2

S sup |l @) DN (uf) g e (3.36)
BISM-N
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Considering that 0 < m(2 — p) < N/2 and 0 < v < N/2, it follows that N — v —
m(2 —p) > 0. Then setting b = m(2 — p) and s = N — v in Lemma 2.6, we deduce

()™ =P DN =107 (Jul?) | 30 12
S )™ PP (fulP) e r2 + 1IN EPO (Juf?) | e 12

+ ()P TN (Jul?) | e 2 (3.37)

for each |B] < M —N. Let us estimate each factor on the right-hand side of the above
inequality. Indeed, by arguing as in (3.20), applying Proposition 3.1, we deduce

M—-N
sup  [[(2)" PO (julP) e S RP+ Y ATCRTPIRZ (3.38)
|B|<M—N 1

Likewise, given that |3| < M — N, we have N —y—m(2—p) + |3 < M, and hence,

sup ”Jfoyfm(%p)aﬁ(|u|p)HLOTCLi < SlgwH<g[/,>m(2fp)3ﬁ(|u|p)HLOTCLi

[B|I<M-N 18]
M
SRP 4 NG R2k (3.39)
k=1

We are left with controlling the last term on the right-hand side of (3.37). Recalling

the integer number M satisfying (1.6), there exists 0 < € < W such that
N —~)2mp — N N — 2 -
(N=y)Emp=N) (N =3)(@=p+e _ 5.10)

<
dm(p—-1)— N € -
Consequently, we apply the interpolation inequality in Proposition 2.4 to get

o)™ =P TN =105 (|uf?) | e 12

() "m0 (ul?) | 7

ST (jul?) 177 Ters

LFLE

SUTMFEMN (ul?) | g 2 + ()™ EPF O (ul?) | g2, (341)

where we have |§| < M — N. To estimate the second term on the right-hand side
of (3.41), we use the embedding HY (RY) — L>®(RY) to get

s Tl S s,
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so that Proposition 3.1 and our choice of € > 0 yield
H <x>m(2—P)+meaﬁ(|u|p) ||L%OL§
el
< H <x>72m(P*1)+meHL2 RP + Z N~ (2k—p) p2k—1

k=1

x| R+ > @)"0"uos,

LY I<Inl<I8|
M—N
< (RP+ > A<2kP>R2k>.
k=1

On the other hand, we use Proposition 3.1 with a = 0, and the fact that 1 —p < 0
to deduce

||JM+M07N(|U|p)HL;°L§

S Z ||aﬁ(|u|p)”L5’?L§

[BISM~+Mo—N

M+Mo—N
S (Rp + ) /\(Qkp)RZk1> [[{z) ™™ L2

M+My—
+ Z )‘_(%_p)R%_l Z )™ =P 0% | Lo 12
LFI<IBISM+Mo—N
M+ My—
< RP+ Z A*@’“*P)R?’“. (3.42)

Summarizing, for any N < |ay| < M, we have

M+ My—N
)™ @2 o (|2~ e )| e S RBP4+ Y AT@EPIRZE (3.43)
k=1

This estimate concludes considering the case N < |ay| < M.
Collecting the above results for the different values of a;, we deduce

Yo @m0 NWllgre

[E]<lal<M

M+Mo— M
(Rer Z A<2kP>R2k> (ZA (@(k+1)— P>R2k+1>. (3.44)
k=0
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Estimate for [|JM+TMo=NN(u)||pe . Once again, we write

0N ()llegre S D 10° (2lm ™= % [ul?)0%2 (ul" )|l gz (3.45)

aitas=a
If Ja1| < N, we estimate as follows:
10 (J| =N )92 (JulP ) | e 2
< )™ 2P0 (|| =N s [ulP) [ ge (1) =™ PO (Jul? =) | ez
Following the same line of arguments in (3.19) and (3.20), one can deduce
()™ 2728 (] = [P e,

N+[F]+1
< RP + Z \—(2k—p)
k=1

% RZk + R2k71 Z H <w>m(372p)aﬁu”L%€Li
LZI<IBISN+|F]+1

N+[F+1
S RP + Z )\—(Qk—p)RQk-
k=1

On the other hand, by Proposition 3.1, we find

() =292 (julP~2u) | g 2

M+Mo—N

< Y aCERmR Ry > 10%ull 15012
k=0 & I<IBISM+Mo—N

M+Mo—N

<Y AR Rk (3.46)
k=0

This completes the estimate for (3.45) whenever |a;| < N.
Assuming now that N < |a;| < M, in virtue of (3.43) and (3.46), we get

[0 (||~ s uf )0 (fu PP u) | Lo 2
S )™ P 0% (|| =N s fuf) | e pa () T TP 02 (fufP 2w | e,
M+Mo—N M+Mo—N
< (Rp + Z )\(2kp)R2k> ( Z )\(2(k+1)p)R2k+1> )
k=1 k=0
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Finally, if M < |ay| < M 4+ My— N, we have |az| < My— N < M — L%J — 1. Thus,
we can apply (3.34) to obtain

109 (lar] =M= s )92 (|uf? =) | e 22

S 0% (e~ ful?) | e 22 102 (lulP =) 25,

M
SN0 (=N s )| pge 2 (Z A‘(Q(k“)"’)R%“)-
k=0
To complete the estimate of the above inequality, we write a1 = (@1,1,...,04,n),
so that there exists a constant ¢, # 0 such that

0 (Ja| = w uf?) = ey RYM - R DI (Juf?),
and thus, by the boundedness of the Hilbert and Riesz transforms and (3.42), we
obtain
102 (2~ s ) g2z S ID1 7 (Jul) ez
S Z ||86(|u|p)”L§S’L§
[B|<M+Mo—N

MA+My—
SRR+ Z >\ (2k—p) g2k
Consequently, the above estimates show that

[[JMAMONN () || oo 2

M+Mo— M+My—N
(Rp+ Z )\(Qkp)RWc) ( Z A (2(k+1)— R2k+l> (347)

k=0
Finally, plugging (3.22)7 (3.44) and (3.47) into (3.15), we find

sup |[[(z)" ®(u)]|Lge
te[0,T

SO [N () 0| e

leel <[ 5]

> @)%l e + (S N | 2
L5 I<lal<M

M+Mo—N

+ |T|<T> [¥ J+1+m (Rp + Z )\(ka)RZk>

k=1
M+Myo—N
x< > A(Q(’““)p)RQ’““). (3.48)
k=0
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Estimate for 9%u € L>([0,T]; L*(RN; (z)*™ dx)), | ¥ ] < |a| < M. Let o
be a multi-index of order |a| < M. By Lemma 2.9, the restrictions (1.6), (1.7), (3.44)
and (3.47), we deduce

sup [[(z)" 0P (u)| L2

t€[0,T]
SAT)™ (| T Mo Nug|| L2 + [[(2)™ 0% uol| £2)
HTUT)™ (| TMHM NN (u) poo 2 + [[(2)™ 0N (u) || e 2)

< ()T N g2 + |\<w>m3“UOHLg)

~

M~+Mo—
+|T|T)™ (RP+ Z )\ <2kP>R2k>

M+Mo—N
><< > A(Q(’““)p)RQ’““). (3.49)

k=0

Estimate in the space L°°([0,T]; HM+Mo—N(RN)). We consider a multi-
index a with |a] < M + My — N. By (3.47), we deduce

sup [|0°®(u)| 12
t€[0,T7]

S Mol gaeero—~ + TION (u)l g L2

M+Mo—N
< luol| garsmo—n + [T (R:u + Z )\—(2k—p)R2k>
k=1
M+Mo—N
X ( Z )\—(2(k+1)—p)R2k+1>_ (3.50)
k=0

This completes the study of the || - ||x-norm of ®.
Let us now deduce some consequences of the previous results. But first, for
A, R > 0, we define

M+Mo—
Gi(\,R) = RP + Z >\ Ck=P)R2F  and

(3.51)
M+Mo—N

Ga(\, R) = Z \—(20k+1)=p) p2k+1
k=0
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Thus, recalling the definition of the X-norm (1.9), and gathering (3.48)—(3.50), there
exists a constant ¢ > 0 such that

lo(u)lx < @S @) m0%uolpe + . @)™ 0%0] 2

lo <[ 5] (5] <lal<M

+ TN gl o | 4 e THT) EIHFT G R)G2 (A, R).

R=2c| > o0l + Y &)™ 0%uollrz + |7M M0 Nug| 12

lo <[ 5] [ 5] <lal<M

and taking T" > 0 such that

1 N N
5<T>tﬂ+1+m + ¢|TUT)LZIFH R1G (A, R)G2 (M, R) < 1, (3.52)

we get || ®(u)|[Lex < R.

To prove that ® is well-defined in X7 (R, ), it only remains to establish the
condition inf , yyerx(o,7] |{(z)™®(x,t)| > 3. By the arguments around (2.20) in the
proof of Proposition 2.10, we have that

k
o — to Z

where k = |£'], and therefore,

Gkt .,
UO+ /( t/)kAk—i-l(ezt Auo)dt/,

3 Nitm m Qo
[(2)™ (e uo — o) Lo < [t(1) =T Y @) uol e

lo] < 5]

+ > @)™ 0%l g2 + || JM MO N 12
L& I<|al<M

(3.53)

Additionally, we apply Proposition 2.10 (see, for instance, (3.15)) together
with (3.22), (3.44) and (3.47) to obtain

t
o)™ [N ) g, S ITUT) G RGO ).
(3.54)
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By (3.53) and (3.54) there exists a constant ¢; = ¢;(u) > 0 such that

@)™ @ (u)(z, )] = [(2)™ e P uo(x)| — |ul <:E>m/0 TOAN (u) dt!

oo
LT,

> [(2)™uo ()| — [[{@)™ ("o — uo) |2z

= |ul

t
<x>m/ ei(tft’)AN(u) dt'
0

oo
LT,m

>\ — cl|T|<T>L%J+1+m Z [l {2)™0%uo || Loo

la] <L 5]

+ Z ()™ 0% uo || 2 + [|TM Mo Nug]| 2
L3 ]<lal<M

—a|TT)LEIH14mG (A, R)Ga(\, R), (3.55)

where G; and Gy are defined in (3.51). If we take 7" > 0 small such that (3.52) holds

true and

XN m m Hx
e T|(T) = Y @)™ 0%uol
jal<[¥)

+ > @)™ 0%uollp2 + [T Nug) 2 + Gi(A, R)G2 (A R) | <
L5 I<lal<M

no | >~

(3.56)

Then the inequality (3.55) yields

()™ ®(u)(z,t)| =

| >

inf
(z,t)ERX[0,T]

We conclude that ® maps X7 (R, \) into itself.

Next, we show that for some small 7' > 0, ® defines a contraction on X7 (R, \).
But first, to compute the difference N(u) — N(v) in the space X7 (R, \), we require
the following result.

Proposition 3.2. Letb € R, 1 < r < o0, and u,v € Xp(R, ). Let a be a multi-
index of order |a| < M + My — N, then we have

[(2)*0 (lul” = [vl") | g s

S (R AT OIRSD) (@) Py flu — vl e x
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||

+ 3 AT g2 (R (e
k=1

+ Y @0 ey | flu— vz x
L5 I<18I<]al

o
+ Y AR R flu— v g x| ()T |y
k=1

Y KT o)1y

¥ ]<I8I<]al
+ R 72|lu— v Lx Z [[(z)> TP 98| oc v
14X J<I8I<]al
+ ) T 0% | pee | |- (3.57)

Additionally,
() 0% (Jul?~u — [0]P~20) || 3o 12

o]
SATOI R (@)D ey — vl ) ATHED ) Rk
k=1

< | B ™V + Y )P | ry | u - vllgx
¥ 1<IBI<]al

]

+ ATEETUI | 2k (Iu —ollzgxl (@),
k=1

+ > )PP — o)Ly

L51<IBI<]al
+R*Hu — v ppx Yoo @00 ey
L ]<IBI<]al
+ [[(2)mCP 0 | o | ] (3.58)
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Proof. Let us first consider || = 0. Using the identity
[Jul” = Jvl"] < max{fulP~, [o]" " Hu — o], (3.59)
we have
z) ([l = [of”)l| 5
< (@™l + ) ol )™ (= ) 5.
Now, we deal with (3.57) for any multi-index « of order || > 1. By identity (3.6)
O (Jul? — Jv[?)

||

= > (ulP~* — o2 Yo s (). 0% ()

k=1 ﬁl+"'+ﬁk:0¢
[B;1>1, 1<j<k

la| k

+ PN Yo s 0N ()P (o)
k=1

=1 | Bit+-+pi=a
16;1>1, 1<5<k

(07 (fuf?) = % (ju|*))0"+ (juf?) ... 0% (|ul?)

e (3.60)
To bound the term Cy, since |u(x, )71, [v(z, 1)~ < A~ Ha)™, it follows that
[JulP = — o2
= [Jul" = ul? — [o[P~* ol
Sl (ul? = o) + o lulP~* = ol" =]

S AP @) (] + ol (= o) + 17— Juf*~]

o |
SATOP (@) (u] 4 fol)(fu — o)
+ A= (0=20) (y(6=20) masc{ [uf3~7, [0f*~}Hu — o], (3.61)

Similarly, for k& > 2, we deduce

[[0]?67F — Jul?*7P|

|u|2k—p|v|2k—p

[lulP =28 — [oP=2*] =

S/ )\72(2]@‘7}7) <x>2m(2k7p) max{|u|2k7p71’ |v|2k*p*1}|u o 1)|.

(3.62)
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Hence, by (3.61) and (3.62), we have

(z)*Callzgery

2
AP e, + @)™ lz,) (Sup ||<x>’"67ullmm>

[vI<1

[ {@)™ (w = v) | Lg, [I{2) "~

L3

2
(66— m, 13— m (187 m
+ATOP(||(2) P ull 72+ |I() U||L;0p1)<81|1<1>1|<$> 87“”%‘})
s o Y

[ @)™ (w = v) | Lgs, I{z) =™
o

—2(2k— m, 11 2k—p—1 m, |2k—p—1 m
+kz>\ PEERN ()™ ull e P ) ol e PO ) ™ (= ) g,
=2

L3

xS @R (uf) . 0% (uf?) gy

B+ +Br=a
16;121 1<j<k

=:C11+Ci2+Ci.
Hence, to finish the estimate of C;, it only remains to control C; 3. Applying the
same partition as in (3.8) and the arguments in (3.9)—-(3.11), we deduce

]

- — m 2k—p—1 m, ||2k—p—1 m
Cra S D AP (@)™ ull TP+ )™l T P I ™ (u = o),
k=1

xR R[{a)* ™1y + > ()PP 9| e
Lm]+1F]+2<lvI<]al
Next, we deal with C5. We write
@ (uP) =00 = D o5 (07w = 0%0)0%u + %0 (071 — 0%9),
B1+B2=p

for any multi-index |3] > 1. Then, by using the above identity and dividing the
corresponding sum as in (3.8), we obtain

I(x)"Call g o,

|

SO DY AR (jof?) L 0% (o)
k=11=1 fi+..+Pr=a
18,121 1<j<k

(07 (|uf?) = 07 (Jo[*)d+ (|uf?) ... 0% (|ul?)l| e 12
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||

SO AEER RPN (@) ™0 (u—v)|| g, ()"
k=1 1BI<1%]

Lr

x

+ Y @ (= o)|pry

L5 I<IBI<]el

+ R |lu — v x Z [{z)P TP 9Py poc
[ZI<IBI<] e

+ (@) TP ey

Hence, the proof of (3.57) is complete.
Next, we turn to (3.58). By identity (3.12), we get
O (|ulP~?u — |v|P~2v)

||
= Z(|u|p—2(k+1) — |p[pm2(k+1))
k=1

||

X Z 0507...,ﬁk8ﬁ0u851(|u|2).-.8ﬁk(|u|2) +Z|U|p_2(k+1)

Bot+B1t+...+Br=a, k=1
[851>1, 1<j<k

x > Chorernr (070w — %) (Juf?) ... 9% (|Jul?)

Bo+p1+...+Br=a,
[Bi1>1, 1<5<k

k
+D €y 07007 ([0f) . 0% (Juf?)
=1

(07 (|uf?) = 07 (Jo*) %+ (juf?) ... 7% (|ul?)
+ (lufP7? = lP=*)0% + [P~ (0%u — 87v)

=: C; +Cy +Cs.
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We proceed to analyze each term 5j, 1 < j < 3. Applying (3.62), and using a similar
partition to (3.14), we get

(z)*Call ey

]

S 30 AT (| @) B (@) ol P )™ (= ) g,
k=1

x> e gt (u?) 0% (juf?) | gy

Bo+B1+..+Br=q,
[8;1>1, 1<j<k

lal
_ _ m. ||2k—p+1 m, |12k—p+1 m
SZ)‘ 22(k+1)=) (|| (z) u||L%f+ + ||{(z) U||L§'§f+ M{@)™ (w = v)llLgs,
k=1

<R RI@)' 0D g+ Y @0 e

LT I<IBI<]al
In a similar manner, we deduce
1(z)*Call g
Kl
< Z A\~ (2(k+1)=p) Z || (z) o™ (2ht2=p) (§F0y, — §Poy)
k=1 Bot+Bit: +Br=q,

18121, 1<j<k

k
X0 ([uf?) - 0% (ful) |y + D (@) T ERH2 P g (o) %
=1

x([o)(@% (Jul?) = 87 ([o*)07+ (fuf) ... 0% (luf*) | L Ly

o
<D ATCEDID R u — vl x| ()P
k=1

+ S @R — )Ly
LE]<18]<] e

+R* Mu—vllpex Y
L& ]<1BI<]e

x| @m0 ul| gy + [12) TP O] ey
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Finally, by (3.61), we find
() Cs]| e
SATEP([() M ull g, + () ™0l g, )
X [[(2) P 0% pge 1y 1) (w = 0) g, + A O ([[{2) Ml 7P
@)™ ol ) P 0% ey @)™ (w — )Lz,

+ATEP ()PP (4 — v) || e,

and since
)"+ D% e
S Y o ullog @)™ VgL,
1BI<L5 ]
+ Z ()PP 00w oo
L3 1<I8I<]]
the deduction of (3.58) is complete. O

Now, we compute the difference ®(u) — ®(v) in the space X7 (R, \). We divide
our consideration into several cases depending on each component in the norm (1.9)
used in the space X7 (R, \).

Estimate in the space L ([0, T]; W2 122 (RN; (x)™ dx)). Let 4 be a multi-
index of order |3 < [§] and u,v € X7 (R, A). By the arguments leading to (3.15),
we find

S [(2)™ 0% (@ (u) = @ ()] g

SITUT)LEEm N (@)™ (N (u) = N ()]l

ol <2 ’
+ Z [(@)™0*(N(u) — N(v))| Lo 2
LY J<lal<M
+ || JMHEMN(N (u) = N(0)) || gz |- (3.63)

We proceed to estimate each term on the right-hand side of the above inequality.
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Estimate for |[(z)™0%(N(u) — N(v))llrse,,|a] < L%J We divide our anal-
ysis as follows:

[[{z)™ 0% (N (u) = N(v))ll g,
S )™ 0% (2~ s (juf” = o)) JulP~*w) | g,

+ ()0 (|~ 5 [of?) (lulP~2u — o] ~?0) g,

S D @™o (e~ s (jul” — o))l |

a1+as=a
x ()™ P09 (julP2u) | Lge, + (@)™ P (||~ x [olP) g, |
s (z)™P=1) goz (| P~y — |U|p_2U)HL%?m-
By applying the same arguments in (3.19) and Proposition 3.2, yields
()™ =P (2| =N s (juf? — o[?)) | g,

S Y I@mCPE (o)l re

1Bl<2[ % ]+1
2l 3]+
< Rp—l + )\—(6—2p)R5—p + Z )\—2(2k—p)R4k—p—1 + )\—(Qk—p)RQk—l
k=1
X [lu = v|[Lgx- (3.64)

Similarly, an application of Proposition 3.2 allows us to conclude
()™ =D 8% (julP~?u — [v]P~20) | g,
15
< [ A—(6=2p) pd-p | Z A2+ —p) pdk—p+2 4 \—(2(k+1)—p) p2k
k=1
X ||U_'UHL§SX- (3.65)
We combine (3.20), (3.21), (3.64) and (3.65) to deduce
[{z)™0%(N (u) = N())llzg,

S (A R)G2 (A R) + Gi(A R) (A, R))[lu — vl x, (3.66)
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where G1 (A, R) and G2(\, R) are defined in (3.51) and we have set

M+Mo—N
JiAR) = RP 4 A0 Rep g N \2Cke) gkt
k=1
4+ A~ ko) k-1
(3.67)
M+Mo—N
J2(\R) = A~ (6=2p) pd—p | Z A—22(k+1)—p) pk—p+2

k=1
+ )\7(2(k‘+1)7p)R2k:.
Estimate for ||(x)™0%(N(u) — N(v))||Lse L2, L%J < |a] < M. We use Leib-
niz’s rule to get
[[{2)™ 0% (N (u) = N (v))l[Lge L2
S Y @ymam (el N x (jul? = [o]?)a% (|ufP~u) | pg r2
altas=«a
[ a)™ 0% (el =N x o) (julP "2 — o T20) |z (3.68)

Let us further divide our analysis according to the magnitude of the multi-index
aq in (3.23).

Case |a1| < N. Recalling the conditions (3.24)—(3.29), and the arguments leading
to (3.31), we apply Proposition 3.2 to deduce

)™ (jael =N 0 (Jul” — J0lP)) | e 10

S )™ 0% (ful? = [v[P) [l pge 22

~

S (B2 4 A2 RS2 () =m0 | Ly ()P

M+Mo—N
« Z A" 2(2k—p) pdk—p—1 | )\(ka)RZk1> o — UHL;@}:
k=1

ST R)u—vlrgz.
Likewise, by similar arguments as in (3.30) and using Proposition 3.2, we deduce
)™ =092 (julP =2 — [olP~20) | e 172 S To(A R)[lu = vl ez
Then, we collect the previous results and similar considerations as in (3.33) to find

Yo M@y (2”7 w (uf” = [ofP)0% (JulP "2 u) | L rz

a1taz=a
+ ([ @)™ 0% (Ja| =T [olP) (fufP 2w — [0 || L2
S (A R)G2 (A, R) + Gi (A, R) T2 (A, R))||lu — vl g x, (3.69)

for all |ay| < N.
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Case N < |a1| < M. By using (3.34) and (3.43), we find
()™ 0 (| == (Jul? — [ol?))0° (JulP~2u)l| Lge 22
+ [[@) ™0 (Ja| = [ol) (|ufPPu — 0P 20) | e 2
< )™ PP 0% (|| =N s (uf? — [of?))l| e 2 G2 (A R)
+G1(A, R)[[(2) ™ PV 0% (Jul~Pu — o] ~20) |1, - (3.70)

Now, by the same line of arguments as in the estimates (3.36)—(3.41), it follows
that

()™ =P 0% (||~ =7 s (ful? — o) e 22

S sup (@) PR (Jul? — o) Lge rz
BI<M
+ SN (ulP — [olP) | e e,

where € > 0 is given by (3.40). Since (x)~2mP=D+me ¢ [2(RN) Proposition 3.2
yields

s @)™l — o)z S TR = vl

A further application of Proposition 3.2 gives

o [T (fuf? —o?) || g rz S Ti(X B)llu — vl gz

Finally, we use (3.58) to deduce

()™ =02 (lulP~2u — o]’ ~2v) L5, € oA, R)u = vl L x-

Tyx ™~

Plugging the previous estimates into (3.70) allows us to conclude that (3.69) holds
true for all || < M. This in turn provides the estimate

> @)™ (N () = N())|l g r2

[F]<lel<M

S (A R)G2 (A, R) + G1(A, R) T (A, R))[u = vl g x- (3.71)

Estimate for ||JM+Mo=N(N(u) — N(v))||pger2. Following the same reason-
ing leading to (3.47), using Proposition 3.2, we deduce

| JAHTN(N (u) = N (v)) ]| g2
S (A R)G2 (A, R) + Gi(A, R) T2 (A, R))llu — vl g x- (3.72)
To avoid falling into repetition, we omit the deduction of the above estimate.
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Combining (3.66), (3.71), (3.72) and (3.63), we find

sup_|[(2)™ 9% (®(u) — ®(v))| Le
te[0,T)

SITRT)E (T R)Ga (A R) + G1 (A, BRI (A R))lu = |-
This completes the required analysis on the space
L([0, T); WL Lo (RN ()™ dar)).

Next, by the inequalities (3.66), (3.71) and (3.72), we can argue as in (3.49)
and (3.50) to control the remaining terms of the || - ||x-norm for the difference
D(u) — ®(v), u,v € Xp(R, \). Thus, we get

S @) o™(@(u) = 2(v)lpgr2 + 1T TN (@(w) — (v))| Lo 2,
[T ]<lel<M

SITIT)™ (1A B)Ga (A, R) + Gi(A, R) T2 (A, R))l|u — vl 2.

Consequently, there exists a constant c¢o > 0 such that the above estimates are
summarized as follows:

[®(u) — @)Ly x
< o TUT) ™ (F (A, R)Ga(A, R) + Gi (A, R)Ta(\, R))llu — v L x,

where G;, J;j, j = 1,2 are defined in (3.51) and (3.67), respectively. We take T > 0
sufficiently small satisfying (3.52), (3.56) and such that

cs|TT)LZ 4™ (7, (X, R)Ga (A, R) + Gi (A, R)T2(\, R)) < 1. (3.73)

Consequently, ® is a contraction on X7 (R, \). Thus, there exists a unique fixed
point solving (1.1). The remaining properties stated in Theorem 1.1 are deduced
by standard arguments, thus, we omit their proofs.

4. Theorem 1.3

We apply pseudo-conformal transformation in the spirit of [4]. Via this transfor-
mation a global solution of (1.1) corresponds to a solution of the nonautonomous
equation

1
ivg + Av + p(1 — bt)N ===y <|x|NW * |v|p> [v|P~2v

—0, zc€RY, teR, (4.1)
v(x,0) = vo(z),

where b, u € C\ {0}. We solve the initial value problem (4.1) in the class X deter-
mined by (1.8) and (1.9).
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Proposition 4.1. Let 3 < p < 2,0 < 7 < min{N(%ﬁ,N(p —1) -1}, and
m € RY, My, M € Z* satisfy (1.5)-(1.7). Additionally, let vo € X such that

i > A .
inf Jvo(z)] = A (4.2)

Then there exists a unique solution v of (4.1) with initial data vy such that
v e C([0,[o]71]; %), (4.3)

provided that b > 0 is sufficiently large.

Proof. The proof is similar to that of Theorem 1.1. We will apply the contraction
mapping principle to the integral operator defined by (4.1), that is,

t
By (v(t)) = Py +ip / (1 — bt ) NP=D=2=76 =DM N (")) dt!,  (4.4)
0

acting on the space Xy-1(R, \) defined by (3.2).
Following the same arguments leading to the inequalities (3.48)—(3.50), there
exists a constant ¢ > 0 such that

— N m m Qo
192 (w)l| g < efb] L= > @)ool

la|<[ &)
+ 03 @)%l e + (S MO N g |
L%j<|a\§M
+efb] T (BT EIHEmG (A, R)Ga (A, R), (4.5)

where Gy and Gy are defined by (3.51), and we have used

/bll |1 — ot/ |NP=D=2=7q = o . (4.6)
0 Np—-1)—-1-v

Next, by (3.53) and arguing as in (3.55), there exists a constant ¢; such that

(@)™ @a(v) (@, )] = A= eab| (BT ST (2)™ 0% e

ol <X
+ D @™ 0%vollpz + 1T N 12
L5 I<lal<M
— o[ 1B THLEITEMG (A R)Ga (A, R). (4.7)
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Similarly, the same reasoning in the deduction of (3.73) assures the existence of a
constant co > 0, for which

|19o(u) = o (v)]l g% < calpl (oL E

X (jl()" R)QQ()‘a R) + gl()" R)jQ()‘a R))Hu - UHL;’S%»
(4.8)

where J; and J» are defined in (3.67). Recalling the constant ¢ > 0 in (4.5), we set

R =2c Z H<$>maavo||Lg° + Z H<1;>m3°‘vo|\Lg + ||JM+M°_NUOHLi
lof <[ &) LY <|a|l<M

(4.9)

Thus, we take b > 0 large such that

1 N N
S (BT b =1 (o DT RTIG (0 R)G (A R) < 1,

. N A
A= oo BT R — e bl HjpTH TG (A, RIG (A B) > 5,

ealb| (B LE I (7 (A, R)Ga (M, R) + G (A, R)Ja(\, R)) < 1.
(4.10)

These conditions establish that ®g: X -1(R,A) — Xpp-1(R,\) is a contraction.
Therefore, it has a fixed point, which is a solution of (4.1). O
blx|?

4

Let us now obtain a global solution of (1.1) with initial data e!=7 vg, vo € X
satisfying (4.2). As in Proposition 4.1, let b > 0 sufficiently large such that there
exists a unique solution v € C([0,b7]; X) of (4.1). We define

u(z, t) = (14 bt)_%eufl‘iff)v vt (4.11)
’ 1+0bt" 1+ bt

for any 0 < ¢t < oo and = € RV. Recalling that 0 < s <
and similar arguments as in proof of Lemma 2.9, we find that u solves (1.1) with

Zm;N» by Proposition 2.8

u e C([0,00); H*(RN)) N L2(RN x (0,00); (x) 2 dadt), (4.12)

. x 2
and u(x,0) = ez%vo. We emphasize that the condition on the regularity 0 <

s < 22N assures that v € C([0,b71); L2(RY; (z)?* dz)), which is required to
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deduce (4.12). Next, we use the following identity [8, (3.8)]:

e By (x,t) = e i, (:c, : —ibt)' (4.13)
Thus, we define
Uy = eib‘f2 eIty (%) (4.14)
We claim
e~ "Ry (t) ——ug in H*(RM). (4.15)

Indeed, in view of (4.4), we find

1
. ib|lx 2 b il
e tAY(t) — uy = —ipe T / (1 — bt/ )N P=D=2=7 = AN (1)) at'.

(4.16)
By Theorem 2.3, property (2.8) and Lemma 2.9, we find

le™ "2 u(t) — wy| e

< lle™™ut) = urlze + 1D (e u(t) — ui)llz2

1

b

< (1=t )NE=D=27e AN (y(t')) dt!

t
T+t Hs

+|[Ds(e™F5) / (1 — bt')N=D=2=7 =it A N ((¢')) ¢’

t

1+0bt

L2

%
5(/ |1—bt’|N(p1)27dt’> sup  ||N(v())]|ms

1ot te[0,|b] 1]

o=

+ (b)* (4.17)

/ (1 _ bt’)N(Pfl)*Q*’Y(<$>Sefit/AN(v(t/))) dt’

t

T+t L2

Since s <m < M + My — N, by (3.47), we get

%

(/ |1—bt’|N(”_1)_2_7dt/> sup [N (v(t))]| =
—. t€[0,16| 1]

1

< ( S - bt’|N(p1)27dt’> Gi(A R)G2(A, R) —— 0, (4.18)

t
1+bt
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where R is given by (4.9), and G; and Gy as in (3.51). Next, we apply Proposi-
tion 2.10 to get

1

b

(1 _ bt’)N(Pfl)*Q*’Y(<z>567it/AN(v(t/))) dt’

t
115t L2

~

< @)l e / (1= BYNOTD=2 e AN (o(¢)) | e it

1+bt

5 / (1 . bt/)N(P—l)—2—’y<t/>L%J-ﬁ-m—i—l Z ||<$>mN(U(t/))HLgC

1ot la| <[5 ]

+ > K@) NIz + [T NN ) g2 |
[E]<lal<M

1
5 ( (1 _ bt/)N(P*l)*2*’Y<t/> L5J+m+1dt/> G (}\’ R)QQ()\, R) —0,
ﬁ t—oo
(4.19)
where we have also used that s < m—£. Gathering (4.18) and (4.19) into (4.17), we

deduce the desired limit (4.15). Finally, since supg.;<p|-1 [[0(t)| L= < 0o, by (4.11),
it follows that sup, o (1+8) 2 |lu(t)|| L= < co. The proof of Theorem 1.3 is complete.

Remark 4.2. The arguments in (4.19) also establish the following limit:

Jim [[{z)* (™A u(t) — uy)|| g2 = 0. (4.20)
t>0

5. Blow-Up Criterion

This section aims to establish Theorem 1.4 and Corollary 1.5. We assume that
max{fE2 4} < p < 2,0 <y <min{N(p-1) -2, (N+2)(2p*1)72, N(ggz)%)} and
i > 0. We consider m € RT as in the statement of Theorem 1.4, and My and M
satisfying (1.6) and (1.7), respectively. Then, we set the space X by (1.8) and (1.9).

Let vo € X verify (1.11) and v € C([0,T]; X) be the corresponding solution

iblx|

of (1.1) with initial data ug = e~ 1 vy provided by Theorem 1.1. We first observe
that

ue O([0,T); L*(RY; |z[* dx)), (5.1)
which is a direct consequence of the following computation:
@)ullpgre < @)™ ullog, @)~ Ve S )™ ullg, .

and the fact that m > % + 1. We remark that the condition 0 < v < w

in Theorem 1.4 assures that % < 2]\(7212;),

which is implicitly required in (1.15).
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Additionally, it follows

(ll% * |u|’”) ufP € L>((0,T]; L' (RY)). (5.2)

Indeed, we apply Holder’s inequality and Hardy—Littlewood—Sobolev inequality to
get

(- 17N s ) [l || e
<. |-(N=v) P P
S  Jul|| .- [[lul HLoTeL;@—NM
S I\IulpllL;ngl\lulpllL%OL;@_Nh

2
e )™l 2

S @) =" Pllze ) =71

where the restriction (1.15) implies (z) =™ € LQ(RN)QLNT;V (RM). Next, we recall
the variance (1.14)

Ve = [l ua o o

and the energy (1.3)

Elu(t)] = %/RN |Vu(z,t)|? de — ad (H% * |u(-,t)|p) (x,t)|u(x, )P de.

2p RN

Note that (5.1) and (5.2) establish the validity of V'(¢) and E[u(t)]. Then, we deduce
that the above solution u of (1.1) satisfies the following virial identities:

Vit) = m | (e Vu)dr. (5.3)
and
Vie) = 1680u(t)] ~ 85 L= [ (7 sl o P (o) d
— 16(se(p — 1) + D E[u(®)] — 85.(p — D[ VulZa, (5.4)

also, we recall the critical index (1.13),

N v 42
2 2p-1)

In particular, s. > 0, if and only if 0 < v < N(p — 1) — 2, which is given by our
assumption p > %

Consequently, (5.3) and (5.4) allow us to follow the same arguments as in the
proof of [1, Theorem 1.3] for the gHartree equation (1.1) with p > 2 to deduce

Theorem 1.4.

Se —
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Next, we infer some consequences of Theorem 1.4. Since we are considering
. ibjz|? .
solutions of (1.1) with initial condition uy = e~ 7 wvg, we deduce the following

identities:
V(0) = [lzuo[72 = l|lzvol 72,

V,(0) = 4Tm %(w-VUO)dx—i—Zb/|x|2|v0|2dx,

RN (5.5)

b 2
Elug] = Evo] + = Im To(x - Vo) de + — Ui / 2|2 |vo|? d.
2 RN 8 Jrv

Note that Flug] — oo and V;(0) — —oo0 as b — —oo. Let us rewrite some conditions
in Theorem 1.4 in terms of the equations in (5.5). We have Eluo]VO) > 1 if and

(weMluo])?
only if
b b)? M
Elvg] + = Im To(x - Vo) de + — i / || |vo|? da — (weM[vo)” [vo)” > 0.
27 Jrw 8 Jry ES
(5.6)
Assuming that % > 0 and % < 1, the inequality (1.16) is equivalent
to
ke|0V(0)|> — 32k E[uo]V (0) + 32(1 + k) (weM[vg])? _ 32(weM [vg])?ke
ke (we M [vo))? ke (Eluo]V (0))%<”
(5.7)
Likewise, if %(0)] < 0 and % > 1, (1.16) is determined by
kel V (0)* — 32k Elug]V (0) + 32(1 + ke) (we M [vo])? - 32(weM [vg))?ke
koo (weM [vo])2 ke(Euo]V (0))ke
(5.8)

We remark that

|0:V (0)]? — 32E[ug]V (0) = 16 (Im/}R To(x - Vg) dac) — 32E[vo]||lzvo |2

N
(5.9)
Now, we assume that vy is a real-valued function. Then,
BluolV(0) _ SEluo] + b2 zvoll3.) ool 5.10)
(weM [uo])? 8(weMlvo])? ’
2b 2,
atv(o) _ ||‘Tv0HL , (511)
weM [uo) weM [vo)
and
E S(weM 2 -8F 2
7[1“)]‘/(0)2 >1 if and only if |b|2 > (weM o)) 7 [UO]HxUOHm.
(weMTuo)) [zvoll7
(5.12)

2150074-48



Well-posedness in generalized Hartree for p < 2

Note that Efug] > 0, if [b> > mﬂl’g"]. Now, we divide our analysis according to
L2
the sign of b # 0.

(I) Assume b > 0. Here, j"]\‘;fgi] > 0, and thus, by (5.12), we can only verify the

hypothesis of Theorem 1.4 when

2/2
|b|<i

[zvoll7»
This forces us to assume

(weM[vo])* = Efvo]llzvollz2)"/2. (5.13)

Efvo]l|lzvollz: _
(Mfwo]) <

Hence, in virtue of (5.7) and (5.9), we find
(weM[vo])2h*2 8E[uvo]

1/ke
g g TR
[lzvo[72 (((1 + ke)(weM [vo])? — keElvo][lzvol|72) ) [[zvoll72
(5.15)

(5.14)

bl* <

If the right-hand side of (5.15) is positive, Theorem 1.4 assures the existence
of two numbers by > by > 0 such that the solution w of (1.1) associated

ibla|?

to ugp = e~ 2 vy determined by Theorem 1.1 blows up in finite time for all
bo < b < by. In particular, if Evg] > 0, one can take by = 0.
(IT) Assume b < 0. In this case, (5.8) and (5.9) impose the condition
Elwolllzvol[z. _ 1+ ke
(@ Mwo])?2 ke
Hence, Theorem 1.4 and (5.16) yield the existence of by < 0 such that for all

iblw|?
b < by the solution w of (1.1) with initial condition uy = e o3 v blows up in

(5.16)

finite time.
Collecting the conclusion in (a) and (b), we deduce Corollary 1.5.

Remark 5.1. (i) The same conclusion in parts (I) and (II) above are valid assuming
the weaker hypothesis Im [5 Tg(z - Vo) dz = 0.
(ii) Assuming

2(1 + ke) (weM[vo])? + ke(Im To(z - Vg) dz)? — 2k.Elvo]||zvo/22 > 0.

RN
(5.17)
Equations (5.5)—(5.9), and Theorem 1.4 assure that there exists b3 < 0 such
iblx|?

that for any b < by, the solution u(t) of (1.1) associated to ug = e~z wg
determined by Theorem 1.1 blows up in finite time.
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