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Abstract. Model calibration or data inversion is one of the fundamental tasks in uncertainty quantication. In
this work, we study the theoretical properties of the scaled Gaussian stochastic process (S-GaSP)
for modeling the discrepancy between reality and the imperfect mathematical model. We establish
an explicit connection between the Gaussian stochastic process (GaSP) and S-GaSP through the
orthogonal series representation. The predictive mean estimator in the S-GaSP calibration model
converges to reality at the same rate as the GaSP with suitable choices of the regularization and
scaling parameters. We also show that the calibrated mathematical model in the S-GaSP calibration
converges to the one that minimizes the L2 loss between reality and the mathematical model, whereas
the GaSP model with other, widely used covariance functions does not have this property. Numerical
examples conrm the excellent nite sample performance of our approaches.
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1. Introduction. Mathematical models are developed by scientists and engineers based
on their expert knowledge of reproducing physical reality. With the rapid development of
computational techniques in recent years, many mathematical models have been implemented
in computer codes; these are often referred to as computer models or simulators.

Some parameters of mathematical models are unknown or unobservable in experiments.
For example, the Kilauea volcano recently had one of its biggest eruptions in 2018. The
location and volume of the magma chamber, as well as the magma supply and storage rate
of this volcano, however, are unobservable. Field data, such as satellite interferograms and
GPS measurements of the ground deformation, were used to estimate these parameters [1, 2].
Using eld observations to estimate parameters in a mathematical model and to identify the
possible discrepancy between the mathematical model and the reality is widely known as model
calibration or data inversion.

For any p-dimensional observable input x 2 X, denote yF(x) 2 R as the eld observation and
fM(x;) 2 R as a mathematical model with g-dimensional unobservable calibration
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parameters 2 . Furthermore, let yR(x) = E[yF (x)] represent the reality. A routinely used
framework for calibrating the imperfect mathematical model is [15, 4]

(1) yi(x) = fM(x;) + (x) +;

where is the noise and () is a discrepancy function between the reality and the mathematical
model. Since the mathematical model is often developed by experts, we assume that the mean
and trend of the observations are already included in the mathematical model.

The discrepancy function was modeled as a Gaussian stochastic process (GaSP), in [15] and

the framework has been widely studied in recent years [8, 14, 18]. This approach is
referred to as GaSP calibration. Dene the prediction error by the L, loss Z

(2) prediction error(;) = lyR(x) ‘{/‘;R (x)12dx;

x2X
where YR (x) is the prediction (e.g., predictive mean) of the reality, and the subscript (;)
implies the dependence on both the mathematical model and the discrepancy function. Since
both the mathematical model and the discrepancy function are jointly estimated in GaSP
calibration, the prediction error was found to be smaller when compared with the prediction
error from the mathematical model or nonparametric regression alone [15].

It was shown in follow-up studies, however, that the calibrated mathematical model in
GaSP calibration can be far away from the reality, which results in an identiability problem
between the calibration parameters and the discrepancy function [3, 19, 26]. This is because
the variability of the observations in GaSP calibration with some frequently used kernels, such as
the Matern kernel, can be explained mostly by the estimated discrepancy function instead of
the calibrated mathematical model.

Note that the true value of the parameter in (1) is not well dened due to the inclusion of
an unknown function . However, one can evaluate the distance between the reality and the
calibrated computer model via some frequently used loss functions. A few recent studies mea-
sure the goodness of calibration in terms of the L, loss between the calibrated mathematical
model and reality [25, 26, 29]. Thus, the calibration error may be dened by

VA
(3) calibration error() = [yR(x) fM(x;)]1%dx:
x2X

These studies seek to nd the L, minimizer of that minimizes the calibration error, i.e., (,
:= argmin, calibrationerror(). To estimate the L, minimizer, a few two-step ap-proaches
were developed. In [25], for instance, the reality is rst estimated through a
nonparametric regression model without the assistance of the mathematical model. The cali-
bration parameters are then estimated by minimizing the L, loss between the mathematical
model and the estimator of the reality. For some complex applications, however, it is crucial to
jointly estimate the reality and the calibration parameters, as the mathematical model
developed based on the experts’ knowledge can be very helpful for predicting the reality.

A recent model for the discrepancy function, called the scaled Gaussian stochastic process
(S-GaSP) [12], was constructed such that both the prediction error and the calibration error
are small. We gall this approach the S-GaSP calibration. Note that the calibration error can
be written as (x)2dx. In S-GaSP, the prior distribution of the calibration error has
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more probability mass near small values, reecting one’s preference for smaller values of the L,
norm of the discrepancy function. In contrast to the two-step approaches that seek L
minimizers, both GaSP and S-GaSP dene a sampling model of the discrepancy, such that the
uncertainty of the parameters can be obtained exactly. Though the computational strategy of
the S-GaSP calibration was studied in [12], theoretical properties of this process are yet to be
examined.

In this work, we study the theoretical properties of S-GaSP. The contribution of this article
contains three parts. First, we establish the explicit connection between GaSP and S-GaSP
through the orthogonal representation of the process, which describes the reproducing kernel
Hilbert space associated with an S-GaSP. Second, we show that the maximum likelihood
estimator of the calibration parameter and the predictive mean in GaSP can be obtained by
minimizing a squared error loss with a penalty term depending on the L, norm and the
reproducing kernel Hilbert space norm. Third, we show that the predictive mean from S-GaSP
converges to the reality at the same rate as the one from GaSP with suitable choices of the
regularization and scaling parameters. Last but not least, using the same regularization and
scaling parameters, the calibration parameters in S-GaSP converge to |, , whereas GaSP
calibration with other, widely used kernels does not enjoy this property. To the best of our
knowledge, this work represents the rst eort in the literature showing that the joint
estimation of the calibration parameters and the model discrepancy by S-GaSP (essentially a
GaSP with a transformed kernel) allows these two convergence properties to hold at the same
time, bridging the gap between the joint estimation procedure and other two-step estimation
methods.

Although the two convergence properties discussed in this work can be achieved using the
aforementioned two-step approaches [25, 29], nite sample studies suggest that jointly esti-
mating the calibration parameters and the discrepancy as in S-GaSP calibration leads to high
predictive accuracy. Additionally, since the sampling model is fully specied, uncertainties of the
parameters in S-GaSP calibration can be naturally assessed through posterior distribu-tions
via a Bayesian approach. Numerical results in section 5 suggest the maximum likelihood
estimator (MLE) and Bayesian estimation are often similar, yet Bayesian estimation is more
robust than numerical optimization.

The rest of this paper is organized as follows. In section 2, we introduce S-GaSP along
with the orthogonal series representation and the joint estimation in calibration. Two
convergence properties are discussed in section 3. In section 4, we introduce the discretized S-
GaSP along with the parameter estimation under the Frequentist framework and Bayesian
framework. A comparison between S-GaSP calibration and other alternatives is discussed in
section 5 with numerical evidence provided in section 6. We conclude this work in
section 7. The proofs of the theoretical results are given in the supplementary material
(supplement.pdf [local/web 442KB]). We implement model calibration approaches in the
RobustCalibration R package available on the Comprehensive R Archive Network (CRAN)
[10], which allows for both MLE and Bayesian estimation by posterior sampling. The par-
allel partial Gaussian stochastic process emulator for computer models with scalar-valued or
vectorized output [11] can be called as a surrogate model from the package when the com-
puter model is expensive. The source code of the examples in this article is available at
https://github.com/UncertaintyQuantication/SGaSP-Theory.
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2. The scaled Gaussian stochastic process. Denote () GaSP(0; 2K (; )) with vari-

ance 2 and correlation function K(;) such that, for any inputs fxig;-1, the marginal
distribution ((x1);:::;(xn)) T follows a multivariate normal distribution with covariance
Cov((xi); (xj)) = 2K(xi; xj). In order to have the mathematical model explain more vari-
ability, the S-GaSP prior introduced in [12] places more probability mass on a smaller random L
distance between the mathematical model and reality, as this measure is often used to
quantify how well a mathematical model ts the reality. The S-GaSP calibration model is
dened as the following hierarchical model :

yi(x) = fM0G)+ L (x) +

()= ()% 2d=z
(4) 2X

() GasP(0;2K(;));

Z pz(); N(0;4); 2

where, conditional on all parameters, the default choice of pz() is dened as

g, (z)p (Z = z)
o 8z(t)p(Z = t)dt

with gz(z) being a nonincreasing scaling function and p(Z = z) being the density of Z at z
induced by a GaSP with mean 0 and covariance 2K (; ).

We call ,() in (4) the scaled Gaussian skpchastic process (S-GaSP). Given Z = z, S-GaSP
becomes a GaSP constrained at the space _,, 2(x)dx = z. Note that Z represents the L,
distance between the reality and mathematical model. Given that g() is a nondecreasing
function, the measure for Z induced by S-GaSP has a larger prior probability mass near 0
than the one by GaSP, reecting one’s belief that the L, loss between the mathematical model and
reality should be small.

It is easy to see that when gz () is a constant function, S-GaSP reduces to GaSP without
any constraint. Conditioning on all parameters, we assume

(5) pz(z) = R

7

(6) gz(z) = 2228%P

z.
2 2
2
with a scaling parameter ,. We select pz() in (5) and gz() in (6) for computational reasons, as

any marginal distribution of ; still follows a multivariate normal distribution [12, Lemma 2.3].
Other scaling functions may also be used, but we do not pursue them in this study.

2.1. Orthogonal series representation and marginal distribution. Based on Karhunen{
Loeve theorem, GaSP with a stationary kernel admits the representation for any x 2 X;

X 1
(7) (x) = PrZiic(x); k=1

where Z HEQy (0; 1), and ¢ and k() are the kth eigenvalue and eigenfunction of the kernel K(; ),
respectively. The S-GaSP can also be represented as an orthogonal series as shown below.
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Lemma 2.1 (Karhunen{Loeve expansion for the S-GaSP). Assume pz() and gz() are dened in
(5) and (6), respectively. For any x 2 X, the S-GaSP dened in (4) can be written as

Xl r—.
2(x) = ]__'_—kZ-kk(X)}
zk

k=1

where Z, "¥N(0; 1), andy and () are the k th eigenvalue and eigenfunction of the kernel
K(;), respectively.

The covariance function of S-GaSP can also be decomposed as an innite orthogonal
series, which is an immediate consequence of the fact that S-GaSP is indeed a GaSP with a
transformed kernel (see Lemma 2.3 in [12] and Lemma 2.1).

Corollary 2.2. Assume pz() and gz () are dened in (5) and (6), respectively. The S-GaSP
dened in (4) follows a multivariate normal distribution

where the (i;j) entry of R, is

ha
(8) Ko (xi;xj) = gy —ba)(x):
1 zk

k=

Corollary 2.2 implies that the ith eigenvalue of the kernel function K, (; ) in S-GaSP is :=
k=(1 + ;k); and the kth eigenfunction () is the same as the one in GaSP. The form (8) does
not give an explicit expression for the kerReI in S-GaSP. Instead of truncating the series, one
may discretize the integral . 2(x)dx, which leads to an explicit expression of
the covariance matrix, discussed in section 4.

To see the dierence between GaSP prior and S-GaSP prior, we generate n = 200 equally

follow a unit variance Matern kernel with roughness parameter 5=2, and the (i; j) term is
! !

b _ p_
5d;  5d2 5d.
(9) K(di;j) = 1+ —+ 34# exp ——
where di;; = jx; xjj for i = 1;:::;n and j = 1;:::;n. The empirical eigenvalues are

graphed as red symbols in the left panel of Figure 1, and the empirical CDF of the L, loss is
shown in the right panel of Figure 1. First, when the correlation is large (i.e., large range
parameter ), the eigenvalues gre typically more widely separated (left panel), and the prior
probability of large L, loss 2(x)dx is large, even if the variance is assumed to be the
same (right panel). Large correlation in GaSP is sometimes needed for accurate predictions;
however, it simultaneously means the prior probability mass of the L, loss (between the
reality and computer model) is large, leading to an identiability problem. In comparison, the
induced eigenvalues by the S-GaSP are graphed as blue symbols in the left panel of Figure 1,
where the large eigenvalues are truncated yet the small eigenvalues remain almost the same.
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Figure 1. Eigenvalues and the cumulative distribution function (CDF) of the L> loss between GaSP and
S-GaSP. The covariance is computed based on n = 200 inputs equally spaced from [0;1]. In the left panel,
the red symbols give the logarithm of approximated eigenvalues ~=n by the Matern kernel in (9) with two
range parameters, where ~, denotes the empirical eigenvalue of covariance matrix 2R, with the (i;j)th term

being Ri;; = K(di;j) from the Matern kernel in (9) and 2 = 1. The scaled eigenvalues ~ ”a;nby S-GaSP,
with ; = 10 j3are graphed by the blue symbols, for i = 1;:::;n. In the right panel, the empirical CDF of

approximated L2 loss Z = R 2(x)dx of GaSP and S-GaSP is shown. Each curve is computed based on 500
simulations, each containing n = 200 observations. The variance parameter 2 in S-GaSP is adjusted such
that the summation of the eigenvalues is the same as the GaSP model with the Matern kernel.

Since we leave the variance as a free parameter estimated by the data, the spread of eigenvalues
in S-GaSP is less extreme than that in GaSP. In the right panel of Figure 1, we plot the
empirical distribution of the L, loss by S-GaSP, and the variance is adjusted such that the
summation of the eigenvalues between GaSP and S-GaSP is the same. The S-GaSP has less
prior mass on the large L, loss, reducing the identiability problem caused by large correlation.
The following Corollary 2.3 provides a decomposition of the L, loss Z in S-GaSP, which
follows from Lemma 2.1 in [12] and Corollary 2.2.

Corollary 2.3. Assume the same conditions in Lemma 2.1 hold. The distribution of Z =
«ox 2(x)dx induced by S-GaSP follows

Xl
z ? 42(_1—)’;k

k=1 1+ zk

where f, (1)g, L, are independent chi-squared random variables with one degree of freedom.

Denote H and H, as the reproducing kernel Hilbert space attached to GaSP with kernel
K(;) and S-GaSP with kernel K, (; ), respectively. Let the native norm associated with K(; )
and K,(;) be h;iy and h;iy,, respectively. We conclude this subsection by the explicit
connection between the inner product of GaSP and that of S-GaSP.

Lemma 2.4. Assume pz() and gz() are dened as in (5) and (6), respectively. Let
h()= = L, hii() and g() = 1 . gii() be the elements in H. It holds that

hh; gin, = hh; giy + ;hh; gi,(x):
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2.2. Joint estimation in the S-GaSP calibration. With the specication of pz() in (5) and

observations in (4) follows a multivariate normal distribution

(10) [vF i3 % 021 MN(EM; 2((n) 'Ry + 1n));

with the regularization parameter ;= 2=(n?) and the (i; j) entry of R, as dened in (8).

Denote L, () as the likelihood for in (10). The joint estimator of (; ,()) can be written

as a penalized kernel ridge regression (KRR) estimator [28], where both the reproducing

kernel Hilbert space (RKHS) norm and the L, norm of the discrepancy function are penalized
simultaneously.

Lemma 2.5. The maximum likelihood estimator” ., := argmax,L,() and posterior mean

on() 2 E[() jy ;.;ns;2) arfe the same as the following penalized KRR estimator:
n

X
(11) Mnisn() = argmin 2 (v (xi)  fM(xi;)  (x)2+ ki

! ()2H;2 D He

with kkzu = kk? + ZkkLz(X)?

The connection between KRR and the posterior mean in a GaSP regression model is well
known. Here we establish an analogous connection in the S-GaSP calibration. In Lemma 2.5,
both the L, norm and the native norm of the discrepancy function are penalized in S-GaSP
calibration. When the discrepancy function is modeled as a GaSP, however, the L, norm of the
discrepancy function is not a direct penalty (see the supplementary material supplement.pdf
[local/web 442KB]). This property of the S-GaSP calibration is the key to guaranteeing that,
under some regularity conditions, the estimated calibration parameters obtained from the
joint estimation procedure (11) converges to the L, minimizer. A more detailed discussion is
provided in section 3.

3. Convergence properties of the S-GaSP calibration. We discuss two convergence prop-
erties of the S-GaSP calibration in this section. First, the predictive mean estimator of the
reality converges to the truth at the optimal rate with suitable choices of the regularization
and scaling parameters. Second, the estimated calibration parameters by the S-GaSP calibra-
tion converge to |, when sample size increases. These two properties are obtained by jointly
estimating the discrepancy function and calibration parameters in (11).

3.1. Convergence to the reality. Let us rst consider the nonparametric regression,
(12) y(xi) = folxi)+ 5 MO0 2 i=Lign

where fo() denotes underlying truth. Here we place a zero-mean S-GaSP prior on the unknown
truth with the default choices of pz () and gz () asin (5) and (6), respectively. This is a special case
where the mathematical model is zero, i.e., fM(x;) = 0, and we will soon extend it to the
general case when the mathematical model is not zero. For illustrative purposes, we follow [25]

Assume the underlying truth fo() := Ey[y()] resides in the p-dimensional Sobolev space,

% oo
(13) WrX)= f()=  fik() 2 La(X): KM <1
k=1 k=1

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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with smoothness m > p=2; and f ()g? . being a sequence of the orthonormal basis of L, (X).
For any integer vector k = (kq;:::;kp)" and a function f(x1;:::;%p) : X | R, denote bﬁ’ Dk the
mixed partial derivative operator D*f() := @Nf()=@"xy ::: @%x, with jkj = P ki.
For any function in W™ (X ), we have kD*f ()k, (x) < 1 for any jkj < m.

Recall that = y=(n ) ire (10). By Lemma 2.5, the posterior mean estimator of f() with
a S-GaSP prior is equivalent to the KRR estimator

" H#
1 X "
(14) )., = argmin ;(y(xi) f(xi))? + kfk? o kfky P @i=1
f2H

Recall that fkglk=1 and fkg1k=1 are eigenvalues and eigenfunctions of the kernel K(;)
associated with H, respectively. For all k, we assume the eigenvalues satisfy

(15) ck 2M=p , Cck 2m=p

for some constants c and C > 0. For all k2 N* and x 2 X, we assume the eigenfunctions
are bounded uniformly,

(16) supsupj (x)j C ;k1
x2X

where C > 0 is a constant depending on the kernel K(; ).
We are now ready to state the convergence rate of the S-GaSP for the nonparametric
regression model in (12).

Theorem 3.1. Assume the eigenvalues and eigenfunctions of K{(;) satisfy (15) and (16),

respectively. Further assume fo 2 Wzm(X); and denote := (2m p)2=f2m(2m + p)g.
Consider the nonparametric regression model (12). For suciently large n, and any > 2and
C 2 (0;1), with probability at least 1 expf ( 2)=3g exp n®¢ , we have
h i kf.z.p
A P P Lfn
fOkLZ(X) 2 2 kakLz(X) + kfokH + Cxo n 2zm+e
and
h i
Kfun  foku 2 2 kfoky,x) + kfoky + Cxo "
by choosing = n 2M=(2m+p) and , = 1=2 where the constant C¢ depends on K(;).

Our proof for Theorem 3.1 stems from [31], where the convergence rate was proved in a
nonparametric regression model under the supremum norm. The proof of the convergence
rate in Theorem 3.1 has two main dierences in comparison to the proof of convergence of the
nonparametric regression in [31]. First, ; can go to innity in Theorem 3.1, and consequently jjjju,
is unbounded, whereas jjjju was assumed bounded in proving the convergence of a
nonparametric regression approach in [31]. Second, we generalize the proof to multivariate
inputs. These two conditions make the proof more challenging. To solve this problem, we
substantially modify the tools (e.g., see Lemma SM3.2 in the supplementary material) to
prove Theorem 3.1.
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The conditions in Theorem 3.1 can be relaxed in various ways. First, from the proof of
Theorem 3.1, it is easy to see that if = O(n 2M=(2m+p)) and , O( 172), the estimator still
converges to the truth in the L, distance with the same rate O(n ™=(2m+P)) Second, the design
can be generalized to other space lling designs. Additionally, although the stationarity of the
process is often assumed for computational purposes, it is not required in Theorem 3.1. Note
that the regularity parameter and kernel parameters are held xed in Theorem 3.1. We discuss
the estimation of and the parameters in the kernel function in section 4.1.

We are ready to discuss the convergence of estimating the reality in the calibration. The
estimator for the reality in the S-GaSP calibration model is dened as

(17) V"}z;n(x) = fM(X;;z;r:\) + ;I;n(X)A

for any x 2 X, where" (,,.n;. ) is the estimator of the penalized KRR obtained by
minimizing the loss in (11). The following Corollary 3.2 gives the convergence rate of the S-
GaSP calibration model in predicting the reality. Similar to the extension for Theorem 3.1, the
conditions in Corollary 3.2 can be relaxed by letting = O(n 2™m=(2m+P)) and , O( 1=2) to obtain
the same convergence rate.

Corollary 3.2. Assume yR() fM(;) 2 Wm(X) for any 2 and sup2kyR()
fM(;)ky < 1. Let the eigenvalues and eigenfunctions of K(;) satisfy (15) and (16),
respectively. For suciently large n, any > 2; and C 2 (0;1), with probability at least 1
expf ( 2)=3g exp( n%), we have

P _
ky® () VR()kLZ(X) 2 2 sup ky®() fM(;)kLz(X)
2
+ supkyR() MG )ky  + Cxo Pn ansd

by choosing = n 2M=(2m+p) gnd , = 1=2 where = (2m p)2=(2m(2m +p)) and C is
a constant only depending on the kernel.

In the example below, we illustrate the convergence using the function studied in [31],
where yR() lies in the Sobolev space Wr;(X) withm= 3and X = [0;1] whenJ | 1.

P
Example 1. Let the reality be yR(x) = 2 Llj 6cos(5(j 0:5)x)sin(5j); and consider
yF(x) = yR(x) + , where N(0;0:052) independently. Let fM(x;) = . The goal is to
predict yR(x) at x 2 [0; 1] and estimate .

As a motivating example, we let K(;) follow the Matern kernel in (9) with the range
parameter = 1, as the reproducing kernel Hilbert space attached to the GaSP with this
kernel is equal to Sobolev space W;(X). We test 50 congurations with the number of
observations n 2 [exp(5); exp(10)], and the design points fx;g1, are equally spaced in [0; 1].
In each conguration, N = 100 simulation replicates are implemented, and we let J = 100 in

each simulation. We then compute the average root of the mean squared error as follows:
v
u
1 X %J 1nX
N4 n

(18) AVERMSE u, =

n -

YR yRx))Z;
j=1

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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Figure 2. Prediction and calibration by the GaSP and discretized S-GaSP calibration models for Example
1. In the left panel, the AvgRMSE;nm, of the GaSP calibration and that of the discretized S-GaSP calibration
are graphed as the red triangles and blue dots, respectively; the black curve is n ™=(2M*P)=5  representing the
upper bound by Corollary 3.2 (up to a constant). In the right panel, the natural logarithm of the RMSE of
the GaSP calibration and that of the discretized S-GaSP calibration are graphed as the red triangles and blue
circles, respectively; the black line is log(n ™=(2™*P)=40), the upper bound from Theorem 3.3 (up to a constant).
= n 2m=2m*P) 10 % and , = 1*? are assumed.

where V;R(xj) is an estimator of the reality at X for j = 1;:::;n. The subscript fM +
indicates that both the calibrated mathematical model and the discrepancy can be used for
prediction.

For both GaSP and S-GaSP calibration, the joint estimator, i.e., the posterior mean of the
reality and the M LE of the calibration parameters discussed in Lemma 2.5, is implemented for
each experiment at each conguration. In the left panel of Figure 2, the posterior mean
estimator of the reality in both GaSP and S-GaSP calibration converges to the reality atthe
same rate, which matches the theoretical upper bound from Corollary 3.2. Here, for
computationﬁl purposes we graph the results of discretized S-GaSP calibration, which replaces
the integral =, 2(x)dx in the S-GaSP model in (4) by (1=n) = 2(x;) in Figure 2. The
discretized S-GaSP calibration is discussed in section 4.

To evaluate whether the calibrated mathematical model (here only a mean parameter)
ts the data, we use the root of the mean squared error beﬂveen the estimator of the calibra-
tion parameters and the L, minimizer, i.e., RMSE = NiP iN=1(iA L,)2, where ; s an
estimator of in the ith experiment.

Although GaSP and S-GaSP perform equally well in predictions for Example 1, and the
estimator of the calibration parameter in the discretized S-GaSP calibration converges to thel,
minimizer, that in the GaSP calibration does not converge to |, , shown in the right panel of
Figure 2. This problem is caused by the dierence between the RKHS norm and the L, norm.
As illustrated in Lemma 2.5, both the RKHS norm and L, norm of the discrepancy function
are penalized in the S-GaSP calibration model, whereas the GaSP calibration model does not
penalize the L, norm of the discrepancy function. In section 3.2, we further show that under
some regularity conditions, the calibrated parameters in the S-GaSP calibration do
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converge to the L, minimizer with the same choices of regularization parameter and scaling
parameter as in Corollary 3.2.

3.2. Convergence of calibration parameters. We rst list some regularity conditions for
the convergence of calibration parameters. These conditions are also assumed in other studies
for computer model calibration [25].

Al: | is the unique L , minimizer and an interior point of .

A2: The Hessian matrix @Z(VR(g@ff ) 4x is invertible in a neighborhood of |, .

A3: For all j = 1;:::;q, it holds that sup, @f@(L < 1.
j H

A4: The function class fyR() fM{(;): 2 gis Donsker. A5:

sup, ky®() fM(;)kpy < 1.

A6: The eigenvalues and eigenfunctions of K(; ) satisfy (15) and (16), respectively.
Assumptions A1{A3 are regularity conditions of |, and the mathematical model yM ;)
around , . Assumption Al states that the L, loss minimizer is uniquely dened. If this
condition is violated, reparameterization of calibration parameters may be required to reduce
the intrinsic dimension of the parameter space. Assumptions A2{A3 ensure the Hessian matrix of
the squared residuals is non-singular and the derivatives of computer models are bounded in
the RKHS norm. The Donsker property in Assumption A4 is a standard requirement and
ensures that the covering number of the function space for the discrepancy does not increase
too fast [16]. Assumptions A5{A6 ensure the residuals between the reality and computer model
are well-behaved such that the KRR estimator ;. Aconverges toyR() fM{(;) uniformly for each

2 in terms of the L, loss.

Below, Theorem 3.3 guarantees the convergence of calibration parameters. As the calibra-
tion parameters and discrepancy function are estimated jointly in our approach, we extend the
tools for proving the convergence of the two-step calibration approach [25] to prove Theorem
3.3. The detailed proof is given in the supplementary material (supplement.pdf [local/web
442KB]).

Theorem 3.3. Under assumptions A1{A6, the estimated parameters in (11) satisfy

m

;Iz\;n =, t op(n 2m+p )7

provided that = O(n 2m=(2m+p)) gnd , = O( 172).

Note that = O(n 2m=(2m+p)) and , = O( 172) also guarantee that the posterior mean
estimator in the S-GaSP calibration converges to the reality at the rate Op(n M=(2M*P)) in terms
of the L, loss. We briey compare Theorem 3.3 with some existing results. The convergence
rate of the calibration parameter is slower than O(n 1=2) obtained in the two-step approach in
both [25] and its Bayesian counterpart [30]. In [25] the authors established the n-consistency
of the L;-calibration estimator, whereas a semi-parametric Bernstein-von Mises (BvM)
theorem was developed in [30], providing a Bayesian analogy of the P n-consistency
and the semi-parametric eciency of the L, calibration method. In these approaches, the
model of interest is a semiparametric model in the sense that the calibration parameter can be
viewed as a functional of the unknown innite- dimensional regression function yf by
considering the functional below
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(yF) = argminky" (x) M (x; )k 2
):

In contrast, the S-GaSP model does not incorporate the above explicit constraint directly. This is
dierent from the work of [30], in which the authors formulated the prior specication by rst
assigning a Gaussian process prior model on yF and then established the semiparametric BvM
theorem of the posterior distribution of the induced posterior on (yF ). In the current
framework, such an exact constraint is not directly imposed on the relation between yF and .
Due to the doubly-penalized least squares approach, given a realization of the discrepancy
function (and hence, that of yF ), is not directly determined by (y") but follows a
distribution concentrated around (yf ) a posteriori instead. Therefore, the semi-parametric
BvM theorem no longer applies here. In addition, this extra layer of randomness results in a
slower convergence rate than the parametric rate that can be obtained in a suciently regular
semiparametric model [6].

Though the O(n 1=2) rate may be obtained by choosing = O(n 2M=(2m+p)) gnd , = O
1=2) we should be aware that, however, the L, minimizer is not the true calibration
parameter but the one that minimizes the L, distance between the calibrated mathematical
model and reality. In practice, the residuals between reality and the calibrated mathematical
model with the L, minimizer may behave like noises, making them hard to be estimated by a
nonprametric regression model alone. In comparison, the joint estimation of the discrepancy
function and calibration parameters was found to have a smaller predictive error in numerical
examples.

The calibrated parameters of the GaSP calibration, on the other hand, typically do not
t @07 efl)
o

converge to the L, minimizer. Le : o r. A key dierence between the GaSP
J J

and the S-GaSP calibrations is stated in the following Corollary 3.4, which is an immediate

consequence of the proof of Theorem 3.3.

Corollary 3.4. Under assumptions A1{A6, the estimator for the calibration parameters in
the S-GaSP calibration in (11) satises
fM(;. . fM(;. .
@ *'n ) £ .onl(); @ AN ) =0 "
I_@j L, (X) @j

Further assuming the mathematical model is dierentiable at ;n,’\Nhere .n IS the estimator of via
replacement of the norm jjjju, by jijin in (11), we see that the estimator of the calibration
parameters in the GaSP calibration satises

@fM(};n) A _ OH
@;

L,.nl;
-

;n(n)}
foranyj, j = 1;:::;q.
To ensure the convergence of an estimator %o the L, minimizer, one typical requirement is

A

that h,(); @fM(L@?m) = 0p(1). It is easy to see that the S-GaSP satises this condition with
1=, = o(1). However, because of the dierence between the RKHS norm and the L, norm,
the estimated parameters ., in the GaSP calibration model can be far away from
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the L, minimizer. As a result, the calibrated mathematical model may not t the datain
the GaSP calibration model, as found in previous studies [25, 29]. In Example 1, the
estimated parameters in the discretized S-GaSP calibration converge to the L, minimizer
when the sample size increases, whereas the estimated parameters in GaSP calibration with an
unscaled kernel function do not converge, as shown in the right panel of Figure 2.

4. Discretized scaled Gaussian stochastic process. We address the computational issue
in the S-GaSP calibration in this section. Instead of truncating the kernel function in (8) by
the rst several terms, we select N¢ distinct points to discretize the input space [0; 1]° and
replace ,, ()>d by (1=N¢) P No (xC?2 in the S-GaSP model in (4).

Here we let the discretization points be the observed inputs, i.e., xiC = x; fori= 1;:::;Nc
and N¢ = n. The discretized S-GaSP is to replace ;, in (4) by

( i )

(19) W= 000 S0 = 2
i=1

with density pz,() as dened in (5). After marginalizing out Z4, it follows from Lemma 2.4 in
[12] that ,,() is a zero-mean GaSP with the covariance function

(20) 2Ky, (Xa; Xp) = 2(K(Xa; Xb) r’ (xa)R r(xp))

for any x5; Xp 2 X, where R := R+nl,=,. Denote the ith largest eigenvalues of R and R "by ~
apd ~ .., It is easy to see ~ ;zn = ~ =fn(1 + ,~ =n)g, which coincides with the shrinkage of
eigenvalues of a nondiscretized S-GaSP in (8), by using ~ =n gs an empirical approximation to ;.

Recall = 2=(;n?). We have the following predictive distribution of the discretized S-
GaSP calibration model.

Theorem 4.1. Assume ,, () in (19) with pz, () and gz, () dened as in (5) and (6),

respectively. The predictive distribution of the eld data at any x 2 X by the discretized S-
GaSP calibration model in (19) is a multivariate normal distribution

yE(x)iyFii%ie MN(2,(x); %((n) 1Ko (x;x) + 1));

. 1
fM(x;)+ Ry 0y, yF fM ;and K, (x;x) = K(x;x)

+, z

where”,, (x) i
rT(x) In+ R+ [uln Yoy R Lr(x), with r(x) = (K(x;x1);:::;K(x;xn))T; andR
= R + 1, with the (i; j) entry of R being K(x;; xj).

Theorem 4.1 indicates that the predictive mean of the reality in the discretized S-GaSP
calibration model shrinks the posterior mean towards the mean function. When , = 0, the
shrinkage is zero, and the discretized S-GaSP becomes the GaSP.

Interestingly, when the observations contain no noise, the predictive mean and variance of
the eld data from the GaSP calibration model and the discretized S-GaSP calibration model
are exactly the same, as stated in the following Lemma 4.2.
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Lemma 4.2. Assume the conditions in Theorem 4.1 hold. If 3 = 0, the predictive distri-
bution of the eld data at any x 2 X by the discretized S-GaSP model in (19) is a multivariate

normal distribution with the predictive mean and variance as follows:

ElyF (%) jyFss520=fM0;)+ rT(x)R H(yF fM);
VI (x) jyFs5520= 2 K(x;x) rT(x)R r(x) ;

The discretized S-GaSP with the discretization points on the observed input has the
same computational complexity as GaSP, as computing the inverse and determinant of the
covariance matrix in the likelihood function takes O(n3) operations, where n is the number of
eld observations. The computational complexity between dierent calibration approaches will be
compared in section 5.2.

4.1. Parameter estimation. We discuss the computational issue and the parameter es-
timation in this section. All the approaches are implemented in the RobustCalibration R
package available on CRAN [10]. First, some of the mathematical models are numerical solu-
tions of partial dierential equations implemented as computer code, which is computationally
expensive to run. In these cases, one often uses a statistical emulator to approximate the com-
puter model based on a set of model runs [21, 23]. The GaSP emulator from the RobustGaSP R
package is used to emulate the computer model for both scalar-value and vector-valued
output when it is expensive to run in the RobustCalibration R package. One unique feature of
the RobustCalibration R package is that the parallel partial Gaussian processes [11] from the
RobustGaSP R package can be called to emulate computer models with massive numbers of
coordinates.

We next discuss the estimation of the regularization parameters and the kernel parameters,
which were held xed in some studies. In practice, estimating these parameters rather than xing

them can improve the predictive performance. For any x5 = (xal;::::;xap)T and
Xp = (Xp1;::::Xbp)", the kernel is often assumed to have a product form [15],
yP
(21) K(xa;xp) =  Ki(di);
i=1
where dj = jxai Xpij for i = 1;:::;p, and K;() is a one-dimensional kernel function. One

widely used kernel function is the Matern kernel [13]. When the roughness parameter is a
half-integer, the Matern kernel has an explicit expression. For example, the Matern kernel
with roughness parameter 5=2 is given in (9). A good feature of the Matern kernel is that the
sample path of a GaSP is d; le times dierentiable, where ; is the roughness parameter.
Denote by = (3;:::;p T the unknown range parameters in the covariance. The
parameters in the discretized S-GaSP calibration model are the calibration parameters , the
variance parameter of the noise 2, the regularization parameter = 2=(n?), the scaling

parameter , and range parameters . The MLE of the variance of noise follows
~ ~ 1
"S;Ml&= S2zwhere S22z (yF fM)TR I(yF fM)withR,, = R 1+ ,l,=n +nly;

and Rz ! = ,=(ng) + (R + nl,=g) 1=g2 with g = , + 1. Marginalizing out ,() and
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plugging "%.MLE into the likelihood of the discretized S-GaSP model in (19), one has the
prole likelihood
(22) Lz,(552) / iRz, *72(S%) "

Z4°

One may use an MLE approach to numerically maximize the prole likelihood in (22) to
estimate the parameters. Note that , reects one’s tolerance of how well a mathematical model
should predict the reality without the discrepancy function, and thus this parameter may be
chosen based on the experts’ knowledge. Because of the conditions discussed in Theorem
3.3, ; may be xed to be proportional to 172 or be related to the sample size. For all numerical
examples, the scaling parameter of the S-GaSP is , = (c;jjjj) 172, where by default ¢, = 1, =
2=(2n); and = (~1;:::; )T, with ~; betng the normalized range parameter (normalized by the
length of each coordinate of the input variable). This choice is also implemented as a default
choice in the RobustCalibration package, and users can specify this parameter as well. The
inclusion of the range parameters is due to the confounding issue between the range parameter
and the variance parameter of the process, whereas the ratio of these parameters can typically
be estimated consistently from the data [32].

In the RobustCalibration package, we implement both the MLE and the Bayesian
method for estimating the parameters and making predictions. For the MLE, the low-storage
quasi-Newton method was used for optimization [17]. For the Bayesian method, we assume
that the prior distribution is (;;;2) / ()(5)=%; with = 2=2 bging the nugggt parameter. Here (;)
is chosen as the joint robust prior for the kernel parameters [9], and () may be specied by the
user to reect the experts’ knowledge. We assume a uniform distribution of () in the numerical
examples for demonstration purposes. In contrast to the MLE, the uncertainty in parameter
estimation can be obtained by the posterior samples.

5. Comparison between dierent calibration approaches. We compare a few calibration
approaches in this section. One of the most popular frameworks for computer model calibra-
tion is the GaSP calibration approach [15], which models the discrepancy in (1) as a GaSP.
The mathematical model and discrepancy function are jointly estimated under the Bayesian
framework. The S-GaSP approach is an extended version of GaSP calibration and places
more prior probability mass of the L, norm of the discrepancy near zero. Consequently, the
calibrated mathematical models in the S-GaSP calibration t the data better than the onesin
the GaSP calibration.

The S-GaSP calibration approach was inspired by a few pioneering approaches seeking to
nd the L, minimizer of the calibration parameters [19, 25, 29]. The orthogonal Gaussian
process proposed in [19] constrains the derivatives of the random L, norm of the discrepancy to
be zeros, equivalently giving more prior probability mass of calibration parameters at the
stationary points of the calibration parameters in terms of the L, loss. The S-GaSP model
explores another transformation that avoids putting more prior probability mass at the local
maxima of the L, loss of the discrepancy, and it has a closed-form likelihood function. The L,
calibration was proposed in [25], where the reality is rst estimated by a KRR nonpara-metric
regression, and the calibration parameters are then estimated by minimizing the L, loss
between the estimated reality and mathematical model. The least squares (LS) calibra-tion is
proposed in [29], where the calibration parameters are estimated by rst minimizing
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the squared error between the mathematical model and observations, and a nonparamet-ric
approach is then applied to estimate the residuals between the reality and mathematical
model.

5.1. Numerical comparison of predictive accuracy by the calibrated computer model
and discrepancy. We use the following example to illustrate that jointly estimating the dis-
crepancy function and calibration parameters can be helpful for predicting the reality.

Example 2. Let yF(x) = yR(x) + , where N(0;0:052) independently and yR(x) =
g1(x)+g2(x), withga(x) = * 1, j *cos(5(j 0:5)x)sin(5j)andga(x)= = ?.;j ©cos(5(]
0:5)x) sin(5j). Let the mathematical model be f M(x) = g;. The goal is to predicty ) and
estimate . For any x, the rst 100 terms in g1(x) and g»(x) were used in the computation.

We compare the GaSP, S-GaSP, L,; and LS calibration approaches for Example 2. For
both the GaSP and S-GaSP approaches, the calibration parameter, variance, and kernel pa-
rameters are estimated by the MLE. For the two-step approaches, a GaSP model is used as the
nonparametric regression model in the rst step of L, calibration and in the second step of the
LS calibration. We use the Matern kernel function in (9) as the kernel function K(;) for all
methods.

In the left panel of Figure 3, we found that the predictive errors by the GaSP and S-GaSP
calibrations are considerably smaller than those of the LS and L, calibration approaches.
This is because the reality contains g;(x), which is dicult to predict by a nonparametric
regression approach alone. The mathematical model specied herein, however, can explain this
term with calibration parameter close to 1. The estimated calibrated parameter in both GaSP
and S-GaSP is indeed close to 1 in all experiments, which leads to better predictive
performance.

The L, minimizer of the calibration parameters in this example is around 1.775. Note
that the estimated calibration parameter S-GaSP calibration may not converge to the L»
minimizer when sample size increases. This is because jjyR() fM(;)jju is unbounded when
= 1, which violates assumption A5. The calibrated computer model with calibration
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Figure 3. Comparison of dierent approaches in Example 2. In the left panel, the logarithm of the

AVvgRMSE;w , for four calibration approaches is graphed at the logarithm of dierent sample sizes. The
histogram of the estimated calibration parameter of each experiment for dierent approaches is given in the
middle panel and the right panel.
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parameter being around 1 improves the predictive accuracy and interpretation, as the residual
discrepancy term is a smooth term that is easy to predict.

The GaSP and S-GaSP calibration approaches are not always more accurate in predicting
the reality than the two-step approaches. Indeed, for Example 5, to be discussed in section 5,
the prediction in the L, calibration approach is the best among all methods, as the observations
can be easily predicted through a nonparametric regression without the mathematical model.
When the reality is complicated, the joint estimation strategy implemented in both GaSP
and S-GaSP calibration approaches seems to have smaller predictive errors, which will be
illustrated by a few more numerical examples.

As the sampling model of the observations is well dened in both GaSP calibration and
S-GaSP calibration, a Bayesian approach can be implemented, and the uncertainty of the
parameters can be naturally obtained by their posterior distributions. For the L, calibra-
tion, the asymptotic distribution of the estimator of the calibration parameter may be used
to approximately quantify the uncertainty in parameter estimation [25]. A bootstrap ap-
proach is developed to assess the uncertainty of parameters for the LS calibration approach
[29].

5.2. Comparing computational complexity from dierent calibration approaches. The
computational cost of computer model calibration may come from two parts of this method:
evaluating the computer model, and computing the likelihood or loss function in calibration.
First, for a slow computer model, the GaSP emulator discussed in section 4.1 can be used to
approximate the output from the computer model. Second, the computational complexity of all
the methods (L, LS, GaSP, and S-GaSP calibrations) discussed in section 5.1 is O(n3) for
computing the likelihood function or loss function in general, where n is the number of eld
observations.

The MLE and the two-step approaches are faster than the Bayesian estimation by posterior
samples, as they requires fewer iterations. However, there are two drawbacks to MLE and the
two-step approaches. First, numerical optimization of the parameters could be unstable and
could depend on the initial guesses when the numbers of calibration parameters and kernel
parameters are large. Second, the uncertainty of the parameters can be obtained
naturally by a Bayesian method but not straightforwardly by the MLE and the two-step
approaches.

Both the MLE and posterior sampling approaches are implemented in the Robust-
Calibration package [10]. In the following, we will show results of both posterior sampling
and M LE by the GaSP, S-GaSP, and no-discrepancy calibration approaches. The estimation by
L, calibration and LS calibration will also be included for comparison.

6. Numerical study. In this section, we compare the numerical performance of several
methods based on the prediction error and the calibration error in (2) and (3), respectively,
both evaluated with respect to the L, loss. The prediction error is our primary consideration,
because the out-of-sample prediction for the reality examines how well we can reproduce the
reality. The calibration describes how well the calibrated mathematical model ts reality in
terms of the L, loss [25]. The parameters in a mathematical model often have scientic
interpretation, whereas a nonlinear discrepancy function might not be interpretable. Thus
the discrepancy function is not used for prediction in the second criterion.
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For all examples, we compute AVgRMSE¢wu, in (18) and AvgRMSE;w through replacing
prediction by the calibrated computer model output in (18). For assessing the uncertainty in
predictions, we also compute the average length of the predictive interval and the proportion of
the observations covered by the 95% predictive interval dened as follows:

Lc1(95%) = ! length fCIij(95%)g;
N j=1i=1
Pei(95%) = 1fyR (x;) 2 C1;(95%)g ;
N jog g

where C1;;(95%) is the 95% predictive interval; N and n are the total number of experiments and
of held-out test data in each experiment, respectively. An ecient method should have small
AvgRMSE¢w ., and AvgRMSEw , short predictive interval, and P¢;(95%) close to the
nominal 95%. For the real examples, we replace the test reality output by the held-out
observations for out-of-sample predictions.

For GaSP, S-GaSP, and the no-discrepancy calibration (where the discrepancy is zero),
the results by both posterior sampling and MLE are obtained by the RobustCalibration
R package available from CRAN [10]. Five initial values were used to numerically optimize
the calibration parameters and the kernel parameters in the MLE approach. Furthermore,
we also implemented the L, calibration and LS calibration. The GaSP regression using the
RobustGaSP R package is used to estimate the reality in the rst step of the L, calibration
and estimate the residual (between the calibrated mathematical model and the reality) in the
second step of the LS calibration. The kernel function K(; ) is assumed to be the Matern
covariance function (9) in all methods for demonstration purposes.

6.1. Simulated example. Example 3. Let yF(x) = yR(x)+, where x = (x1;x3) 2 [0;1]?,
yR(x) = sin(0:2x1)x2 + sin(2x1)x> + 1; and ' * N{t70:12). The mathematical model is
fM(x;) = sin(1x1)x2 + 2 with 1 2 [0; 10] and ; 2 R.

We rst consider a simulated study in Example 3 and test two congurations, where the
sample sizes of the observations are taken to be n = 25 and n = 50, respectively. For each
conguration, we test N = 100 experiments with n = 2500 held-out reality points, where the
inputs are equally spaced in each interval. The input variable in each experiment is generated
from the maximin Latin hypercube design [23]. Here we call the deSolve R package [24] to
numerically solve the dierential equation at each sampled or iterative parameter value.
Emulating the vectorized output based on a GaSP emulator built in the RobustCalibration
package is faster than directly calling the numerical solver for this example. It is shown in [10]
that the calibration results based on the numerical solver and the emulator are quite similar for
this example.

The predictive errors by dierent approaches are given in Table 1. First, we found
that the AvgRMSE;wv , of all methods that include a model of discrepancy is better than
AvgRMSE;w , as the mathematical model is imperfect compared to the reality. Second, the
GaSP and S-GaSP calibration approaches perform better than the two-step LS and L, cali-
bration methods in terms of AVgRMSE;w .. Although around 95% of the held-out test data
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Table 1
Predictive performance by dierent methods for Example 3. We show performance of the GaSP, S-GaSP,
and no-discrepancy (N-D) calibration approaches based on posterior sampling (PS) and MLE in estimating
parameters. Also included are the L> and LS calibration approaches. The smallest error is highlighted in bold.

nh= 25 GaSP  GaSP  S-GaSP  $-GaSP  N-D  N-D  L» LS
PS MLE  PS MLE PS MLE
AVERMSE;wm, .0556 .0686  .0558 .0656 / / .102 .0702
AVgRMSE¢m .143 .139 131 134 130 .131 131 131
Lci(95%) 206 207 .209 207 0.186 / 320 213
Pci(95%) .931 851 .932 .840 0.415  / 871 .847
n= 50 GaSP  GaSP  S-GaSP  S-GaSP  N-D N-D L2 LS
PS MLE PS MLE PS MLE
AVERMSEwm, 0404  .0439  .0402 .0418 / / 0655  .0437
AVERMSE 144 .140 .130 133 128 128 .128  .128
Ler(95%) 153 151 151 137 0124 / 245 154
c1(95%) .938 912 .935 .900 0.269 / .949 .918

are covered by the 95% predictive interval in all methods, the average lengths of the predic-tive
intervals by the GaSP and S-GaSP calibrations are shorter than those of the two-step
approaches.

Second, the predictive error of the MLE approach by GaSP and S-GaSP is a little worse
than that of the Bayesian approach by posterior sampling when the sample size is small, as the
numerical optimization is less stable. Furthermore, as the uncertainty of calibration and the
kernel parameters were not taken into account in the MLE, the proportion of the held-out data
covered in the 95% interval (Pc;(95%)) is typically much smaller than 95%.

For the L, calibration approach, the mathematical model is not used in the rst step, and
the parameters in the mathematical model are estimated in the second step to minimize the L,
loss. Here, the high-requency term (sin(2x1)x;) makes the prediction in the rst step by
nonparametric regression less accurate than the joint estimation of the calibration parameters
and the discrepancy function. For the LS approach, the residuals between the tted
mathematical model and the reality can be more dicult to predict by a GaSP model than a
joint model of the mathematical model and discrepancy, as the residuals contain more changes
of monotonicity locally than the reality.

The estimated calibration parameters of Example 3 are graphed in Figure 4. In the left
panel, the estimate of ; using the LS and L, methods is close to the L, minimizer (graphed as
the solid line), whereas the estimate of ; using the GaSP and S-GaSP is, in fact, closer to 2. This
is because the model complexity is naturally built into the calibration: an estimated ; that is
close to 2 makes the prediction better, since the high-frequency term can be approximately
explained by the calibrated mathematical model. The estimate of ; being close to 2 is
important to have better predictive performance, as shown in Table 1. The estimate of , is
close to the L, minimizer by the S-GaSP, L,; and LS calibration approaches, whereas GaSP
calibration leads to an estimated , that has a large variability. Consequently,
the GaSP calibration approach produces the larger calibration error (AvgRMSE¢n ) compared
to other calibration methods, as illustrated in Table 1.
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Figure 4. Boxplots of the posterior mean of calibration parameters from the GaSP with posterior sampling
(PS), MLE, and from the S-GaSP, L2, and LS calibration approaches for each experiment in Example 3. The no-
discrepancy calibration with both PS and MLE are almost the same as L2 and LS calibration, so they are not shown
here. The solid lines are the L2 minimizer, which is around 6:48 and 1:15 for 1 and 2, respectively.

Example 3 indicates that the calibrated mathematical model that minimizes the L, loss
between the reality and mathematical model might not always be the optimal choice for
predictions. In this example, when ; is estimated to be close to 2, the predictive accuracy can
be improved signicantly. The other parameter, 5, is a mean parameter. The two types of errors
are both small when ; is estimated to be close to the L, minimize and when ; is estimated to be
close to 2, which is achieved in the S-GaSP calibration.

6.2. Chemical system interaction. Example 4. Consider the system interaction between
two chemical substances y; and ys:

yi(t) = 10t 3yq(t);
yo(t) = 10" 3yq(t)  10° 3y,(t);

where 2 repeated observations of the second chemical substance are measured at each of the 6
time points t = 10; 20; 40; 80; 160; 320 in [7]. The goal is to estimate ; and , and to predict the
values of the chemical substances across time.

We consider (1; 2) 2 [0:5;1:5]2. As the number of observations is limited, we rst perform a
leave-one-out comparison by holding out two repeated observations for prediction at each
time point. We replace the reality in each criterion by the held-out observations to test each
approach. The predictive performance of the leave-one-out comparison for Example 4 is given
in Table 2.

First, the predictive errors (AvgRMSE;w,) of GaSP or S-GaSP with posterior sampling
are smaller than those of the MLE approach, as the Bayesian method is more stable, in
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Table 2
Predictive performance by dierent methods for Example 4. The smallest error is highlighted in bold.

GasSP, PS GaSP, MLE S-GaSP, PS S-GaSP, MLE
AVERMSE v, 5.19 6.47 5.39 6.50
AVERMSE 6.10 7.18 5.70 6.44
Lci(95%) 26.5 18.1 29.2 18.9
Pci(95%) 91:7% 83:3% 91:7% 83:3%

N-D, PS N-D, MLE L2 LS
AVERMSE¢wm, / / 10.2 6.39
AVERMSE¢wm 5.84 6.22 6.95 6.22
Lei(95%) 23.7 15.5 52.5 23.7
Pci(95%) 91:7% 75% 91:7% 100%

particular in a small sample scenario. The L, approach is less accurate in prediction in this
example (shown in the upper panels in Figure 5), as predicting the reality by nonparametric
regression can be inaccurate due to the small number of observations. On the other hand, the
GaSP calibration with either posterior sampling or MLE has a large calibration error, based
on predictions by the calibrated mathematical model alone. The L, calibration and no-
discrepancy calibration have small AvgRMSE¢w. The S-GaSP calibration has a relatively small
predictive error under both predictive criteria.

The upper panels in Figure 5 give posterior samples of the calibration parameters and M LE
by GaSP, S-GaSP, and no-discrepancy calibration for Example 4. The posterior samples by
S-GaSP and no-discrepancy calibration are very similar, and the MLEs by these two methods
are close. This is reasonable, as the calibrated computer model ts the observations reasonably
well, shown in the lower left panel. The posterior samples and MLE by GaSP are slightly
dierent from those by S-GaSP or no-discrepancy calibration. Consequently, the calibrated
computer model by GaSP underestimates the output, shown in the lower left panel in Figure 5.

6.3. lon channel experiments. In this example, we consider calibrating the mathematical
model for the sodium ion channels using real observations from the whole cell voltage clamp
experiments [20].

Example 5. The data sets consist of 19 observations of normalized current needed to
maintain the membrane potential at 35mV over time [19]. Denote by the input variable x the
natural logarithm of time. The mathematical model has the following expression:

fM(x;) = e explexp(x)A()]es;

where e is a column vector with 1 at the ith element and 0 for the rest of the components,
the rst exp is the matrix exponential, = (1;2;3);, and

0 1 B
23 1 0 0 A()-=
@ o 2 2 1 A
0 0 2 1
The ranges of the calibration parameters considered here are ; 2 [0;10] for i = 1;2; 3.
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Figure 5. In the upper panels, histograms are posterior samples of two calibration parameters from the
GaSP, S-GaSP, and no-discrepancy calibration approaches. Point estimates of MLE, L2, and LS are plotted on
the x-coordinate. In the lower left panel, calibrated computer models by dierent approaches were graphed, and the
shared area is the 95% posterior interval from GaSP calibration. In the lower right panel, the predictive
distribution of the summation of calibrated computer models and discrepancy is plotted, and the shaded area is the
95% posterior predictive interval from S-GaSP calibration. The black circles are observations.

We rst consider leave-one-out comparisons for the ion channel experiment. The predic-
tive errors by dierent approaches are given in Table 3. Here, since we have a moderately
large number of observations for the one-dimensional input variable, GaSP regression by the
RobustGaSP R package has high accuracy in predicting the reality even without the computer
model. Including the mathematical model does not improves the prediction accuracy in this
example. Therefore, the predictive error by the L, calibration is the smallest, as the GaSP
regression without the mathematical model is used for predicting the reality in the rst step.
Between posterior sampling and the MLE approach, the posterior sampling typically has a
smaller predictive error, and the predictive interval covers more held-out test points, which
are consistent with previous examples.

The posterior samples and estimation of the reality by dierent calibration approaches
are graphed in Figure 6. For better visualization, we reduce the posterior samples by 10
and only graph one-tenth of the total posterior samples. In this example, the posterior sam-
ples of the S-GaSP are closer to the ones with the no-discrepancy calibration. For this rea-
son, the calibrated computer model by the S-GaSP calibration (graphed as the dashed blue
curve in the lower right panel) ts the observations well, whereas the calibrated computer
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Table 3
Predictive performance by dierent methods for Example 5.

GaSP, PS GaSP, MLE S-GaSP, PS S-GaSP, MLE
AVERMSE wu, 1:77 10 3 1:97 10 3 1:52 10 3 1:36 10 3
AVgRMSE;m 1:13 10 ? 1:75 10 ? 5:62 10 3 5:76 10 3
Lci(95%) 5:64 10 3 3:56 10 3 9:58 10 3 7:10 10 3
Pci(95%) 94:7% 84:2% 100% 73:6%

N-D, PS N-D, MLE L2 LS
AVERMSEw, / / 8:26 10 * 2:17 10 3
AVgRMSEm 6:45 10 3 6:51 10 3 4:83 10 3 6:49 10 3
LC'(95Z/’) 2:58 10 2 2:24 10 2 9:45 10 3 5:80 10 3
Pci(95%) 84:2% 84:2% 84:2% 84:2%

«d Wl -‘Eif;"_a"; W .
;. s o 2+ s " c s s

Calibrated computer model

N-D, PS N-D, MLE
— S-GaSP,PS —— S-GaSP,MLE
—— GaSP,PS —— GaSP,MLE
— L Ls

0.04 0.08 0.12

0.00

Calibrated computer model+discrepancy

N-D, PS N-D, MLE
S-GaSP,PS —— S-GaSP, MLE
GaSP, PS —— GaSP, MLE

Ls

Figure 6. The posterior samples from no-discrepancy, S-GaSP, and GaSP calibrations are given in the

upper panels. The crossings of each colored line are MLEs and L2 and LS calibration. The t by the calibrated
computer model by dierent approaches is plotted in the lower left panel, and the predictive mean by combining the
calibrated computer model and discrepancy is plotted in the lower right panel. The black dots are observa-tions.
The 95% predictive intervals by GaSP and S-GaSP with posterior sampling (PS) are plotted in the lower left and
lower right panels, respectively.

model by the GaSP calibration (graphed as the dashed red curve in the lower right panel)
under-estimates the values of the observations. This identiability issue of the GaSP cali-
bration in this example was also reported in [19]. In contrast, the calibrated mathematical
model ts the observations reasonably well in the S-GaSP calibration. Finally, when using
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the calibrated computer model and discrepancy function, all methods t the observations well
as shown in the lower right panel in Figure 6.

7. Concluding remarks. We have introduced a theoretical framework of a scaled Gauss-
ian stochastic process (S-GaSP) for calibration and prediction. We showed that under certain
routinely used assumptions, the predictive mean of the S-GaSP calibration model converges
to the reality as fast as the GaSP calibration with some suitable choices of the regulariza-
tion parameter and scaling parameter. The estimated calibration parameters in the S-GaSP
calibration converge to the L, minimizer with the same choices of the regularization param-
eter and scaling parameter, whereas those in the GaSP calibration typically do not converge
to the L, minimizer. The results rely on the orthogonal series representation of the pro-
cesses studied in this work. The GaSP, S-GaSP, and no-discrepancy calibration approaches
were implemented in the RobustCalibration R package, where the parameters can be es-
timated by both posterior sampling and MLE. Furthermore, for computationally expensive
computer models, a GaSP emulator for scalar-valued and vectorized output can be called in
RobustCalibration for accelerating the computation.

The numerical studies indicate that jointly estimating the calibration parameters and the
discrepancy function in GaSP and S-GaSP calibration can improve the predictive accuracy if
the reality is too complicated to be predicted precisely by a nonparametric regression model
alone. The mathematical model, which typically contains some information about the trend
and the shape of the reality function, can be helpful in predictions. We also empirically found
that the calibrated mathematical model that minimizes the L, distance between the reality
and the mathematical model may not always be the best for reducing the predictive error.
This is because the residuals may behave like noises, which could be dicult to estimate
accurately by nonparametric models. The S-GaSP calibration gives predictions that are at
least as accurate as the GaSP calibration, and the calibrated mathematical model by the S-
GaSP calibration ts the real observations more closely than the ones by the GaSP calibration in
almost all examples.

We outline a few extensions of the S-GaSP model below. First, from the theoretical
perspective, we did not study the convergence of the discretized S-GaSP, whereas the numer-
ical studies indicate that the convergence rate from the discretized S-GaSP is the same as
from the S-GaSP. Second, we illustrated that the S-GaSP calibration can be implemented in
both Frequentist and Bayesian ways. The contraction rate of the S-GaSP under the
Bayesian framework, however, was not studied. The studies of the contraction rate of the
GaSP regression may be extended to achieve this goal [5], and the adaptive approach with
respect to the smoothness level of latent function in [27] may be extended in model cali-
bration. Third, we x the scaling parameter in the S-GaSP calibration as a function of the
sample size, whereas historical information may be used to develop a reasonable prior for this
parameter [22]. Furthermore, the S-GaSP calibration framework may be extended to include
a model of correlated noises, as the eld observations may contain time series and images [2].
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All the formulas in this supplementary materials are cross-referenced in the main body of
the article. We rst give a brief introduction of the Gaussian stochastic process model and
reproducing kernel Hilbert space in Section S2. The proof for Section 2 is given in Section S3.
The proof for Theorem 3.1 and two auxiliary lemmas are provided in Section S4. Section S5
encloses the proof for Theorem 3.3 and provides additional results regarding the convergence

of S-GaSP calibration when kernel parameters are estimated.

S1. Background: Gaussian stochastic process. All the formulas in this supplementary
materials are cross-referenced in the main body of the article. We rst give a brief introduction of
the Gaussian stochastic process model and reproducing kernel Hilbert space in Section S2. The
proof for Section 2 is given in Section S3. The proof for Theorem 3.1 and two auxiliary lemmas
are provided in Section S4. Section S5 encloses the proof for Theorem 3.3 and provides additional
results regarding the convergence of S-GaSP calibration when kernel parameters are

estimated.

S2. Background: Gaussian stochastic process. Assume the mean and trend of the reality
are properly modeled in the mathematical model. Consider to model the unknown discrepancy
function in the calibration model (1) via a real-valued zero-mean Gaussian stochastic process

() on a p-dimensional input domain X,
(S1) () GasP(0; %K(;));

where 2 is a variance parameter and K(xa; xp) is the correlation for any xa; x, 2 X, param-
eterized by a kernel function. For simplicity, we assume X = [0; 1]° in this work.

For any fxy; :::; xpg, the outputs ((x1); :::; (xn))T follow a multivariate normal distribu-
tion

(S2) [(x1); 55 (xn) j 25 R1 MN(O; 2R);

where the (i; j) entry of R is K(x;; x;). Some frequently used kernel functions include the

power exponential kernel and the Matern kernel. We defer the issue of estimating the param-1
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eters in the kernel function in Section 4 and assume K (; ) is known for now.
The reproducing kernel Hilbert space (RKHS), denoted as H, attached to the Gaussian
stochastic process GaSP(0; 2K (;)), is the completion of the space of all functions
Xk

x ! WiK(xi;x); wyanwe2 Ry xgpnnxgx2 X; k2 N;
i=1

with the inner product

*

Xk Xm + Xk m
wiK(xi;); w;K(xj;) = wiw;K(xi;xj):
i=1 j=1 yoooi=1j=1

For any function f() 2 H, denote kfky = Eh_f;_f'i? the RKHS norm or the native
norm. Because the evaluation maps in RKHS are bounded linear, it follows from the Riesz
representation theorem that for each x 2 X and f() 2 H, one has f(x) = Fng(); K(; x)in.

Denote L, (X ) the spaceRof square-integrable functionsf : X | R with _,, f2(x)dx < 1.
We denote hf; gi_,(x) := ,,x f(x)g(x)dx the usual inner product in L>(X). By Mercer’s
theorem, there exists an orthonormal sequence of continuous eigenfunctions fkgk=11 with a

sequence of non-increasing and non-negative eigenvalues fkgk=11 such that

(S3) K(xa; xp) = Xlkk(Xa)k(Xb);k=1
for any x5; xp 2 X.
The RKHS H contains all functions f() = P ,le frk() 2 L2(X) with fy = hf; (i, (x) and
Ll fk2=k < 1. For any g() = Ll gkk() 2 H and f(), the inner product can be
represented as hf; giy = &:1 fkgk=k. For more properties of the RKHS, we refer to
Chapter 1 of [11] and Chapter 11 of [2].

S2.1. The equivalence between the maximum likelihood estimator and the kernel
ridge regression estimator in calibration. Assume one has a set of observations y© :=
vF(x1); 15 yF(xn) | and mathematical model outputs M := (FM(xq;); 5 FM (xn; )T,
where = (1;::5;4)7 2 RY is a g-dimensional vector of the calibration parameters. Denote the
regularization parameter := 2=(n2). For the calibration model (1) with

modeled as a GaSP in (S1), the marginal distribution of yF follows a multivariate normal 2
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after marginalizing out ,
(S4) [v© §;% b MN(EM; 2((n) 'R+ 10)):

Let L() be the likelihood for in (S4) given the other parameters in the model. For any

given , the maximum likelihood estimator (MLE) of is denoted as

(S5) A i= argmaxL():
2

Conditioning on the observations, ;Q and , the predictive mean of the discrepancy function at

any x 2 X has the following expression

(S6) a0 = EI) iy 5o 1= rTO)(R+ nly) tyF M

A

n

with r(x) = (K(x1;x); :::; K(xn; x))T and |, being the n-dimensional identity matrix.
It is well-known that the predictive mean in (S6) can be written as the estimator for
the kernel ridge regression (KRR). In the following lemma, we show that (;r?;;n(ﬂ is

equivalent to the KRR estimator.

Lemma S1. The maximum likelihood estimator'\;n dened in (S5) and predictive mean

estimator /() dened in (S6) can be expressed as the estimator of the kernel ridge regression as

follows
(1) = argmin “0(5); 2;0)2H
where
. 1X nF M 2 2
(S7) in(s) = wrﬁv (xi) £ (xi5) (xi)) + kk* 1ig

Proof of Lemma S1. By the representer lemma [6, 11], for any 2 and x 2 X, one has

X n
(S8) Bx) = wi()K(xi;x):i=1

Denote w = (w1();::5; wn())T. Since hK(xi; ); K(xj;)in = K(xi;xj), (S7) becomes to 3
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nd and w that minimize

(S9) %(yF fM Rw)T(y" M Rw)+ w'Rw:

For any, solving the minimization for (S9) with regard to w gives

(S10) W= (R+ nly) yF fM):

Then plugging W into (S9), based on the Woodbury matrix identity, one has

1
H(yF M RwW)T(yF M RW)+ WTRW

= 20F MO0 R(R* k) D70 R(R+ nly) 9
+(y" fM)T(R + nly) 'R(R+ nly) *(yF ™)

(511)

(yf )R+ nly) Ty M)

which shows that the minimizer of on right-hand side of (S11) is the same as the MLE of in
(S5). Finally, plugging the estimator ., into’{S9), the result follows from the KRR estimator
of () in (S8) with the weights in (S10). [ |

Although modeling the discrepancy function by the GaSP typically improves the prediction
accuracy of the reality, the penalty term of (S7) only contains kky to control the complexity of
the discrepancy. As the RKHS norm is not equivalent to the L, norm, the calibrated
computer model could deviate a lot from the best performed mathematical model in terms of
the L, loss [8]. In Section 2, we introduce the scaled Gaussian stochastic process that
predicts the reality as accurately as the GaSP with the aid of the mathematical model, but has
more prior mass on the small L, distance between the reality and mathematical model. As a
consequence, the KRR estimator of the new model penalizes both kky and kki,x)

simultaneously.

S3. Proof for Section 2.

Proof of Lemma 2.1. By Karhunen-Loeve expansion, we have

X A1
)= PiziiTx) i

P
with Z; I""N(O;l). Denote Wy = i=k1+1 iZ; fér any k 2 N*. From the denition of 4
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R
Z= ., 2(x)dx and 2% 2(>§)dx = 1for anyi 2 N*, it is straightforward to see that

X
(512) Z = 2(12% 4 + (Zy + WP:

In the following expressions, we are conditioning on all parameters and they are dropped
for simplicity. From the construction of

z

2(x) = (x)] 2(x)dx = Z
x2X

and Z pz(), the joint density of (Z1;:::; Zx; W) in the S-GaSP can be expressed as
P, (Z1 = z1;::5Zk = zk; Wk = W)
1

P(Z1= 21552 = 2k We = Wi jZ = z)pz(Z = z)dz
)

p(Z=2;Z1 = 21552k =2 Wi = W
0 p(Z=12)

p(§1 = z1; 0520 = zi)p(Wi = wy)
1

gz(Z = z)p(Z = z)dz

]
N

S~

z
P(Z=2jZ1= z1;::52 = zi; Wk = W) exp Z_ dz

0 2 2
/ p(§1 = z3; 52 = Zk)p(Wk = wg)
1
12:2(1zz+1+k22+ wi) | exp 22 = dz
0 n
& ! & | #
1 2 z 2
/[ exp = z7 p(Wk= wg)exp — iZ7+ Wi
( i=1 ) 2 i
Yk

1
= exp (14 i)z > p(Wk = wi)exp( wk=2);
i=1
where 1 in the fourth step is a Dirac delta function.
After integrating out Wy, it is clear that Z;’s are independently distributed as N(0; 1=(1 +

zi)) under the measure induced by the S-GaSP. Since k is arbitrary, we have

w L
2(x) = ﬁ (x)
. zi
i=1
with Z; "*N(0; 1), from which the proof is complete. [ ]

P
Proof of Lemma 2.4. First note that forany x5; x, 2 X, we have K(x5; Xp) = i=11 ii(xa)i(xp) 5 l
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P P
and Kz(Xa;Xb)= ill z;ii(Xa)i(Xb)Wich;i= i=(1+zi)- For h()= i=1 hii() le and g()=
! gii() 2 H, one has

i 1 pa 1 X1
hh; giy, = ‘h'gi = fhigi+ : higi = hh;giy+ ;hh;gi,: [ |

=1 %! i=1 ! i=1

Proof of Lemma 2.5. We show below that for any 2 and any x 2 X, one has

n

X
(513) ;l:;n(x)= Woi (VK (xi; x):i=1

For any () 2 H, decomposing it into the linear combination of the basis f, K, (x;; )g;-; &hd
the orthogonal complement v() gives
X n
() = Wz;i()sz(Xi;)+ v();i=1
where hv(); ;K;(; xj)ig, = 0 fori = 1;::;n.
To evaluate () at xj for any j = 1;::;n, we have
* +
Xn
(Xj)= Wzii()z2 Kz (xi; ) + V()}Kz(xj})
i=1 H,
Xn
= Wz;i()sz(Xi;Xj);
i=1
which is independent from v(). Hence the rst term on right-hand side of (11) is also inde-
pendent from v(). For the second term on right-hand side of (11), since v() is orthogonal to
fK,(xi; )g;l,, plugging in the decomposition of (), we have
X n
kky,= (k wo;i() Ko (xi; ) ky, + keky, ) i=12
X
k w.i() Kz (xi; ) ky, i=12
Thus choosing v() = 0 does not change the rst term on right-hand side of (11), but also
minimizes the second term on right-hand side of (11). Letting w,.i() = W,.i();, we have proved
(S13). The rest of the proof can be derived similarly as the proof for Lemma S1, so it is omitted
here. [ |

This manuscript is for review purposes only.



S4. Proof for Section 3.1. We prove Theorem 3.1 in this Section. Two auxiliary lemmas

used for the proof of Theorem 3.1 are given after the proof.

Proof for Theorem 3.1. Dene a new inner product on H as
. P . .
(S14) hf;gi = (1+ )hf;gi,(x) + hf; gin

P P
Let f = k1=1 fyk and g = k:11 gk be elements in H. Then

hf; gi

X X X '8

= (1+ IO) frgk + ka& 1+ f fiegk:
k=1 k=1 K k=1 k

p
By letting ¢ by , 1= 1+ " + =, we can dene a new reproducing kernel

Xl
(S15) KOG x®) = ki (x)k(x9) k=1

Since clk 2m=P |, C 1k 2M=P and ji()j < C for some positive constants ¢, C and C,
bounding the sums by integrals, we have

N 1 N z k 1
sup K(x; x°) €2 T 2 m=
X oq L1+ ck2mP o k11 o™ om
p=2m ‘ ! (C)p:Zm
= Cc"¢c S moy X
20 1+ f(c)p=2mxg?m=p =
1
CZC p=2m p=2m 1 X
0 1+ XZWI=p
Thus
(516) sup K (X; XO) C2 Kp=(2m); x; X0

for some constant C depending on K. Dene the following linear operatorsF : H ! H andP
:H ! H via
Z
(Fg)(x) = ) g(x°)K(x;x%)dx’%;  and (Pg)(x) = g(x)  (Fg)(x);
7
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Clearly, we have

X 1
hf; Fgi = hf; i, (x)hg; ki, (x) = hf;giL,x); k=1
(S17) hf; Pgi = hf; gi hf; Fgi = p hf;gi,x)+ hf; gin:
Denote the loss function
1 X" p
Wf)= =y f(x))?+ kfk 2+ kfKP

i=1

and the estimator 4 := argming,y ‘n(f). Let D'n(f) :H ! H be the Frechet derivative of

‘

n evaluated at f. Clearly, for any g 2 H,

, 2 X" . . i=1
D'alfle = = (F(x1)  yi)hK(x;);g()i + 2hPFigi* '™
+
(518) = 2% (fx) yOK(as) + 2(PH)(); )
ni=1

It follows that D“n(fnfg = 0 for all g 2 H, and hence, Sn(fn)()'= 0, where

1 X"
Sa(f)() = " —=(vi f(xi))K(xi;) (Pf)():
i=1
Dene S(f)() = Ey;x(Sn(f)()). Then
Z
S(F)() = (fo(x)  f(x))K(x;)dx (PF)()
x2X

= (F(fo D)0 (PF)() = (Ffo)() f();

and therefore, S(Ffg)() = 0. Let f = f, Pfo. By the denitions of S, and S, we
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have

n o
Sn(fr) S(fn) () fSn(Ffo) S(Ffo)g ()
n o n o
= Sn(fn) Sn(Ffo) () S(fa) " S(Ffo) ()
lxn n (o] n (0]
= Ffo(xi) fatxi) K(xi;)+ P (Ffo)() fa() °
i=1
+ () (Ffo)()
1 X"
= — f(xi)K(xi;) (PF)() + (F)()
g
1 X"

o f(x;)K(xi; )+ Ex ff(x)K(x;)g:i=1

On the other hand, So(fa}() = S(Ffo)() = 0 and S(fn)() ="(Ffo)() fn() =
f(). Therefore,

n 0
Sn(fn) S(fa) () fSn(Ffo) S(Ffo)g () = f() Sn(Ffo)():

Dene the event
Co s ) Anlt) =
g (xi)K(xj; )1 Exfg(x)K(x;)g < tkgk forallg2 H
Ni=q

Applying Lemma S2 on g()=kgk,

P.fAL(t)g 1 2exp PlEm p)=(4m?) nt*
s
for some constant ¢ > 0. The deviation threshold t will be specied later, and from now we
consider data points (x;; y;j)L; over the event A, (t).
Over the event A, (t), we have
n o)

Sn(fa) S(fa) () fSn(Ffo) S(Ffo)g ()
1 X
o f(xi)K(xi;) + Ex ff(x)K(x;)g i=1

f() Sn(Ffo)();
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implying that

Kf Sa(Ffodk = 10K(xi;)  Ex FEOOK(X: )
ni=1

tkfk:

Now we proceed to bound kS, (Ffp)k. Write

kSn(Ffg)k = !
X" fyi  Ffo(xi)gK(xi;) (PFfo)()
;i=1
X n
ffo(xi) Ffo(xi)gK(xi;) fF(fo Ffo)gl()
" '
1 iK(xi;)
~i=1
n
1 X
= ffo(xi) Ffo(xi)gK(xi;) Ex[ffo(x) Ffo(x)gK(x;)]
T
i =
+1—XiK(Xi;)
n

1

n

tkfo Ffok + ! —iK(xi;) ;
n i=1

where the last inequality is due to the construction of the event A,(t). To bound the second
term of the preceding display, we let = [K(xi; Xj)]nn and
Wright inequality [7], for all x > 0, we have

= [q;:::;a]". By the Hanson-

g— 2
P, T 2 o tr()+ 2 tr()®+ 2kkex? e X

10
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Since by the Cauchy-Schwarz inequality,

n X n
tr() = kK(xi;)k? = K(xi;xi) €*n P01 4o
n n
tr(?) X X kK(xi; )k, kK(xj; ) ki, x) €4 n? R°™;
i=1j=1
q .
kkg = tr() €2 n F:(:(zm);
it follows that
a
(S19) tr() + 2 tr()x2+ 2kkex? C2% n p=(2|r<“)(1+ 2x + 2x?%):
Set the event B, to be
( N )
— 1 . . 1=2 p=(4m)1=2 .
Bn = eiK(xi;) < oCkn ;
n.
i=1
p . _
where = 2+ 3x2. Since 1+ 2x + 2x2 2+ 3x2 = , by taking x = ( 2)=3, we have

P(B,) 1 exp( ( 2)=3) for any > 2. Putting all pieces obtained above together, we have

kfk kf Sn(Ffo)k + kSn(Ffo)k
tkfk + tkfo Ffok + oCxn 172 P=(4m)1=2(g7q)

= tkfk + tkPfok + oCxn 172 P=(4m)1=2;

overqthe event A,(t) \ B,. Now take = n 2m=(2m+p)  Choose any C 2 (0;1) and lett

= k=(nt* ©)log(2)). Then, for suciently large n,

nt? n 0
P.fA,(t)g 1 2 exp 1 exp n¢ ;
K

where = (2m p)2=(2m(2m + p)), and therefore,

kfk kPfok + 29Cxn mM=(2m+p)i=2.

11
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with probability at least

PfAn(t)\ Bn)g =1 PfAS(t) [ Byg
1 PfAS (t)g P(BS) =1 expf ( 2)=3g expf n‘g

for suciently large n. Observe that

2
pa 1 2
. k .
kPfok 2 (1 «)bhfo; ki, k() = (4)hf0;k'Lz(§<)

k=1 k=1 :
_X ip%i , 2% W= g 12
= — La(X) Mﬁbﬂj

k=1 1F T K ’ k=1 1+="«%
2 Nfo;kiLz(X)z+ 2 X 1 hfo;kiLa(x)

k=1 k=1 """

k
= 2kfok 2(x) + 2kfoky 2

2n 2m=(2m-+p) kakLz(X) + kfokH 2:
Hence, we proceed to compute

kfy foki,(x) kf," fok
kf,"  Ffok + kFfo fok
= kfk + kPfok
2 g(kakLz(x) + kfoky) + 29Cx ™2 n m=(2m+p)

with probability at least 1 expf ( 2)=3g exp nC€ for suciently large n. The bound for

kf...na foky follows immediately by the denition of jj jj, completing the proof. -

The following the Lemma S1 is Theorem 3.6 in [5], which is needed for the proof of
Lemma S2.

Lemma S1. Let (X; )jl=0 be a sequence of random elements in a Hilbert space H with norm

a.s., and that the dierence sequence (Dj);_} = (X; X; 1);.} satises kDjk? b; a.s?and
j1:1 bj2 b2. Then for any t 0,

P sup kakH t 2exp
i1 2b?
12
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The following maximum inequality for functional empirical processes in the Sobolev space
WJ"(X; 1), which generalizes Lemma 5.1 in [12] to multivariate functions, is of fundamental

importance to the proof of Theorem 3.1.

pendently and uniformly drawn from X. Then there exists some constant ¢ depending on the

kernel K, such that for any t> 0,

X n

1
Px sup — [g(xi)K(xi;) Ex fg(x)K(x;)gl t s2w,
xGym o N
( d(6m d)=(4m?) 2)
nt
2 exp

K

Proof of Lemma S2. We follow the argument used in the proof of Lemma 6.1 in [13].
Denote
X"
fzn(g)g() = E[g(xi)K(xi;) Exfg(x)K(x; )gl:
i=1

Fix g, h2 H, n, and, consider the following sequence of martingale (X; )j=%, in H:

8
2 O ifj = 0
Xj = ifz;(g) Zj(h)g; ifj=1;:::;n
>
© Xn; ifj n+ 1:

(X5 Xj; 1)) = fg(x;)  h(x;)gK(x;;) Ex[fg(x;) h(x;)gK(x;;)]

and X; X; 1= 0forj n+ 1. Observe that

g g
kK(xj; )k = hK(xj;); K(xj;)i = K(xj;xj) Cx 9=4m

with probability one. Therefore, with probability one, we have

kX; X; 1k? 4c? 4=Cmigg hk?

13
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Banach space (Lemma S1) to derive
P(kZn(g)  Za(h)k t) = P(knfZn(g) Zn(h)gk nt)

P sup kjfz;(g)  Zj(h)gk nt
i1
( )
nt? .
8C, B-2kg hk, 2.

2 exp

Applying Lemma 8.1 in [3], we obtain the following bound

P— 2
_24C d=(4m)kg hky, ;

(521) kkZa(g)  Za(h)kk |
n

where k k , is the Orlicz norm associated with  ,(s) = exp(s?) 1.
Now let = flog(3=2)g!=2 and set (x) = ,(x). Clearly, (1) = 1=2, and (x)(y) (xy) for any
Xx;y 1. Applying Lemma 8.2 in [3], the Orlicz norm of the maximum of nitely

many random variables can be bounded by the maximum of these Orlicz norms as follows:

max (i) = max; 2 (k) max kik = 2 , (k) max kik ,;?
1ik 1ik 1ik 1ik
namely,
1 2
(S22) max (k) max kik ,;
Lk Tik

where figizk1 are nitely many random variables.

Next we apply the \chaining" argument. Let " > 0 be some constant to be determined
later. Construct a sequence of function classes (Gj)jlz() in H(1) satisfying the following
conditions:

(i) For any G; and any hj; g; 2 Gj, kh; gjk., "=2J, and G; is maximal in the sense that for
any g; 2 G;j, there exists some hj 2 Gj such that kh; gjk < "=2I.

(ii) For any Gj+1, and any gj+1 2 Gj.1, select a unique element g; 2 Gj such that kgj+1 gjk., "=2.
Thus, there exists a nite sequence (go; g1;:::; gj+1) such that kg; gir1ky, "=2'fori
= 0;:::;j,and g 2 Gj.

Therefore, for any gj+1; hj+1 2 Gj+1 with kgj+1  hje1ky, ", there exists two sequences

14
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(gi)itg, (hi)lZg, such that gi; hi 2 G, maxfkg;  gis1ki; khi  hiviky,g "=2/, and that

X
kgo hOkLl (kgi gi+1kL1 + khi hi+1k|_1) + khj+1 gj+1kL1
i=0
XJ n
2 i;_k n 5";i=0
2
and hence, by (S21) one has
5p 24C?
(523) kkZn(80)  Zn(ho)kk , ———p- K p=l4min,
n

We also notice that G; H(1) ff 2 H : kfky 2g, and therefore, the cardinality of Gj can be

bounded by the metric entropy of ff 2 H : kfky 172g, which is known in the literature [1]:
logjGjj log Ny "=2l:ff 2 H : kfky 1=2g. k ki, co

p=m

2J ! "

p=(2m)

where cg is some absolute constant.

Now suppose g, h are arbitrary functions in H(1) such that kg hk_, "=2. For anyj
2, there exists gj; h; 2 G; such that

maxfkgj gkLl;khj hkng "=ZJ;

15
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and hence, kg; hjky, ". Therefore, for anyj 2,

sup kZn(g) Zn(h)k
g;h2WJ (X;1);kg hky, " 5
sup kZ.(g) Zn(gj)k + kzn(gj) Zn(hj)k

g8;h2W (X;1);kg hky, "
+ kZn(hj) Zn(h)k

p
74C%2
_2 %0k 9-(m) ayfkg gk kh hikug

+ n sup kZn(gj) Zn(hj)k
gh2W  (X;1);kg hk "

zp—4 2 d=(4m),, ’
gACcr 4 max kz_(g) 2z, (h)k

N ZJ gj,'hJ-ZGj;ng- hjkLll' ! !

2

We focus on the second term of the preceding display. Fix j 2, for any gj; h; 2 G;j,

max kz (g) Z (h)k
gj;hJ-ZGj;ng- hjkLlu n ! n ! )
max kfz (g) Z (h)g fZ (g) Z (h)gk
n j n j n 0 n 0
g]thZGJlng thL " 2
1
+ max kZ, (go) Z, (hpk
g0;h02Go;kg; hjki," 2
max kfz (g) Z, (h)g fz (g) Z, (hy)gk
gj;hj2Gj;kg; hjkyy" 2
b _ .
+E logtt=+36 -G-jz) max kkz (g) Z (h)k k :
0 n 0 n 0 2

(g0;h0)2GoGo;kg; hjkiy"

Clearly, the second term can be bounded by inequality (523):

20 L _
_ Ioﬂg-(-lﬁ-—jGO-G-jz) max kkZz (go) Z (ho)kk
(80;h0)2GoGoskg; hjkiy " " " ?
p 2 P=(4m)ng— _
10° 2a¢¢ —pn log 1+ exp 2co F’=(2m)" p=m

16
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since

jGo Goj = jGoj® exp(2log Npj("; fkfk 1g;k kyi,)) (524)

exp(2co P P,

it suces to bound the rst term. Write

max ) kfz (g;) <z (hj)g fz (g)) 2z (hjek
gj;hj2Gj;kg; hjky, 2
i1
27 max kz (8 ) Z (g)k
F . n i+1 n i
o (B18+1)2GiGiv ke giv1kiy "=2] 2
X12p
2 log(1+ jGij jGis1j)i=0
max kkzn (gi+1) Zn (gi)k k
(gi;8i+1)2GiGis1;kgi giv1kyy "=2i )
Pz 2 p=am) i 1L h " .
4 24CKp_ !Og 1+ exp ZCO p=(2m)(|l=2i) p=m "=2i;
n
i=0

where inequalities (S21) and (S22) are applied. Bounding the sum by integral, we have

g 1L hn o+ log 1+ exp 2co _P=(2m) _
(||:2]) n:2 p=m i
i=0
5( 1Z w5 @

logfl + exp(2co P=(2m)x P=m)gdx
) =i+l
7% g

logfl + exp(2co P=(ZMIx P=mM)gdx: 0

Putting all pieces above together, we obtain the following bound:

sup kZn(g)  Zn(h)k
8}h2Wa1(X;1);kg hkpq"
2
p=(4m) " "dg
—P = logfl + exp(2co P=(2mlx P=m)gdx
n 2 0
q
+ " logfl+ exp(2co p=(2m)" p=m)g :
17
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By taking j ! 1, we can let the rst term in the squared bracket tend to 0, and hence,

sup kZn(g) Zn(h)k
g;h2wWn (X;1); kg hky, " .

p=(4m) Z "4

B logfl + exp(2cg P=(2mlx P=m)gdx
n 0

q

+ " logfl+ exp(2co P=2m" P=m)g

p=(am) £ " d

p— logfl + exp(2co P=(2m)x P=mM)gdx: o
n

Now we take h = 0, which implies Z,(h) = 0 by the construction of Z,. Furthermore, by
the property of reproducing kernel K and the Cauchy-Schwarz inequality,

kg hky, supjg(x)j= supjhg();K (x;)ij

x2X x2X
p _
sup kgk AR (G ;K ()7 Cg  P=4m).
x2X
Taking "= Cx P=(4m), we obtain

sup  kZn(g)k

m g2W (X;1) ,

sup kZ,(g)k
g2ws (1);kgk,

sup kZn(g) Zn(h)k

m "
g;h2W; (X;l);kg:Z hkt 1 )

n 172 p=(4m) logfl + exp(2co P=(2m)x P=m)dx o
n 122 p(6m p)=(8m?),

Hence, invoking Lemma 8.1 in [3], we nally obtain

! P
n'c22

(
gZVSEl"”()X'l) kZn(g)k > t  2exp pop p)=(4m )

’

for some absolute constant ¢ depending on K only, completing the proof.

18
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S5. Proof for Section 3.2. Denote ," := ;1;2: 2() .4 .onl() and 20) =".n0) in
(11).

We need the following Corollary S1 and Lemma S2 to prove theorem 3.3. Corollary S1 is
a direct consequence of Theorem 3.1. We repeatedly use the fact that for any f() 2 L, (X) ,
there exists a constant C such that kfk,(x) Ckfky in the following proof.

Corollary S1. Denote z'\ = argmin,y ‘z(;) for each 2 . Under the Assumptions Al to
A6, for suciently large n and any > 2 and C 2 (0;1), with probability at least1 expf
( 2)=3g expf nCg, one has

sup kz;() ("0 MGk x)

2" 2supky" ) £V k)
+ SUPZkYR() fM(; )kn + Cko'™? n 2mem
and
sup ki (kn (2°2+ Dsupk(y®) M)k
2 2
e 2" 2supky™) T kg + 2 0ot
by choosing = n 2Mm=(2m+pP) gnd , = 12 where C is a constant depending on the kernel

K(;).

Lemma S2. Under assumptions Al to A6,
(i) it holds that

n

X
sup = (yR(x) fMixi;)  A(xi)?
2 nizl

(yR(x) fM(x;)  x(x)2dx = op(n '72);
x2X

and

Xn
sup " (yR(a) fMx;) A = op(n 22);

n
2 i=1
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(ii) for anyj = 1;::;q, one has

Xn v .
PR M) M @)
ni=1 @J
Z (X y\
St Mo @ g g 1,
x2X J

Proof. Denote

8
<

1o

X 'y
W (H;B) :=  f() = fi() 2 La(X) : j2m=pf2 g2
: . o

7’

and

s2(;) 1= (yR(xi) fMxi;) (i)
ui(;) 1= (yR(xi) M (xi;) (xi))i;
@f &(x;)

j

f6) = R M) ()

for (;) 2 W, (X; B) and some B > 0 that will be specied later. Dene the empirical processes

1 X 0
8;):= Tpfs?(;), Ex [s3(;)]g;
n i=1
uw=-—#u( ) Ex i [uil; )lg; i=1
1 n
) = p——Kri(;) Ex[ri(;)]g;
i=1
where
Z
Ex,[s7()] = (R(x) fM(x;)  (x)%dx;
ZXZX
Ex,; [Uil;)] = (yR(x) fM(x;)  (x))idx = 0
X2 X
z @fM(x;)
Ex, [ri;)] = R M) ) X gy
x2X j
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By Assumptions A3 and A4, the function classes f@fM(;)=@; : 2 gand F = fyR()
fM(;); 2 g are Donsker. Note that, by denition, W™ (X; B) is also Donsker. Since both

W, (X;B) and F are uniformly bounded, the function classes

flyR() MG) () : 252 W™(X;B)g; and
R M @f ;M m
(y*() £706) 0 ——252 W"(X;B) ,
@()

are also Donsker classes. Furthermore, letting f.(; x) = (yR(x) fM(x;) (x)), observe that

for any (1;1) and (3;2), the distance

Eo(f1;1 fz;z)z 1=2
= okfM(;1) 1() fMG2)+ 20k, (x)
o kfM(;1) MG 2k, x) + kal) 200k, (x)

can be bounded by the Ly(X)-distance of functions in ffM(;) : 2 gand () 2 W™(X;B).
In,addition, by Assumption A4 ffM(;) : 2 g and W™(X; B) are Donsker classes, it follows
that the function class

ff. 2 C(R X):2;2W,(X;B)g

is also Donsker, since its metric entropy can be upper bounded by those of ffM(;) : 2 gand
W,n(X; B). By Theorem 2.4 in [4], for any t; > 0 and any B > 0, there exists tz;t2(;tog >0

such that
!

(S25) lim sup P sup 8GN > ta <ty
nti kkuB; 2; kyR() fM () (ki ,x)t2 |

(526) limsup P sup it)i>t <ty
nti kkpB; 2, kyR() fM () Ok, (x)t, ¢ |

(527) lim sup P sup iG>t <ty
ntl kkuB; 2; kyR() M () (ke (x)t00

2
Note that by Corollary S1, sup, kz;k’\H is asymptotically tight, and therefore for any" >
0, there exists Bp > 0 and some integer N 2 N,, both depending on , such that

P(sup, kz;lé\H > Bg) "=3foralln> N. Now take B = Bg, t; = =3. Then we can choose
t, to be a value that satises (S25), tozsatisfying (S26), and tho satisfying (S27). By
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Corollary S1 and Assumption A5, sup k;;{) (yR() fM(;))ki,(x) = Op(n 2M=(2m*p)) and
hence there exists t3 > 0, depending on and n, such that for all n > N, it holds that

P sup kyR() fM(;) zA;()kLZ(X) t3 < "=3:
2

Without loss of generality, we may require t3 minft,; t2;t%g by taking suciently large n.

Then for suciently large n, we obtain

P supjé(;z)f™> "
2 0 1
Pp@ sup i8G )™ t1A sup
kz;knBb; 2; kyR() fM(;) z;()kLz(X)tZ

+ P supky®()  fM(;) 20k (x) > t
+ P 2sup k;.ky > Bo

2 A

< II=3 + l|=3+ ||=3 - ll;

and similarly,

P supjt;z)i> " < and P supj@.)i’™> " < :
2 2
Therefore,
1 .
p—-sup j$ ;)I"
n»>
XI’]
= sup 1T (yRxa) FM(xi;) A(xi))?
2 n._,
(yR(x) fM(x;) ﬁ(x))de= 0p(n 1=2).
x2X
and
1 1Xn
p?supj(gz;)j’\: sup - (R0a)  fM(xi;)  Axi))i = op(n *72);
2 2

i=1
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completing the proof of (i). The proof of (ii) can be completed by observing that

X n M .
AR ™Mo o @)
ni-1 @
Z M
M (x;,
VR M A @ Ty,
x2X @;
= Pt i p—subjtz)i = ofln ): n
n ’z ns

Proof for Theorem 3.3. Without loss of generality, it suces to prove the case when ; =
1=2 For the general case when , = O( 1%2), the proof follows similarly. We rst show, ! P
. By the denition of ;, |,, and“the theory of M-estimators (see, Theorem 5.7 in [10]), it
suces to show that =2(‘,(; ,.) A 2))! P kyR() fM(; )kzzgx) uniformly for

each 2 . Note that

lz(zc();)
X1 "
=27 R fMxs) A2+ 17 ilon?,
i=1 Ny
zxn R M A 2 p A
+ - (y“(xi)  fM(xi;) 2(xi))i + ko k* B ke Kk, (x) =1

=A,+B,+C,+ D, + Ep:

For A,, by Lemma S2 (i) and Corollary (S1), one has

n

(528) sup 1 (yR(xi) fM(xi;)  Axi))? = op(n
2 Ny

1=2)

P
Since E[Bn] = 2@nd V[B,] = O(n 1), Chebyshev’s inequality implies (1=n) ;_7 ilon? = 2

+,0p(n 1=2) for B,. For C,, Lemma S2 (i) guarantees that
Xn

sup 2 (yR(xi) M) A = op(n 12

n
2 i=1

Since = O(n 2m=(2m*p)) by the asymptotic tightness of sup k.. k% (Corollary S1), one 23
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has sup, kz;kH": og(n 172). By putting the above all pieces together, we obtain

(S29) sup 1=2(Iz(z;()\;) 2)0 ké\}kLZ%X) = Op((n) 1=2);
2

For any , by the Cauchy-Schwarz inequality, one has
kzl;\kLz()Z() kyR() fM(; )kLZ%X)
k(z;() (R0 MG Nk, ke (T + yRO) MGk x)

Recall that
sup k(z() (yRO) M )kiyx) = Op(n M=2m+d)y
2

by Corollary S1 and Assumption A4. Using Assumptions A4 and the asymptotic tightness of
sup k,’ky (Corollary S1), one has

kz:() + yR() MGk (x)
kz;OkLz(X)+ sup kVR() fM(;)kLz(X)
2
Cko;(Ykn + sup ky®() fM(; ) kn = Op(1):
2
Thus
sup kZ;Ikzz(X) kyR() fM(/)kZZ[X) — Op(n m=(2m+d)),.
2
and hence,
sup (%) " 2y kyR() MK ) = op(1);
2

from which we conclude /! P Ly-

Next we derive the convergence rate of ,* Apply the Frechet derivative on ‘, with regard

‘ A

to () and the partial derivative on ‘, with regard to;, j = 1;:::;9. For any g() 2 H, ,
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and ;) satisfy

2 X" A .
0= o (v fxi;) 2xa))g(xi) + 2h, (S g(ini=1
(30) + 2p hz(\);g()iLz(x);
Xn M .
o= 2T0yF tean o @)
(531) N @;
Choosing g() = %nd plugging (S31) into (S30), one has
* + * +
(532) P N); e ":) o, N); @ MG = 0
Fe Fe
! H ! Ly (X)

Substituting (S31) into (S32) and by Lemma S2 (ii), we have

Xn M .
0= Ut @)
i=1 @;
¢ @M _f @M ; )h
= (yr(x) M0 T —edx+ T
J J L2(X)
xXn M(y..
E i @f (Xl;zy\ op(n 1=2)
L i "
_P @0 MG, e @f M)
@; @ ; |
Xn M (y.-
E i @fM(xi; N op(n 1:2):

LT J

Applying Taylor expansion to the rst term on the right-hand side at |,, foranyj = 1;::;q,

we obtain
( )
z @2(yR(x) fM(x; A)z)z T )
@@ dx (%5 L9
Z . B
AL ;)““X'Lz”zdﬁop(l) o)
* ; + M (y.-
(533) IoH iR @;
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where ; lies within the q dimensional rectangle between |, and ,. Observe that Corollary S1

and assumption A3 imply

*

/\ f A M ; 2
s @(‘;/() k, ky @R LLI'—G—(.—].—)*= Op(1):
J I H

H

Now we consider the second term. Dene the empirical process

6= N0 @) @fM(xi;1,) i1
19=n @; @
and denote " .
o= OB etk
@ | @
Since
n 2#
Eiton;x [f, (5 X) f,(;x)]? . @fM(x; ) @fM(x; )
= x 2 @J 1 @J 2
@M ), efMx )
= 0 @J @j LZ(X) ’

therefore the function class ff(; x) 2 C(R X ) : 2 g is Donsker by Assumption A3, and hence,
G () converges weakly to a tight Gaussian stochastic process, denoted by G(). W.l.o.g., we
may take G() a version that has uniformly continuous sample paths (see Chapter 6 in [9]). Since
Gn(L,) = O for all n, it follows that G(.,) = 0. By the consistency of ; and the continuo(s
mapping theorem [10], Gn(;) = G(,) + 0p(1) =Aop(1). Therefore,

lx”i @fM(xi; ) 1ﬁ_>Gn(z)¢ 1X @f x.,LZ 2 i

n @j n i=1

"
[y

To sum up,

202y FYx L))
@@ T

— Op(n m=(2m+p))+ Op(n 1=2)+ Op(n 1=2): Op(n m=(2m+p));

dx+ op(1)(; " 1,)

completing the proof. [ |

S6. Proof and additional results for Section 4. The identities in the Lemma S1 are used

repeatedly in the proof of the Theorem 4.1 and Lemma 4.2.
26
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Lemma S1. Denote 2R,, the covariance matrix of (,,(x1); :::; 2, (X)), where the (i; j) entry

being 2K, (xi; x;) dened in (20). Denote r,,(x) = (K, (X; x1); :::; Kz, (X; xn))T forany x 2 X.

One has the following identities

1_ 1, 2, .,
(534) Ry = R T4

T _ N7 1_ T 1 .
(535) rzd(x)— jr (x)R “=r (x)R "R, ;
for any x 2 X.

Proof. By the denitions of R;, and the Woodbury Identity, one has

1!

R,, =R RR R=R I, I, + _zR 1!

_z
d n

1 1
R B+, = R '+ 1B

from which (S34) follows.
Equation (S35) can be shown similarly by noting rTZd(x) = rT(x) rT(x)R 1R and the

Woodbury Identity. [ |

Proof of Theorem 4.1. The predictive mean is as follows

A (x) = ElyF () iyT 5%
= fM(x;) + 1oy (x)T (Rzy + nln) H(yF M)
= fM(x;) + r(x)TR Ry, (Ryy + nln) H(yF f“l”)
!
=fMix;)+r(x)TR ¥ I1,+n R 1+ nJm (yf ™M)
1
= fM(x;)+ (1 r(ZX})T R 1+ , nzln (yf ™M)

where the last two equalities follow from (S35) and (S34), respectively.

The predictive variance can be obtained using (S35) and (S34) as follows

K, (%) = Kzg(x; %) 1] (X) (Reg + nln) Frzg(x)

K(x;x) rT(x)R Yr(x)

(1+,) rr(x)7 R '+  ni, R~1r(x) []

z z

27

This manuscript is for review purposes only.



from which the result follows.

Proof of Lemma 4.2. When 4 % 0, the predictive mean is as follows

Ely" (x) JyF55%5al =fM0G) + rey () TR HyF ™)
StM(x; )+ r(x)TR 1Ry,R,, F M)

=fMx;)+r(x)TR Hyt M)
The predictive variance can be obtained similarly. [ |
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